WorldWideScience

Sample records for undergraduate static field

  1. Static electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    The problem of static electromagnetic field admitting a time-like and two space-like Killing vectors is completely solved. The solutions contain plane-symmetric solution as a special case. The solutions can be transformed into solutions describing the gravitational field of a charge line-mass by suitably introducing weyl's canonical coordinates. Further, these solutions are true generalizations of Kasner solutions. (Author) [pt

  2. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  3. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  4. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  5. Immediate field of intervention: undergraduate college Preparation ...

    Indian Academy of Sciences (India)

    ... field of intervention: undergraduate college Preparation: at research institutes and universities The challenge: to transform the disciplines themselves Make them relevant and responsive. First step: create innovative interactions across the higher education spectrum, between Research Institute-University-College.

  6. Liquid methanol under a static electric field

    Science.gov (United States)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  7. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  8. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  9. Fast static field CIPT mapping of unpatterned MRAM film stacks

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Henrichsen, Henrik Hartmann

    2015-01-01

    Current In-Plane Tunneling (CIPT) method measures both RA and TMR, but the usefulness for uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time. Thus, we develop and demonstrate a fast complementary static magnetic field method focused only on measurement of RA. We...... compare the static field method to the standard CIPT method and find perfect agreement between the extracted RA values and measurement repeatability while the static field method is several times faster. The static field CIPT method is demonstrated for 200 mm wafer mapping showing radial as well...

  10. Persistence of undergraduate women in STEM fields

    Science.gov (United States)

    Pedone, Maggie Helene

    The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in STEM. This study also examined and compared the characteristics of undergraduate women who entered STEM fields and non-STEM fields in 2003-2004. The nationally representative Beginning Postsecondary Students Longitudinal Study (BPS:04/09) data set was used for analysis. BPS:04/09 study respondents were surveyed three times (NPSAS:04, BPS:04/06, BPS:04/09) over a six-year period, which enabled me to explore factors related to long-term persistence. Astin's Input-Environment-Output (I-E-O) model was used as the framework to examine student inputs and college environmental factors that predict female student persistence (output) in STEM. Chi-square tests revealed significant differences between undergraduate women who entered STEM and non-STEM fields in 2003-2004. Differences in student demographics, prior academic achievement, high school course-taking patterns, and student involvement in college such as participation in study groups and school clubs were found. Notably, inferential statistics showed that a significantly higher proportion of female minority students entered STEM fields than non-STEM fields. These findings challenge the myth that underrepresented female minorities are less inclined to enter STEM fields. Logistic regression analyses revealed thirteen significant predictors of persistence for undergraduate women in STEM. Findings showed that undergraduate women who were younger, more academically prepared, and academically and socially involved in college (e.g., lived on campus, interacted with faculty, participated in study groups, fine arts activities, and school sports) were more likely to persist in STEM

  11. Feshbach resonances in cesium at ultralow static magnetic fields

    NARCIS (Netherlands)

    Papoular, D.J.; Bize, S.; Clairon, A.; Marion, H.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.

    2012-01-01

    We have observed Feshbach resonances for 133Cs atoms in two different hyperfine states at static magnetic fields of a few milligauss. These resonances are unusual for two main reasons. First, they are the lowest static-field resonances investigated up to now, and we explain their multipeak structure

  12. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  13. Fast static field CIPT mapping of unpatterned MRAM film stacks

    Science.gov (United States)

    Kjaer, Daniel; Hansen, Ole; Hartmann Henrichsen, Henrik; Chenchen, Jacob Wang; Noergaard, Kristian; Folmer Nielsen, Peter; Hjorth Petersen, Dirch

    2015-04-01

    While investigating uniformity of magnetic tunnel junction (MTJ) stacks we find experimentally and analytically that variation in the resistance area product (RA) is more important to monitor as compared to the tunnel magnetoresistance (TMR), which is less sensitive to MTJ variability. The standard Current In-Plane Tunneling (CIPT) method measures both RA and TMR, but the usefulness for uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time. Thus, we develop and demonstrate a fast complementary static magnetic field method focused only on measurement of RA. We compare the static field method to the standard CIPT method and find perfect agreement between the extracted RA values and measurement repeatability while the static field method is several times faster. The static field CIPT method is demonstrated for 200 mm wafer mapping showing radial as well as asymmetrical variations related to the MTJ deposition conditions.

  14. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  15. Static and dynamical Meissner force fields

    Science.gov (United States)

    Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.

    1991-01-01

    The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.

  16. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  17. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  18. Enhancement of sedimentation and coagulation with static magnetic field

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina

    2017-11-01

    The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.

  19. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  20. Vitamins and glucose metabolism: The role of static magnetic fields.

    Science.gov (United States)

    Lahbib, Aïda; Ghodbane, Soumaya; Sakly, Mohsen; Abdelmelek, Hafedh

    2014-12-01

    This review focuses on our own data and other data from the literature of static magnetic fields (SMF) bioeffects and vitamins and glucose metabolism. Three main areas of investigation have been covered: Static magnetic field and glucose metabolism, static magnetic field and vitamins and the role of vitamins on glucose metabolism. Considering these articles comprehensively, the conclusions are as follows: The primary cause of changes in cells after incubation in external SMF is disruption of free radical metabolism and elevation of their concentration. Such disruption causes oxidative stress leading to an unsteadiness of glucose level and insulin release. Moreover, based on available data, it was concluded that exposure to SMF alters plasma levels of vitamin A, C, D and E; these parameters can take part in disorder of glucose homeostasis and insulin release.

  1. Test chambers for cell culture in static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, Marek, E-mail: mag@iq.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Gawron, Stanisław, E-mail: s.gawron@komel.katowice.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Sieroń, Aleksander, E-mail: sieron1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Pawłowska–Góral, Katarzyna, E-mail: kgoral@sum.edu.pl [Department of Food and Nutrition in Sosnowiec. Medical University of Silesia in Katowice. 8 Jednosci Street, 41-200 Sosnowiec (Poland); Cieślar, Grzegorz, E-mail: cieslar1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Sieroń–Stołtny, Karolina [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland)

    2013-04-15

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D.

  2. Occupational exposure of NRM spectrometrists to static and radiofrequency fields

    International Nuclear Information System (INIS)

    Berlana, Tania; Ubeda, Alejandro

    2017-01-01

    Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user s hand (B = 683.00 mT) and head thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultra-shield technology allows a 20-65-fold reduction of the field strength received by the operator. (authors)

  3. Effects of moderate static magnetic field presowing treatment on ...

    African Journals Online (AJOL)

    Improvement of seed performance by static magnetic field (SMF) constitutes a safe ecological way to substitute chemicals use. In laboratory conditions, we studied the effects of presowing seeds of two varieties of Raphanus sativus (Red: R.R, Red and White: R+W) by moderate SMF on seedlings' growth and oxidative status ...

  4. Effect of Static Magnetic Field on Cell Migration

    Science.gov (United States)

    Hashimoto, Yuichiro; Kawasumi, Masashi; Saito, Masao

    The effect of magnetic field on cell has long been investigated, but there are few quantitative investigations of the migration of cells. Cell-migration is important as one of the fundamental activities of the cell. This study proposes a method to evaluate quantitatively the cell-diffusion constant and the effect of static magnetic field on cell migration. The cell-lines are neuroblastoma (NG108-15), fibroblastoma (NIH/3T3) and osteoblastoma (MC3T3-E1). The static magnetic field of 30 mT or 120 mT is impressed by a permanent magnet in vertical or horizontal direction to the dish. It is shown that the cell-diffusion constant can represent the cell migration as the cell activity. It is found that the cell migration is enhanced by exposure to the magnetic field, depending on the kind of cell. It is conjectured that the effect of static magnetic field affects the cell migration, which is at the downstream of the information transmission.

  5. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data....

  6. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  7. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  8. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  9. Mean field annealing approach to large residual-statics estimation

    Science.gov (United States)

    Cary, Peter W.; Upham, Warren

    1993-12-01

    We present a new method for solving the large residual-statics problem, called mean field annealing, which may be capable of overcoming some of the limitations of stochastic methods. Mean field annealing is a global-search method that is governed by a purely deterministic set of equations. The mean field annealing method approaches global optimization problems in a fundamentally different way from stochastic global-search methods. The mean field approach never samples individual trial solutions in model space. Instead, the mean field equations, which are solved at successively lower temperatures with a fixed-point method, involve solving for the probability distributions of each variable rather than solving for the variables themselves. The probability distribution of each variable is resolved separately by replacing all other variables that occur in the energy function by their expectation values.

  10. The effects of static magnetic fields on bone.

    Science.gov (United States)

    Zhang, Jian; Ding, Chong; Ren, Li; Zhou, Yimin; Shang, Peng

    2014-05-01

    All the living beings live and evolve under geomagnetic field (25-65 μT). Besides, opportunities for human exposed to different intensities of static magnetic fields (SMF) in the workplace have increased progressively, such SMF range from weak magnetic field (1 T). Given this, numerous scientific studies focus on the health effects and have demonstrated that certain magnetic fields have positive influence on our skeleton systems. Therefore, SMF is considered as a potential physical therapy to improve bone healing and keep bones healthy nowadays. Here, we review the mechanisms of effects of SMF on bone tissue, ranging from physical interactions, animal studies to cellular studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Static magnetic field influence on rat tail nerve function.

    Science.gov (United States)

    Hong, C Z; Harmon, D; Yu, J

    1986-10-01

    Motor nerve conduction and excitability were measured on the tail nerve of anesthetized rats before and after the nerve was exposed perpendicularly to a static electromagnetic field of various intensities and durations. There was no significant change in either the distal latencies or the amplitudes of the compound muscle action potential (CMAP) measured from stimulating the tail nerve after it was exposed to the electromagnetic field with a density up to 1.2 Tesla (T) for a duration of 60 seconds. However, the nerve excitability expressed as changes of the amplitudes of the submaximally evoked CMAP increased significantly when the tail nerve was exposed to a magnetic field with a density higher than 0.5T for more than 30 seconds. The finding that an electromagnetic field increases motor nerve excitability suggests a possible mechanism of its therapeutic effects.

  12. Ideal Magnetohydrodynamic Stability of Static Field Reversed Configurations

    Science.gov (United States)

    Iwasawa, Naotaka; Ishida, Akio; Steinhauer, Loren

    2000-02-01

    The ideal magnetohydrodynamic (MHD) stability of static field-reversed configurations is investigated. For the first time, the eigenvector fields and eigenvalues for a variety of global modes are found by applying the Rayleigh-Ritz technique to the variational principle using a verifiably complete basis set. This method is applied to a wide range of equilibria and mode types, including kink and sausage-like modes, modes with intermediate azimuthal mode number, and higher-harmonic modes with respect to the minor radius structure. The findings include the following. Modes with intermediate azimuthal mode number are somewhat more unstable than the well-known tilt mode. The tilt is not stabilized by proper current profile and separatrix shape. The inverse scaling of the tilt growth rate with the elongation (found in previous studies) is not valid in general. This suggests that large elongation alone cannot be relied on for stability when non-MHD corrections are added.

  13. Effect of a static magnetic field on activated sludge community.

    Science.gov (United States)

    Drzewicki, Adam; Dębowski, Marcin; Zieliński, Marcin

    2017-10-01

    The aim of this study was to determine the effect of a static magnetic field (SMF) on the composition of activated sludge biocenosis. The experiment was carried out in two parallel bench scale Sequencing Batch Reactors (SBRs). Both SBRs were treated with dairy wastewater. The activated sludge in the first SBR was exposed to an SMF via the induction of a 0.6 T magnetic field generated by four magnetic liquid activators. The second reactor (control reactor) was operated at the same operational parameters but the activated sludge was not exposed to the SMF. The mean length of the bacterium Eikelboom Type 0092 was lower in the SMF-exposed reactor than in the control reactor. Different activated sludge morphologies in SBRs were reflected in the values of the sludge volume index and sludge biotic index calculated on the basis of the microfauna composition.

  14. Enhanced aerobic nitrifying granulation by static magnetic field.

    Science.gov (United States)

    Wang, Xin-Hua; Diao, Mu-He; Yang, Ying; Shi, Yi-Jing; Gao, Ming-Ming; Wang, Shu-Guang

    2012-04-01

    One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  16. Reduction of static field equation of Faddeev model to first order PDE

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Shi Changguang

    2007-01-01

    A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations

  17. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  18. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  19. Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.

    Science.gov (United States)

    Yau, Jeffrey M; Jalinous, Reza; Cantarero, Gabriela L; Desmond, John E

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention. The aim of this study was to characterize the influence of the scanner's static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Using an MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner's static field to derive a field map to account for TMS field variations. TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner's static field also exhibited the greatest spatial variations in fringe field regions near the gantry. The scanner's static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. Coil orientation changes in the B0 field did not result in substantial TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0-70 cm region from the bore entrance. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Decay of a weakly bound level in a monochromatic electromagnetic field and a static magnetic field

    International Nuclear Information System (INIS)

    Rylyuk, V.M.; Ortner, J.

    2003-01-01

    We consider an electron that is bound by a zero-range potential and a constant magnetic field and which becomes disturbed by a monochromatic laser beam with elliptical polarization. The exact solution of the Schroedinger equation for an electron in the presence of an arbitrary electromagnetic wave and a static magnetic field is obtained. Exact expressions have been found for the complex energy, whose real and imaginary parts yield the level position and the width of an electron in a zero-range force field, a constant magnetic field, and a monochromatic electromagnetic field. These expressions have been analyzed in details for the case of a circularly polarized laser light

  1. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Agatha P. Colbert

    2009-01-01

    Full Text Available Static magnetic field (SMF therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to: (i summarize SMF research conducted in humans; (ii critically evaluate reporting quality of SMF dosages and treatment parameters and (iii propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61% of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial.

  2. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  3. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  4. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  5. Societal challenges-oriented data-rich undergraduate teaching resources for geoscience classrooms and field courses

    Science.gov (United States)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Crosby, B. T.; Charlevoix, D. J.; Crosby, C. J.; Shervais, K.

    2016-12-01

    The NSF-funded GEodesy Tools for Societal Issues (GETSI) project is developing modules for use in introductory and majors-level courses that emphasize a broad range of geodetic data and quantitative skills applied to societally important issues of climate change, natural hazards, and water resources (serc.carleton.edu/getsi). The modules fill gaps in existing undergraduate curricula, which seldom include geodetic methods. Published modules are "Ice mass and sea level changes", "Imaging active tectonics with LiDAR and InSAR", "Measuring water resources with GPS, gravity, and traditional methods", "Surface process hazards", and "GPS, strain, and earthquakes". The GETSI Field Collection features geodetic field techniques. The field-oriented module "Analyzing high resolution topography with terrestrial laser scanning (TLS) and structure from motion (SfM)" is already published and "High precision positioning with static and kinematic GPS" will be published in 2017. Modules are 1-3 weeks long and include student exercises, data analysis, and extensive supporting materials. For field modules, prepared data sets are provided for courses that cannot collect field data directly. All modules were designed and developed by teams of faculty and content experts and underwent rigorous review and classroom testing. Collaborating institutions are UNAVCO (which runs NSF's Geodetic Facility), Indiana University, Mt San Antonio College, and Idaho State University. Science Education Resource Center (SERC) is providing assessment and evaluation expertise. If future funding is successful, the topic range will be expanded (e.g., volcanic hazards, more water resources, and ecological applications of geodesy). Funding to date has been provided by NSF's TUES (Transforming Undergraduate Education in STEM) and IUSE (Improving Undergraduate STEM Education).

  6. Phase control of higher spectral components in the presence of a static electric field

    International Nuclear Information System (INIS)

    Zhang Chaojin; Yang Weifeng; Song Xiaohong; Xu Zhizhan

    2009-01-01

    We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.

  7. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  8. Scalar self-force on a static particle in Schwarzschild using the massive field approach

    OpenAIRE

    Rosenthal, Eran

    2004-01-01

    We use the recently developed massive field approach to calculate the scalar self-force on a static particle in a Schwarzschild spacetime. In this approach the scalar self-force is obtained from the difference between the (massless) scalar field, and an auxiliary massive scalar field combined with a certain limiting process. By applying this approach to a static particle in Schwarzschild we show that the scalar self-force vanishes in this case. This result conforms with a previous analysis by...

  9. Science and ecological literacy in undergraduate field studies education

    Science.gov (United States)

    Mapp, Kim J.

    There is an ever-increasing number of issues that face our world today; from climate change, water and food scarcity, to pollution and resource extraction. Science and ecology play fundamental roles in these problems, and yet the understanding of these fields is limited in our society (Miller, 2002; McBride, Brewer, Berkowitz, and Borrie, 2013). Across the nation students are finishing their undergraduate degrees and are expected to enter the workforce and society with the skills needed to succeed. The deficit of science and ecological literacy in these students has been recognized and a call for reform begun (D'Avanzo, 2003 and NRC, 2009). This mixed-methods study looked at how a field studies course could fill the gap of science and ecological literacy in undergraduates. Using grounded theory, five key themes were data-derived; definitions, systems thinking, human's role in the environment, impetus for change and transference. These themes where then triangulated for validity and reliability through qualitative and quantitative assessments. A sixth theme was also identified, the learning environment. Due to limited data to support this themes' development and reliability it is discussed in Chapter 5 to provide recommendations for further research. Key findings show that this field studies program influenced students' science and ecological literacy through educational theory and practice.

  10. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs

  11. Undergraduates Discovering Folds in ''Flat'' Strata: An Unusual Undergraduate Geology Field Methods Course

    Science.gov (United States)

    Abolins, Mark

    2014-01-01

    Undergraduates learned to measure, map, and interpret bedding plane attitudes during a semesterlong geology field methods course in a field area where strata dip less than 98. Despite the low dip of the strata, 2011 field course students discovered a half-kilometer-wide structural basin by using digital levels and Brunton pocket transits to…

  12. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  13. Cytological effects of pulsed electromagnetic fields and static ...

    African Journals Online (AJOL)

    Background: There is a trend towards the use of magnetic fields in medicine. Pulsed electromagnetic fields (PEMFs) technology was based upon 20 years of fundamental studies on the electromechanical properties of bone and other connective tissues. More recently, these magnetic fields have been used to treat several ...

  14. Localization from near-source quasi-static electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  15. Theoretical study of the dynamic magnetic response of ferrofluid to static and alternating magnetic fields

    International Nuclear Information System (INIS)

    Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.

    2017-01-01

    The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part. - Highlights: • The dynamic magnetic response of ferrofluid is investigated theoretically. • The static and alternating magnetic fields are applied along the Oz-axis. • Theory is based on the Fokker-Planck-Brown equation (FPBe). • The solution of FPBe is expressed as a series in terms of the Legendre polynomials. • The influence of static magnetic field on susceptibility spectra is analyzed.

  16. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  17. Impact of current on static and kinetic depinning fields of domain ...

    Indian Academy of Sciences (India)

    Landau–Lifshitz–Gilbert equation with adiabatic and non-adiabatic spin-transfer torques. The results show that in the absence of current, the static depinning field is greater than the kinetic depinning field. Both the depinning fields decrease by increasing the current applied in a direction opposite to the direction of the ...

  18. Vacuum polarisation in some static nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Calucci, G.

    1995-11-01

    Vacuum polarisation in QED in presence of some configurations of external magnetic fields is investigated. The configuration considered correspond to fields is investigated. The configuration considered correspond to fields lying in a plane and without sources. The motion of a Dirac electron in this field configuration is studied and arguments are found to conclude that the lowest level gives the most important contribution. The result is that the main effect is not very different from the uniform case, the possibilities of calculating the corrections due to the uniformity is explicitly shown. A typical effect of nonuniformity of the field shows out in the refractivity of the field shows out in the refractivity of the vacuum

  19. Microstructure and properties evaluations of spot-welded ferritic steel sheets via static magnetic field

    Science.gov (United States)

    Min, Ding; Yicheng, Wang

    2016-01-01

    Ferritic steel spot nuggets were produced with or without a static magnetic field. The microstructures and properties evaluations of the nuggets with or without a static magnetic field were investigated. Disordered columnar grains and some equiaxed grains among the columnar grains with a static magnetic field were discovered in this study. Based on the evaluations of the microstructure and properties, the nugget mechanisms, strengthening mechanisms, and infrared behavior of the joint were discovered. The diameter and strength of each nugget were improved with the application of a static magnetic field. The welding time and the welding force can both influence the nugget characteristics via a static magnetic field. The tensile strength of the spot joint regularly varied with magnetic field; the maximum value was 245 MPa, 11%, which was approximately 30% higher than that of the nugget without magnetic field (187 MPa, 3.8%). The magnetization force applied on the dendrite at the same time can cause the columnar dendrite to deform, break and deflect from the direction of solidification.

  20. Influence of External Static Magnetic Fields on Properties of Metallic Functional Materials

    Directory of Open Access Journals (Sweden)

    Xiaowei Zuo

    2017-12-01

    Full Text Available Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields subjected in solidification and/or annealing on the properties of Fe–Ga magnetostrictive material, high strength high conductivity Cu-based material (Cu–Fe and Cu–Ag alloys, and Fe–Sn magnetic material were summarized. Both the positive and negative impacts from magnetic fields were found. Exploring to maximize the positive influence of magnetic fields is still a very meaningful and scientific issue in future.

  1. Theory of Multiphoton Processes for Atoms and Ions in the Presence of a Static Electric Field

    Science.gov (United States)

    Bao, Min-Qi.

    Theoretical studies of both Multiphoton Detachment (MPD) and High Harmonic Generation (HHG) processes of ions and atoms in the presence of a static electric field are presented in this thesis. In the first part of this thesis, a symbolic algebra program is presented for the analytical evaluation of Feynman's path integral for an interaction of the form F(t) cdot r. Such an interaction governs the motion of an electron in a combination of laser fields and/or static electric fields. This Feynman's path integral is used in the rest of this thesis. In the second part of this thesis, theories of atomic effects on MPD of negative ions in a static electric field are developed by using the Green's function approach as well as the quasienergy approach. Atomic rescattering effects on both linearly and circularly polarized laser detachment cross sections are demonstrated. In the third part of this thesis, theories of HHG of atoms and ions in the presence of a static electric field are presented. The presence of the static electric field leads to the extension of the well-known HHG plateau and the production of even as well as odd high harmonics; the interplay between MPD and HHG is also illustrated. In the last part of this thesis, the classical and quantum mechanical motions of a charged particle in a Paul trap are investigated. The animation code in Mathematica of these motions is included.

  2. Quantification of static magnetic field effects on radiotherapy ionization chambers

    Science.gov (United States)

    Agnew, J.; O'Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  3. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René

    2013-01-01

    . In conclusion, we found some deviations up to 7% of the supposed signal. Although the scintillators are of much denser material, we measured the same behavior in signal as in (Meijsing et al., 2009) for a Farmer ionization chamber or as in (Raaijmakers et al., 2007) for films described which indicates radiation......-vivo dosimetry in radiation treatments and diagnostics and could be, being all-optical, promising candidates for this application. To study the basic feasibility of using PSDs with organic scintillators in magnetic fields, we measured the response of these dosimeters in presence of magnetic fields up to 1 T...

  4. Passive magnetic cylindrical shielding at gauss-range static fields

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2009-01-01

    A study has been performed in order to find the optimal solution for the magnetic shielding of the 10 in. photomultipliers which will be used in the Double Chooz neutrino experiment under a very low magnetic field (less than 2 G). The results obtained with analytical and numerical calculations are compared with measurements made using test prototypes of several magnetic materials, with different dimensions and from different manufacturers. An exhaustive analysis of the magnetic materials was needed to understand the observed disagreement between calculations and test results obtained at low field values.

  5. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Working with MRI: An investigation of occupational exposure to strong static magnetic fields and associated symptoms

    NARCIS (Netherlands)

    Schaap, K.

    2015-01-01

    Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the

  7. Orientation of glutaraldehyde-fixed erythrocytes in strong static magnetic fields.

    Science.gov (United States)

    Higashi, T; Sagawa, S; Ashida, N; Takeuchi, T

    1996-01-01

    In a uniform static magnetic field up to 8 Telsa, glutaraldehyde-fixed erythrocytes showed an orientation in which their disk plane was perpendicular to the magnetic field. The paramagnetism of membrane-bound hemoglobin was through to contribute significantly to this orientation. The observation of magnetic orientation is directed toward understanding the fundamental microstructural aspects of the erythrocyte.

  8. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  9. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  10. The realization of strong, stray static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2012-01-01

    Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf

  11. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  12. Resonances of an Oscillating Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…

  13. Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review.

    Science.gov (United States)

    Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah

    2017-04-17

    High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions

  14. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  15. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Katebi, Samira; Esmaeili, Abolghasem, E-mail: aesmaeili@sci.ui.ac.ir; Ghaedi, Kamran

    2016-03-15

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  16. Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2008-02-01

    Full Text Available To prove a direct relationship between the quasi-static electric field disturbances and seismic activity is a difficult, but actual task of the modern ionosphere physics. This paper presents new results on the processing and analysis of the quasi-static electric field in the upper ionosphere (h=800–900 km observed from the satellite INTERCOSMOS-BULGARIA-1300 over earthquakes' source regions (seismic data of World Data Center, Denver, Colorado, USA. Present research focuses on three main areas (i development of methodology of satellite and seismic data selecting, (ii data processing and observations of the quasi-static electric field (iii study and accumulation of statistics of possible connection between anomalous vertical electric fields penetrating from the earthquake zone into the ionosphere, and seismic activity. The most appropriate data (for satellite orbits above sources of forthcoming or just happened seismic events have been selected from more than 250 investigated cases.The increase of about 5-10-15 mV/m in the vertical component of the quasi-static electric field observed by INTERCOSMOS-BULGARIA-1300 during seismic activity over Southern Ocean, Greenland Sea, South-Weat Pacific Ocean, Indian Ocean, Central America, South-East Pacific Ocean, Malay Archipelago regions are presented. These anomalies, as phenomena accompanying the seismogenic process, can be considered eventually as possible pre-, co- (coeval to and post-earthquake effects in the ionosphere.

  17. Influence of static magnetic fields on S. cerevisae biomass growth

    Directory of Open Access Journals (Sweden)

    João B. Muniz

    2007-05-01

    Full Text Available Biomass growth of Saccharomyces cerevisiae DAUFPE-1012 was studied in eight batch fermentations exposed to steady magnetic fields (SMF running at 23ºC (± 1ºC, for 24 h in a double cylindrical tube reactor with synchronic agitation. For every batch, one tube was exposed to 220mT flow intensity SMF, produced by NdFeB rod magnets attached diametrically opposed (N to S magnets on one tube. In the other tube, without magnets, the fermentation occurred in the same conditions. The biomass growth in culture (yeast extract + glucose 2% was monitored by spectrometry to obtain the absorbance and later, the corresponding cell dry weight. The culture glucose concentration was monitored every two hours so as the pH, which was maintained between 4 and 5. As a result, the biomass (g/L increment was 2.5 times greater in magnetized cultures (n=8 as compared with SMF non-exposed cultures (n=8. The differential (SMF-control biomass growth rate (135% was slightly higher than the glucose consumption rate (130 % leading to increased biomass production of the magnetized cells.O crescimento da biomassa da Saccharomyces cerevisiae DAUFPE-1012 foi estudado em oito bateladas de fermentação, cada uma exposta aos campos magnéticos contínuos (CMC, à 23ºC (± 1ºC, durante um período de 24 horas em um reator duplo com agitação sincrônica. Em cada batelada,um tubo foi exposto ao CMC, com 220mT de intensidade de fluxo, produzidos por imãs de NdFeB fixados diametralmente opostos (N para S em um tubo do reator de fermentação. Em outro tubo, sem imãs, a fermentação ocorreu nas mesmas condições. O crescimento da biomassa nas culturas (extrato de fermento + glicose 2% foi monitorado através de espectrometria e correlacionado ao peso seco de levedura. A concentração de glicose nas culturas foi monitorada a cada duas horas e o pH foi mantido entre 4 e 5. Como resultado, a biomassa (g/L aumentou 2,5 vezes nas culturas magnetizadas (n=8 quando comparadas com as

  18. Undergraduate Students' Preference for Distance Education by Field of Study

    Science.gov (United States)

    Pontes, Manuel C. F.; Pontes, Nancy M. H.

    2013-01-01

    This research investigates the relationship between students' field of study and their preference for distance education. For this research, data were used from the National Postsecondary Student Aid Study: Undergraduate, which uses a complex survey design to collect data from a nationally representative sample of undergraduate postsecondary…

  19. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)

    2014-05-15

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  20. Interaction of biological systems with static and ELF electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  1. Impact of current on static and kinetic depinning fields of domain ...

    Indian Academy of Sciences (India)

    2015-10-22

    Oct 22, 2015 ... The impact of current on static and kinetic depinning fields of a domain wall in a onedimensional ferromagnetic nanostrip is investigated analytically and numerically by solving the Landau–Lifshitz–Gilbert equation with adiabatic and non-adiabatic spin-transfer torques. The results show that in the absence ...

  2. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  3. Impact of current on static and kinetic depinning fields of domain ...

    Indian Academy of Sciences (India)

    Abstract. The impact of current on static and kinetic depinning fields of a domain wall in a one- dimensional ferromagnetic nanostrip is investigated analytically and numerically by solving the. Landau–Lifshitz–Gilbert equation with adiabatic and non-adiabatic spin-transfer torques. The results show that in the absence of ...

  4. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    International Nuclear Information System (INIS)

    Fiedler, B.; Schimming, R.

    1983-01-01

    The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)

  5. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, B.; Schimming, R.

    1983-01-01

    The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry.

  6. Effect of a static magnetic field on Escherichia coli adhesion and orientation

    Czech Academy of Sciences Publication Activity Database

    Mhamdi, L.; Mhamdi, N.; Mhamdi, Nc.; Lejeune, M.; Jaffrezic, N.; Burais, N.; Scorretti, R.; Pokorný, Jiří; Ponsonnet, L.

    2016-01-01

    Roč. 62, č. 11 (2016), s. 944-952 ISSN 0008-4166 Institutional support: RVO:67985882 Keywords : Fluorescence microscopy * Static magnetic field * Escherichia coli Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.462, year: 2016

  7. The hydrogen atom in crossed static electromagnetic and non-resonant laser fields

    International Nuclear Information System (INIS)

    Helgaker, T.; Tomashevsky, I.

    1992-01-01

    The energy splittings and wave function of a hydrogen atom in crossed uniform static electromagnetic and non-resonant monochromatic electric fields of arbitrary mutual orientation are obtained within the ''one-shell'' approximation. The intensities of the Lyman lines are also obtained. A special analytical method is used. Relativistic corrections and spin-orbit interactions are not considered. (orig.)

  8. Effects of a low-voltage static electric field on energy metabolism in astrocytes.

    Science.gov (United States)

    Huang, R; Peng, L; Hertz, L

    1997-01-01

    Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of approximately 30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition.

  9. Stress-energy tensor of quantized massive fields in static wormhole spacetimes

    Science.gov (United States)

    Kocuper, Ewa; Matyjasek, Jerzy; Zwierzchowska, Kasia

    2017-11-01

    In order to be traversable, the static Lorentzian wormhole must be made out of some exotic matter that violates the weak energy condition. The quantized fields are the natural candidates as their stress-energy tensor, in many cases, possesses desired properties. In this paper we construct and examine the stress-energy tensor of the quantized massive scalar, spinor and vector fields in six static wormhole spacetimes. We find that in all considered cases the quantum fields violate the Morris-Thorne conditions and do not have the form necessary to support the wormhole throat. This is in concord with the previous results and indicates that the massive quantum fields make the wormholes less operable.

  10. Uniqueness theorem for static wormholes in Einstein phantom scalar field theory

    Science.gov (United States)

    Yazadjiev, Stoytcho

    2017-08-01

    In the present paper we prove a uniqueness theorem for the regular static, traversable wormhole solutions to the Einstein phantom scalar field theory with two asymptotically flat regions (ends). We show that when a certain condition on the asymptotic values of the scalar field is imposed such solutions are uniquely specified by their mass M and the scalar charge D . The main arguments in the proof are based on the positive energy theorem.

  11. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    Science.gov (United States)

    Fiedler, B.; Schimming, R.

    A formal power series ansatz is used to obtain a convergence proof that the fourth-order gravitational field equations proposed by Treder (1977) with a linear combination of Bach's (1921) tensor and Einstein's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and nonflat in some neighborhood of the center of symmetry. Conformal invariance is attained by means of a scalar gauge field.

  12. Field Crickets Compensate for Unattractive Static Long-Distance Call Components by Increasing Dynamic Signalling Effort.

    Science.gov (United States)

    McAuley, Emily M; Bertram, Susan M

    2016-01-01

    The evolution of multiple sexual signals presents a dilemma since individuals selecting a mate should pay attention to the most honest signal and ignore the rest; however, multiple signals may evolve if, together, they provide more information to the receiver than either one would alone. Static and dynamic signals, for instance, can act as multiple messages, providing information on different aspects of signaller quality that reflect condition at different time scales. While the nature of static signals makes them difficult or impossible for individuals to augment, dynamic signals are much more susceptible to temporary fluctuations in effort. We investigated whether male Texas field crickets, Gryllus texensis, that produce unattractive static signals compensate by dynamically increasing their calling effort. Our findings lend partial support to the compensation hypothesis, as males that called at unattractive carrier frequencies (a static trait) spent more time calling each night (a dynamic trait). Interestingly, this finding was most pronounced in males that called with attractive pulse characteristics (static traits) but did not occur in males that called with unattractive pulse characteristics. Males that signalled with unattractive pulse characteristics (duration and pause) spent less time calling through the night. Our correlative findings on wild caught males suggest that only males that signal with attractive pulse characteristics may be able to afford to pay the costs of both trait exaggeration and increased calling effort to compensate for poor carrier frequencies.

  13. Three-dimensional measurement of the laminar flow field inside a static mixer

    Science.gov (United States)

    Speetjens, Michel; Jilisen, Rene; Bloemen, Paul

    2011-11-01

    Static mixers are widely used in industry for laminar mixing of viscous fluids as e.g. polymers and food stuffs. Moreover, given the similarities in flow regime, static mixers often serve as model for compact mixers for process intensification and even for micro-mixers. This practical relevance has motivated a host of studies on the mixing characteristics of static mixers and their small-scale counterparts. However, these studies are primarily theoretical and numerical. Experimental studies, in contrast, are relatively rare and typically restricted to local 2D flow characteristics or integral quantities (pressure drop, residence-time distributions). The current study concerns 3D measurements on the laminar flow field inside a static mixer using 3D Particle-Tracking Velocimetry (3D-PTV) Key challenges to the 3D-PTV image-processing procedure are the optical distortion and degradation of the particle imagery due to light refraction and reflection caused by the cylindrical boundary and the internal elements. Ways to tackle these challenges are discussed and first successful 3D measurements in an actual industrial static mixer are presented.

  14. Exposure to combined static and 60 Hz magnetic fields: failure to replicate a reported behavioral effect.

    Science.gov (United States)

    Stern, S; Laties, V G; Nguyen, Q A; Cox, C

    1996-01-01

    Two experiments failed to confirm the Thomas, Schrot, and Liboff report that low-intensity magnetic fields disrupted the operant behavior of rats. In their experiment, food-deprived rats were trained to press a lever to obtain food pellets under a multiple fixed-ratio (FR) 30, differential reinforcement of low rate 18-24 s (DRL 18-24) schedule. After baseline training, the rats were exposed to a 30 min treatment in a different chamber prior to behavioral testing. When the treatment consisted of a horizontal 60 Hz magnetic field at 5 x 10(-5) Telsa aligned along the north-south axis combined with a static field that reduced the background to 2.61 x 10(-5) Telsa, the rate of lever pressing in the DRL component of the multiple schedule increased reliably during the immediately following test session. Changes in responding were not observed when the rats were exposed to either the static field or the 60 Hz field independently nor during sham exposures to the fields. In the present experiments, only the combined fields, i.e., those reported to be effective, were studied in rats using the same general behavioral and exposure protocol used by Thomas et al [1986a]. In experiment 1, the 2.61 x 10(-5) Telsa was achieved by reducing the vertical component of the static field. In experiment 2, both the horizontal and the vertical components were altered to match those used by Thomas et al. In both experiments additional magnetic field conditions were also studied to ensure that threshold values were exceeded and, in experiment 2, to address concerns about the role of harmonic frequencies of the 60 Hz field. The baseline performances approximated those of Thomas et al. Performances were compared between exposure, sham-exposure and control sessions. None of the exposure conditions altered any of the behavioral measures. The reasons for failing to replicate the results of Thomas et al. remain unknown.

  15. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  16. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  17. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Science.gov (United States)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (Pspermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (Pspermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  18. Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    International Nuclear Information System (INIS)

    Delande, Dominique; Zakrzewski, Jakub

    2003-01-01

    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution

  19. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  20. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    Science.gov (United States)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  1. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  2. Occupational exposure in MR facilities due to movements in the static magnetic field.

    Science.gov (United States)

    Andreuccetti, Daniele; Biagi, Laura; Burriesci, Giancarlo; Cannatà, Vittorio; Contessa, Gian Marco; Falsaperla, Rosaria; Genovese, Elisabetta; Lodato, Rossella; Lopresto, Vanni; Merla, Caterina; Napolitano, Antonio; Pinto, Rosanna; Tiberi, Gianluigi; Tosetti, Michela; Zoppetti, Nicola

    2017-11-01

    The exposure of operators moving in the static field of magnetic resonance (MR) facilities was assessed through measurements of the magnetic flux density, which is experienced as variable in time because of the movement. Collected data were processed to allow the comparison with most recent and authoritative safety standards. Measurements of the experienced magnetic flux density B were performed using a probe worn by volunteers moving in MR environments. A total of 55 datasets were acquired nearby a 1.5 T, 3 T, and 7 T whole body scanners. Three different metrics were applied: the maximum intensity of B, to be compared with 2013/35/EU Directive exposure limit values for static fields; the maximum variation of the vector B on every 3s-interval, for comparison with the ICNIRP-2014 basic restriction aimed at preventing vertigo effects; two weighted-peak indices (for "sensory" and "health" effects: SENS-WP, HLTH-WP), assessing compliance with ICNIRP-2014 and EU Directive recommendations intended to prevent stimulation effects. Peak values of |B| were greater than 2 T in nine of the 55 datasets. All the datasets at 1.5 T and 3 T were compliant with the limit for vertigo effects, whereas six datasets at 7 T turned out to be noncompliant. At 7 T, all 36 datasets were noncompliant for the SENS-WP index and 26 datasets even for the HLTH-WP one. Results demonstrate that compliance with EU Directive limits for static fields does not guarantee compliance with ICNIRP-2014 reference levels and clearly show that movements in the static field could be the key component of the occupational exposure to EMF in MR facilities. © 2017 American Association of Physicists in Medicine.

  3. The effect of 2.1 T static magnetic field on astrocyte viability and morphology.

    Science.gov (United States)

    Khodarahmi, Iman; Mobasheri, Hamid; Firouzi, Masoumeh

    2010-07-01

    The viability and a number of morphological properties of in situ astrocytes of rat spinal cord cultures including changes in surface area and migration of both cell body and nucleus were investigated at magnetic field intensities comparable to those currently used for magnetic resonance imaging. Viability of rat spinal astrocytes was studied after up to 72 hours of 2.1T static magnetic field exposure. Surface areas and two-dimensional centroids of both soma and nucleus after 2 hours of magnetic field exposure were determined and compared with those of the same cells before magnetic field exposure. Cell membrane ruffling was quantified using fractal analysis. Viability of astrocytes remained unchanged at 4, 16, 24, 48 and 72 hours. The mean soma area before and after 2 hours of field exposure was 6450 microm(2) and 6299 microm(2), respectively, whereas the values for nuclear area were 185.6 microm(2) and 185.7 microm(2). The mean displacement of the centroid of soma parallel and perpendicular to the magnetic field direction was 1.07 microm and 0.78 microm, respectively. The corresponding quantities for nuclei were 0.29 microm and -2.00 microm. None of these changes were statistically significant. No membrane protrusion was observed by fractal analysis. In conclusion, strong static magnetic field at 2.1 T does not significantly affect the viability and morphological properties of rat astrocytes. Copyright 2010 Elsevier Inc. All rights reserved.

  4. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    Directory of Open Access Journals (Sweden)

    Irina Alexandra Paun

    2018-02-01

    Full Text Available We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  5. Teaching Resources and Instructor Professional Development for Integrating Laser Scanning, Structure from Motion, and GPS Surveying into Undergraduate Field Courses

    Science.gov (United States)

    Pratt-Sitaula, B.; Charlevoix, D. J.; Douglas, B. J.; Crosby, B. T.; Crosby, C. J.; Lauer, I. H.; Shervais, K.

    2017-12-01

    Field experiences have long been considered an integral part of geoscience learning. However, as data acquisition technologies evolve, undergraduate field courses need to keep pace so students gain exposure to new technologies relevant to the modern workforce. Maintaining expertise on new technologies is also challenging to established field education programs. Professional development and vetted curriculum present an opportunity to advance student exposure to new geoscience data acquisition technology. The GEodesy Tools for Societal Issues (GETSI) Field Collection, funded by NSF's Improving Undergraduate STEM Education program, addresses these needs in geodesy field education. Geodesy is the science of accurately measuring Earth's size, shape, orientation, mass distribution and the variations of these with time. Modern field geodesy methods include terrestrial laser scanning (TLS), kinematic and static GPS/GNSS surveying (global positioning system/global navigation satellite system), and structure from motion (SfM) photogrammetry. The GETSI Field Collection is a collaborative project between UNAVCO, Indiana University, and Idaho State University. The project is provides curriculum modules and instructor training (in the form of short courses) to facilitate the inclusion of SfM, TLS, and GPS surveying into geoscience courses with field components. The first module - Analyzing High Resolution Topography with TLS and SfM - is available via SERC; (serc.carleton.edu/getsi/teaching_materials/high-rez-topo) the second module - "High Precision Positioning with Static and Kinematic GPS/GNSS" - will be published in 2018. The module development and assessment follows the standards of the InTeGrate Project (an NSF STEP Center)previously tested on geodesy content in the GETSI classroom collection (serc.carleton.edu/getsi). This model emphasizes use of best practices in STEM education, including situating learning in the context of societal importance. Analysis of student work

  6. Far-field beam shaping through static wavefront correction in the near field on the HELEN laser

    Science.gov (United States)

    Bett, Thomas H.; Hopps, N. W.; Nolan, J. R.

    2002-10-01

    This report discusses the design and installation of a phase optic inserted in the near field of the HELEN high power glass laser. The element is designed to shape the intensity distribution at the focal spot of the laser to produce an increase in the peak intensity through correction of static and thermally induced wavefront errors on the beam. A phase element has been fabricated commercially using a magneto-rheological finishing tool. Test data is presented.

  7. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  8. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  9. Static properties of small Josephson tunnel junctions in an oblique magnetic field

    DEFF Research Database (Denmark)

    Monaco, Roberto; Aarøe, Morten; Mygind, Jesper

    2009-01-01

    We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular...... junctions (having both overlap and cross-type geometries) with different barrier aspect ratios. It is shown how most of the experimental findings in an oblique field can be reproduced invoking the superposition principle to combine the classical behavior of electrically small junctions in an in-plane field...... together with the small junction behavior in a transverse field that we recently published [R. Monaco , J. Appl. Phys. 104, 023906 (2008)]. We show that the presence of a transverse field may have important consequences, which could be either voluntarily exploited in applications or present an unwanted...

  10. Characterization of Particle Motion and Deposition Behaviour in Electro-Static Fields

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available As a prerequisite for studying and ultimately improving the powder coating process, particle motion and deposition effects within flow- and electro-static fields need to be thoroughly understood and thus characterized. In this context, a range of dimensionless groups is proposed and new means of characterization are presented. Considering the impact of electro-static, fluid-dynamic and gravity forces on coating particle motion, a triangle chart notation to characterize the state of varying particle size classes, is introduced. Furthermore a derivation of the dimensionless particle momentum equation is shown to lead to a dimensionless chart, representing all possible process states of coating. In combination with a Eulerian-LaGrangian, numerical model, the new means of characterization have led to a far better, over all perspective of occurring phenomena and their causes. Some examples are demonstrated here.

  11. What are undergraduates doing at biological field stations and marine laboratories?

    Science.gov (United States)

    Janet Hodder

    2009-01-01

    Biological field stations and marine laboratories (FSMLs) serve as places to study the natural environment in a variety of ways, from the level of the molecule to the globe. Undergraduate opportunities at FSMLs reflect the diversity of study options -- formal courses, research and service internships, and field-trip experiences -- and students are responding to those...

  12. Do Nondomestic Undergraduates Choose a Major Field in Order to Maximize Grade Point Averages?

    Science.gov (United States)

    Bergman, Matthew E.; Fass-Holmes, Barry

    2016-01-01

    The authors investigated whether undergraduates attending an American West Coast public university who were not U.S. citizens (nondomestic) maximized their grade point averages (GPA) through their choice of major field. Multiple regression hierarchical linear modeling analyses showed that major field's effect size was small for these…

  13. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants.

    Science.gov (United States)

    Schmiedchen, Kristina; Petri, Anne-Kathrin; Driessen, Sarah; Bailey, William H

    2018-01-01

    The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting. Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results. At field levels encountered from natural sources or HVDC lines ( 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on alterations in physiological functions

  14. Static and Field-Oriented Properties of Bowl-Shaped Polynuclear Aromatic Hydrocarbon Fragments.

    Science.gov (United States)

    Zoppi, Laura; Ferretti, Andrea; Baldridge, Kim K

    2013-11-12

    First principles techniques are used to investigate the structure, linear polarizability, and field-oriented property trends of the series of bowl shaped polynuclear aromatic hydrocarbon fragments, C20H10, C30H10, C40H10, and C50H10. Such structures represent a sequence of minimalistic, capped bucky tube units based on the corannulene molecule, with interesting technological promise imparted by their curvature. Specific issues associated with how the intrinsic dipole and static linear polarizability influences the orientation of these structures in the presence of an external electric field are addressed and shown to correlate well with a simple analytical model. At moderate electric fields, the induced dipoles become comparable and even larger than the intrinsic dipoles due to the large in-plane polarizabilities in these systems. This generates a nontrivial and field dependent orientation of the molecule that can be exploited, for example, to induce switching behavior within molecular nanojunctions.

  15. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  16. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  17. Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations.

    Science.gov (United States)

    Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W

    2012-04-07

    We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.

  18. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  19. Influence of static magnetic fields in phototaxis and osmotic stress in Gymnodinium catenatum (Dinophyceae).

    Science.gov (United States)

    Vale, Paulo

    2017-07-01

    Phototaxis response of the toxic microalgae Gymnodinium catenatum was studied in vitro. The percentage of cells remaining at mid-depth 20 min after stirring increased with solar radio, X-ray and solar flares output. It also increased with geomagnetic activity and temperature, and was dependent on culture time. Increase in the local static magnetic field with a permanent magnet did not influence the positive phototaxis response. However, survival and growth to a provoked hypo-osmotic shock in an altered static magnetic field was dependent on culture time and geomagnetic activity at a threshold below 22 nT. The results from phototaxis and hypo-osmotic shock experiments were in line with the previous hypothesis for the existence of two separate deleterious mechanisms conditioning the natural blooms of G. catenatum: one that is dependent on solar radiation and the other that is related to geomagnetic activity. Variations in electromagnetic fields caused by tectonic activity were also capable of influencing G. catenatum phototaxis and growth response in vitro.

  20. A novel method for measuring the torque on implantable cardiovascular devices in MR static fields.

    Science.gov (United States)

    D'Avenio, Giuseppe; Canese, Rossella; Podo, Franca; Grigioni, Mauro

    2007-11-01

    To propose a novel quantitative method for measuring the torque acting on mechanical heart valve prostheses subjected to a high static magnetic field in a MR scanner. Torque measurements were performed with a torsion balance, implemented with a copper wire. The reaction torque exerted by the static magnetic field on the device was measured optically from the deflection angle of a laser beam spot on a graduate scale. Three different types of mechanical valves (two bileaflet and one monoleaflet) were tested at different locations of a small bore 4.7 tesla system. The method proved to be particularly sensitive (detectability limit lower than 10(-6) N x m), reliable and yielded quantitative reproducible results. The equivalent force of the torque measured for the three valves was at least 10(3)-fold lower than the force exerted by the beating heart. The proposed method provides a quantitative evaluation of the torque induced on prosthetic device by a MR scanner operating at high magnetic field.

  1. Biological effects of static and low-frequency electromagnetic fields: an overview of United States literature

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-04-12

    Results are reviewed from a number of studies on the biological effects of static and low frequency electromagnetic fields on animals. Based on a long history of experience with electric fields by the utility industry, it appears that intermittent and repeated exposures to strong 60-Hz electromagnetic fields from present power transmission systems have no obvious adverse effect on the health of man. It has been recognized recently that this belief must be tested by carefully designed and executed experiments under laboratory conditions where precise control can be exercised over coexisting environmental factors. A number of studies have been initiated in response to this need to evaluate possible effects from both acute and chronic exposures. 100 references.

  2. A Pulsed Electric Field (PEF) bench static system to study bacteria inactivation

    International Nuclear Information System (INIS)

    Cortese, Pietro; Dellacasa, Giuseppe; Gemme, Roberto; Bonetta, Sara; Bonetta, Silvia; Carraro, Elisabetta; Motta, Francesca; Paganoni, Marco; Pizzichemi, Marco

    2011-01-01

    Pulsed Electric Fields (PEF) technology is a promising non-thermal processing method for inactivation of microorganisms. A small PEF bench system able to treat a 0.4 ml static liquid volume has been built and tested at the laboratories of the Universita del Piemonte Orientale in Alessandria, Italy. The technique used to produce the required fields consists of charging high voltage cables of various lengths and subsequently discharge them on a cylindrical cell. The pulse intensity can be adjusted to reach a maximum electric field in the cell of about 35 kV/cm and the pulse frequency can reach 10 Hz. We describe the PEF system in some detail and, as a benchmark of its performances, we report preliminary results obtained on Escherichia coli (ATCC 25922) at 10 9 Cfu/ml concentration suspended in a McIlvaine buffer (pH 7.2).

  3. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  4. Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model.

    Science.gov (United States)

    Tharayil, Joseph J; Goetz, Stefan M; Bernabei, John M; Peterchev, Angel V

    2017-10-10

    The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm 3 . This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. © 2017 International Neuromodulation Society.

  5. Undergraduate Lecture Notes in Topological Quantum Field Theory

    OpenAIRE

    Ivancevic, Vladimir G.; Ivancevic, Tijana T.

    2008-01-01

    These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory

  6. Static magnetic field effects on proteases with fibrinolytic activity produced by Mucor subtilissimus.

    Science.gov (United States)

    Albuquerque, Wendell; Nascimento, Thiago; Brandão-Costa, Romero; Fernandes, Thiago; Porto, Ana

    2017-02-01

    The influence of a static magnetic field (SMF) on crude enzyme extracts with proteolytic activity is described and discussed. Proteolytic enzymes, which hydrolyze peptide bonds, and fibrinolytic enzymes, which dissolve fibrin clots, have industrial relevance, and applicability dependent on improvements of productivity and activity. We investigated whether a moderate SMF affects proteolysis in different in vitro tests: general proteolysis of azocasein substrate, and static and dynamic fibrinolytic processes (to compare fibrin gel configuration under exposure). Crude enzyme extracts, obtained from solid state fermentation of Mucor subtilissimus UCP (Universidade Católica de Pernambuco, Recife, Brazil) 1262, were used to carry out assays under slightly heterogeneous fields: a varied vertical SMF (for tests in Eppendorf tubes, from 0.100 to 0.170 T) and a varied horizontal SMF (for tests in Petri dishes, from 0.01 to 0.122 T), generated by two permanent magnets (NdFeB alloy). Results showed significant differences (P < 0.05) in static fibrinolysis assays after 24 h of exposure. The mean diameter of halos of fibrin degradation in the treated group increased by 21% compared to the control group; and the pixel number count of fibrin consumption (in a computational analysis of the area of each halo) enhanced by 30% with exposure. However, in dynamic fibrinolysis assays, no effects of SMF were observed. These results suggest a response of fibrin monomers to the SMF as a possible cause of the observed effects. Bioelectromagnetics. 38:109-120, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  8. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    Directory of Open Access Journals (Sweden)

    CHEN Qiujie

    2016-04-01

    Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.

  9. Monitoring of static and variable electromagnetic fields in a large magnetic fusion plasma experimental facility

    International Nuclear Information System (INIS)

    Uda, T.; Tanaka, M.; Kawano, T.; Kamimura, Y.; Wang, J.; Fujiwara, O.

    2008-01-01

    Full text: Nuclear fusion research has been increased worldwide to develop new reliable energy source. In order to occur nuclear fusion reaction extremely high temperature plasma must be confined by magnet. Plasma confinement physics and technology has been studied by such as the large helical device LHD, which is using super conducting magnet system and plasma heating devices by electromagnetic waves. In the large magnetic fusion experimental facility, various electric power devices have potential to exposure workers by leakage of electromagnetic fields. Regarding the environmental safety static magnetic field and variable electromagnetic fields had been monitored around the LHD and related devices. Many kinds of electric power devices of which frequencies distribute from static magnetic field to high frequency of electromagnetic waves. The magnetic strength of LHD is about 3 T and workers are restricted to enter into the LHD hall, but there are many workers in the building. Environmental magnetic strength at the fixed point, where is 23 m far from the center of LHD, had been continuously measured with Gauss Meter 9900 (F.W. Bell) since the first plasma in 1998. After the plasma experiment background level was increased to about 0.06 m T, which is a double of terrestrial magnetic field. It was increased to 0.1-0.2 m T on the plasma experiment and in the case of the super conducting magnet was quickly decreased for protection of the coils system it was increased to 1 m T in short time. Extremely low frequency ELF of electromagnetic fields are caused mainly around the coil electric power supplies. The ELF magnetic strength was measured with ELT-400 (Narda). Near the supplies it was increased to higher than the occupational restriction level of the ICNIRP guide line. In order to heat ion plasma 38 MHz electromagnetic wave heating are used. Around the electromagnetic wave generators, electromagnetic fields have been continuously measured using EMC-300 EP (Narda) with

  10. Volume of visual field assessed with kinetic perimetry and its application to static perimetry

    Directory of Open Access Journals (Sweden)

    Christoforidis JB

    2011-04-01

    be applied to static perimetry.Keywords: visual field, kinetic perimetry, static perimetry, steradian, cartographic distortion

  11. Study of the combined action of gamma radiation and static electric fields in human cells

    International Nuclear Information System (INIS)

    Moron, Michelle Mendes

    2008-01-01

    The basic principle of radiotherapy is the one of maximizing damage to the tumor, while minimizing it in neighboring health tissues. Several strategies have been worked out aiming at increasing cellular radiosensitivity, and among them is the use of exogenous fields. Our goal in this work is the study in human cells of the effect resulting from the association of irradiation with exposure to exogenous static electric fields. The T47D cell line of breast cancer cells was irradiated with gammas in the 0 - 8 Gy doses range. The corresponding survival curve provided information on the radiosensitivity of this cell line. The rate of cell deaths per Gray in the 0 - 8 Gy range exhibited a maximum at 2 Gy, which corresponds to the most efficient irradiation dose. The viability of this T47D cells exposed to both gamma radiation and 1.250 V/cm static electric field (SEF) was about 12% lower than when only irradiated. The sole exposure of the cells to SEF by 24 and 72 hours didn't induce toxicity. Immunofluorescence runs carried out in irradiated normal MRC5 cell line of human lung fibroblast, without and with exposition to a SEF, have quantified the expression of the y- H2AX histone. The amount of phosphorylated histones was approximately 40% higher after irradiation with 2 Gy plus exposure to a SEF by 1 hour, showing that the electric field negatively interfered in the repairing process of the DNA double strand breaks. The flow cytometry analysis with FACS allowed the investigation of a possible interference of radiation and SEF in the cell distributions among the cellular cycle phases. It was found that in T47D cells treated with 1 and 2 Gy by 24 hours the SEF also negatively interfered in the DNA repairing process, as evidenced by the higher accumulation of cells in the S phase. Therefore, it would be possible to conclude that static and exogenous electric fields are able of negatively interfering in the cellular repair and, presumably, in DNA repair. (author)

  12. Frequency dependence of dielectric characteristics of seawater ionic solution under static magnetic field

    Science.gov (United States)

    Guo, Shaoshuai; Peng, Yufeng; Han, Xueyun; Li, Jiangting

    2017-09-01

    In order to study the electromagnetic wave transmission characteristics in seawater under external physical effects, we present a study of seawater ionic solution and perform a theoretical basis of magnetic field on water molecules and ionic motion to investigate the variation of dielectric properties with frequency under static magnetic field (0.38 T). Seawater is a naturally multi-component electrolyte solution, the main ingredients in seawater are inorganic salts, such as NaCl, MgSO4, MgCl2, CaCl2, KCl, NaHCO3, etc. The dielectric properties of these electrolyte solutions with different salinity values (0.01-5%) were measured in frequencies ranging from 40 to 5 MHz at 12∘C. The results show that the dielectric constant decreases with increasing frequencies no matter with magnetic field or without it. Frequency dependence of the dielectric constant of NaCl solution increases under magnetic field at measure concentrations. In a solution of MgCl2 ṡ 6H2O, KCl and NaHCO3 are consistent with NaCl solution, while CaCl2 ṡ 2H2O solution is in contrast with it. We also find that dielectric loss plays a major role in complex permittivity. With the effect of magnetic field, the proportion of dielectric loss is reducing in complex permittivity. On this basis it was concluded that the magnetic field influences the orientation of dipoles and the variation is different in salt aqueous solution.

  13. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  14. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-01-01

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow

  15. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  16. A contribution to the numerical calculation of static electromagnetic fields in unbounded domains

    International Nuclear Information System (INIS)

    Krawczyk, F.

    1990-11-01

    The numerical calculation of static electromagnetic fields for arbitrarily shaped three-dimensional structures, especially in unbounded domains, is very memory and cpu-time consuming. In this thesis several schemes that reduce memory and cpu-time consumption have been developed or introduced. The memory needed can be reduced by a special simulation of boundaries towards open space and by the use of a scalar potential for the field description. Known disadvantages of the use of such a potential are avoided by an improved formulation of the used algorithms. The cpu-time for the calculations can be reduced remarkably in many cases by using a multigrid solution scheme including a defect-correction. A computer code has been written that uses these algorithms. With the help of this program it has been demonstrated that using these algorithms, distinct improvements in terms of computer memory, cpu-time consumption and accuracy can be achieved. (orig.) [de

  17. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    International Nuclear Information System (INIS)

    Garibova, L.S.; Avetisyan, T.O.; Ajrapetyan, S.N.

    2000-01-01

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A 1 and A 2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field [ru

  18. Effects of static magnetic fields on bone formation in rat osteoblast cultures.

    Science.gov (United States)

    Yamamoto, Y; Ohsaki, Y; Goto, T; Nakasima, A; Iijima, T

    2003-12-01

    Although the promotional effects on osteoblasts of pulsed electromagnetic fields have been well-demonstrated, the effects of static magnetic fields (SMF) remain unclear; nevertheless, magnets have been clinically used as a 'force source' in various orthodontic treatments. We undertook the present investigation to study the effects of SMF on osteoblastic differentiation, proliferation, and bone nodule formation using a rat calvaria cell culture. During a 20-day culture, the values of the total area and the number and average size of bone nodules showed high levels in the presence of SMF. In the matrix development and mineralization stages, the calcium content in the matrix and two markers of osteoblastic phenotype (alkaline phosphatase and osteocalcin) also showed a significant increase. Accordingly, these findings suggest that SMF stimulates bone formation by promoting osteoblastic differentiation and/or activation.

  19. An Undergraduate Course and Laboratory in Digital Signal Processing with Field Programmable Gate Arrays

    Science.gov (United States)

    Meyer-Base, U.; Vera, A.; Meyer-Base, A.; Pattichis, M. S.; Perry, R. J.

    2010-01-01

    In this paper, an innovative educational approach to introducing undergraduates to both digital signal processing (DSP) and field programmable gate array (FPGA)-based design in a one-semester course and laboratory is described. While both DSP and FPGA-based courses are currently present in different curricula, this integrated approach reduces the…

  20. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  1. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  2. Weak-field limit of Kaluza-Klein models with spherically symmetric static scalar field. Observational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)

    2017-11-15

    In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)

  3. Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields

    International Nuclear Information System (INIS)

    Donovan, Ellen M.; Johnson, Ursula; Shentall, Glyn; Evans, Philip M.; Neal, Anthony J.; Yarnold, John R.

    2000-01-01

    Purpose: A method that uses electronic portal imaging to design intensity-modulated beams for compensation in breast radiotherapy was implemented using multiple static fields in a planning study. We present the results of the study to verify the algorithm, and to assess improvements to the dosimetry. Methods and Materials: Fourteen patients were imaged with computed tomography (CT) and on a treatment unit using an electronic portal imager. The portal imaging data were used to design intensity-modulated beams to give an ideal dose distribution in the breast. These beams were implemented as multiple static fields added to standard wedged tangential fields. Planning of these treatments was performed on a commercial treatment planning system (Target 2, IGE Medical Systems, Slough, U.K.) using the CT data for each patient. Dose-volume histogram (DVH) analysis of the plans with and without multileaf collimator (MLC) compensation was carried out. This work has been used as the basis for a randomized clinical trial investigating whether improvements in dosimetry are correlated with the reduction of long-term side effects from breast radiotherapy. Results: The planning analysis showed a mean increase in target volume receiving 95-105% of prescribed dose of 7.5% (range -0.8% to 15.9%) when additional MLC compensation was applied. There was no change to the minimum dose for all 14 patient data sets. The change in the volume of breast tissue receiving over 105% of prescribed dose, when applying MLC compensation, was between -1.4% and 11.9%, with positive numbers indicating an improvement. These effects showed a correlation with breast size; the larger the breast the greater the amount of improvement. Conclusions: The method for designing compensation for breast treatments using an electronic portal imager has been verified using planning on CT data for 14 patients. An improvement was seen in planning when applying MLC compensation and this effect was greater the larger the

  4. Urban Field Experiences for Undergraduate Liberal Arts Students: Using Compromised Environments as Living Laboratories

    Science.gov (United States)

    MacAvoy, S. E.; Knee, K.

    2015-12-01

    While urban environments may lack the beauty of relatively pristine field sites, they can be used to deliver an effective demonstration of actual environmental damage. Students demanding applied field experiences from their undergraduate environmental science programs can be well served in urban settings. Here, we present strategies for integrating degraded urban systems into the undergraduate field experience. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Students spend labs immersed in streams and wetlands heavily impacted by the urban runoff their city generates. Here we share lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency.

  5. The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera).

    Science.gov (United States)

    Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka

    2013-01-01

    There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.

  6. The stability of dc and rf SQUIDs in static ambient fields

    Energy Technology Data Exchange (ETDEWEB)

    Glyantsev, V.N.; Tavrin, Y.; Zander, W.; Schubert, J.; Siegel, M. [Institut fuer Schicht und Ionentechnik, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    1996-04-01

    For real applications of SQUIDs in biomagnetism, geomagnetism and NDE, SQUID devices are required which are stable in a magnetically unshielded environment. We have developed dc and rf SQUID devices with different layouts and widths of Josephson junctions, and have studied their operation in static magnetic fields and unshielded space. Additionally, the noise performance of these SQUID devices has been studied to determine whether there is an influence of the layout or the junction width on noise. Using a 0.3 {mu}m wide step-edge junction the transfer function of a washer-type SQUID was not depressed by external magnetic fields up to 3 G. The same stability was obtained using a direct-coupled layout for rf and dc SQUIDs with junctions of 1 {mu}m width. The best field sensitivity we obtained using a pick-up loop of 8 mm in diameter which was coupled directly to a dc SQUID having an inductance of 150 pH. In magnetic shielding, the field resolution of a SQUID with a single junction resistance of 10{omega} was 20 fT Hz{sup -1/2} at 77K and 1 kHz. (author)

  7. Electrified BPS giants: BPS configurations on giant gravitons with static electric field

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi

    2007-01-01

    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field

  8. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  9. Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex.

    Science.gov (United States)

    Oliviero, A; Carrasco-López, M C; Campolo, M; Perez-Borrego, Y A; Soto-León, V; Gonzalez-Rosa, J J; Higuero, A M; Strange, B A; Abad-Rodriguez, J; Foffani, G

    2015-01-01

    Transcranial static magnetic field stimulation (tSMS) in humans reduces cortical excitability. The objective of this study was to determine if prolonged tSMS (2 h) could be delivered safely in humans. Safety limits for this technique have not been described. tSMS was applied for 2 h with a cylindric magnet on the occiput of 17 healthy subjects. We assessed tSMS-related safety aspects at tissue level by measuring levels of neuron-specific enolase (NSE, a marker of neuronal damage) and S100 (a marker of glial reactivity and damage). We also included an evaluation of cognitive side effects by using a battery of visuomotor and cognitive tests. tSMS did not induce any significant increase in NSE or S100. No cognitive alteration was detected. Our data indicate that the application of tSMS is safe in healthy human subjects, at least within these parameters. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Whole body static magnetic field exposure increases thermal nociceptive threshold in the snail, Helix pomatia.

    Science.gov (United States)

    László, J F; Hernádi, L

    2012-12-01

    We investigated the effect of homogeneous and inhomogeneous static magnetic field (SMF) exposure on the thermal nociceptive threshold of snail in the hot plate test (43 °C). Both homogeneous (hSMF) and inhomogeneous (iSMF) SMF increased the thermo-nociceptive threshold: 40.2%, 29.2%, or 41.7% after an exposure of 20, 30, or 40 min hSMF by p snail. On the other hand, naloxone as an atypical opioid antagonist in an amount of 1 μg/g was found to significantly decrease the thermo-nociceptive threshold (41.9% by p < 0.002), which could be antagonized by hSMF exposure implying that hSMF exerts its antinociceptive effect partly via opioid receptors.

  11. Measurements of Dendritic Growth Velocities in Undercooled Melts of Pure Nickel Under Static Magnetic Fields

    Science.gov (United States)

    Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie

    2012-01-01

    Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.

  12. Correlations and fluctuations in static and dynamic mean-field approaches

    International Nuclear Information System (INIS)

    Balian, R.; Veneroni, M.

    1991-01-01

    Let the state of a many-body system at an initial time be specified, completely or partly; find the expectation values, correlations and fluctuations of single-particle observables at a later time. The characteristic function of these observables is optimized within a general variational scheme. The expansion of the optimal characteristic function provides the same results as the conventional mean-field approaches for the thermodynamic potentials and the expectation values: for fermions the best initial state is then the Hartree-Fock (HF) solution and the evolution is described by the time-dependent Hartree-Fock (TDHF) equation. Two special cases are investigated as preliminary steps. The first case deals with the evaluation of correlations for static problems, where the initial and final times coincide. In the second special case, the exact initial state is assumed to be an independent-particle one. (K.A.) 23 refs.; 1 fig

  13. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  14. [Magnetic resonance imaging : Recent studies on biological effects of static magnetic and high‑frequency electromagnetic fields].

    Science.gov (United States)

    Pophof, B; Brix, G

    2017-07-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible.

  15. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  16. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Pophof, B.; Brix, G.

    2017-01-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de

  17. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies

    Science.gov (United States)

    Ghodbane, Soumaya; Lahbib, Aida; Sakly, Mohsen; Abdelmelek, Hafedh

    2013-01-01

    The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited. PMID:24027759

  19. Static, spherically symmetric solutions with a scalar field in Rastall gravity

    Science.gov (United States)

    Bronnikov, K. A.; Fabris, J. C.; Piattella, O. F.; Santos, E. C.

    2016-12-01

    Rastall's theory belongs to the class of non-conservative theories of gravity. In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarzschild one, except for a very special case. When a canonical scalar field is coupled to the gravity sector in this theory, new exact solutions appear for some values of the Rastall parameter a. Some of these solutions describe the same space-time geometry as the recently found solutions in the k-essence theory with a power function for the kinetic term of the scalar field. There is a large class of solutions (in particular, those describing wormholes and regular black holes) whose geometry coincides with that of solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the form of these potentials, however, depends on the Rastall parameter a. We also note that all solutions of GR with a zero trace of the energy-momentum tensor, including black-hole and wormhole ones, may be re-interpreted as solutions of Rastall's theory.

  20. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies

    Directory of Open Access Journals (Sweden)

    Soumaya Ghodbane

    2013-01-01

    Full Text Available The interaction of static magnetic fields (SMFs with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited.

  1. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  2. Effect of a Static Magnetic Fields and Fluoride Ions on the Antioxidant Defense System of Mice Fibroblasts

    Science.gov (United States)

    Kurzeja, Ewa; Synowiec-Wojtarowicz, Agnieszka; Stec, Małgorzata; Glinka, Marek; Gawron, Stanisław; Pawłowska-Góral, Katarzyna

    2013-01-01

    The results of studies on the biological influence of magnetic fields are controversial and do not provide clear answers regarding their impact on cell functioning. Fluoride compounds are substances that influence free radical processes, which occur when the reactive forms of oxygen are present. It is not known whether static magnetic fields (SMF) cause any changes in fluoride assimilation or activity. Therefore, the aim of this work was to determine the potential relationship between magnetic field exposure to, and the antioxidant system of, fibroblasts cultured with fluoride ions. Three chambers with static magnetic fields of different intensities (0.4, 0.6, and 0.7 T) were used in this work. Fluoride ions were added at a concentration of 0.12 mM, which did not cause the precipitation of calcium or magnesium. The results of this study show that static magnetic fields reduce the oxidative stress caused by fluoride ions and normalize the activities of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Static magnetic fields modify the energy state of fibroblasts, causing an increase in the ATP concentration and a decrease in the MDA concentration. These results suggest that exposure to fluoride and an SMF improves the tolerance of cells to the oxidative stress induced by fluoride ions. PMID:23873295

  3. Effect of a Static Magnetic Fields and Fluoride Ions on the Antioxidant Defense System of Mice Fibroblasts

    Directory of Open Access Journals (Sweden)

    Katarzyna Pawłowska-Góral

    2013-07-01

    Full Text Available The results of studies on the biological influence of magnetic fields are controversial and do not provide clear answers regarding their impact on cell functioning. Fluoride compounds are substances that influence free radical processes, which occur when the reactive forms of oxygen are present. It is not known whether static magnetic fields (SMF cause any changes in fluoride assimilation or activity. Therefore, the aim of this work was to determine the potential relationship between magnetic field exposure to, and the antioxidant system of, fibroblasts cultured with fluoride ions. Three chambers with static magnetic fields of different intensities (0.4, 0.6, and 0.7 T were used in this work. Fluoride ions were added at a concentration of 0.12 mM, which did not cause the precipitation of calcium or magnesium. The results of this study show that static magnetic fields reduce the oxidative stress caused by fluoride ions and normalize the activities of antioxidant enzymes, including superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT. Static magnetic fields modify the energy state of fibroblasts, causing an increase in the ATP concentration and a decrease in the MDA concentration. These results suggest that exposure to fluoride and an SMF improves the tolerance of cells to the oxidative stress induced by fluoride ions.

  4. DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields.

    Science.gov (United States)

    Okudan, Berna; Keskin, Ali Umit; Aydin, Mustafa Asim; Cesur, Gökhan; Cömlekçi, Selçuk; Süslü, Harun

    2006-10-01

    Effects of the electromagnetic fields on living bodies, bones in particular, are among the relevant issues of contemporary life. In this study, we report the influences of 50 Hz and 0 Hz (static) electric fields (EF), on intact rat bones, as evaluated by dual energy X-ray absorbtion (DEXA) measurements on bone content and density when these animals (n = 27) are continuously exposed in utero and neonatally to EFs (10 kV/m) 14 days before and 14 days after their birth, for 28 days in total. Differences between 50 Hz EF and static EF groups are found to be significant (95% confidence level) for total bone mineral content (BMC), TBMC (P = .002). Differences between 50 Hz and control groups are found to be significant for total bone mineral density (BMD), TBMD (P = .002), lumbar BMC, LBMC (P = .023), and TBMC (P = .001). Differences between static EF and control groups are found to be significant for femoral BMD, FBMD (P = .009), TBMD (P = .002), LBMC (P = .001), and TBMC (P = .001). Note that TBMC parameters are jointly significant for all differences between the three groups of test animals. These results have shown that both static and 50 Hz EFs influence the early development of rat bones. However, the influence of static EFs is more pronounced than that of the 50 Hz field.

  5. Targeting of systemically-delivered magnetic nanoparticle hyperthermia using a noninvasive, static, external magnetic field

    Science.gov (United States)

    Zulauf, Grayson D.; Trembly, B. Stuart; Giustini, Andrew J.; Flint, Brian R.; Strawbridge, Rendall R.; Hoopes, P. Jack

    2013-01-01

    One of the greatest challenges of nanoparticle cancer therapy is the delivery of adequate numbers of nanoparticles to the tumor site. Iron oxide nanoparticles (IONPs) have many favorable qualities, including their nontoxic composition, the wide range of diameters in which they can be produced, the cell-specific cytotoxic heating that results from their absorption of energy from a nontoxic, external alternating magnetic field (AMF), and the wide variety of functional coatings that can be applied. Although IONPs can be delivered via an intra-tumoral injection to some tumors, the resulting tumor IONP distribution is generally inadequate; additionally, local tumor injections do not allow for the treatment of systemic or multifocal disease. Consequently, the ultimate success of nanoparticle based cancer therapy likely rests with successful systemic, tumor-targeted IONP delivery. In this study, we used a surface-based, bilateral, noninvasive static magnetic field gradient produced by neodymium-boron-iron magnets (80 T/m to 130 T/m in central plane between magnets), a rabbit ear model, and systemically-delivered starch-coated 100 nm magnetic (iron oxide) nanoparticles to demonstrate a spatially-defined increase in the local tissue accumulation of IONPs. In this non-tumor model, the IONPs remained within the local vascular space. It is anticipated that this technique can be used to enhance IONP delivery significantly to the tumor parenchyma/cells. PMID:24073325

  6. Static Magnetic Field Stimulation over Parietal Cortex Enhances Somatosensory Detection in Humans.

    Science.gov (United States)

    Carrasco-López, Carmen; Soto-León, Vanesa; Céspedes, Virginia; Profice, Paolo; Strange, Bryan A; Foffani, Guglielmo; Oliviero, Antonio

    2017-04-05

    The role of neuronal oscillations in human somatosensory perception is currently unclear. To address this, here we use noninvasive brain stimulation to artificially modulate cortical network dynamics in the context of neurophysiological and behavioral recordings. We demonstrate that transcranial static magnetic field stimulation (tSMS) over the somatosensory parietal cortex increases oscillatory power specifically in the alpha range, without significantly affecting bottom-up thalamocortical inputs indexed by the early cortical component of somatosensory evoked potentials. Critically, we next show that parietal tSMS enhances the detection of near-threshold somatosensory stimuli. Interestingly, this behavioral improvement reflects a decrease of habituation to somatosensation. Our data therefore provide causal evidence that somatosensory perception depends on parietal alpha activity. SIGNIFICANCE STATEMENT Artificially increasing alpha power by placing a powerful magnetic field over the somatosensory cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus. Copyright © 2017 the authors 0270-6474/17/373840-08$15.00/0.

  7. Levitation of water and organic substances in high static magnetic fields

    Science.gov (United States)

    Beaugnon, E.; Tournier, R.

    1991-08-01

    The levitation of various diamagnetic liquid and solid substances such as water, ethanol, acetone, bismuth, antimony, graphite, wood and plastic has been achieved at room temperature in a strong inhomogeneous static magnetic field. These experiments were performed in the hybrid magnet at the Service National des Champs Intenses (CNRS, Grenoble). These findings show that high field superconducting magnets could be used to provide a contactless, low gravity environment for the elaboration of a wide range of materials. En utilisant les forts champs magnétiques produits par la bobine hybride du Service National des Champs Intenses (CNRS, Grenoble), nous avons obtenu àtempérature ambiante la lévitation de substances diamagnétiques solides ou liquides telles que l'eau, l'alcool, l'acétone, le bismuth, l'antimoine, le graphite, le bois et le plastique. Ces résultats montrent que les bobines supraconductrices peuvent être utilisées pour l'élaboration de nombreux matériaux en gravité réduite, sans contact avec un contenant.

  8. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Fortner, Allison M [ORNL; Riemer, Kristina P [ORNL; Schweizer, Peter E [ORNL

    2012-04-01

    benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011

  9. USC Undergraduate Team Research, Geological Field Experience and Outdoor Education in the Tuolumne Batholith and Kings Canyon, High Sierra Nevada

    Science.gov (United States)

    Culbert, K. N.; Anderson, J. L.; Cao, W.; Chang, J.; Ehret, P.; Enriquez, M.; Gross, M. B.; Gelbach, L. B.; Hardy, J.; Paterson, S. R.; Ianno, A.; Iannone, M.; Memeti, V.; Morris, M.; Lodewyk, J.; Davis, J.; Stanley, R.; van Guilder, E.; Whitesides, A. S.; Zhang, T.

    2009-12-01

    Within four years, USC’s College of Letters, Arts and Sciences and Earth Science department have successfully launched the revolutionary undergraduate team research (UTR) program “Geologic Wonders of Yosemite at Two Miles High”. A diverse group of professors, graduate students and undergraduates spent two weeks mapping the Boyden Cave in Kings Canyon National Park, the Iron Mountain pendants south of Yosemite, the Western Metamorphic belt along the Merced River, and the Tuolumne Batholith (TB) in June and August 2009. During their experience in the field, the undergraduates learned geologic field techniques from their peers, professors, and experienced graduate students and developed ideas that will form the basis of the independent and group research projects. Apart from teaching undergraduates about the geology of the TB and Kings Canyon, the two weeks in the field were also rigorous exercise in critical thinking and communication. Every day spent in the field required complete cooperation between mentors and undergraduates in order to successfully gather and interpret the day’s data. Undergraduates were to execute the next day’s schedule and divide mapping duties among themselves. The two-week field experience was also the ideal setting in which to learn about the environmental impacts of their work and the actions of others. The UTR groups quickly adapted to the demanding conditions of the High Sierra—snow, grizzly bears, tourists, and all. For many of the undergraduates, the two weeks spent in the field was their first experience with field geology. The vast differences in geological experience among the undergraduates proved to be advantageous to the ‘team-teaching’ focus of the program: more experienced undergraduates were able to assist less experienced undergraduates while cementing their own previously gained knowledge about geology. Over the rest of the academic year, undergraduates will learn about the research process and scientific

  10. Classification of Teleparallel Homothetic Vector Fields in Cylindrically Symmetric Static Space-Times in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)

  11. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermilab

    2016-06-15

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  12. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  13. Demicellization of Polyethylene Oxide in Water Solution under Static Magnetic Field Exposure Studied by FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2013-01-01

    Full Text Available FTIR spectroscopy was used to investigate the alterations of the vibration bands in the mid-infrared region of Polyethylene oxide in aqueous solution at 25 mg/mL concentration under exposure up to 4 h to a static magnetic field at 200 mT. FTIR spectroscopic analysis of PEO solution in the range 3500–1000 cm−1 evidenced the stretching vibrations of ether band, C–H symmetric-antisymmetric and bending vibrations of methylene groups, and the C–O–C stretching band. A significant decrease in intensity of symmetric and asymmetric stretching CH2 vibration bands occurred after 2 h and 4 h of exposure, followed by a significant decrease in intensity of scissoring bending in plane CH2 vibration around 1465 cm−1. Finally, the C–O–C stretching band around 1080 cm−1 increased in intensity after 4 h of exposure. This result can be attributed to the increase of formation of the intermolecular hydrogen bonding that occurred in PEO aqueous solution after SMF exposure, due to the reorientation of PEO chain after exposure to SMF. In this scenario, the observed decrease in intensity of CH2 vibration bands can be understood as well considering that the reorientation of PEO chain under the applied SMF induces PEO demicellization.

  14. Study on Application of Static Magnetic Field for Adjuvant Arthritis Rats

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2004-01-01

    Full Text Available In order to examine the effectiveness of the application of static magnetic field (SMF on pain relief, we performed a study on rats with adjuvant arthritis (AA. Sixty female Sprague–Dawley (SD rats (age: 6 weeks, body weight: approximately 160 g were divided into three groups [SMF-treated AA rats (Group I, non-SMF-treated AA rats (Group II and control rats (Group III]. The SD rats were injected in the left hind leg with 0.6 mg/0.05 ml Mycobacterium butyrium to induce AA. The rats were bred for 6 months as chronic pain model. Thereafter, the AA rats were or were not exposed to SMF for 12 weeks. We assessed the changes in the tail surface temperature, locomotor activity, serum inflammatory marker and bone mineral density (BMD using thermography, a metabolism measuring system and the dual-energy X-ray absorptiometry (DEXA method, respectively. The tail surface temperature, locomotor activity and femoral BMD of the SMF-exposed AA rats were significantly higher than those of the non-SMF-exposed AA rats, and the serum inflammatory marker was significantly lower. These findings suggest that the pain relief effects are primarily due to the increased blood circulation caused by the rise in the tail surface temperature. Moreover, the pain relief effects increased with activity and BMD of the AA rats.

  15. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells.

    Science.gov (United States)

    Kim, Eun-Cheol; Park, Jaesuh; Kwon, Il Keun; Lee, Suk-Won; Park, Su-Jung; Ahn, Su-Jin

    2017-10-01

    Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and total β-catenin protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways were activated. SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

  16. Combination Therapy Comprising a Static Magnetic Field with Contractility Improves Skin Wounds.

    Science.gov (United States)

    Song, Byeong-Wook; Hong, Hyunki; Jung, Yu Jin; Lee, Ju Hyung; Kim, Bong-Soo; Lee, Hoon-Bum

    2018-03-21

    Cutaneous wounds can present significant clinical problems because of abnormal healing after deep dermal damage. Despite technical advances in wound care, there are still unmet needs that result from inefficient treatment. In this study, we aimed to improve skin wound healing using a contractibility band with static magnetic field (SMF), termed a Magnetic band (Mb). To examine the effect of the Mb on wound healing, full-thickness 15 mm × 35 mm excision wounds were surgically created on the dorsum of rats. An elastic and contractile band (non-treatment), or one neodymium magnet (Nd-1) or two magnets with an elastic and contractile band (Nd-2) were topically applied to the wound daily and the wound size was measured from day 1 to 7 after surgery. Nd-2 showed a significant (95%) reduction in the wound size at day 3. Histological analysis showed that pro-inflammatory cytokine levels were diminished by Nd-2, and granulation tissue and microvessels were increased compared with those in the sham group. During Mb-induced wound healing, apoptosis was significantly reduced and matrix remodeling-related factors were initially regulated. The results suggest that combination therapy comprising an SMF and an elastic and contractile band could be a promising tool to heal cutaneous wounds rapidly.

  17. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  18. Effect of static magnetic field on electricity production and wastewater treatment in microbial fuel cells.

    Science.gov (United States)

    Tao, Qinqin; Zhou, Shaoqi

    2014-12-01

    The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523 ± 2 to 553 ± 2 mV, ∼93 to ∼96 %, and ∼80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ∼50 to ∼43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds.

  19. Static Optical Recording Properties of Super-Resolution Near-Field Structure with Bismuth Mask Layer

    Science.gov (United States)

    Zhang, Feng; Xu, Wendong; Wang, Yang; Gan, Fuxi

    2004-11-01

    Super-resolution near-field structure (super-RENS) with bismuth (Bi) mask layer (Bi-super-RENS) is reported for the first time in this paper. Bi thin films with various thicknesses were studied by atomic force microscopy and grazing incident X-ray diffraction. Static optical recording tests with and without super-RENS were carried out using 650 nm semiconductor laser at recording power of 14 mW and 7 mW with pulse duration of 100 ns. The recording marks were observed by scanning electron microscopy and high-resolution optical microscopy with a CCD camera. Results showed that the Bi mask layer can also concentrate energy into the center of a laser beam at low laser power similar to the traditional Sb mask layer. Moreover, a (ZnS)80(SiO2)20 protection layer performed better than the SiN protection layer in the Bi-super-RENS. The direct observation of laser-recording marks may help better understand the working mechanism of the super-RENS, super-resolution ablation, and other nonlinear switch phenomena.

  20. Efficacy of Static Magnetic Field for Locomotor Activity of Experimental Osteopenia

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2007-01-01

    Full Text Available In order to examine the effectiveness of applying a static magnetic field (SMF for increasing bone mineral density (BMD, we assessed the degree of osteopenia by dual-energy X-ray absorptiometry (DEXA, the metabolism measuring system, and histological examination of bone tissue in an ovariectomized (OVX rat model. Thirty-six female Wistar rats (8 weeks old, 160–180 g were divided into three groups. The rats in the OVX-M group were exposed to SMF for 12 weeks after ovariectomy. The ovariectomized rats in the OVX-D group were not exposed to SMF as a control. The rats in the normal group received neither ovariectomy nor exposure to SMF. Twelve-week exposure to SMF in the OVX-M group inhibited the reduction in BMD that was observed in the OVX-D group. Moreover, in the OVX rats, before exposure to SMF, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After exposure of OVX rats to SMF, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the normal group. In the OVX-M group, the continuity of the trabecular bone was maintained more favorably and bone mass was higher than the respective parameters in the OVX-D group. These results demonstrate that exposure to SMF increased the level of locomotor activity in OVX rats, thereby increasing BMD.

  1. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Ren, Zhongming; Moreau, Rene

    2017-04-01

    Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification.

  2. Explaining the Gender Gap: Comparing Undergraduate and Graduate/Faculty Beliefs about Talent Required for Success in Academic Fields

    Science.gov (United States)

    Bailey, Kimberlyn; Nanthakumar, Ampalavanar; Preston, Scott; Ilie, Carolina C.

    Recent research has proposed that the gender gap in academia is caused by differing perceptions of how much talent is needed to succeed in various fields. It was found that, across the STEM/non-STEM divide, the more that graduate students and faculty see success in their own field as requiring as requiring talent, the fewer women participate in that field. This research examines whether undergraduate students share these attitudes. If these attitudes trickle down to the undergraduate population to influence students to choose different fields of study, then undergraduate beliefs should reflect those of graduate students and faculty. Using a large survey of undergraduates across the country, this study aims to characterize undergraduate attitudes and to determine variables that explain the differences between the attitudes of these two populations. Our findings suggest that the two populations have similar beliefs, but that undergraduate beliefs are strongly influenced by information about the gender ratio in each field and that this strong influence greatly differs between STEM and non-STEM fields. These findings seek to help direct future research to ask the right questions and propose plausible hypotheses about gender the imbalance in academia.

  3. Lessons in collaboration and effective field research from the Appalachian Headwaters Research Experience for Undergraduates Program

    Science.gov (United States)

    Jones, A. L.; Fox, J.; Wilder, M. S.

    2009-12-01

    In the summer of 2009, the authors launched year one of a three-year National Science Foundation-funded Research Experience for Undergraduates entitled "Carbon Storage and Headwater Health in the Appalachian Headwaters." Eight undergraduates selected from a nationally competitive field of more than 60 applicants participated in the ten-week field- and laboratory-based program along with three middle- and high-school teachers. Each student developed and completed an independent research project related to coal mining’s impact on soil organic carbon and sediment transport processes. Specifically, they used isotope ratio mass spectrometry to measure the carbon and nitrogen stable isotopic signature of soils and sediments in the Appalachian headwater landscapes and first order streams of Kentucky's southeastern coalfields. Among the program's innovative features was its fundamentally collaborative nature--which was represented in several ways. First, the background of the three program leaders was very different: an environmental planner with an academic background in land use planning and administration (Jones); a civil engineer trained in biogeochemistry and watershed modeling (Fox); and an environmental educator experienced in both formal and nonformal educator training and certification (Wilder). The program was also a collaboration between a Carnegie 1 research-oriented institution and an undergraduate/ teaching -focused regional comprehensive university. Finally, the participants themselves represented a diversity of disciplines and institutional backgrounds--including biology, geology, chemistry, environmental science and civil engineering. The Research Experience for Teachers component was another innovative program element. The teachers participated in all field and laboratory research activities during the first six weeks, then developed a unit of study for their own classrooms to be implemented during the current school year. In addition to the six

  4. Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet

    International Nuclear Information System (INIS)

    Fiaschetti, V.; Pastorelli, D.; Squillaci, E.; Funel, V.; Rascioni, M.; Meschini, A.; Salimbeni, C.; Sileri, P.; Franceschilli, L.; Simonetti, G.

    2013-01-01

    Aim: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. Materials and methods: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. Results: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. Conclusion: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

  5. Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    Science.gov (United States)

    Wang, Zhiyun; Che, Pao-Lin; Du, Jian; Ha, Barbara; Yarema, Kevin J.

    2010-01-01

    Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders. PMID:21079735

  6. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385.

    Directory of Open Access Journals (Sweden)

    Zhiyun Wang

    2010-11-01

    Full Text Available This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009 established that moderate strength static magnetic field (SMF exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A(2A receptor (A(2AR in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD.SMF reproduced several responses elicited by ZM241385, a selective A(2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A(2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A(2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.

  7. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  8. Effects of static magnetic fields on the structure, polymerization, and bioelectric of tubulin assemblies.

    Science.gov (United States)

    Mousavidoust, Sarah; Mobasheri, Hamid; Riazi, Gholam Hossein

    2017-11-01

    Due to widespread exposure of human being to various sources of static magnetic fields (SMF), their effect on the spatial and temporal status of structure, arrangement, and polymerization of tubulin was studied at the molecular level. The intrinsic fluorescence intensity of tubulin was increased by SMF, indicating the repositioning of tryptophan and tyrosine residues. Circular Dichroism spectroscopy revealed variations in the ratios of alpha helix, beta, and random coil structures of tubulin as a result of exposure to SMF at 100, 200, and 300 mT. Transmission Electron microscopy of microtubules showed breaches and curvatures whose risk of occurrence increased as a function of field strength. Dynamic light scattering revealed an increase in the surface potential of tubulin aggregates exposed to SMF. The rate and extent of polymerization increased by 9.8 and 33.8%, at 100 and 300 mT, respectively, but decreased by 36.16% at 200 mT. The conductivity of polymerized tubulin increased in the presence of 100 and 300 mT SMF but remained the same as the control at 200 mT. The analysis of flexible amino acids along the sequence of tubulin revealed higher SMF susceptibility in the helical electron conduction pathway set through histidines rather than the vertical electron conduction pathway formed by tryptophan residues. The results reveal structural and functional effects of SMF on tubulin assemblies and microtubules that can be considered as a potential means to address the safety issues and for manipulation of bioelectrical characteristics of cytosol, intracellular trafficking and thus, the living status of cells, remotely.

  9. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  10. Study of Static Magnetic Properties of Transformer Oil Based Magnetic Fluids for Various Technical Applications Using Demagnetizing Field Correction

    OpenAIRE

    Oana Maria Marinica

    2017-01-01

    Static magnetization data of eight transformer oil based magnetic fluid samples, with saturation magnetization ranging in a large interval from 9 kA/m to 90 kA/m, have been subjected to the demagnetizing field correction. Using the tabulated demagnetization factors and the differential magnetic susceptibility of the samples, the values of the radial magnetometric demagnetization factor were obtained in the particular case of VSM880 magnetometer. It was found that the demagnetizing field corre...

  11. Static Metrological Characterization of a Ferrimagnetic Resonance Transducer for Real-Time Magnetic Field Markers in Particle Accelerators

    CERN Document Server

    Arpaia, P; Caspers, F; Golluccio, G; Petrone, C

    2011-01-01

    The metrological characterization of a magnetic field transducer based on ferrimagnetic resonance for real-time markers in particle accelerators is reported. The transducer is designed to measure the magnetic field with an uncertainty of ± 10-5 T. A case study on the new real-time field monitoring system for the CERN accelerators highlighting the performance improvement achieved through the new ferrimagnetic transducer is described. Preliminary experimental results of the characterization for static and dynamic fields are discussed.

  12. Effect of a static magnetic field on silicon transport in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2010-03-15

    Liquid phase diffusion experiments have been performed without and with the application of a 0.4 T static magnetic field using a three-zone DC furnace system. SiGe crystals were grown from the germanium side for a period of 72 h. Experiments have led to the growth of single crystal sections varying from 0 to 10 mm thicknesses. Examination of the processed samples (single and polycrystalline sections) has shown that the effect of the applied static magnetic field is significant. It alters the temperature distribution in the system, reduces mass transport in the melt, and leads to a much lower growth rate. The initial curved growth interface was slightly flattened under the effect of magnetic field. There were no growth striations in the single crystal sections of the samples. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Use of static and ac field techniques for measuring mobility and charge lifetimes of radon progeny with a simple device

    International Nuclear Information System (INIS)

    Sapra, B.K.; Mayya, Y.S.

    1998-01-01

    A simple device, based on a modification of the scintillation cell, has been developed for the measurement of radon daughter mobility and charge lifetimes by employing AC and static electric fields. It has a central electrode coated with ZnS and the scintillations are recorded by a PMT unit. The coating is made on the wire, instead of on the inner walls, to improve the relative response of the device with respect to the zero field situation. Radon is drawn into the cell by evacuation techniques. Theoretical formulae, relating the observed count rates to the system parameters and progeny mobilities and charge lifetimes, have been derived under zero field, static and AC field situations. Measurements indicate that the device has very low leak rate (T 1/2 ∼38 days) and the initial environment if maintained for long time. Results of experiments carried out with static and AC fields in most air yielded 218 Po mobilities (1.89 cm 2 /V/s) and charge lifetimes (0.08s) are comparable to those reported in the literature. This demonstrates the feasibility of this technique for future studies with different trace gases. A major advantage of this device as opposed to the conventional spectrometric methods is its simplicity. (author)

  14. Exposure to the field of renal transplantation during undergraduate medical education in the UK

    Directory of Open Access Journals (Sweden)

    Newman Alex

    2005-09-01

    Full Text Available Abstract Background There is a lack of surgeons in the field of renal transplantation, with a predicted shortage of over 20 consultants by the year 2005. Early positive exposure to the field, commencing at undergraduate level, has been identified as being vital to improving rates of recruitment. This study was performed to assess the exposure of undergraduates to the field of renal transplantation during medical education in the UK. Methods In October 2004 a questionnaire was sent to the clinical deans of all UK medical schools regarding undergraduate exposure to renal transplantation. Results Twenty-five replies were received, giving a response rate of 96%. All but one school had a centre for renal transplantation in their region. Three schools (12% gave no formal lecture or tutorial on the subject during the entire course. Of the remainder, between one to four formal sessions were provided, ranging from 15 minutes to 3 hours duration. Six medical schools (24% provided no compulsory clinical exposure to renal transplantation, with a further five (20% saying that students may receive exposure by chance. The average length of attachment was three weeks. Twenty-one medical schools (84% provided between 1–10% of students a choice to study renal transplantation, as part of electives and special study modules. Conclusion This study reveals a variation between, and within, medical schools in the levels of formal teaching. If the trends in recruitment to renal transplantation are to be reversed, we have an obligation to improve upon the medical education that students currently receive.

  15. Effects of static magnetic field on magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1.

    Science.gov (United States)

    Wang, Xiaoke; Liang, Likun

    2009-05-01

    Magnetotactic bacteria produce nanometer-size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1, cultures inoculated with either magnetic or non-magnetic pre-cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise C(mag) values of the cultures, which means that the percentage of magnetosome-containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up-regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non-magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB-1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Copyright 2009 Wiley-Liss, Inc.

  16. Quasi-static evolution of force-free magnetic fields and a model for two-ribbon solar flares

    Science.gov (United States)

    Aly, J. J.

    1985-01-01

    It is shown that a two-dimensional force-free field in the solar corona can evolve in a quasi-static manner toward an open configuration, assuming the coronal field is invariant with respect to translations parallel to the x-axis. The theoretical result is applied to the quantitative theory of the evolution of two-ribbon solar flares of Kopp and Pneuman (1976), and the results are discussed. It is concluded that the two-dimensional force is the principal mechanism for the opening of the coronal magnetic field prior to reconnection during a solar flare.

  17. M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule

    Science.gov (United States)

    Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.

    2016-03-01

    The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.

  18. Effects of static electric fields on growth and development of wheat aphid Sitobion aveanae (Hemiptera: Aphididae) through multiple generations.

    Science.gov (United States)

    He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong

    2016-01-01

    Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.

  19. Performance of pancake coils of parallel co-wound Ag/BSCCO tape conductors in static and ramped magnetic fields

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Walker, M.S.; Hazelton, D.W.; Haldar, P.; Rice, J.A.; Hoehn, J.G. Jr.; Motowidlo, L.R.

    1994-01-01

    Critical Currents are reported for several Ag/BSCCO single-pancake coils in static magnetic fields ranging from 0 to 5 T and temperatures from 4.2 K to 105 K. The sample coils were co-wound of one to six tape conductors in parallel. Since the closed loops formed in such an arrangement could lead to eddy current heating or instability in changing fields, one of the coils was also tested in helium gas, in fields ramped at rates of up to 1.5 T/s. For these quasi-adiabatic tests, at each temperature the transport current was set just below the critical value for a preset static field of 3.3 or 4.9 T. The field was then rapidly ramped down to zero, held for 20 sec, and then ramped back up to the original value. The maximum observed temperature transient of about 1.7 K occurred at 9 K, for a field change of 4.75 T. The temperature transients became negligible when the sample was immersed in liquid helium. Above 30 K, the transients were below 1 K. These results give confidence that parallel co-wound HTSC coils are stable in a rapidly-ramped magnetic field, without undue eddy current heating

  20. Abatement of segregation with the electro and static magnetic field during twin-roll casting of 7075 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Su, X. [The Key Laboratory of Electromagnetic Processing of Material, Ministry of Education, 317#, Northeastern University, Shenyang, 110819 Liaoning (China); Xu, G.M., E-mail: Xu_gm@epm.neu.edu.cn [The Key Laboratory of Electromagnetic Processing of Material, Ministry of Education, 317#, Northeastern University, Shenyang, 110819 Liaoning (China); Jiang, D.H. [Donggong Information Science and Technology Co., Ltd., Guangzhou, 510000 Guangdong (China)

    2014-04-01

    This study aims to investigate the influence of electromagnetic field on the distribution and composition of precipitates and on the mechanical properties of 7075 rolled sheets. The non-field and field microstructure and the mechanical properties were studied in detail by optical microscope (OM), electron probe microanalyzer (EPMA), multiple sample tensile as well as hardness tests. The Fine and equiaxed grains were obtained when introducing the alternating oscillating electromagnetic field to the twin-roll casting (TRC) process with 0.13 T static magnetic and 386 A alternating current (AC) intensities. Due to a damping effect on the convection generated by applying the electro- and static magnetic fields, the undercooling of the melt decreases and the continuous net-like precipitates are refined and broken remarkably. Especially under oscillating electromagnetic field conditions, the best uniform microstructure without mottled segregation was obtained. In addition, the fields can effectively enhance solute mixing capacity and reduce heat discharge, resulting in the increase of mechanical properties of 7075 sheets in both the longitudinal and long transverse directions. The optimum process in the present study, in which the higher solid solubility in Al matrix and the stronger hardness as well as tensile strength was gained as compared to other rolled specimens, is considered as alternating oscillating TRC process.

  1. Writing Intensive Undergraduate Field Camp and Education: Expanding the Classroom and Preparing Students for the Workforce

    Science.gov (United States)

    Ford, M. T.; McGehee, T. L.

    2014-12-01

    There has always been a strong perception within the geoscience community that a capstone field course was the pinnacle of an undergraduate geoscience degree. Such a course draws from the student's accumulated knowledge base, using information from multiple sub-disciplines to solve "real-world" problems. Since 2006, there has been a 92% increase in students attending field camps (Status of the Geoscience Workforce 2014 - AGI). But, the number of field camps has significantly declined. In 1995, 35% of geoscience departments offered a summer field course but by 2006 that number had dropped to 15% (Status Report on Geoscience Summer Field Camps - AGI) and since 2009, the number of field camps listed in the Geology.com directory has dropped from 100 to about 75. This decline is despite the fact that 88% of industry professionals believe fieldwork should "be an integral and required part of undergraduate programs" (Petcovic, et al., 2014). In 2012, in order to meet the growing needs of industry and better prepare our students, Texas A&M University-Kingsville developed an in-house, unique set of field courses that expand the limits of the classroom. We have two required courses. One is similar to a traditional field camp except that it contains a writing intensive component. The six-credit course runs for seven weeks. Prior to camp, students are required to write an introduction (geologic history section) on the study area. We spend two weeks in the field, mapping daily (Big Bend National Park), and then return to Kingsville. Students then have two weeks to finish a fully referenced paper, including their edited introduction, methods, observations, interpretations, discussion and conclusions and once complete, they begin the introduction for the next area. This is another two-week field session, in central Texas. After this, we return the first paper which has been edited for content by geoscience faculty and for grammar by an English instructor. Students spend the next

  2. Effects of static magnetic field exposure on hematological and biochemical parameters in rats

    Directory of Open Access Journals (Sweden)

    Salem Amara

    2006-11-01

    Full Text Available The present work was undertaken in order to investigate the effects of static magnetic field (SMF on growth rates, hematopoiesis, plasmatic proteins levels, glucose concentration, lactate dehydrogenase (LDH and transaminases activities in male rats. Sub-acute exposure of rats during 5 consecutive days to SMF (1h/day at 128mT induced an increase of plasma LDH activity (+38%, pEste estudo foi realizado com o obejtivo de investigar os efeitos do campo magnético estático (CMS nas taxas de crescimento, hematopoiese, concentrações de proteínas plasmáticas, glicemia, da desidrogenase lática (DHL e transaminases (alanina aminotransferase-ALT e aspartato aminotransferase-AST em ratos machos. Após exposição de modo sub-agudo durante 5 dias consecutivos ao CMS (1 hora/dia, a 128mT, houve aumento em 38% na concentração de DHL (p<0.05, porém não houve mudanças nos índices hematimétricos, nas proteínas plasmáticas e nas transaminases. Duas semans após exposição ao CMS durante 30 dias consecutivos (CMS (1 hora/dia, a 128mT houve diminuição significativa das taxas de crescimento e aumento significativo das concetrações de proteínas (+62%, p<0.05, da hemoglobina (+10%, p<0.05, eritrócitos (+7%, p<0.05, leucócitos (+17%, p<0.05 e plaquetas (+10%, p<0.05. A exposição sub-crônica ao CMS induziu aumento da DHL (+43%, p<0.05, AST (+ 41%, p<0.05 e ALT (+95%, p<0.05. Em contraste não houve aumento da glicemia. Estas alterações sugerem que a exposição ao CMS possivelmente influencia a proliferação de células do sistema hematopoiético e a produção enzimática, indicando alterações teciduais.

  3. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  4. Development of effective power supply using electric double layer capacitor for static magnetic field coils in fusion plasma experiments.

    Science.gov (United States)

    Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y

    2011-02-01

    A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.

  5. The effect of low static magnetic field on osteogenic and adipogenic differentiation potential of human adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Marędziak, Monika, E-mail: monika.maredziak@gmail.com [Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław (Poland); Wroclaw Research Centre EIT+, Wrocław (Poland); Śmieszek, Agnieszka, E-mail: smieszek.agnieszka@gmail.com [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland); Tomaszewski, Krzysztof A., E-mail: krtomaszewski@gmail.com [Department of Anatomy, Jagiellonian University Medical College, Krakow (Poland); Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.wroc.pl [Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Wroclaw (Poland); Marycz, Krzysztof, E-mail: krzysztofmarycz@interia.pl [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland)

    2016-01-15

    The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static

  6. Euler-Lagrangian Model of Particle Motion and Deposition Effects in Electro-Static Fields based on OpenFoam

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.

  7. Width dependent collisionless electron dynamics in the static fields of the shock ramp, 2, Phase space portrait

    Directory of Open Access Journals (Sweden)

    M. Gedalin

    1997-01-01

    Full Text Available We study numerically in detail the behaviour of electrons in the strongly inhomogeneous static magnetic and electric fields, which are typical for thin quasiperpendicular collisionless shocks. We pay particular attention to the dependence of the final electron velocities on their initial velocities, for different shock widths. Electrons are completely magnetized when the shock is wide, but become demagnetized, and the energies that they acquire rapidly increase with the steepening of the field structure. One of the clear manifestations of the electron demagnetization is the loss of even approximate one-to-one correspondence of the downstream perpendicular velocity to the upstream perpendicular velocity. Electron reflection occurs despite the large cross-shock potential which accelerates electrons along the magnetic field (the regime of complete magnetization or across the shock (strong demagnetization. The reflected ion fraction is sensitive to the potential, magnetic field jump, and ramp width.

  8. The effect of static and pulsating magnetic field on immunocompetent cells in blood of hematological patients in nitro

    International Nuclear Information System (INIS)

    Bessmel'tsev, S.S.; Abdulkadyrov, K.M.; Gonchar, V.A.; Lavrushina, T.S.

    2001-01-01

    Immunological characteristics were studied in 103 patients with multiple myeloma, acute leukemia, chronic lymphocytic leukemia and non-Hodgkin's disease following in vitro exposure of blood to a low-intensity static field (SF) and alternating field (AF) or pulse magnetic field (PF). In a SF-AF study of multiple myeloma, a 30 min exposure had a positive effect on expression of tumor cells and T-cell markers and stimulated the regulatory function of T-lymphocytes. In acute leukemia, a combined application of the magnetic fields had an effect on the helper activity of the T-lymphocyte subpopulation. The phagocyte activity of leukocytes increased significantly while their digestive ability rose to a moderate degree [ru

  9. Involvement of Na+/K+ pump in fine modulation of bursting activity of the snail Br neuron by 10 mT static magnetic field.

    Science.gov (United States)

    Nikolić, Ljiljana; Todorović, Nataša; Zakrzewska, Joanna; Stanić, Marina; Rauš, Snežana; Kalauzi, Aleksandar; Janać, Branka

    2012-07-01

    The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na(+)/K(+) pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15 min. Biochemical data showed that Na(+)/K(+)-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, (31)P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na(+)/H(+) exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na(+)/K(+) pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na(+)/K(+) pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.

  10. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mathias M., E-mail: Mathias.Beck@tum.de [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Lammel, Christian [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Gleich, Bernhard [Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching (Germany)

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation. - Highlights: • Magnetic nanoparticles are aligned using a static three tesla magnetic field. • Inductive heating depends on the particles pre-orientation in a solid matrix. • Alignment increases the heat generation significantly.

  11. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  12. An analytic calculation of the weak field limit of the static color dielectric constant

    Directory of Open Access Journals (Sweden)

    M. Baker

    1983-10-01

    Full Text Available We analyze the Dyson equation/Ward identity system for the axial gauge n · A = 0 gluon propagator Δμν(qwhenn · q = 0. The solution behaves like (q−4 + (q2ν−1 for small q2, and we are able to calculate the power ν analytically. It turns out to be 0.1737. This analytic calculation verifies our earlier numerical solutions to these equations. For static problems, n · q = 0 is the temporal gauge, and in this gauge the gluon propagator is directly related to the color dielectric constant. We can thus calculate the dielectric constant in the infrared limit.

  13. The Influence of Urban Planning Affected Static and Stable Meteorological Field on Air Pollution

    Science.gov (United States)

    Zhang, Yue; Zhang, Liyuan; Zhang, Yunwei

    2018-02-01

    Accompany with the rapid urbanized and industrialized process, the built-up area and the number of high-rise buildings increased fast. Urban air quality is facing with the challenge caused by the rapid increase in energy consumption, motor vehicles owned, and the city construction. Long term high precision analysis on Beijing-Tianjin-Hebei region has been conducted in this article, so as to explore the influence of rapid increase in urban size and tall building amount on occurrence frequency of urban static and stable meteorological conditions as well as the contribution to urban PM2.5 pollution.

  14. THE EFFECT OF LOW INDUCTIVITY STATIC MAGNETIC FIELD ON SOME PLANT PATHOGEN FUNGI

    Directory of Open Access Journals (Sweden)

    Pál NAGY

    2006-02-01

    Full Text Available Growth and sporulation of phytopathogen microscopic fungi were studied under a static magnetic fi eld. The applied flux densities were 0,1, 0,5 and 1 mT. As a result of our experiments, the magnetic fi eld decreased the growth of colonies by 10 % using this fl ux density region. At the same time, the number of the developed conidia of Alternaria alternata and Curvularia inaequalis increased by 68-133 percent, but the number of Fusarium oxysporum conidia decreased by 79-83 percent.

  15. Development of measurement system for radiation effect on static random access memory based field programmable gate array

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    Based on the detailed investigation in field programmable gate array(FPGA) radiation effects theory, a measurement system for radiation effects on static random access memory(SRAM)-based FPGA was developed. The testing principle of internal memory, function and power current was introduced. The hardware and software implement means of system were presented. Some important parameters for radiation effects on SRAM-based FPGA, such as configuration RAM upset section, block RAM upset section, function fault section and single event latchup section can be gained with this system. The transmission distance of the system can be over 50 m and the maximum number of tested gates can reach one million. (authors)

  16. Characteristics of singularity-free static centrally symmetrical solutions of certain fourth-order gravitational-field equations

    Science.gov (United States)

    Fiedler, B.; Guenther, M.

    Fiedler and Schimming (1983) proved that the fourth order gravitational field equations with a linear combination of Bach's and Einstein's tensors on the left-hand side, which were proposed by Treder, admit static centrally symmetric solutions which are analytical and non-flat in some neighbourhood of the centre of symmetry. The existence of these solutions, known at first only in a small neighbourhood of r = 0 (r radius), can now be extended to intervals 0 ≤ r ≤ α with arbitrarily large α.

  17. [ECG changes caused by the effect of static magnetic fields of nuclear magnetic resonance tomography using magnets with a field power of 0.5 to 4.0 Telsa].

    Science.gov (United States)

    Weikl, A; Moshage, W; Hentschel, D; Schittenhelm, R; Bachmann, K

    1989-09-01

    ECG-alterations under the influence of static magnetic fields were investigated in phantoms (1.5 Tesla), animals and volunteers (4.0 Tesla), as well as in 12 patients (0.5, 1.0, and 1.5 Tesla). Under the influence of static magnetic fields high- and low-frequency voltages are superimposed on the ECG. Motions of the electrical leads induce high-frequency waves, which can alter the ECG to the extent that only the QRS-complex can be recognized. Electrolytes moved by the blood stream in static magnetic fields also induce voltages (Hall-effect) which, according to the patient's position, result in ST-segment- and partial T-wave-elevations or depressions. All ECG-alterations are reversible after exposition to the static magnetic field. Rhythm disturbances do not occur. The results indicate that static magnetic fields up to 4.0 Tesla do not have permanent adverse effects on the human ECG.

  18. Integration of Field Studies and Undergraduate Research into an Interdisciplinary Course: Natural History of Tropical Carbonate Ecosystems

    Science.gov (United States)

    Eves, Robert L.; Davis, Larry E.; Brown, D. Gordon; Lamberts, William L.

    2007-01-01

    According to Carl Sagan (1987), "Science is a way of thinking much more than it is a body of knowledge." Field studies and undergraduate research provide students with the best opportunities for "thinking" about science, while at the same time acquiring a body of knowledge. Natural History of Tropical Carbonate Ecosystems is a…

  19. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Science.gov (United States)

    Beck, Mathias M.; Lammel, Christian; Gleich, Bernhard

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation.

  20. On the Interpretation of the Redshift in a Static Gravitational Field

    CERN Document Server

    Okun, Lev Borisovich; Telegdi, Valentine Louis

    2000-01-01

    The classical phenomenon of the redshift of light in a static gravitational potential, usually called the gravitational redshift, is described in the literature essentially in two ways: on the one hand the phenomenon is explained through the behaviour of clocks which run the faster the higher they are located in the potential, whereas the energy and frequency of the propagating photon do not change with height. The light thus appears to be redshifted relative to the frequency of the clock. On the other hand the phenomenon is alternatively discussed (even in some authoritative texts) in terms of an energy loss of a photon as it overcomes the gravitational attraction of the massive body. This second approach operates with notions such as the "gravitational mass" or the "potential energy" of a photon and we assert that it is misleading. We do not claim to present any original ideas or to give a comprehensive review of the subject, our goal being essentially a pedagogical one.

  1. Effects of high-intensity static magnetic fields on a root-based bioreactor system for space applications

    Science.gov (United States)

    Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2017-11-01

    Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions.

  2. Magnetic displacement force and torque on dental keepers in the static magnetic field of an MR scanner.

    Science.gov (United States)

    Omatsu, Mika; Obata, Takayuki; Minowa, Kazuyuki; Yokosawa, Koichi; Inagaki, Eri; Ishizaka, Kinya; Shibayama, Koichi; Yamamoto, Toru

    2014-12-01

    To evaluate the effect of the static magnetic field of magnetic resonance (MR) scanners on keepers (ie, ferromagnetic stainless steel plate adhered to the abutment tooth of dental magnetic attachments). Magnetically induced displacement force and torque on keepers were measured using 1.5 Tesla (T) and 3.0 T MR scanners and a method outlined by American Society for Testing and Materials (ASTM). Changes in magnetic flux density before and after exposure to scanner static magnetic field were examined. The maximum magnetically induced displacement forces were calculated to be 10.3 × 10(-2) N at 1.5 T and 13.9 × 10(-2) N at 3.0 T on the cover surface. The maximum torques exerted on the keeper (4 mm in diameter) were 0.83 N × 4 mm at 1.5 T and 0.85 N × 4 mm at 3.0 T. These forces were considerably higher than the gravitational force (7.7 × 10(-4) N) of the keeper but considerably lower than the keeper-root cap proper adhesive force. The keepers' magnetic flux density remained less than that of the Earth. Magnetically induced displacement force and torque on the keeper in the MR scanner do not influence the keeper-root cap proper adhesive force. © 2013 Wiley Periodicals, Inc.

  3. Effect of the static magnetic field of the MR-scanner on ERPs: evaluation of visual, cognitive and motor potentials.

    Science.gov (United States)

    Assecondi, S; Vanderperren, K; Novitskiy, N; Ramautar, J R; Fias, W; Staelens, S; Stiers, P; Sunaert, S; Van Huffel, S; Lemahieu, I

    2010-05-01

    This work investigates the influence of the static magnetic field of the MR-scanner on ERPs extracted from simultaneous EEG-fMRI recordings. The quality of the ERPs after BallistoCardioGraphic (BCG) artifact removal, as well as the reproducibility of the waveforms in different environments is investigated. We consider a Detection, a Go-Nogo and a Motor task, eliciting peaks that differ in amplitude, latency and scalp topography, repeated in two situations: outside the scanner room (0T) and inside the MR-scanner but without gradients (3T). The BCG artifact is removed by means of three techniques: the Average Artifact Subtraction (AAS) method, the Optimal Basis Set (OBS) method and the Canonical Correlation Analysis (CCA) approach. The performance of the three methods depends on the amount of averaged trials. Moreover, differences are found on both amplitude and latency of ERP components recorded in two environments (0T vs 3T). We showed that, while ERPs can be extracted from simultaneous EEG-fMRI data at 3T, the static magnetic field might affect the physiological processes under investigation. The reproducibility of the ERPs in different recording environments (0T vs 3T) is a relevant issue that deserves further investigation to clarify the equivalence of cognitive processes in both behavioral and imaging studies. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Do strong, static magnetic fields act on living beings and chemical reactions

    International Nuclear Information System (INIS)

    Demmer, W.

    1986-01-01

    In general, magnetic fields are said to have no direct influence on living beings or simple chemical reactions. There is, however, evidence to confirm that changes in the earth's magnetic field or of artificially produced magnetic fields can alter the activity of different neuronal enzyme systems. An effect on the synthesis of β-galactosidase in the bacterium Escherichia coli by a feeble magnetic field (0.2 to 0.8 mT) and disturbances of the embryogenesis of frogs by a strong magnetic field (1.0 T) have been described. These and similar investigations with whole cells raise the question as to what the effect of magnetic fields on isolated and purified enzymes will be. (orig./SHA) [de

  5. Study of Static Magnetic Properties of Transformer Oil Based Magnetic Fluids for Various Technical Applications Using Demagnetizing Field Correction

    Directory of Open Access Journals (Sweden)

    Oana Maria Marinica

    2017-01-01

    Full Text Available Static magnetization data of eight transformer oil based magnetic fluid samples, with saturation magnetization ranging in a large interval from 9 kA/m to 90 kA/m, have been subjected to the demagnetizing field correction. Using the tabulated demagnetization factors and the differential magnetic susceptibility of the samples, the values of the radial magnetometric demagnetization factor were obtained in the particular case of VSM880 magnetometer. It was found that the demagnetizing field correction keeps the saturation magnetization values unchanged, but instead the initial magnetic susceptibility of the magnetic fluid samples varies widely. The mean magnetic diameter, obtained through magnetogranulometry from the measured data, is higher than that obtained from the corrected ones and the variation rate increases with the magnetic particle volume fraction growth.

  6. Diagonal Metrics of Static, Spherically Symmetric Fields: The Geodesic Equations and the Mass-Energy Relation from the Coordinate Perspective

    Science.gov (United States)

    Winkler, Franz-Günter

    2013-09-01

    The geodesic equations for the general case of diagonal metrics of static, spherically symmetric fields are calculated. The elimination of the proper time variable gives the motion equations for test particles with respect to coordinate time and an account of "gravitational acceleration from the coordinate perspective". The results are applied to the Schwarzschild metric and to the so-called exponential metric. In an attempt to add an account of "gravitational force from the coordinate perspective", the special relativistic mass-energy relation is generalized to diagonal metrics involving location dependent and possibly anisotropic light speeds. This move requires a distinction between two aspects of the mass of a test particle (parallel and perpendicular to the field). The obtained force expressions do not reveal "gravitational repulsion" for the Schwarzschild metric and for the exponential metric.

  7. Quasi-static evolution of sheared force-free fields and the solar flare problem

    Science.gov (United States)

    Aly, J. J.

    1985-01-01

    Some new results are given showing the possible evolution of a two-dimensional force-free field in the half-space z greater than 0 toward an open field. This evolution is driven by shearing motions applied to the feet of the field lines on the boundary z = 0. The consequences of these results for a model of the two-ribbon solar flare are discussed.

  8. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  9. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    Science.gov (United States)

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the

  10. Quasi-static electric fields, turbulence and VLF waves in the ionosphere and magnetosphere

    International Nuclear Information System (INIS)

    Temerin, M.A.

    1978-01-01

    Two rocket payloads launched from Greenland in December 1974 and January 1975 into the dayside auroral oval measured large scale electric fields. Sunward convection in regions of polar cusp type particle precipitation argues for the existence of a turbulent entry region at the magnetopause. Smaller scale changes in the electric field and energetic electron precipitation require field-aligned currents predominately at the boundaries of auroral arcs. Measurements of electric fields parallel to the magnetic field place upper limits to the parallel electric field. An analysis of the effect of zero-frequency electric field turbulence on the output of an electric field double probe detector is applied to data from two satellites, OVI-17 and S3-3. It is found that the electric field of high latitude low frequency turbulence is polarized perpendicular to the magnetic field and that the frequency is measured by the satellites is due to the Doppler shift of near zero frequency turbulence both in the ionosphere and magnetosphere. In addition, rocket measurements of low frequency turbulence in the dayside auroral oval reveal characteristics similar to those of the large electric field regions recently seen on S3-3 indicating that the turbulence from those regions extends into the ionosphere. VLF waves were also observed during the two rocket flights into the dayside auroral oval. The correlation of the VLF hiss intensity with the fluxes of precipitating electrons above 500 eV on a short spatial and time scale is often poor, even when a positive slope exists in the electron phase space density. The frequency of the lower hybrid waves were used to measure the ratio of NO + and O 2 + to O + . Electrostatic waves were observed during a barium release

  11. Orientation of sea urchin sperms in static magnetic fields: Compared to human sperms

    Science.gov (United States)

    Sakhnini, Lama; Dairi, Maheen

    In this study we report on magnetic orientation of sea urchin and human sperms. The sea urchin and human sperms became oriented parallel to the magnetic field (1 T maximum). The human sperms were totally oriented with magnetic field at about 600 mT. However, the sea urchin sperms show different behavior due to morphological differences between them and the human sperms.

  12. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  13. Development of a summer field-based hydrogeology research experience for undergraduates

    Science.gov (United States)

    Singha, K.

    2011-12-01

    A critical problem in motivating and training the next generation of environmental scientists is providing them with an integrated scientific experience that fosters a depth of understanding and helps them build a network of colleagues for their future. As the education part of an NSF-funded CAREER proposal, I have developed a three-week summer research experience for undergraduate students that links their classroom education with field campaigns aiming to make partial differential equations come "alive" in a practical, applied setting focused on hydrogeologic processes. This course has been offered to freshman- to junior-level undergraduate students from Penn State and also the three co-operating Historically Black Universities (HBUs)--Jackson State University, Fort Valley State University, and Elizabeth City State University-since 2009. Broad learning objectives include applying their knowledge of mathematics, science, and engineering to flow and transport processes in the field and communicating science effectively in poster and oral format. In conjunction with ongoing research about solute transport, students collected field data in the Shale Hills Critical Zone Observatory in Central Pennsylvania, including slug and pumping tests, ground-penetrating radar, electrical resistivity imaging, wireline logging, and optical televiewers, among other instruments. Students conducted tracer tests, where conservative solutes are introduced into a local stream and monitored. Students also constructed numerical models using COMSOL Multiphysics, a research-grade code that can be used to model any physical system; with COMSOL, students create models without needing to be trained in computer coding. With guidance, students built basic models of fluid flow and transport to visualize how heterogeneity of hydraulic and transport properties or variations in forcing functions impact their results. The development of numerical models promoted confidence in predicting flow and

  14. Self-Dual Yang-Mills Fields in Static Axially Symmetric Case and Related Topics

    Science.gov (United States)

    Hou, Bo-yuan; Wang, Pei

    1985-09-01

    In this article we will present an explicit geometric picture about the complete integrability of the static axially symmetric SDYM equation and the gravitational Ernst equation, interpret the correspondence between their Bäcklund transformation formulae and the transformations from one focal surface of Weingarten congruence to the other, and give the matrix Riccati equation so that the integrability of the B.T. will be proved. It is shown that for the axially symmetric SDYM equation and gravitational Ernst equation the adjoint space of the group (SL(2r)) is a 3-dimensional Minkowski space, and the corresponding soliton surfaces have negative variable curvature. After introducing the generator R we can explain the B.T. as the rotation around the common tangent between two surfaces of solitons. Using Riccati equation we will confirm in this paper the integrability of B.T. and prove that the B.T. is strong, i.e., the new and old solutions satisfy equations of motion separately. Some related topics are also discussed.

  15. A New Antarctic Field Course for Undergraduates at Michigan State University

    Science.gov (United States)

    Tweedie, C. E.; Hesse, J.; Hollister, R. D.; Roberts, P.; Wilson, J.; Wilson, M. I.; Webber, P. J.

    2003-12-01

    Field courses in remote and extreme environments immerse students in new and unfamiliar cultural and environmental settings where the impact from learning is high and the conventional wisdom, mindsets, and life skills of students are challenged. Through the Office of Study Abroad at Michigan State University (MSU), a new field course for undergraduates entitled `Studies in Antarctic System Science' embraces these principles. The three week, 6 credit course will be convened for the first time during the 2003-04 austral summer and will feature field based activities and classroom sessions beginning in Ushuaia, Tierra Del Fuego, Argentina. The defining experience of the program will be a cruise of the Antarctic Peninsula on a tourist ship partnered to the International Association of Antarctic Tour Operators (IAATO). This cruise will include landings on a daily basis at various sites of interest and international research stations en route. In 2003-04, the course will comprise 20 students and three faculty members from MSU. The non-major course curriculum has been compiled from materials based on original research by program faculty, relevant literature, information obtained directly from the international research community, and the Antarctic tourist industry. Subject areas will span multiple disciplines including palaeohistory and ecology, oceanography, climatology, geology and glaciology, marine, terrestrial and aerobiology, early exploration, policy and management, and the potential impacts from climate change and humans. It is intended that the course be repeated on an annual basis and that the curriculum be expanded to include greater coverage of ongoing research activities, especially NSF funded research. We welcome contact and feedback from educators and scientists interested in this endeavor, especially those who would like to broaden the impact of their own education interests or research by offering materials that could enhance the curriculum of the course

  16. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation

    Science.gov (United States)

    Wang, Wenchao; Li, Zhiyuan; Liu, Juanjuan; Yang, Xingxing; Ji, Xinmiao; Luo, Yan; Hu, Chen; Hou, Yubin; He, Qianqian; Fang, Jun; Wang, Junfeng; Liu, Qingsong; Li, Guohui; Lu, Qingyou; Zhang, Xin

    2016-01-01

    Static magnetic fields (SMFs) can affect cell proliferation in a cell-type and intensity-dependent way but the mechanism remains unclear. At the same time, although the diamagnetic anisotropy of proteins has been proposed decades ago, the behavior of isolated proteins in magnetic fields has not been directly observed. Here we show that SMFs can affect isolated proteins at the single molecular level in an intensity-dependent manner. We found that Epidermal Growth Factor Receptor (EGFR), a protein that is overexpressed and highly activated in multiple cancers, can be directly inhibited by SMFs. Using Liquid-phase Scanning Tunneling Microscopy (STM) to examine pure EGFR kinase domain proteins at the single molecule level in solution, we observed orientation changes of these proteins in response to SMFs. This may interrupt inter-molecular interactions between EGFR monomers, which are critical for their activation. In molecular dynamics (MD) simulations, 1-9T SMFs caused increased probability of EGFR in parallel with the magnetic field direction in an intensity-dependent manner. A superconducting ultrastrong 9T magnet reduced proliferation of CHO-EGFR cells (Chinese Hamster Ovary cells with EGFR overexpression) and EGFR-expressing cancer cell lines by ~35%, but minimally affected CHO cells. We predict that similar effects of magnetic fields can also be applied to some other proteins such as ion channels. Our paper will help clarify some dilemmas in this field and encourage further investigations in order to achieve a better understanding of the biological effects of SMFs. PMID:27223425

  17. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, B Z; Zakirov, A R [Kazan State University, Kazan 420008 (Russian Federation); Lummen, T T A; Van Loosdrecht, P H M [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands); Dhalenne, G, E-mail: boris.malkin@ksu.r [Laboratoire de Physico-Chimie de L' Etat Solide, ICMMO, UMR 8182, Universite Paris-Sud, 91405 Orsay (France)

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R{sub 2}Ti{sub 2}O{sub 7} (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  18. Induction Heating of Nonmagnetic Cylindrical Billets by Rotation in Magnetic Field Produced by Static Permanent Magnets

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Mach, F.; Doležel, Ivo

    2010-01-01

    Roč. 86, č. 12 (2010), s. 53-56 ISSN 0033-2097 Grant - others:GA ČR(CZ) GAP102/10/0216 Program:GA Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * magnetic field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.242, year: 2010 http://pe.org.pl/

  19. Tuning the phase sensitivity of a double-lambda system with a static magnetic field.

    Science.gov (United States)

    Xu, Xiwei; Shen, Shuo; Xiao, Yanhong

    2013-05-20

    We study the effect of a DC magnetic field on the phase sensitivity of a double-lambda system coupled by two laser fields, a probe and a pump. It is demonstrated that the gain and the refractive index of the probe can be controlled by either the magnetic field or the relative phase between the two laser fields. More interestingly, when the system reduces to a single-lambda system, turning on the magnetic field transforms the system from a phase-insensitive process to a phase-sensitive one. In the pulsed-probe regime, we observed switching between slow and fast light when the magnetic field or the relative phase was adjusted. Experiments using a coated 87Rb vapor cell produced results in good agreement with our numerical simulation. This work provides a novel and simple means to manipulate phase sensitive electromagnetically-induced-transparency or four-wave mixing, and could be useful for applications in quantum optics, nonlinear optics and magnetometery based on such systems.

  20. Static magnetic field therapy for symptomatic diabetic neuropathy: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Weintraub, Michael I; Wolfe, Gil I; Barohn, Richard A; Cole, Steven P; Parry, Gareth J; Hayat, Ghazala; Cohen, Jeffrey A; Page, Jeffrey C; Bromberg, Mark B; Schwartz, Sherwyn L

    2003-05-01

    To determine if constant wearing of multipolar, static magnetic (450G) shoe insoles can reduce neuropathic pain and quality of life (QOL) scores in symptomatic diabetic peripheral neuropathy (DPN). Randomized, placebo-control, parallel study. Forty-eight centers in 27 states. Three hundred seventy-five subjects with DPN stage II or III were randomly assigned to wear constantly magnetized insoles for 4 months; the placebo group wore similar, unmagnetized device. Nerve conduction and/or quantified sensory testing were performed serially. Daily visual analog scale scores for numbness or tingling and burning and QOL issues were tabulated over 4 months. Secondary measures included nerve conduction changes, role of placebo, and safety issues. Analysis of variance (ANOVA), analysis of covariance (ANCOVA), and chi-square analysis were performed. There were statistically significant reductions during the third and fourth months in burning (mean change for magnet treatment, -12%; for sham, -3%; P<.05, ANCOVA), numbness and tingling (magnet, -10%; sham, +1%; P<.05, ANCOVA), and exercise-induced foot pain (magnet, -12%; sham, -4%; P<.05, ANCOVA). For a subset of patients with baseline severe pain, statistically significant reductions occurred from baseline through the fourth month in numbness and tingling (magnet, -32%; sham, -14%; P<.01, ANOVA) and foot pain (magnet, -41%; sham, -21%; P<.01, ANOVA). Static magnetic fields can penetrate up to 20mm and appear to target the ectopic firing nociceptors in the epidermis and dermis. Analgesic benefits were achieved over time.

  1. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre

    2017-08-01

    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  2. Physical examination in undergraduate medical education in the field of general practice - a scoping review.

    Science.gov (United States)

    Moßhammer, Dirk; Graf, Joachim; Joos, Stefanie; Hertkorn, Rebekka

    2017-11-25

    Physical examination (PE) is an essential clinical skill and a central part of a physician's daily activity. Teaching of PE has been integrated into medical school by many clinical disciplines with respective specific examination procedures. For instance, PE teaching in general practice may include a full-body examination approach. Studies show that PE-skills of medical students often need enhancement. The aim of this article was to scope the literature regarding the teaching and research of PE within general practice during undergraduate medical education. We evaluated a wide breadth of literature relating to the content, study design, country of research institution and year of publication. Literature search in Medline along the PRISMA-P protocol was performed by search syntax ("physical examination" AND "medical education" AND "undergraduate" AND general practice) considering Medline MeSH (Medical Subject Heading)-Terms and Medline search term tree structure. Independent title, abstract and full-text screening with defined inclusion and exclusion criteria was performed. Full texts were analyzed by publication year, country of origin, study design and content (by categorizing articles along their main topic according to qualitative content analysis of Mayring). One-hundred seven articles were included. The annual number of publications ranged from 4 to 14 and had a slightly rising trend since 2000. Nearly half of the publications originated from the United States (n = 54), 33 from Canada and the United Kingdom. Overall, intervention studies represented the largest group (n = 60, including uncontrolled and controlled studies, randomized and non-randomized), followed by cross-sectional studies (n = 29). The 117 studies could be assigned to five categories "teaching methods (n = 53)", "teaching quality (n = 33)", "performance evaluation and examination formats (n=19)", "students' views (n = 8)" and "patients' and standardized patients' views

  3. Nuclear reorientation in static and radio-frequency electro-magnetic fields

    International Nuclear Information System (INIS)

    Dubbers, D.

    1976-01-01

    Nuclear reorientation by external electromagnetic fields is treated using Fano's irreducible tensor formulation of the problem. Although the main purpose of this paper is the description of the effects of nuclear magnetic resonance (NMR) on an ensemble of oriented nuclei in the presence of a crystal electric field gradient (efg), the results are applicable to all types of nuclear or atomic orientation or angular correlation work. The theory is applied to a number of exemplary cases: magnetic field dependence of nuclear orientation in the presence of quadrupole interactions; sign determination in electric quadrupole coupling; line shapes of nuclear acoustic resonance (NAR) signals; quadrupole splitting and multiquantum transitions in NMR with oriented nuclei. (orig./WBU) [de

  4. APPLICATION OF MULTILAYER FILM CONFIGURATION TO PROTECT PHOTOMULTIPLIER AGAINST EXTERNAL STATIC MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    A. G. Batische

    2012-01-01

    Full Text Available The effectiveness of the screening constant magnetic field is multi-layered film screens system of NiFe/Cu, formed on the cylindrical housing of photomultiplier tubes, and compared with screen-based steel material – brand 80NHS permalloy. It is shown that the most effective is the screen on the basis of the multilayered film screens, which provide shielding effectiveness value 8–10 in magnetic fields with induction of 0,1–1 mT, and 80–100 – in magnetic fields with induction of 2–4 mT , which is 4–5 times higher than for the screen of the material 80NHS.

  5. Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics

    DEFF Research Database (Denmark)

    Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio

    2015-01-01

    or in the perpendicular direction. We report a detailed study of both short and long elliptic annular junctions having different eccentricities. For junctions having a normalized perimeter less than one the threshold curves are derived and computed even in the case with one trapped Josephson vortex. For longer junctions...... a numerical analysis is carried out after the derivation of the appropriate perturbed sine-Gordon equation. For a given applied field we find that a number of different phase profiles exist which differ according to the number of fluxon-antifluxon pairs. We demonstrate that in samples made by specularly...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...

  6. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  7. Diamagnetism of 2D-fermions in the strong nonhomogeneous static magnetic field B = B(0,0,1/cosh2(x-x0/δ))

    International Nuclear Information System (INIS)

    Hudak, O.

    1991-09-01

    We study diamagnetism of a gas of fermions moving in a nonhomogeneous magnetic field B = B(0,0,1/cosh 2 (x-x 0 /δ)). The gas magnetization, the static magnetic susceptibility, the chemical potential and the gas compressibility are discussed and compared with the uniform field case. (author). 5 refs

  8. Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans.

    Science.gov (United States)

    Kirimoto, Hikari; Tamaki, Hiroyuki; Matsumoto, Takuya; Sugawara, Kazuhiro; Suzuki, Makoto; Oyama, Mineo; Onishi, Hideaki

    2014-01-01

    The motor cortex in the human brain can be modulated by the application of transcranial static magnetic field stimulation (tSMS) through the scalp. However, the effect of tSMS on the excitability of the primary somatosensory cortex (S1) in humans has never been examined. This study was performed to investigate the possibility of non-invasive modulation of S1 excitability by the application of tSMS in healthy humans. tSMS and sham stimulation over the sensorimotor cortex were applied to 10 subjects for periods of 10 and 15 min. Somatosensory evoked potentials (SEPs) following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3 of the international 10-20 system of electrode placement. In another session, SEPs were recorded from 6 of the 10 subjects every 3 min during 15 min of tSMS. Amplitudes of the N20 component of SEPs at C3' significantly decreased immediately after 10 and 15 min of tSMS by up to 20%, returning to baseline by 10 min after intervention. tSMS applied while recording SEPs every 3 min and sham stimulation had no effect on SEP. tSMS is able to modulate cortical somatosensory processing in humans, and thus might be a useful tool for inducing plasticity in cortical somatosensory processing. Lack of change in the amplitude of SEPs with tSMS implies that use of peripheral nerve stimulation to cause SEPs antagonizes alteration of the function of membrane ion channels during exposure to static magnetic fields. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Melding Research on the Navajo Volcanic Field into Undergraduate Curriculum to Promote Scientific Literacy

    Science.gov (United States)

    Gonzales, D. A.

    2011-12-01

    This presentation highlights the curricular design and preliminary outcomes of undergraduate research in the Department of Geosciences at Fort Lewis College (FLC), supported by an NSF-RUI project on the Navajo volcanic field (NVF). A prime impact of this project was to support the education and career development of undergraduate students by further developing basic knowledge and skills in the context of authentic inquiry on petrologic-based research topics. Integrating research into the curriculum promoted scientific habits of mind by engaging students as "active agents" in discovery, and the creative development and testing of ideas. It also gave students a sense of ownership in the scientific process and knowledge construction. The initial phase of this project was conducted in Igneous Petrology at FLC in 2010. Eleven students were enrolled in this course which allowed them to work as a team in collaboration with the PI, and engage in all aspects of research to further develop and hone their skills in scientific inquiry. This course involved a small component of traditional lecture in which selected topics were discussed to provide students with a foundation to understand magmatic processes. This was complemented by a comprehensive review of the literature in which students read and discussed a spectrum of articles on Tertiary magmatism in the western United States and the NVF. Invited lectures by leading-scientists in geology provided opportunities for discussions and interaction with professional geologists. All of the students in the class engaged in the active collection of petrologic data in the field and laboratory sessions, and were introduced to the use of state-of-the art analytical tools as part of their experiences. Four students were recruited from the course to design, develop, and conduct long-term research projects on selected petrologic topics in the NVF. This research allowed these students to engage in the "messy" process of testing existing

  10. Biological effects of static magnetic fields: a selective review with emphasis on risk assessment

    International Nuclear Information System (INIS)

    Easterly, C.E.

    1982-04-01

    Rather than focusing on literature per se, the current study determines the status of magnetic field information that is applicable to risk assessment. Hence, an attempt is made to identify both the literature that is useful to the goal of risk assessment and a framework within which risk assessment methodologies can be derived. From this selected review, it is concluded that three areas exist for which adequate information can be found to begin modelling: disease induction, reproduction and development, and cardiovascular response. The first two are supported by a combination of positive and negative findings and the last by a calculational technique which utilizes the physically well-known principle of flow retardation for a conducting fluid moving through a magnetic field

  11. Biological effects of static magnetic fields: a selective review with emphasis on risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C. E.

    1982-04-01

    Rather than focusing on literature per se, the current study determines the status of magnetic field information that is applicable to risk assessment. Hence, an attempt is made to identify both the literature that is useful to the goal of risk assessment and a framework within which risk assessment methodologies can be derived. From this selected review, it is concluded that three areas exist for which adequate information can be found to begin modelling: disease induction, reproduction and development, and cardiovascular response. The first two are supported by a combination of positive and negative findings and the last by a calculational technique which utilizes the physically well-known principle of flow retardation for a conducting fluid moving through a magnetic field.

  12. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    Science.gov (United States)

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  13. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    Directory of Open Access Journals (Sweden)

    Adelfia Talà

    Full Text Available In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule.

  14. Static Electric Field Mapping Using a Mosquito Racket and Baby Oil

    Science.gov (United States)

    Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma

    2015-01-01

    The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…

  15. Effect of Static Magnetic Field Exposure of Salvia Seeds on Germination Characteristics (Salvia officinalis, L.)

    OpenAIRE

    Martinez Ramirez, Elvira; Carbonell Padrino, Maria Victoria; Florez Garcia, Mercedes; Amaya Garcia de la Escosura, Jose Manuel

    2008-01-01

    The main objective of this study is to determine the effects of magnetic treatment, in addition to the geomagnetic field, on germination of salvia officinalis L. seeds. This objective has a practice application in agriculture science: to obtain an early growth of salvia. A great development of crops of medicinal, condimentary and aromatic plants crops is taking place in Mediterranean countries due to their high added value as consequence of the Fitotherapy reappearance among other reasons. In...

  16. SQUID-Detected MRI in the Limit of Zero Static Field

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Nathan Dean [Univ. of California, Berkeley, CA (United States)

    2009-12-14

    This thesis describes an implementation of the so-called"zero-field MRI" (ZFMRI) pulse sequence, which allows for imaging in an arbitrarily low B0 field. The ZFMRI sequence created an effective unidirectional gradient field by using a train of pi pulses to average out the concomitant gradient components during encoding. The signals were acquired using a low-transition temperature dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order axial gradiometer. The experiments were carried out in a liquid helium dewar which was magnetically shielded with a single-layer mu-metal can around the outside and a superconducting Pb can contained within the helium space. We increased the filling factor of the custom-made, double-walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately -50 degrees C, at the center of one loop of the superconducting gradiometer, which was immersed in the helium bath.

  17. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  18. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Paul J., E-mail: paulj.kelly@hse.ie [Department of Radiation Oncology, Dana Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, MA (United States); Mannarino, Edward; Lewis, John Henry; Baldini, Elizabeth H.; Hacker, Fred L. [Department of Radiation Oncology, Dana Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, MA (United States)

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45 Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, Rapid

  19. Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems.

    Science.gov (United States)

    Correia, C; Jackson, K; Véran, J-P; Andersen, D; Lardière, O; Bradley, C

    2014-01-01

    Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars.

  20. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  1. Stress-energy tensors for vector fields outside a static black hole

    International Nuclear Information System (INIS)

    Barrios, F.A.; Vaz, C.

    1989-01-01

    We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates

  2. 'Tongue-and-groove' effect in intensity modulated radiotherapy with static multileaf collimator fields

    International Nuclear Information System (INIS)

    Que, W; Kung, J; Dai, J

    2004-01-01

    The 'tongue-and-groove problem' in step-and-shoot delivery of intensity modulated radiotherapy is investigated. A 'tongue-and-groove' index (TGI) is introduced to quantify the 'tongue-and-groove' effect in step-and-shoot delivery. Four different types of leaf sequencing methods are compared. The sliding window method and the reducing level method use the same number of field segments to deliver the same intensity map, but the TGI is much less for the reducing level method. The leaf synchronization method of Van Santvoort and Heijmen fails in step-and-shoot delivery, but a new method inspired by the method of Van Santvoort and Heijmen is shown to eliminate 'tongue-and-groove' underdosage completely

  3. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    Science.gov (United States)

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.

  4. [Supply and demand of clinical practice fields for training undergraduate health sciences students in Peru, 2005-2009].

    Science.gov (United States)

    Alva, Javier; Verastegui, George; Velasquez, Edgar; Pastor, Reyna; Moscoso, Betsy

    2011-06-01

    To describe the supply and demand of clinical fields for undergraduate students of Peru. A descriptive study was considering as supply of clinical fields the total number of existing hospital beds in Peru. The demand was calculated using the total number of alumni registered in health science carrers following the clinical years or the internship. We calculated the number of beds per student and the coverage of clinical fields nationally and in some selected regions (Lima, Arequipa, La Libertad and Lambayeque). In 2009, Peru had 34,539 hospital beds, 78.5% of which pertained to the public sector and 48.4% are from Lima. We estimated that in 2008 44,032 alumni needed clinical fields, 70% from private universities, which grew 65% since 2005. The coverage of clinical fields, considering only interns from four carreers (medicine, nursery, obstetrics and dentistry) was only 31.5% at the national level. The number of beds per student oscillated between 0.5 in La Libertad to 0.82 in Lima with a national mean of 0.45. The supply of clinical fields for teaching undergraduates is insufficient to satisfy the demand, which continues to grow because of private universities, and hence requires urgent regulation.

  5. Linear instabilities of a planar liquid sheet in a static electric field for intermediate relaxation and convection of surface charges

    Science.gov (United States)

    Yoshinaga, Takao

    2018-04-01

    Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.

  6. Non-thermal radio frequency and static magnetic fields increase rate of hemoglobin deoxygenation in a cell-free preparation.

    Directory of Open Access Journals (Sweden)

    David Muehsam

    Full Text Available The growing body of clinical and experimental data regarding electromagnetic field (EMF bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF signal, and a static magnetic field (SMF, applied independently, increased the rate of deoxygenation of human hemoglobin (Hb in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10-30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur.

  7. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats

    Energy Technology Data Exchange (ETDEWEB)

    Linder-Aronson, S.; Lindskog, S. (Karolinska Institutet, Stockholm (Sweden))

    1991-01-01

    The present investigation was undertaken to measure any bone surface changes after stimulation with orthodontic magnets and, furthermore, to examine the soft tissue in immediate contact with the magnets. Both distal parts of the tibial hind legs in six groups of young rats were fitted with devices holding two orthodontic magnets in the experimental legs and similar devices without magnets in the control legs. The animals were killed after 2, 3, and 4 weeks. Morphometric evaluation showed significant increases in resorbing areas after 3 and 4 weeks. Similarly, a reduction was evident in the number of epithelial cells under the areas where the magnets had been applied. These findings indicate that the stimulation of bone resorption in the present study may have been caused by inhibition of the bone-lining osteoblasts. This proposition is supported by the apparent inhibitory effect of the magnetic fields on epithelial recycling that was seen as a reduced thickness of the epithelium under the magnets. Consequently, static magnetic fields should be used with care in orthodontic practice until a more complete understanding of their mechanism of action has been established.

  8. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.

    Science.gov (United States)

    Biswas, Soma; Raychaudhuri, A K; Sreeram, P A; Dietzel, Dirk

    2012-11-01

    We have investigated experimentally the role of cantilever instabilities in determination of the static mode force-distance curves in presence of a dc electric field. The electric field has been applied between the tip and the sample in an atomic force microscope working in ultra-high vacuum. We have shown how an electric field modifies the observed force (or cantilever deflection)-vs-distance curves, commonly referred to as the static mode force spectroscopy curves, taken using an atomic force microscope. The electric field induced instabilities shift the jump-into-contact and jump-off-contact points and also the deflection at these instability points. We explained the experimental results using a model of the tip-sample interaction and quantitatively established a relation between the observed static mode force spectroscopy curves and the applied electric field which modifies the effective tip-sample interaction in a controlled manner. The investigation establishes a way to quantitatively evaluate the electrostatic force in an atomic force microscope using the static mode force spectroscopy curves. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of Static Magnetic Field on the Rate of Proliferation and Viability in HeLa Cancer Cells and Normal Fibroblasts

    Directory of Open Access Journals (Sweden)

    E. Shams

    2017-01-01

    Full Text Available Aims: The increasing use of the electromagnetic devices in daily life leads to higher electromagnetic filed effects. The effects on the organic systems are contradictory and controversial. The aim of this study was to investigate the effects of different intensities and durations of the static magnetic fields on the living cells and their proliferation rate. Materials & Methods: In the applied study, two HeLa cancer cell lines and human fibroblast natural cells were studied. At first, the cells were cultured on DMEN medium. Three magnetic intensities (7, 14, and 21T and two durations (24 and 48h were used, and the cells were treated by static magnetic field. The living cell percentage and cell proliferation rate were assessed by MTT method. Trypan blue was used in staining. And an optical microscope was used in enumeration. Data was analyzed by Graphpad Prism 5 using one-way ANOVA. Findings: The higher the static magnetic field and the more the duration were, the lesser the percentage of living cells and cell proliferation, showing a significant reduction in the HeLa cancer cells, while it was insignificant in the fibroblast natural cells. The highest reduction in the living cell percentage and cell proliferation rate was in 48-hour 21T (p<0.05. Conclusion: The static magnetic field affects the HeLa cancer cells more than the fibroblast cells. The higher the field intensity and the more the duration are, the lesser the alive cell percentage and cell proliferation rate.

  10. On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.

  11. Student Conceptions of Eutrophication in a Field-Based Undergraduate Course

    Science.gov (United States)

    Rowbotham, K. L.; Petcovic, H. L.; Koretsky, C. M.

    2010-12-01

    Little research regarding student conceptions of complex environmental systems and biogeochemical cycles has been published. We investigate the nature of student ideas about such systems and cycles in a newly developed a field course for upper level undergraduate Geoscience and Environmental Studies majors in which students engage in problem-based learning and work collaboratively to investigate a real-world environmental system - eutrophication of an urban lake in Kalamazoo, MI. Classroom work focuses on a weekly pre-instruction “question of the day” (QED). After answering QEDs individually, students gather in groups to create and illustrate consensus answers. The instructor then typically presents a “mini-lecture” to address the QED’s content. Students spend a substantial amount of class time outside the classroom in both lab and field settings. Once they have gained familiarity with relevant lab and field techniques, students design and execute a field sampling strategy to assess lake quality. Near the end of the course, students present their research in a public poster session and a written summary report. Thus far, the course has been offered in the 2009 and 2010 fall terms to a total of 34 students. Data collection during each term includes experience, attitude, and knowledge surveys; students’ individual and group work; and a series of interviews with ~ 25% of the students in the course. The experience survey examines students’ prior courses, research, and relevant work experience. The attitude survey assesses novelty space (comfort and preparation for coursework). The multiple choice knowledge survey functions as a pre/post-test, assessing students’ knowledge of relevant biogeochemistry. Upon examination of conceptual issues that emerged in the 2009 interview data, this survey was modified for the 2010 fall term to focus on key concepts and include actual student misconceptions as the multiple choice items' distracters. Semi

  12. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    Science.gov (United States)

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  13. Static force fields simulations of reduced CeO2 (110) surface: Structure and adsorption of H2O molecule

    Science.gov (United States)

    Vives, Serge; Meunier, Cathy

    2018-02-01

    The CeO2(110) surface properties are largely involved in the catalysis, energy and biological phenomenon. The Static Force Fields simulations are able to describe large atomic systems surface even if no information on the electronic structure can be obtained. We employ those simulations to study the formation of the neutral 2 CeCe‧ VO•• cluster. We focus on seven different cluster configurations and find that the defect formation energy is the lower for the 1N-2N configurations. Two geometries are possible, as it is the case for the ab initio studies, the in plane and the more stable bridging one. We evidence the modifications of the surface energy and the Potential Energy Surface due to the presence of the 2 CeCe‧ VO•• defect. The physical adsorption of a water molecule is calculated and the geometry described for all the cluster configurations. The H2O molecule physisorption stabilizes the Ce(110) surface and the presence of the 2 CeCe‧ VO•• defect increases this effect.

  14. Static magnetic field enhances the anticancer efficacy of capsaicin on HepG2 cells via capsaicin receptor TRPV1.

    Science.gov (United States)

    Chen, Wei-Ting; Lin, Guan-Bo; Lin, Shu-Hui; Lu, Chueh-Hsuan; Hsieh, Chih-Hsiung; Ma, Bo-Lun; Chao, Chih-Yu

    2018-01-01

    Static magnetic field (SMF) has shown some possibilities for cancer therapies. In particular, the combinational effect between SMF and anti-cancer drugs has drawn scientists' attentions in recent years. However, the underlying mechanism for the drug-specific synergistic effect is far from being understood. Besides, the drugs used are all conventional chemotherapy drugs, which may cause unpleasant side effects. In this study, our results demonstrate for the first time that SMF could enhance the anti-cancer effect of natural compound, capsaicin, on HepG2 cancer cells through the mitochondria-dependent apoptosis pathway. We found that the synergistic effect could be due to that SMF increased the binding efficiency of capsaicin for the TRPV1 channel. These findings may provide a support to develop an application of SMF for cancer therapy. The present study offers the first trial in combining SMF with natural compound on anti-cancer treatment, which provides additional insight into the interaction between SMF and anti-cancer drugs and opens the door for the development of new strategies in fighting cancer with minimum cytotoxicity and side effects.

  15. Frequency-dependent hopping conductivity in a static electric field in a random one-dimensional lattice

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1986-01-01

    The frequency-dependent electrical conductivity is studied in a nearest-neighbor-hopping linear lattice with disordered site energies and barrier heights in the presence of a uniform static electric field, allowing for detailed balance between random rates. Exact expressions are obtained for the conductivity for both high and low frequencies. The results reduce to those obtained by previous authors in the absence of site-energy disorder. However, the latter is found to alter the character of the frequency dependence of the conductivity significantly at low frequencies. In this case the conductivity is expanded as sigma(ω) = sigma 0 +isigma 1 ω-sigma 2 ω 2 -isigma 3 ω 3 +.... We find that sigma 1 is nonvanishing only if both site energies and barrier heights are disordered and that sigma 2 is positive when the fluctuations in site energies are small compared with the thermal energy but becomes negative in the opposite regime. The ac response is found to vanish [i.e., sigma(ω) = 0 for ωnot =0] in the absence of disorder in barrier heights

  16. Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

    Science.gov (United States)

    Pazur, Alexander; Rassadina, Valentina; Dandler, Jörg; Zoller, Jutta

    2006-01-01

    Background The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. Methods Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. Results The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a

  17. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)

    2017-03-15

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.

  18. Where do students struggle in the field? Computer-aided evaluation of mapping errors from an undergraduate Field Geology summer course

    Science.gov (United States)

    Lang, K. A.; Petrie, G.

    2014-12-01

    Extended field-based summer courses provide an invaluable field experience for undergraduate majors in the geosciences. These courses often utilize the construction of geological maps and structural cross sections as the primary pedagogical tool to teach basic map orientation, rock identification and structural interpretation. However, advances in the usability and ubiquity of Geographic Information Systems in these courses presents new opportunities to evaluate student work. In particular, computer-based quantification of systematic mapping errors elucidates the factors influencing student success in the field. We present a case example from a mapping exercise conducted in a summer Field Geology course at a popular field location near Dillon, Montana. We use a computer algorithm to automatically compare the placement and attribution of unit contacts with spatial variables including topographic slope, aspect, bedding attitude, ground cover and distance from starting location. We compliment analyses with anecdotal and survey data that suggest both physical factors (e.g. steep topographic slope) as well as structural nuance (e.g. low angle bedding) may dominate student frustration, particularly in courses with a high student to instructor ratio. We propose mechanisms to improve student experience by allowing students to practice skills with orientation games and broadening student background with tangential lessons (e.g. on colluvial transport processes). As well, we suggest low-cost ways to decrease the student to instructor ratio by supporting returning undergraduates from previous years or staging mapping over smaller areas. Future applications of this analysis might include a rapid and objective system for evaluation of student maps (including point-data, such as attitude measurements) and quantification of temporal trends in student work as class sizes, pedagogical approaches or environmental variables change. Long-term goals include understanding and

  19. Impact of the Static and Radiofrequency Magnetic Fields Produced by a 7T MR Imager on Metallic Dental Materials.

    Science.gov (United States)

    Oriso, Kenta; Kobayashi, Takuya; Sasaki, Makoto; Uwano, Ikuko; Kihara, Hidemichi; Kondo, Hisatomo

    2016-01-01

    We examined safety issues related to the presence of various metallic dental materials in magnetic resonance (MR) imaging at 7 tesla. A 7T MR imaging scanner was used to examine 18 kinds of materials, including 8 metals used in dental restorations, 6 osseointegrated dental implants, 2 abutments for dental implants, and 2 magnetic attachment keepers. We assessed translational attraction forces between the static magnetic field and materials via deflection angles read on a tailor-made instrument and compared with those at 3T. Heating effects from radiofrequency during image acquisitions using 6 different sequences were examined by measuring associated temperature changes in agarose-gel phantoms with a fiber-optic thermometer. Deflection angles of the metallic dental materials were significantly larger at 7T than 3T. Among full metal crowns (FMCs), deflection angles were 18.0° for cobalt-chromium (Co-Cr) alloys, 13.5° for nickel-chromium (Ni-Cr) alloys, and 0° for other materials. Deflection angles of the dental implants and abutments were minimal, ranging from 5.0 to 6.5°, whereas the magnetic attachment keepers were strongly attracted to the field, having deflection angles of 90° or more. Increases in temperature of the FMCs were significant but less than 1°C in every sequence. The dental implant of 50-mm length showed significant but mild temperature increases (up to 1.5°C) when compared with other dental implants and abutments, particularly on sequences with high specific absorption rate values. Although most metallic dental materials showed no apparent translational attraction or heating at 7T, substantial attraction forces on the magnetic attachment keepers suggested potential risks to patients and research participants undergoing MR imaging examinations.

  20. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Static Magnetic Fields

    Science.gov (United States)

    Jauss, T.; SorgenFrei, T.; Croell, A.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    In the photovoltaics industry, the largest market share is represented by solar cells made from multicrystalline silicon, which is grown by directional solidification. During the growth process, the silicon melt is in contact with the silicon nitride coated crucible walls and the furnace atmosphere which contains carbon monoxide. The dissolution of the crucible coating, the carbon bearing gas, and the carbon already present in the feedstock, lead to the precipitation of silicon carbide, and silicon nitride, at later stages of the growth process. The precipitation of Si3N4 and SiC particles of up to several hundred micrometers in diameter leads to severe problems during the wire sawing process for wafering the ingots. Furthermore the growth of the silicon grains can be negatively influenced by the presence of particles, which act as nucleation sources and lead to a grit structure of small grains and are sources for dislocations. If doped with Nitrogen from the dissolved crucible coating, SiC is a semi conductive material, and can act as a shunt, short circuiting parts of the solar cell. For these reasons, the incorporation of such particles needs to be avoided. In this contribution we performed model experiments in which the transport of intentionally added SiC particles and their interaction with the solid-liquid interface during float zone growth of silicon in strong steady magnetic fields was investigated. SiC particles of 7µm and 60µm size are placed in single crystal silicon [100] and [111] rods of 8mm diameter. This is achieved by drilling a hole of 2mm diameter, filling in the particles and closing the hole by melting the surface of the rod until a film of silicon covers the hole. The samples are processed under a vacuum of 1x10(exp -5) mbar or better, to prevent gas inclusions. An oxide layer to suppress Marangoni convection is applied by wet oxidation. Experiments without and with static magnetic field are carried out to investigate the influence of melt

  1. Methods for Retention of Undergraduate Students in Field-Based Research

    Science.gov (United States)

    Lehnen, J. N.

    2017-12-01

    Undergraduate students often participate in research by following the vision, creativity, and procedures established by their principal investigators. Students at the undergraduate level rarely get a chance to direct the course of their own research and have little experience creatively solving advanced problems and establishing project objectives. This lack of independence and ingenuity results in students missing out on some of the most key aspects of research. For the last two years, the Undergraduate Student Instrument Project (USIP) at the University of Houston has encouraged students to become more independent scientists by completing a research project from start to finish with minimal reliance on faculty mentors. As part of USIP, students were responsible for proposing scientific questions about the upper stratosphere, designing instruments to answer those questions, and launching their experiments into the atmosphere of Fairbanks, Alaska. Everything from formulation of experiment ideas to actual launching of the balloon borne payloads was planned by and performed by students; members of the team even established a student leadership system, handled monetary responsibilities, and coordinated with NASA representatives to complete design review requirements. This session will discuss the pros and cons of student-led research by drawing on USIP as an example, focusing specifically on how the experience impacted student engagement and retention in the program. This session will also discuss how to encourage students to disseminate their knowledge through conferences, collaborations, and educational outreach initiatives by again using USIP students as an example.

  2. Attitude and knowledge of isolation in operative field among undergraduate dental students.

    Science.gov (United States)

    Al-Sabri, Fuad Abdo; Elmarakby, Ahmed Mohamed; Hassan, Ahmed Mohammed

    2017-01-01

    The purpose of this study was to evaluate the general attitude of undergraduate dental students toward rubber dam use, specifically focusing on operative procedures before starting to serve community. Questionnaires were distributed to undergraduate clinical years' students of two private colleges; Al-Farabi Dental College, Riyadh, KSA and Buraidah Private Colleges, Qassim, KSA. Questions were asked about areas where the students used rubber dam in operative procedures, in which types of caries classes, and in which type of restoration they frequently used the rubber dam. We found that students of both private dental colleges agreed with the opinions that proper isolation cannot be achieved for the restoration of operative procedures without using rubber dam and restoration placed under rubber dam have a greater longevity than those placed without. Within the limitations of the present study, it can be concluded that the perceptions of dental students on rubber dam need to be improved and strategies should be developed so that this valuable adjunct will comprise one of the indispensable elements of dental care.

  3. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  4. Effect of Low-Density Static Magnetic Field on the Oxidation of Ammonium by Nitrosomonas europaea and by Activated Sludge in Municipal Wastewater

    Science.gov (United States)

    Filipič, Jasmina; Kraigher, Barbara; Tepuš, Brigita; Kokol, Vanja

    2015-01-01

    Summary Ammonium removal is a key step in biological wastewater treatment and novel approaches that improve this process are in great demand. The aim of this study is to test the hypothesis that ammonium removal from wastewater can be stimulated by static magnetic fields. This was achieved by analysis of the effects of static magnetic field (SMF) on the growth and activity of Nitrosomonas europaea, a key ammonia-oxidising bacterium, where increased growth and increased ammonia oxidation rate were detected when bacteria were exposed to SMF at 17 mT. Additionally, the effect of SMF on mixed cultures of ammonia oxidisers in activated sludge, incubated in sequencing batch bioreactors simulating wastewater treatment process, was assessed. SMFs of 30 and 50 mT, but not of 10 mT, increased ammonium oxidation rate in municipal wastewater by up to 77% and stimulated ammonia oxidiser growth. The results demonstrate the potential for use of static magnetic fields in increasing ammonium removal rates in biological wastewater treatment plants. PMID:27904349

  5. Commissioning of the tongue-and-groove modelling in treatment planning systems: from static fields to VMAT treatments

    Science.gov (United States)

    Hernandez, Victor; Vera-Sánchez, Juan Antonio; Vieillevigne, Laure; Saez, Jordi

    2017-08-01

    Adequate modelling of the multi-leaf collimator (MLC) by treatment planning systems (TPS) is essential for accurate dose calculations in intensity-modulated radiation-therapy. For this reason modern TPSs incorporate MLC characteristics such as the leaf end curvature, MLC transmission and the tongue-and-groove. However, the modelling of the tongue-and-groove is often neglected during TPS commissioning and it is not known how accurate it is. This study evaluates the dosimetric consequences of the tongue-and-groove effect for two different MLC models using both film dosimetry and ionisation chambers. A set of comprehensive tests are presented that evaluate the ability of TPSs to accurately model this effect in (a) static fields, (b) sliding window beams and (c) VMAT arcs. The tests proposed are useful for the commissioning of TPSs and for the validation of major upgrades. With the ECLIPSE TPS, relevant differences were found between calculations and measurements for beams with dynamic MLCs in the presence of the TG effect, especially for the High Definition MLC, small gap sizes and the 1 mm calculation grid. For this combination, dose differences as high as 10% and 7% were obtained for dynamic MLC gaps of 5 mm and 10 mm, respectively. These differences indicate inadequate modelling of the tongue-and-groove effect, which might not be identified without the proposed tests. In particular, the TPS tended to underestimate the calculated dose, which may require tuning of other configuration parameters in the TPS (such as the dosimetric leaf gap) in order to maximise the agreement between calculations and measurements in clinical plans. In conclusion, a need for better modelling of the MLC by TPSs is demonstrated, one of the relevant aspects being the tongue-and-groove effect. This would improve the accuracy of TPS calculations, especially for plans using small MLC gaps, such as plans with small target volumes or high complexities. Improved modelling of the MLC would

  6. A method to derive corpuscular-optics identities as a consequence of the static character of fields

    International Nuclear Information System (INIS)

    Matyshev, A.A.

    2006-01-01

    A method to derive identities in static corpuscular optics is described. The essence of the method involves consideration of the particle start time as a parameter. As an example, 12 identities have been derived for a single electrostatic lens in the asymptotic case

  7. Pain-inhibiting inhomogeneous static magnetic field fails to influence locomotor activity and anxiety behavior in mice: no interference between magnetic field- and morphine-treatment.

    Science.gov (United States)

    László, János; Tímár, Júlia; Gyarmati, Zsuzsanna; Fürst, Zsuzsanna; Gyires, Klára

    2009-06-30

    We wanted to demonstrate (i) in the writhing test in mice, whether there was a prolonged analgesic effect induced by an inhomogeneous static magnetic field (SMF) exposure; (ii) whether SMF had an effect on the analgesic effect induced by 0.5mg/kgs.c. administered morphine, on the behavioral patterns, and on the hyperlocomotion-inducing effect of morphine. A magnetic exposure system developed by the present authors was used with peak-to-peak flux densities in the 2-754mT range. The writhing test was used for the assessment of pain. An elevated plus maze and a Conducta System was used for studying the anxiogenic or anxyolitic effect in mice, and the locomotor activity, respectively. We looked for the difference in the number of writhings and in the behavioral patterns between treated (s.c. morphine and/or SMF exposure) and control animals, respectively. (i) The antinociceptive effect could be identified 10-30min following SMF exposition in the writhing test in mice. (ii) SMF failed to affect the morphine-induced antinociception, the behavioral patterns in either type of tests, and the hyperlocomotion-inducing effect of morphine. (i) The long-lasting antinociceptive effect of SMF allows experiments under conditions, when in situ application of the SMF-producing device would be technically difficult or impossible; or where it would disturb the experiments. (ii) The results of behavioral tests with freely moving mice in or in the vicinity of inhomogeneous SMFs are not affected by the SMF in the applied flux density range. (iii) Morphine in treated subjects is not interacting with the inhomogeneous SMFs in the applied flux density range.

  8. Design and operation of an inexpensive far-field laser scanning microscope suitable for use in an undergraduate laboratory course

    Science.gov (United States)

    Pallone, Arthur; Hawk, Eric

    2013-03-01

    Scanning microscope applications span the science disciplines yet their costs limit their use at educational institutions. The basic concepts of scanning microscopy are simple. The microscope probe - whether it produces a photon, electron or ion beam - moves relative to the surface of the sample object. The beam interacts with the sample to produce a detected signal that depends on the desired property to be measured at the probe location on the sample. The microscope transforms the signal for output in a form desired by the user. Undergraduate students can easily construct a far-field laser scanning microscope that illustrates each of these principles from parts available at local electronics and hardware stores and use the microscope to explore properties of devices such as light dependent resistors and biological samples such as leaves. Students can record, analyze and interpret results using a computer and free software.

  9. Performance of first-year undergraduate students attending exact sciences courses in problems of the additive conceptual field

    Directory of Open Access Journals (Sweden)

    Lilian Akemi Kato

    2015-10-01

    Full Text Available This paper, which is part of a research based on the theoretical framework of the Theory of Conceptual Fields, investigated the performance of first-year undergraduate students attending Exact Sciences courses at the State University of Maringá, Brazil, with regard to the solution of problems in the additive conceptual field. Results obtained by these students evidenced some types of reasoning involved in additive structure that stand as an obstacle to the learning of Mathematics and may interfere with their future studies. Among the three classes that constitute the additive conceptual field proposed by Gérard Vergnaud, transformation problems had the highest rate of unsatisfactory results. However, errors committed by the students were detected in all problems of the diagnostic test. These results underscore the need for a broader discussion in academic environments that takes into account the difficulties in the test with regard to reasoning involving additive structure so that changes in the curricular structures of Exact Sciences courses may be fostered.

  10. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms

    Science.gov (United States)

    Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans

    2014-01-01

    Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654

  11. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    Science.gov (United States)

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap

  12. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field.

    Science.gov (United States)

    Kang, Nan; Yuan, Hao; Coddet, Pierre; Ren, Zhongming; Bernage, Charles; Liao, Hanlin; Coddet, Christian

    2017-01-01

    Tensile strength and ductility of Selective Laser Melting (SLM) processed commercially pure Ti (CP-Ti) were simultaneous enhanced by preforming the melting/solidification processes under Static Magnetic Field (SMF). The effects of SMF on microstructure and tensile properties were examined. The SMF-SLMed CP-Ti sample presents a microstructure of fine acicular martensitic α'-Ti and lath-shaped α-Ti. Meanwhile, the texture structure of SLMed CP-Ti was eliminated after adding a SMF. The SMF-SLM process offers new avenues to ameliorate the microstructure and improve the mechanical properties of SLMed sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  14. The Selection of Quantitative Undergraduate Fields of Study: Direct and Indirect Influences.

    Science.gov (United States)

    Ethington, Corinna A.; Wolfle, Lee M.

    In order to increase women's representation among quantitative degrees, Berryman (1985) suggested two strategies: (1) increase women's share of the initial mathematical/scientific pool; or (2) reduce attrition from the pool. However, current research indicates that the decision to enter a quantitative field of study for women is the result of a…

  15. SU-F-T-645: To Test Spatial Anddosimetric Accuracy of Small Cranial Target Irradiation Based On 1.5 T MRIscans Using Static Arcs with MLCDefined Fields

    Energy Technology Data Exchange (ETDEWEB)

    Brezovich, I; Wu, X; Popple, R; Shen, S; Cardan, R; Bolding, M; Fiveash, J; Kraus, J; Spencer, S

    2016-06-15

    Purpose: To test spatial and dosimetric accuracy of small cranial target irradiation based on 1.5 T MRI scans using static arcs with MLC-defined fields Methods: A plastic (PMMA) phantom simulating a small brain lesion was mounted on a GammaKnife headframe equipped with MRI localizer. The lesion was a 3 mm long, 3.175 mm diameter cylindrical cavity filled with MRI contrast. Radiochromic film passing through the cavity was marked with pin pricks at the cavity center. The cavity was contoured on an MRI image and fused with CT to simulate treatment of a lesion not visible on CT. The transfer of the target to CT involved registering the MRI contrast cannels of the localizer that were visible on both modalities. Treatments were planned to deliver 800 cGy to the cavity center using multiple static arcs with 5.0×2.4 mm MLC-defined fields. The phantom was aligned on a STx accelerator by registering the conebeam CT with the planning CT. Films from coronal and sagittal planes were scanned and evaluated using ImageJ software Results: Geographic errors in treatment based on 1.5 T scans agreed within 0.33, −0.27 and 1.21 mm in the vertical, lateral and longitudinal dimensions, respectively. The doses delivered to the cavity center were 7.2% higher than planned. The dose distributions were similar to those of a GammaKnife. Conclusion: Radiation can be delivered with an accelerator at mm accuracy to small cranial targets based on 1.5 MRI scans fused to CTs using a standard GammaKnife headframe and MRI localizer. MLC-defined static arcs produce isodose lines very similar to the GammaKnife.

  16. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  17. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    Science.gov (United States)

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  18. Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field

    DEFF Research Database (Denmark)

    Marquetand, P.; Materny, A.; Henriksen, Niels Engholm

    2004-01-01

    We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...... dynamics causes a situation which is comparable to the interaction of the molecule with a train of pulses where the pulse separation is determined by the vibrational period. (C) 2004 American Institute of Physics....

  19. Magnetic field dependence of static correlations and spin dynamics of reentrant spin glasses studied by neutron scattering

    International Nuclear Information System (INIS)

    Hennion, M.; Hennion, B.; Mirebeau, I.; Lequien, S.; Hippert, F.

    1988-01-01

    We report small angle (SANS) and inelastic neutron scattering in zero and applied field for a-FeMn, NiMn and AuFe at composition where both ferromagnetic and frustration characters occur. We discuss the field evolution of the transverse correlations which arise below T c . A study of the field sensitivity of the spin wave anomalies in a-FeMn is reported

  20. Astrophysically Satisfactory Solutions to Einstein's R-33 Gravitational Field Equations Exterior/Interior to Static Homogeneous Oblate Spheroidal Masses

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-10-01

    Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.

  1. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    Science.gov (United States)

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  2. Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production.

    Science.gov (United States)

    Bekhite, Mohamed M; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2013-08-10

    To investigate the effects of static magnetic fields (MFs) on cardiomyogenesis of mouse embryonic stem (ES) cell-derived embryoid bodies and Flk-1(+) cardiac progenitor cells and to assess the impact of cytosolic calcium [Ca(2+)]c and reactive oxygen species (ROS). Embryoid bodies and ES cell-derived Flk-1(+) cardiovascular progenitor cells were exposed to static MFs. The expression of cardiac genes was evaluated by RT-PCR; sarcomeric structures were assessed by immunohistochemistry; intracellular ROS and [Ca(2+)]c of ES cells were examined by H2DCF-DA- and fluo-4-based microfluorometry. Treatment of embryoid bodies with MFs dose-dependent increased the number of contracting foci and cardiac areas as well as mRNA expression of the cardiac genes MLC2a, MLC2v, α-MHC and β-MHC. In Flk-1(+) cells MFs (1 mT) elevated both [Ca(2+)]c and ROS, increased expression of the cardiogenic transcription factors Nkx-2.5 and GATA-4 as well as cardiac genes. This effect was due to Ca(2+) influx, since extracellular Ca(2+) chelation abrogated ROS production and MF-induced cardiomyogenesis. Furthermore absence of extracellular calcium impaired sarcomere structures. Neither the phospholipase C inhibitor U73122 nor thapsigargin inhibited MF-induced increase in [Ca(2+)]c excluding involvement of intracellular calcium stores. ROS were generated through NAD(P)H oxidase, since NOX-4 but not NOX-1 and NOX-2 mRNA was upregulated upon MF exposure. Ablation of NOX-4 by sh-RNA and treatment with the NAD(P)H oxidase inhibitor diphenylen iodonium (DPI) totally abolished MF-induced cardiomyogenesis. The ability of static MFs to enhance cardiomyocyte differentiation of ES cells allows high throughput generation of cardiomyocytes without pharmacological or genetic modification. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M.

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education. PMID:26594328

  4. Tweets from the forest: using Twitter to increase student engagement in an undergraduate field biology course.

    Science.gov (United States)

    Soluk, Lauren; Buddle, Christopher M

    2015-01-01

    Twitter is a cold medium that allows users to deliver content-rich but small packets of information to other users, and provides an opportunity for active and collaborative communication. In an education setting, this social media tool has potential to increase active learning opportunities, and increase student engagement with course content. The effects of Twitter on learning dynamics was tested in a field biology course offered by a large Canadian University: 29 students agreed to take part in the Twitter project and quantitative and qualitative data were collected, including survey data from 18 students. Students published 200% more public Tweets than what was required, and interacted frequently with the instructor and teaching assistant, their peers, and users external to the course. Almost 80% of students stated that Twitter increased opportunities for among-group communication, and 94% of students felt this kind of collaborative communication was beneficial to their learning. Although students did not think they would use Twitter after the course was over, 77% of the students still felt it was a good learning tool, and 67% of students felt Twitter had a positive impact on how they engaged with course content. These results suggest social media tools such as Twitter can help achieve active and collaborative learning in higher education.

  5. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    Science.gov (United States)

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  6. X-ray diffraction study of KTP (KTiOPO4) crystals under a static electric field

    International Nuclear Information System (INIS)

    Sebastian, M.T.; Klapper, H.; Bolt, R.J.

    1992-01-01

    X-ray diffraction studies are made on ion-conducting potassium titanyl phosphate (KTP) crystals with in situ DC electric field along different crystallographic directions. The X-ray rocking curves recorded with an electric field along the polar b axis (which is the direction of ion conduction) show a strong enhancement of the 040 reflection intensity (reflecting planes normal to the b axis) whereas the h0l reflections (reflecting planes parallel to the polar axis) do not show any intensity change. For an electric field normal to the polar axis no intensity change, either in 040 or in h0l reflections occurs. This observation is supplemented by X-ray topography. The 040 X-ray topographs recorded with in situ electric field along b exhibit strong extinction contrast in the form of striations parallel to the polar (ion-conduction) axis. The 040 intensity increase and the striation contrast are attributed to lattice deformation by the space-charge polarization due to the movement of the K + ions under the influence of the electric field. (orig.)

  7. Strong static magnetic fields of NMR: Do they affect tissue perfusion. Beeinflussen starke statische Magnetfelder in der NMR-Tomographie die Gewebedurchblutung

    Energy Technology Data Exchange (ETDEWEB)

    Stick, C.; Hinkelmann, K. (Kiel Univ. (Germany, F.R.). Inst. fuer Angewandte Physiologie und Medizinische Klimatologie); Eggert, P. (Kiel Univ. (Germany, F.R.). Abt. Allgemeine Paediatrie); Wendhausen, H. (Kiel Univ. (Germany, F.R.). Abt. Radiologie)

    1991-03-01

    Findings obtained in humans and test animals raised the question whether strong static magnetic fields as used in NMR-tomography may affect tissue perfusion. In two test series including 20 subjects, each skin blood flow at the thumb was determined by heat clearance, and forearm blood flow was measured by venous occlusion plethysmography. For comparative purposes, measurements were carried out bilaterally at both extremities. The experiments consisted of three sections that lasted 10 min each. During the second section the thumb or the forearm were unilaterally exposed to magnetic fields of 0,9 to 1 T and 0.4 to 0.5 T, respectively. The results of this section were compared with the values obtained during the experimental sections prior to and after the exposure to the magnetic field. The results were also compared with the blood flow measured at the contralateral extremity. Neither at the skin of the thumb nor at the forearm were there changes in local blood flow attributable to the magnetic fields applied. (orig.).

  8. Chronic Exposure to Static Magnetic Fields from Magnetic Resonance Imaging Devices Deserves Screening for Osteoporosis and Vitamin D Levels: A Rat Model

    Science.gov (United States)

    Gungor, Harun R.; Akkaya, Semih; Ok, Nusret; Yorukoglu, Aygun; Yorukoglu, Cagdas; Kiter, Esat; Oguz, Emin O.; Keskin, Nazan; Mete, Gulcin A.

    2015-01-01

    Technicians often receive chronic magnetic exposures from magnetic resonance imaging (MRI) devices, mainly due to static magnetic fields (SMFs). Here, we ascertain the biological effects of chronic exposure to SMFs from MRI devices on the bone quality using rats exposed to SMFs in MRI examining rooms. Eighteen Wistar albino male rats were randomly assigned to SMF exposure (A), sham (B), and control (C) groups. Group A rats were positioned within 50 centimeters of the bore of the magnet of 1.5 T MRI machine during the nighttime for 8 weeks. We collected blood samples for biochemical analysis, and bone tissue samples for electron microscopic and histological analysis. The mean vitamin D level in Group A was lower than in the other groups (p = 0.002). The mean cortical thickness, the mean trabecular wall thickness, and number of trabeculae per 1 mm2 were significantly lower in Group A (p = 0.003). TUNEL assay revealed that apoptosis of osteocytes were significantly greater in Group A than the other groups (p = 0.005). The effect of SMFs in chronic exposure is related to movement within the magnetic field that induces low-frequency fields within the tissues. These fields can exceed the exposure limits necessary to deteriorate bone microstructure and vitamin D metabolism. PMID:26264009

  9. Chronic Exposure to Static Magnetic Fields from Magnetic Resonance Imaging Devices Deserves Screening for Osteoporosis and Vitamin D Levels: A Rat Model

    Directory of Open Access Journals (Sweden)

    Harun R. Gungor

    2015-07-01

    Full Text Available Technicians often receive chronic magnetic exposures from magnetic resonance imaging (MRI devices, mainly due to static magnetic fields (SMFs. Here, we ascertain the biological effects of chronic exposure to SMFs from MRI devices on the bone quality using rats exposed to SMFs in MRI examining rooms. Eighteen Wistar albino male rats were randomly assigned to SMF exposure (A, sham (B, and control (C groups. Group A rats were positioned within 50 centimeters of the bore of the magnet of 1.5 T MRI machine during the nighttime for 8 weeks. We collected blood samples for biochemical analysis, and bone tissue samples for electron microscopic and histological analysis. The mean vitamin D level in Group A was lower than in the other groups (p = 0.002. The mean cortical thickness, the mean trabecular wall thickness, and number of trabeculae per 1 mm2 were significantly lower in Group A (p = 0.003. TUNEL assay revealed that apoptosis of osteocytes were significantly greater in Group A than the other groups (p = 0.005. The effect of SMFs in chronic exposure is related to movement within the magnetic field that induces low-frequency fields within the tissues. These fields can exceed the exposure limits necessary to deteriorate bone microstructure and vitamin D metabolism.

  10. Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field.

    Science.gov (United States)

    Cason, Angie M; Kwon, Bumsup; Smith, James C; Houpt, Thomas A

    2009-04-20

    Vertigo is a commonly-reported side effect of exposure to the high magnetic fields found in magnetic resonance imaging machines. Although it has been hypothesized that high magnetic fields interact with the vestibular apparatus of the inner ear, there has been no direct evidence establishing its role in magnet-induced vertigo. Our laboratory has shown that following exposure to high magnetic fields, rats walk in circles, acquire a conditioned taste aversion (CTA), and express c-Fos in vestibular and visceral relays of the brainstem, consistent with vestibular stimulation and vertigo or motion sickness. To determine if the inner ear is required for these effects, rats were chemically labyrinthectomized with sodium arsanilate and tested for locomotor circling, CTA acquisition, and c-Fos induction after exposure within a 14.1 T magnet. Intact rats circled counterclockwise after 30-min exposure to 14.1 T, but labyrinthectomized rats showed no increase in circling after magnetic field exposure. After 3 pairings of 0.125% saccharin with 30-min exposure at 14.1 T, intact rats acquired a profound CTA that persisted for 14 days of extinction testing; labyrinthectomized rats, however, did not acquire a CTA and showed a high preference for saccharin similar to sham-exposed rats. Finally, significant c-Fos was induced in the brainstem of intact rats by 30-min exposure to 14.1 T, but magnetic field exposure did not elevate c-Fos in labyrinthectomized rats above sham-exposed levels. These results demonstrate that an intact inner ear is necessary for all the observed effects of exposure to high magnetic fields in rats.

  11. The influence of a static magnetic field on the behavior of a quantum mechanical model of matter

    Czech Academy of Sciences Publication Activity Database

    Vlachová Hutová, E.; Bartušek, Karel; Dohnal, P.; Fiala, P.

    2017-01-01

    Roč. 96, JAN (2017), s. 18-23 ISSN 0263-2241 R&D Projects: GA ČR GA13-09086S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : magnetic field * external magnetic field * Maxwell equations * biological sample Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.359, year: 2016

  12. Method for the removal of smut, fine dust and exhaust gas particles, particle catch arrangement for use in this method and use of the particle catch arrangement to generate a static electric field

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.; Roos, R.A.

    2007-01-01

    This inventions provides a method for the removal of smut, fine dust and exhaust gas particles from polluted air comprising providing a particle catch arrangement with a charged surface, the particle catch arrangement being arranged to generate a static electric field, wherein the electric field is

  13. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Control of Non-Axisymmetric Fields With Static and Dynamic Boundary Conditions

    Science.gov (United States)

    Paz-Soldan, C.

    2013-10-01

    Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.

  14. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure

    International Nuclear Information System (INIS)

    Proliferation and differentiation of bone-related cells are modulated by many factors such as scaffold design, growth factor, dynamic culture system, and physical simulation. Nanofibrous structure and moderate-intensity (1 mT–1 T) static magnetic field (SMF) have been identified as capable of stimulating proliferation and differentiation of osteoblasts. Herein, magnetic nanofibers were prepared by electrospinning mixture solutions of poly(L-lactide) (PLLA) and ferromagnetic Fe 3 O 4 nanoparticles (NPs). The PLLA/Fe 3 O 4 composite nanofibers demonstrated homogeneous dispersion of Fe 3 O 4 NPs, and their magnetism depended on the contents of Fe 3 O 4 NPs. SMF of 100 mT was applied in the culture of MC3T3-E1 osteoblasts on pure PLLA and PLLA/Fe 3 O 4 composite nanofibers for the purpose of studying the effect of SMF on osteogenic differentiation of osteoblastic cells on magnetic nanofibrous scaffolds. On non-magnetic PLLA nanofibers, the application of external SMF could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells. In comparison with pure PLLA nanofibers, the incorporation of Fe 3 O 4 NPs could also promote the proliferation and osteogenic differentiation of MC3T3-E1 cells in the absence or presence of external SMF. The marriage of magnetic nanofibers and external SMF was found most effective in accelerating every aspect of biological behaviors of MC3T3-E1 osteoblasts. The findings demonstrated that the magnetic feature of substrate and microenvironment were applicable ways in regulating osteogenesis in bone tissue engineering. - Highlights: • Magnetic nanofibers containing well-dispersed Fe 3 O 4 nanoparticles were produced. • Static magnetic field (SMF) was applied to perform the culture of osteoblasts. • Osteogenic differentiation was enhanced on magnetic substrate with exposure to SMF

  15. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313 001 (India); Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2014-09-01

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.

  16. Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

    OpenAIRE

    Pazur, Alexander; Rassadina, Valentina; Dandler, Jörg; Zoller, Jutta

    2006-01-01

    Background The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in...

  17. Static quadrupolar susceptibility for a Blume–Emery–Griffiths model based on the mean-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, A., E-mail: pawlak@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań (Poland); Gülpınar, G. [Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Erdem, R. [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Ağartıoğlu, M. [Institute of Science, Dokuz Eylül University, 35160 İzmir (Turkey)

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume–Emery–Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic–paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like. - Highlights: • MFA calculation of the quadrupolar and dipolar susceptibility in BEG model is given • The crystal-field variation of susceptibilities near the multi-critical points is examined • There are broad peaks in the quadrupolar susceptibility in the vicinity of CP • These maxima are remembrances of the very strong quadrupolar Fluctuations.

  18. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices.

    Science.gov (United States)

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-10-04

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3. Amplitudes of the N33 component of SEPs at C3' significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2-3 cm (rough depth of the cortex), magnetic field strength was in the range of 110-190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.

  19. Comments on gravitoelectromagnetism of Ummarino and Gallerati in "Superconductor in a weak static gravitational field" vs other versions

    Science.gov (United States)

    Behera, Harihar

    2017-12-01

    Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.

  20. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  1. In the Field: Increasing Undergraduate Students' Awareness of Extension through a Blended Project-Based Multimedia Production Course

    Science.gov (United States)

    Loizzo, Jamie; Lillard, Patrick

    2015-01-01

    Undergraduate students at land-grant institutions across the country are often unaware of the depth and breadth of Extension services and careers. Agricultural communication students collaborated with an Extension programmatic team in a blended and project-based course at Purdue University to develop online videos about small farm agricultural…

  2. New magnetic-field-based weighted-residual quasi-static finite element scheme for modeling bulk magnetostriction

    Science.gov (United States)

    Kannan, Kidambi S.; Dasgupta, Abhijit

    1998-04-01

    Deformation control of smart structures and damage detection in smart composites by magneto-mechanical tagging are just a few of the increasing number of applications of polydomain, polycrystalline magnetostrictive materials that are currently being researched. Robust computational models of bulk magnetostriction will be of great assistance to designers of smart structures for optimization of performance and development of control strategies. This paper discusses the limitations of existing tools, and reports on the work of the authors in developing a 3D nonlinear continuum finite element scheme for magnetostrictive structures, based on an appropriate Galerkin variational principle and incremental constitutive relations. The unique problems posed by the form of the equations governing magneto-mechanical interactions as well as their impact on the proper choice of variational and finite element discretization schemes are discussed. An adaptation of vectorial edge functions for interpolation of magnetic field in hexahedral elements is outlined. The differences between the proposed finite element scheme and available formations are also discussed in this paper. Computational results obtained from the newly proposed scheme will be presented in a future paper.

  3. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    Science.gov (United States)

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains.

    Science.gov (United States)

    Mihoub, Mouadh; El May, Alya; Aloui, Amine; Chatti, Abdelwaheb; Landoulsi, Ahmed

    2012-07-02

    This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (pdam mutant was significantly affected (pdam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (pdam mutants to maintain an optimum level of membrane fluidity under SMF. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration.

    Science.gov (United States)

    Vergallo, Cristian; Ahmadi, Meysam; Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200-500 mT), Open field (300-700 mT) and/or inhomogeneous High field (1.5-3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7-232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.

  6. Dose-volume histogram comparison between static 5-field IMRT with 18-MV X-rays and helical tomotherapy with 6-MV X-rays.

    Science.gov (United States)

    Hayashi, Akihiro; Shibamoto, Yuta; Hattori, Yukiko; Tamura, Takeshi; Iwabuchi, Michio; Otsuka, Shinya; Sugie, Chikao; Yanagi, Takeshi

    2015-03-01

    We treated prostate cancer patients with static 5-field intensity-modulated radiation therapy (IMRT) using linac 18-MV X-rays or tomotherapy with 6-MV X-rays. As X-ray energies differ, we hypothesized that 18-MV photon IMRT may be better for large patients and tomotherapy may be more suitable for small patients. Thus, we compared dose-volume parameters for the planning target volume (PTV) and organs at risk (OARs) in 59 patients with T1-3 N0M0 prostate cancer who had been treated using 5-field IMRT. For these same patients, tomotherapy plans were also prepared for comparison. In addition, plans of 18 patients who were actually treated with tomotherapy were analyzed. The evaluated parameters were homogeneity indicies and a conformity index for the PTVs, and D2 (dose received by 2% of the PTV in Gy), D98, Dmean and V10-70 Gy (%) for OARs. To evaluate differences by body size, patients with a known body mass index were grouped by that index ( 25 kg/m(2)). For the PTV, all parameters were higher in the tomotherapy plans compared with the 5-field IMRT plans. For the rectum, V10 Gy and V60 Gy were higher, whereas V20 Gy and V30 Gy were lower in the tomotherapy plans. For the bladder, all parameters were higher in the tomotherapy plans. However, both plans were considered clinically acceptable. Similar trends were observed in 18 patients treated with tomotherapy. Obvious trends were not observed for body size. Tomotherapy provides equivalent dose distributions for PTVs and OARs compared with 18-MV 5-field IMRT. Tomotherapy could be used as a substitute for high-energy photon IMRT for prostate cancer regardless of body size. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  8. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe{sub 3}O{sub 4} nanofibers with static magnetic field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qing [State Key Laboratory of Organic–inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Shi, Yuzhou; Shan, Dingying; Jia, Wenkai; Duan, Shun [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Deng, Xuliang [Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Yang, Xiaoping, E-mail: yangxp@mail.buct.edu.cn [State Key Laboratory of Organic–inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-10-01

    Proliferation and differentiation of bone-related cells are modulated by many factors such as scaffold design, growth factor, dynamic culture system, and physical simulation. Nanofibrous structure and moderate-intensity (1 mT–1 T) static magnetic field (SMF) have been identified as capable of stimulating proliferation and differentiation of osteoblasts. Herein, magnetic nanofibers were prepared by electrospinning mixture solutions of poly(L-lactide) (PLLA) and ferromagnetic Fe{sub 3}O{sub 4} nanoparticles (NPs). The PLLA/Fe{sub 3}O{sub 4} composite nanofibers demonstrated homogeneous dispersion of Fe{sub 3}O{sub 4} NPs, and their magnetism depended on the contents of Fe{sub 3}O{sub 4} NPs. SMF of 100 mT was applied in the culture of MC3T3-E1 osteoblasts on pure PLLA and PLLA/Fe{sub 3}O{sub 4} composite nanofibers for the purpose of studying the effect of SMF on osteogenic differentiation of osteoblastic cells on magnetic nanofibrous scaffolds. On non-magnetic PLLA nanofibers, the application of external SMF could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells. In comparison with pure PLLA nanofibers, the incorporation of Fe{sub 3}O{sub 4} NPs could also promote the proliferation and osteogenic differentiation of MC3T3-E1 cells in the absence or presence of external SMF. The marriage of magnetic nanofibers and external SMF was found most effective in accelerating every aspect of biological behaviors of MC3T3-E1 osteoblasts. The findings demonstrated that the magnetic feature of substrate and microenvironment were applicable ways in regulating osteogenesis in bone tissue engineering. - Highlights: • Magnetic nanofibers containing well-dispersed Fe{sub 3}O{sub 4} nanoparticles were produced. • Static magnetic field (SMF) was applied to perform the culture of osteoblasts. • Osteogenic differentiation was enhanced on magnetic substrate with exposure to SMF.

  9. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    Science.gov (United States)

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  10. O2 nightglow snapshots of the 1.27 μm emission at low latitudes on Mars with a static field-widened Michelson interferometer

    Science.gov (United States)

    Zhang, Rui; Ward, William E.; Zhang, Chunmin

    2017-12-01

    A static field-widened Michelson interferometer is designed to observe the atmospheric dynamics at low latitudes of Mars, targeting the 1.27 μm O2(a1Δg) nightglow, which has not yet been accurately detected due to its low intensity. To the best of our knowledge, this design is the first demonstration of implementing divided-mirror technique by refringent materials in a field-widened Michelson interferometer. Different optical path difference (OPD) in each quadrant is generated by four highly reflective pyramid-shaped prisms made of different refringent materials attached to each solid arm of Michelson interferometer. In this way four samples of interferogram are obtained simultaneously, from which the airglow volume emission rate, as well as the line-of-sight velocity and temperature of the air parcel where the emission forms can be derived in a single integration time. To achieve the best field-widening, compactness and thermal compensation, all possible combination of ten pieces of glasses were searched within the Sumita glass catalogue using a computer program and some interesting results are listed. The OPD used in this calculation concerns rays in the plane perpendicular to the sides of the prism only, other cases need further examination. This instrument's performance in measuring atmospheric dynamics is analysed, using the wind velocity uncertainty as primary criterion. Calculations show that it can measure the wind with an accuracy better than 2 m/s if the band volume emission rate of O2 nightglow is greater than 5 kph cm-3 s-1.

  11. Design and development of physics simulations in the field of oscillations and waves suitable for k-12 and undergraduate instruction using video game technology

    Science.gov (United States)

    Tomesh, Trevor; Price, Colin

    2011-03-01

    Using the scripting language for the Unreal Tournament 2004 Engine, Unreal Script, demonstrations in the field of oscillations and waves were designed and developed. Variations on Euler's method and the Runge-Kutta method were used to numerically solve the equations of motion for seven different physical systems which were visually represented in the immersive environment of Unreal Tournament 2004. Data from each system was written to an output file, plotted and analyzed. The over-arching goal of this research is to successfully design and develop useful teaching tools for the k-12 and undergraduate classroom which, presented in the form of a video game, is immersive, engaging and educational.

  12. Exposure of Postnatal Rats to a Static Magnetic Field of 0.14 T Influences Functional Laterality of the Hippocampal High-Affinity Choline Uptake System in Adulthood; In Vitro Test With Magnetic Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Čermák, M.; Benešová, O.; Klaschka, Jan; Zach, P.

    2005-01-01

    Roč. 30, č. 2 (2005), s. 253-262 ISSN 0364-3190 R&D Projects: GA MZd NF7576 Keywords : magnetic nanoparticles * choline transport * cholinergic * functional impairment * hippocampus * laterality * magnetoreception * static magnetic field Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.187, year: 2005

  13. Effect of static magnetic field on pain level and expression of P2X3 receptors in the trigeminal ganglion in mice following experimental tooth movement.

    Science.gov (United States)

    Zhu, Yafen; Wang, Shengguo; Long, Hu; Zhu, Jingyi; Jian, Fan; Ye, Niansong; Lai, Wenli

    2017-01-01

    Recent research has demonstrated that static magnetic fields (SMF) can generate an analgesic effect in different conditions. The present study explored effects of SMF on pain levels and expressions of P2X3 receptors in trigeminal ganglion (TG) in mice after experimental tooth movement (tooth movement induced by springs between teeth). Experiments were performed in male mice (body mass: 25-30 g) and divided into SMF + force group, force group, and no force group. Exposure time was over 22 h per day. Mouse Grimace Scale was used for evaluating orofacial pain levels during experimental tooth movement at 4 h and 1, 3, 7, and 14 days. Meanwhile, expression levels of P2X3 receptors in the TG were evaluated by immunohistochemistry and western blotting at same time points. We finally found that during experimental tooth movement, pain levels of mice peaked at 3 days, and then decreased. While pain levels of mice were reduced in the SMF environment at 4 h, 1 and 3 days, there was a significant difference at 1 and 3 days. Meanwhile, under the action of SMF, expression levels of P2X3 receptors in TG were significantly lower at 4 h, 3 and 7 days. These results suggest that SMF can reduce pain levels in mice, and down-regulate P2X3 receptors in TG. Bioelectromagnetics. 38:22-30, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Analysis of the effect of locally applied inhomogeneous static magnetic field-exposure on mouse ear edema--a double blind study.

    Directory of Open Access Journals (Sweden)

    Balázs Kiss

    Full Text Available The effect static magnetic field (SMF-exposure may exert on edema development has been investigated. A 6 h long whole-body (WBSMF or local (LSMF, continuous, inhomogeneous SMF-exposure was applied on anesthetized mice in an in vivo model of mustard oil (MO-induced ear edema. LSMF was applied below the treated ear, below the lumbar spine, or below the mandible. Ear thickness (v was checked 8 times during the exposure period (at 0, 0.25, 1, 2, 3, 4, 5, and 6 h. The effect size of the applied treatment (η on ear thickness was calculated by the formula η = 100% × (1-v(j/v(i, where group i is the control group and j is the treated group. Results showed that MO treatment in itself induced a significant ear edema with an effect of 9% (p11% in both cases compared to SMF-exposure alone (p<0.001. In these cases SMF-exposure alone without MO treatment reduced ear thickness significantly (p<0.05, but within estimated experimental error. In cases of LSMF-exposure on the head, a significant SMF-exposure induced ear thickness reduction was found (η = 5%, p<0.05. LSMF-exposure on the spine affected ear thickness with and without MO treatment almost identically, which provides evidence that the place of local SMF action may be in the lower spinal region.

  15. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study

    Science.gov (United States)

    Juhász, Márk; Nagy, Viktor L.; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F.

    2014-01-01

    This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m−1 gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated. PMID:25008086

  16. Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field.

    Science.gov (United States)

    Haghighat, Nazanin; Abdolmaleki, Parviz; Ghanati, Faezeh; Behmanesh, Mehrdad; Payez, Atefeh

    2014-03-01

    The effects of a static magnetic field (SMF) and high natural radioactivity (HR) on catalase and MAPK genes in Vicia faba were investigated. Soil samples with high natural radioactivity were collected from Ramsar in north Iran where the annual radiation absorbed dose from background radiation is higher than 20mSv/year. The specific activity of the radionuclides of (232)Th, (236)Ra, and (40)K was measured using gamma spectrometry. The seeds were planted either in the soil with high natural radioactivity or in the control soils and were then exposed to a SMF of 30mT for 8 days; 8h/day. Levels of expression of catalase and MAPK genes, catalase activity and H2O2 content were evaluated. The results demonstrated significant differences in the expression of catalase and MAPK genes in SMF- and HR-treated plants compared to the controls. An increase in catalase activity was accompanied by increased expression of its gene and accumulation of H2O2. Relative expression of the MAPK gene in treated plants, however, was lower than those of the controls. The results suggest that the response of V. faba plants to SMF and HR may be mediated by modification of catalase and MAPK. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia.

    Science.gov (United States)

    Hernádi, László; László, János F

    2014-07-01

    To study the effect of single, 30-min long, whole-body, homogeneous static magnetic field (SMF)-exposure of magnetic induction 147 ± 3 mT on the response latency of the snail Helix pomatia. The response was investigated using the hot plate test. The effect caused by exposure to SMF was compared to sham-exposure and resulted in significant differences (up to 47.1%, p < 0.001). The response latency depended on the day-night cycle; response latency was higher by 51.2% (p < 0.001) during the night. This trend also held for SMF-exposure (28.6%, p < 0.001). Serotonin alone increased response latency (55.7%, p < 0.001), whereas serotonin antagonist tryptamine decreased it (- 97.8%, p < 0.001). Using naloxone, response latency decreased (- 52.5%, p < 0.001); however both SMF-exposure and serotonin in combination with naloxone rose it back to above the control level (116.9%, p < 0.001 or 150.2%, p < 0.001, respectively). This study provides evidence that SMF-exposure mediates peripheral thermal nociceptive threshold by affecting the serotonerg as well as the opioiderg system.

  18. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study.

    Science.gov (United States)

    Juhász, Márk; Nagy, Viktor L; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F

    2014-09-06

    This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m(-1) gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Recovery Effects of a 180 mT Static Magnetic Field on Bone Mineral Density of Osteoporotic Lumbar Vertebrae in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Shenzhi Xu

    2011-01-01

    Full Text Available The effects of a moderate-intensity static magnetic field (SMF on osteoporosis of the lumbar vertebrae were studied in ovariectomized rats. A small disc magnet (maximum magnetic flux density 180 mT was implanted to the right side of spinous process of the third lumbar vertebra. Female rats in the growth stage (10 weeks old were randomly divided into 4 groups: (i ovariectomized and implanted with a disc magnet (SMF; (ii ovariectomized and implanted with a nonmagnetized disc (sham; (iii ovariectomized alone (OVX and (vi intact, nonoperated cage control (CTL. The blood serum 17--estradiol (E2 concentrations were measured by radioimmunoassay, and the bone mineral density (BMD values of the femurs and the lumbar vertebrae were assessed by dual energy X-ray absorptiometry. The E2 concentrations were statistically significantly lower for all three operated groups than those of the CTL group at the 6th week. Although there was no statistical significant difference in the E2 concentrations between the SMF-exposed and sham-exposed groups, the BMD values of the lumbar vertebrae proximal to the SMF-exposed area statistically significantly increased in the SMF-exposed group than in the sham-exposed group. These results suggest that the SMF increased the BMD values of osteoporotic lumbar vertebrae in the ovariectomized rats.

  20. Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model

    Directory of Open Access Journals (Sweden)

    Min Du

    2012-11-01

    Full Text Available Intra-Body Communication (IBC, which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.

  1. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    Science.gov (United States)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a

  2. On the Casimir effect. Energy density of the free Klein-Gordon-field in front of static classical backgrounds; Zum Casimir-Effekt. Energiedichte des freien Klein-Gordon-Feldes vor statischen klassischen Hintergruenden

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.J.

    2008-01-15

    We study the Casimir energy density of the Klein-Gordon-field in the case of two static geometries. We model the effect by coupling the free quantum field to a static classical scalar field. We work out the dependence on the coupling {lambda}, including the limit {lambda}={infinity} (Dirichlet boundary condition). The chosen geometries are described by a {delta}-funktion ({sigma}(x)={delta}(x{sub 3})) and a step function of finite height ({sigma}(x)= (1)/(2{epsilon})1{sub [{epsilon},{epsilon}]}(x{sub 3})), respectively. In the area outside the support of the background the density energy converges; calculations for the distorted area lead to divergent surface terms. (orig.)

  3. Undergraduate Research Experiences in Support of Dryland Monitoring: Field and Satellite Remote Sensing of Change in Savanna Structure, Biomass, and Carbon after Prescribed Fires

    Science.gov (United States)

    Washington-Allen, R. A.; Twidwell, D. L., Jr.; Mendieta, V. P.; Delgado, A.; Redman, B.; Trollope, W. S.; Trollope, L.; Govender, N.; Smit, I.; Popescu, S. C.; de Bruno Austin, C.; Reeves, M. C.

    2009-12-01

    The status and trend of degradation in the world’s Drylands, that support over 1.2 billion people, is unknown because monitoring & assessment has not occurred on a globally consistent basis and skilled personnel with a cultivated interest in natural resource science and management are lacking. A major monitoring dataset is the 37-year Landsat data archive that has been released free to the world, but this dataset requires persons who understand how to process and interpret this and similar datasets applicable to the desertification problem. The College of Agriculture & Life Sciences (COALS) at Texas A&M University (TAMU) has an initiative to provide undergraduates with both international and research experiences. The lead author used start-up money, USFS project funds for livestock footprint studies in the US, and seed money from COALS to 1) develop academic mentor contacts in Mozambique, Namibia, Botswana, South Africa, and Tunisia to prepare a National Science Foundation Research Experience for Undergraduates (NSF-REU) Site proposal and 2) launch a pilot REU for two TAMU undergraduate students. Mr. Delgado and Mr. Redman received lidar processing and visualization, field survey training on global positioning systems (GPS), terrestrial LIDAR, and ground penetrating radar technologies and conducted carbon change studies by collecting pre- and post-fire laser scans on experimental burn (EPB) sites in Texas and South Africa. Mr. Redman also developed GIS databases of Landsat timeseries for these EPBs and others in southern Africa. Mr. Delgado participated in the Savanna Fire Ignition Research Experiment (SavFIRE) in Kruger National Park (KNP) by collected laser scan data on 3 EPBs. He also received mentoring from Dr. Winston Trollope, a prominent fire ecologist, and Mr. Chris Austin both of Working with Fire International and Navashni Govender, KNP’s Fire Ecologist. He also was an active participant in a NASA sponsored workshop on remote sensing of global

  4. Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells

    International Nuclear Information System (INIS)

    Amara, Salem; Douki, Thery; Ravanat, Jean-Luc; Garrel, Catherine; Guiraud, Pascale; Favier, Alain; Sakly, Mohsen; Rhouma, Khemais Ben; Abdelmelek, Hafedh

    2007-01-01

    The aim of this study was to investigate the effect of static magnetic field (SMF) exposure in antioxidant enzyme activity, the labile zinc fraction and DNA damage in THP1 cells (monocyte line). Cell culture flasks were exposed to SMF (250 mT) during 1 h (group 1), 2 h (group 2) and 3 h (group 3). Our results showed that cell viability was slightly lower in SMF-exposed groups compared to a sham exposed group. However, SMF exposure failed to alter malondialdehyde (MDA) concentration (+6%, p > 0.05) and glutathione peroxidase (GPx) (-5%, p > 0.05), catalase (CAT) (-6%, p > 0.05) and superoxide dismutase (SOD) activities (+38%, p > 0.05) in group 3 compared to the sham exposed group. DNA analysis by single cell gel electrophoresis (comet assay) revealed that SMF exposure did not exert any DNA damage in groups 1 and 2. However, it induced a low level of DNA single strand breaks in cells of group 3. To further explore the oxidative DNA damage, cellular DNA for group 3 was isolated, hydrolyzed and analysed by HPLC-EC. The level of 8-oxodGuo in this group remained unchanged compared to the sham exposed group (+6.5%, p > 0.05). Cells stained with zinc-specific fluorescent probes zinpyr-1 showed a decrease of labile zinc fraction in all groups exposed to SMF. Our data showed that SMF exposure (250 mT, during 3 h) did not cause oxidative stress and DNA damage in THP1 cells. However, SMF could alter the intracellular labile zinc fraction

  5. Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Amara, Salem [Laboratoire de Physiologie Animale, Faculte des Sciences de Bizerte, 7021 Jarzouna (Tunisia); Douki, Thery [Commissariat d' Energie Atomique DRFMC/SCIB, Laboratoire des Lesions des Acides Nucleiques, Grenoble (France); Ravanat, Jean-Luc [Commissariat d' Energie Atomique DRFMC/SCIB, Laboratoire des Lesions des Acides Nucleiques, Grenoble (France); Garrel, Catherine [Laboratoire de Stress Oxydant, Departement de Biologie Integree, CHU- Grenoble (France); Guiraud, Pascale [Laboratoire de Stress Oxydant, Departement de Biologie Integree, CHU- Grenoble (France); Favier, Alain [Laboratoire de Stress Oxydant, Departement de Biologie Integree, CHU- Grenoble (France); Sakly, Mohsen [Laboratoire de Physiologie Animale, Faculte des Sciences de Bizerte, 7021 Jarzouna (Tunisia); Rhouma, Khemais Ben [Laboratoire de Physiologie Animale, Faculte des Sciences de Bizerte, 7021 Jarzouna (Tunisia); Abdelmelek, Hafedh [Laboratoire de Physiologie Animale, Faculte des Sciences de Bizerte, 7021 Jarzouna (Tunisia)

    2007-02-21

    The aim of this study was to investigate the effect of static magnetic field (SMF) exposure in antioxidant enzyme activity, the labile zinc fraction and DNA damage in THP1 cells (monocyte line). Cell culture flasks were exposed to SMF (250 mT) during 1 h (group 1), 2 h (group 2) and 3 h (group 3). Our results showed that cell viability was slightly lower in SMF-exposed groups compared to a sham exposed group. However, SMF exposure failed to alter malondialdehyde (MDA) concentration (+6%, p > 0.05) and glutathione peroxidase (GPx) (-5%, p > 0.05), catalase (CAT) (-6%, p > 0.05) and superoxide dismutase (SOD) activities (+38%, p > 0.05) in group 3 compared to the sham exposed group. DNA analysis by single cell gel electrophoresis (comet assay) revealed that SMF exposure did not exert any DNA damage in groups 1 and 2. However, it induced a low level of DNA single strand breaks in cells of group 3. To further explore the oxidative DNA damage, cellular DNA for group 3 was isolated, hydrolyzed and analysed by HPLC-EC. The level of 8-oxodGuo in this group remained unchanged compared to the sham exposed group (+6.5%, p > 0.05). Cells stained with zinc-specific fluorescent probes zinpyr-1 showed a decrease of labile zinc fraction in all groups exposed to SMF. Our data showed that SMF exposure (250 mT, during 3 h) did not cause oxidative stress and DNA damage in THP1 cells. However, SMF could alter the intracellular labile zinc fraction.

  6. Effects of prolonged exposure to moderate static magnetic field and its synergistic effects with alkaline pH on Enterococcus faecalis.

    Science.gov (United States)

    Fan, Wei; Huang, Zhuo; Fan, Bing

    2018-02-01

    Static magnetic field (SMF) has been shown to biologically affect various microorganisms, but its effects on Enterococcus faecalis, which is associated with multiple dental infections, have not been reported yet. Besides, Enterococcus faecalis was found to be resistant to the alkaline environment provided by a major dental antimicrobial, calcium hydroxide. Therefore, the antibacterial activity of prolonged exposure to moderate SMF (170 mT) and its possible synergistic activity with alkaline pH (pH = 9) were evaluated in the study. The ability to form a biofilm under these conditions was examined by crystal violet assay. Real-time quantitative PCR was performed to evaluate the relative expression of stress (dnaK and groEL) and virulence (efaA, ace, gelE and fsrC) related genes. As the results indicated, cell proliferation was inhibited after 120 h of SMF exposure. What's more, the combined treatment of SMF and alkaline pH showed significantly improved antimicrobial action when compared to single SMF and alkaline pH treatment for more than 24 h and 72 h respectively. However, the ability to form a biofilm was also enhanced under SMF and alkaline pH treatments. SMF can induce stress response by up-regulating the expression of dnaK and elevate virulence gene expression (efaA and ace). These responses were more significant and more genes were up-regulated including groEL, gelE and fsrC when exposed to SMF and alkaline pH simultaneously. Hence, combination of SMF and alkaline pH could be a promising disinfection strategy in dental area and other areas associated with Enterococcus faecalis infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields

    Directory of Open Access Journals (Sweden)

    Ferchichi S

    2016-06-01

    Full Text Available Soumaya Ferchichi,1 Hamdi Trabelsi,1 Inès Azzouz,1 Amel Hanini,2 Ahmed Rejeb,3 Olfa Tebourbi,1 Mohsen Sakly,1 Hafedh Abdelmelek1 1Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, 2Laboratory of Vascular Pathology, Carthage University, Carthage 3Laboratory of Pathological Anatomy, National School of Veterinary Medicine of Sidi Thabet, Manouba Univeristy, Manouba, Tunisia Abstract: The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs and static magnetic fields (SMFs; 128 mT exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally and were exposed to SMFs, over 14 days (1 h/day. Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. Keywords: malondialdehyde, catalase, superoxide dismutase, glutathione peroxidase, bronchus-associated lymphoid tissue, nanotoxicity, histopathological study

  8. Changes in the expression and current of the Na+/K+ pump in the snail nervous system after exposure to a static magnetic field.

    Science.gov (United States)

    Nikolić, Ljiljana; Bataveljić, Danijela; Andjus, Pavle R; Nedeljković, Miodrag; Todorović, Dajana; Janać, Branka

    2013-09-15

    Compelling evidence supports the use of a moderate static magnetic field (SMF) for therapeutic purposes. In order to provide insight into the mechanisms underlying SMF treatment, it is essential to examine the cellular responses elicited by therapeutically applied SMF, especially in the nervous system. The Na(+)/K(+) pump, by creating and maintaining the gradient of Na(+) and K(+) ions across the plasma membrane, regulates the physiological properties of neurons. In this study, we examined the expression of the Na(+)/K(+) pump in the isolated brain-subesophageal ganglion complex of the garden snail Helix pomatia, along with the immunoreactivity and current of the Na(+)/K(+) pump in isolated snail neurons after 15 min exposure to a moderate (10 mT) SMF. Western blot and immunofluorescence analysis revealed that 10 mT SMF did not significantly change the expression of the Na(+)/K(+) pump α-subunit in the snail brain and the neuronal cell body. However, our immunofluorescence data showed that SMF treatment induced a significant increase in the Na(+)/K(+) pump α-subunit expression in the neuronal plasma membrane area. This change in Na(+)/K(+) pump expression was reflected in pump activity as demonstrated by the pump current measurements. Whole-cell patch-clamp recordings from isolated snail neurons revealed that Na(+)/K(+) pump current density was significantly increased after the 10 mT SMF treatment. The SMF-induced increase was different in the two groups of control snail neurons, as defined by the pump current level. The results obtained could represent a physiologically important response of neurons to 10 mT SMF comparable in strength to therapeutic applications.

  9. Structural and parametric models of the Zalezcze and Zuchlow gas field region, fore-Sudetic monocline, Poland - An example of a general static modeling work-flow in mature petroleum areas for CCS, EGR or EOR purposes

    International Nuclear Information System (INIS)

    Papiernik, Bartosz; Doligez, Brigitte; Klimkowski, Lukasz

    2015-01-01

    Zalecze and Zuchlow are strongly depleted natural gas fields in aeolian sandstones of the Rotliegend, located in the central part of the Fore-Sudetic Monocline. A set of three static 3D models was generated to check the possibility of CO 2 injection for Enhanced Gas Recovery (EGR) and to check the safety of storage by means of geomechanical modeling: one regional model (ZZA) and two local models - the first for Zalecze (ZA) gas field and the second for Zuchlow (ZU) gas field. The regional model is composed of 12 stratigraphic complexes (zones) from the base of the Rotliegend to the ground surface. The local models comprise only the three lowermost complexes: fluvial deposits of the Rotliegend, aeolian sandstones of the Rotliegend (Reservoir I) and basal Zechstein limestone, Ca1. The key elements of the modeling procedure include: Quality Control (QC) of the data, interpretation of missing parameters necessary for static modeling and their integration within a geo-model. The processing work-flow was elaborated to produce convergent regional and local models. The regional static model is a framework for a regional geomechanical model. The local models are the basis for dynamic simulations and local geomechanical modeling. The presented work-flow could be used with some changes for geo-modeling of many mature gas and oil fields. (authors)

  10. Teaching Occupational Therapy on the Addiction Field - An experience in a multidisciplinary context with undergraduate students

    Directory of Open Access Journals (Sweden)

    Marina Bianco Perrone

    2014-08-01

    Full Text Available This article intends to discuss the teaching of Occupational Therapy (OT in the context of substance abuse to undergraduate students. Aiming to debate the experience of multidisciplinary supervised practice during the course of academic studies, it presents the Academic League on Drug Dependence - LFD as a space for understanding the phenomenon of addiction and the construction of practice in this area. A qualitative observational study was carried out on the analysis of discussion between tutors and 25 undergraduate students from different courses (OT, psychology, nursing, and medicine that comprise the LFD, which is associated with the Program of Treatment and Guidance to Drug Addicts - PROAD of the Federal University of São Paulo - UNIFESP. We observed articulations about the construction of clinical reasoning in the OT area and the constitution of the students’ perceptions while professionals participating in a multidisciplinary team. It was possible to observe that the experience of the specificity of OT and collective supervision, which, in turn, enables the articulation, favored the construction of an expended comprehension of the subjects treated in the LFD. In this sense, the collective discussion of cases allowed ultidisciplinary dialogue that will constitute the identity of students as health professionals who position themselves in a coherent team. It was perceived that the teaching of OT, in the context of a multiprofessional league, inserted in a program of care for people with problems related to substance use, abuse and/or ependence, has been an experience of a continuous construction of a space that supports and dialogues on issues of the specificity of profession, and its inclusion in this team.

  11. The Allen Telescope Array Pi GHz Sky Survey. I. Survey description and static catalog results for the Boötes field

    NARCIS (Netherlands)

    Bower, G.C.; Croft, S.; Keating, G.; Whysong, D.; Ackermann, R.; Atkinson, S.; Backer, D.; Backus, P.; Barott, B.; Bauermeister, A.; Blitz, L.; Bock, D.; Bradford, T.; Cheng, C.; Cork, C.; Davis, M.; DeBoer, D.; Dexter, M.; Dreher, J.; Engargiola, G.; Fields, E.; Fleming, M.; Forster, R.J.; Gutierrez-Kraybill, C.; Harp, G.R.; Heiles, C.; Helfer, T.; Hull, C.; Jordan, J.; Jorgensen, S.; Kilsdonk, T.; Law, C.; van Leeuwen, J.; Lugten, J.; MacMahon, D.; McMahon, P.; Milgrome, O.; Pierson, T.; Randall, K.; Ross, J.; Shostak, S.; Siemion, A.; Smolek, K.; Tarter, J.; Thornton, D.; Urry, L.; Vitouchkine, A.; Wadefalk, N.; Weinreb, S.; Welch, J.; Werthimer, D.; Williams, P.K.G.; Wright, M.

    2010-01-01

    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5 year campaign, PiGSS

  12. Evaluating the Effectiveness of Modelling-Oriented Workshops for Engineering Undergraduates in the Field of Thermally Activated Phenomena

    Science.gov (United States)

    Battaglia, Onofrio Rosario; Di Paola, Benedetto; Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2017-09-01

    Two 20-h modelling-based workshops focused on the explanation of thermally activated phenomena were held at the University of Palermo, Italy, during the Academic Year 2014-2015. One of them was conducted by applying an inquiry-based approach, while the other, still based on laboratory and modelling activities, was not focused on inquiry. Seventy-two students belonging to the Undergraduate Program for Chemical Engineering attended the two workshops. The related content was focused on an à la Feynman unifying approach to thermally activated phenomena. Questionnaires were administered to the students of both groups, before and post instruction. Responses were analysed using k-means cluster analysis and students' inferred lines of reasoning about the description and explanation of phenomena were studied in both groups. We find that both workshops can be considered effective in improving student's reasoning skills. However, the inquiry-based approach revealed to be more effective than the traditional one in helping students to build mechanisms of functioning and explicative models and to identify common aspects in apparently different phenomena.

  13. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  14. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields; Magnetresonanztomographie. Neuere Studien zur biologischen Wirkung statischer Magnetfelder und hochfrequenter elektromagnetischer Felder

    Energy Technology Data Exchange (ETDEWEB)

    Pophof, B. [Bundesamt fuer Strahlenschutz, Abteilung fuer Wirkungen und Risiken ionisierender und nichtionisierender Strahlung, Oberschleissheim/Neuherberg (Germany); Brix, G. [Bundesamt fuer Strahlenschutz, Abteilung fuer medizinischen und beruflichen Strahlenschutz, Oberschleissheim/Neuherberg (Germany)

    2017-07-15

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [German] In den letzten Jahren wurden neue Studien zu biologischen Wirkungen starker statischer Magnetfelder und zu thermischen Effekten hochfrequenter elektromagnetischer Feldern, wie sie bei der Magnetresonanztomographie (MRT) verwendet werden, publiziert. Viele dieser Studien sind noch nicht in aktuelle Sicherheitsempfehlungen eingeflossen. Wissenschaftliche Publikationen ab dem Jahr 2010 zur biologischen Wirkung statischer und elektromagnetischer Felder

  15. Static domain wall in braneworld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teiorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2014-01-15

    In this paper we consider a static domain wall inside a 3-brane. Different from the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. Also the behavior of the domain wall's gravitational field in the newtonian limit is shown. (orig.)

  16. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2017-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...

  17. Studies to assess the effect of pet training aids, specifically remote static pulse systems, on the welfare of domestic dogs: field study of dogs in training

    OpenAIRE

    Cooper, Jonathan; Cracknell, Nina; Hardiman, Jessica; Mills, Daniel

    2013-01-01

    The project had a single aim, namely to assess the impact of use of remote static pulse electric training aids (e-collars) during the training of dogs in comparison to dogs referred for similar behavioural problems but without e-collar training. The specific objective was to use appropriate behavioural and physiological measures to make inferences about the welfare of subjects including their aversion and anxiety during and following training. A secondary objective was to evaluate the efficac...

  18. Development of Virtual Field Experiences for undergraduate geoscience using 3D models from aerial drone imagery and other data

    Science.gov (United States)

    Karchewski, B.; Dolphin, G.; Dutchak, A.; Cooper, J.

    2017-12-01

    In geoscience one must develop important skills related to data collection, analysis and interpretation in the field. The quadrupling of student enrollment in geoscience at the University of Calgary in recent years presents a unique challenge in providing field experience. With introductory classes ranging from 300-500 students, field trips are logistical impossibilities and the impact on the quality of student learning and engagement is major and negative. Field experience is fundamental to geoscience education, but is presently lacking prior to the third year curriculum. To mitigate the absence of field experience in the introductory curricula, we are developing a set of Virtual Field Experiences (VFEs) that approximate field experiences via inquiry-based exploration of geoscientific principles. We incorporate a variety of data into the VFEs including gigapan photographs, geologic maps and high resolution 3D models constructed from aerial drone imagery. We link the data using a web-based platform to support lab exercises guided by a set of inquiry questions. An important feature that distinguishes a VFE is that students explore the data in a nonlinear fashion to construct and revise models that explain the nature of the field site. The aim is to approximate an actual field experience rather than provide a virtual guided tour where the explanation of the site comes pre-packaged. Thus far, our group has collected data at three sites in Southern Alberta: Mt. Yamnuska, Drumheller environs and the North Saskatchewan River valley near the toe of the Saskatchewan Glacier. The Mt. Yamnuska site focusses on a prominent thrust fault in the front ranges of the Western Cordillera. The Drumheller environs site demonstrates the siliciclastic sedimentation and stratigraphy typical of southeastern Alberta. The Saskatchewan Glacier site highlights periglacial geomorphology and glacial recession. All three sites were selected because they showcase a broad range of geoscientific

  19. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    Science.gov (United States)

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  20. Static potentials from an extended gauge symmetry

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.

    1985-01-01

    Static potentials derived from the inclusion of more than one vector field in a single simple group are calculated. A confinement mechanism including colourful unphysical particle is discussed. (Author) [pt

  1. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin...

  2. Geospatial Field Methods: An Undergraduate Course Built Around Point Cloud Construction and Analysis to Promote Spatial Learning and Use of Emerging Technology in Geoscience

    Science.gov (United States)

    Bunds, M. P.

    2017-12-01

    Point clouds are a powerful data source in the geosciences, and the emergence of structure-from-motion (SfM) photogrammetric techniques has allowed them to be generated quickly and inexpensively. Consequently, applications of them as well as methods to generate, manipulate, and analyze them warrant inclusion in undergraduate curriculum. In a new course called Geospatial Field Methods at Utah Valley University, students in small groups use SfM to generate a point cloud from imagery collected with a small unmanned aerial system (sUAS) and use it as a primary data source for a research project. Before creating their point clouds, students develop needed technical skills in laboratory and class activities. The students then apply the skills to construct the point clouds, and the research projects and point cloud construction serve as a central theme for the class. Intended student outcomes for the class include: technical skills related to acquiring, processing, and analyzing geospatial data; improved ability to carry out a research project; and increased knowledge related to their specific project. To construct the point clouds, students first plan their field work by outlining the field site, identifying locations for ground control points (GCPs), and loading them onto a handheld GPS for use in the field. They also estimate sUAS flight elevation, speed, and the flight path grid spacing required to produce a point cloud with the resolution required for their project goals. In the field, the students place the GCPs using handheld GPS, and survey the GCP locations using post-processed-kinematic (PPK) or real-time-kinematic (RTK) methods. The students pilot the sUAS and operate its camera according to the parameters that they estimated in planning their field work. Data processing includes obtaining accurate locations for the PPK/RTK base station and GCPs, and SfM processing with Agisoft Photoscan. The resulting point clouds are rasterized into digital surface models

  3. Effect of the combined action of gamma radiation and static fields in human cells;Efeito da acao combinada de radiacao gama e campo eletrico estatico em celulas humanas

    Energy Technology Data Exchange (ETDEWEB)

    Moron, Michelle Mendes

    2008-07-01

    Our goal is the study in human cells of the effect resulting from the association of irradiation with exposure to exogenous static electric fields. The T47D cell line of breast cancer cells was irradiated with gammas in the 0 8 Gy doses range. The viability of this T47D cells exposed to both gamma radiation and 1.250 V/cm static electric field (SEF) was about 12% lower than when only irradiated. The sole exposure of the cells to SEF by 24 and 72 hours did not induce toxicity. Immunofluorescence runs carried out in irradiated normal MRC5 cell line of human lung fibroblast have quantified the expression of the g-H2AX histone. The amount of phosphorylated histones was approximately 40% higher after irradiation with 2 Gy plus exposure to a SEF by 1 hour, showing that the electric field negatively interfered in the repairing process of the DNA double strand breaks. The flow cytometry analysis with FACS showed that in T47D cells treated with 1 and 2 Gy by 24 hours the SEF also negatively interfered in the DNA repairing process, as evidenced by the higher accumulation of cells in the S phase. (author)

  4. Static Analysis Numerical Algorithms

    Science.gov (United States)

    2016-04-01

    STATIC ANALYSIS OF NUMERICAL ALGORITHMS KESTREL TECHNOLOGY, LLC APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...3. DATES COVERED (From - To) NOV 2013 – NOV 2015 4. TITLE AND SUBTITLE STATIC ANALYSIS OF NUMERICAL ALGORITHMS 5a. CONTRACT NUMBER FA8750-14-C...and Honeywell Aerospace Advanced Technology to combine model-based development of complex avionics control software with static analysis of the

  5. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  6. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin......Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier......-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point...... algorithm....

  7. Study of the combined action of gamma radiation and static electric fields in human cells; Estudo da acao combinada de radiacao gama e campo eletrico estatico em celulas humanas

    Energy Technology Data Exchange (ETDEWEB)

    Moron, Michelle Mendes

    2008-07-01

    The basic principle of radiotherapy is the one of maximizing damage to the tumor, while minimizing it in neighboring health tissues. Several strategies have been worked out aiming at increasing cellular radiosensitivity, and among them is the use of exogenous fields. Our goal in this work is the study in human cells of the effect resulting from the association of irradiation with exposure to exogenous static electric fields. The T47D cell line of breast cancer cells was irradiated with gammas in the 0 - 8 Gy doses range. The corresponding survival curve provided information on the radiosensitivity of this cell line. The rate of cell deaths per Gray in the 0 - 8 Gy range exhibited a maximum at 2 Gy, which corresponds to the most efficient irradiation dose. The viability of this T47D cells exposed to both gamma radiation and 1.250 V/cm static electric field (SEF) was about 12% lower than when only irradiated. The sole exposure of the cells to SEF by 24 and 72 hours didn't induce toxicity. Immunofluorescence runs carried out in irradiated normal MRC5 cell line of human lung fibroblast, without and with exposition to a SEF, have quantified the expression of the y- H2AX histone. The amount of phosphorylated histones was approximately 40% higher after irradiation with 2 Gy plus exposure to a SEF by 1 hour, showing that the electric field negatively interfered in the repairing process of the DNA double strand breaks. The flow cytometry analysis with FACS allowed the investigation of a possible interference of radiation and SEF in the cell distributions among the cellular cycle phases. It was found that in T47D cells treated with 1 and 2 Gy by 24 hours the SEF also negatively interfered in the DNA repairing process, as evidenced by the higher accumulation of cells in the S phase. Therefore, it would be possible to conclude that static and exogenous electric fields are able of negatively interfering in the cellular repair and, presumably, in DNA repair. (author)

  8. Effects of a static magnetic field of 3.5 T on reproductive behaviour of mice, embryonic and foetal development and some haematological parameters

    International Nuclear Information System (INIS)

    Zimmermann, B.; Hentschel, D.

    1987-01-01

    To investigate possibilities of magnetic resonance imaging at high magnetic fields in humans, a whole-body magnet with a magnetic field density of 4 T was developed. Due to the few data that are available at present on biological effects and side effects of such high fields, a reproduction experiment with NMRI mice was performed using a crossover design. The mice were allowed to mate during a 7-day period within the field or after their stay in the field. The number of pregnant mice and foetuses were recorded and compared to the controls. Another group was held within the magnetic field during the whole period of pregnancy until day 18, one day before delivery. In all groups, development of the foetuses was studied. Additionally, haematological parameters of the males and females were estimated and necroscopy was performed. Brains, lungs and optical nerves were investigated using pathohistological techniques. It could be shown that in case of mating within the magnetic field, the number of pregnant mice was considerably reduced. This effect was, however, completely reversible if mating occurred after the stay in the field. Malformations retardations or an increased number of resorptions were never found. The haematological parameters were, in general, not changed. Necroscopy as well as pathohistological investigations showed no pathological alterations. Therefore, it appears that whereas high magnetic fields reduce the activity of mating behaviour, they do not exert any influence on physiological parameters. (orig.) [de

  9. Mechanics problems in undergraduate physics

    CERN Document Server

    Strelkov, S P

    2013-01-01

    Problems in Undergraduate Physics, Volume I: Mechanics focuses on solutions to problems in physics. The book first discusses the fundamental problems in physics. Topics include laws of conservation of momentum and energy; dynamics of a point particle in circular motion; dynamics of a rotating rigid body; hydrostatics and aerostatics; and acoustics. The text also offers information on solutions to problems in physics. Answers to problems in kinematics, statics, gravity, elastic deformations, vibrations, and hydrostatics and aerostatics are discussed. Solutions to problems related to the laws of

  10. Nationwide program of education for undergraduates in the field of disaster medicine: development of a core curriculum centered on blended learning and simulation tools.

    Science.gov (United States)

    Ingrassia, Pier Luigi; Ragazzoni, Luca; Tengattini, Marco; Carenzo, Luca; Della Corte, Francesco

    2014-10-01

    In recent years, effective models of disaster medicine curricula for medical schools have been established. However, only a small percentage of medical schools worldwide have considered at least basic disaster medicine teaching in their study program. In Italy, disaster medicine has not yet been included in the medical school curriculum. Perceiving the lack of a specific course on disaster medicine, the Segretariato Italiano Studenti in Medicina (SISM) contacted the Centro di Ricerca Interdipartimentale in Medicina di Emergenza e dei Disastri ed Informatica applicata alla didattica e alla pratica Medica (CRIMEDIM) with a proposal for a nationwide program in this field. Seven modules (introduction to disaster medicine, prehospital disaster management, definition of triage, characteristics of hospital disaster plans, treatment of the health consequences of different disasters, psychosocial care, and presentation of past disasters) were developed using an e-learning platform and a 12-hour classroom session which involved problem-based learning (PBL) activities, table-top exercises, and a computerized simulation (Table 1). The modules were designed as a framework for a disaster medicine curriculum for undergraduates and covered the three main disciplines (clinical and psychosocial, public health, and emergency and risk management) of the core of "Disaster Health" according to the World Association for Disaster and Emergency Medicine (WADEM) international guidelines for disaster medicine education. From January 2011 through May 2013, 21 editions of the course were delivered to 21 different medical schools, and 524 students attended the course. The blended approach and the use of simulation tools were appreciated by all participants and successfully increased participants' knowledge of disaster medicine and basic competencies in performing mass-casualty triage. This manuscript reports on the designing process and the initial outcomes with respect to learners

  11. Undergraduate Women's Persistence in the Sciences

    Science.gov (United States)

    George-Jackson, Casey E.

    2014-01-01

    This study uses longitudinal data of undergraduate students from five public land-grant universities to better understand undergraduate students' persistence in and switching of majors, with particular attention given to women's participation in science, technology, engineering, and mathematics (STEM) fields. Specifically, the study examines…

  12. Social Work Faculty and Undergraduate Research Mentorships

    Science.gov (United States)

    Horner, Pilar S.; Hughes, Anne K.; Vélez Ortiz, Daniel

    2016-01-01

    Social work faculty scholars lead the field as generators of knowledge that integrates investigative studies with practical social welfare outcomes. As such, the faculty potentially offers undergraduate researchers a different way of envisioning research that extends beyond traditional undergraduate research models. To date, however, no research…

  13. Journal of Undergraduate Research, Volume VIII, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2008-01-01

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  14. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  15. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  16. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  17. No-go theorem for static boson stars

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2018-03-01

    Full Text Available It is proved that self-gravitating static scalar fields whose self-interaction potential V(ψ2 is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  18. No-go theorem for static boson stars

    Science.gov (United States)

    Hod, Shahar

    2018-03-01

    It is proved that self-gravitating static scalar fields whose self-interaction potential V (ψ2) is a monotonically increasing function of its argument cannot form spherically symmetric asymptotically flat bound matter configurations. Our compact theorem rules out, in particular, the existence of spatially regular static boson stars made of nonlinear massive scalar fields.

  19. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  20. An Undergraduate Research Experience that Integrates Traditional Field Mapping, LiDAR, and 3D Numerical Modeling: Applying Lessons from a Recent Report from the National Academies of Sciences, Engineering, and Medicine in an Intermediate-Level Tectonic Landscapes Course

    Science.gov (United States)

    Reinen, L. A.; Brenner, K.

    2017-12-01

    Ongoing efforts to improve undergraduate education in science, technology, engineering, and mathematics (STEM) fields focus on increasing active student participation and decreasing traditional lecture-based teaching. Undergraduate research experiences (UREs), which engage students in the work of STEM professionals, are an example of these efforts. A recent report from the National Academies of Sciences, Engineering and Medicine (Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities; 2017) provides characteristics of UREs, and indicates that participation in UREs increases student interest and persistence in STEM as well as provides opportunities to broaden student participation in these fields. UREs offer an excellent opportunity to engage students in research using the rapidly evolving technologies used by STEM professionals. In the fall of 2016, students in the Tectonic Landscapes class at Pomona College participated in a course-based URE that combined traditional field mapping methods with analysis of high-resolution topographic data (LiDAR) and 3D numerical modeling to investigate questions of active local faulting. During the first ten weeks students developed skills in: creation of fault maps from both field observations (GPS included) and high-resolution digital elevation models (DEMs), assessment of tectonic activity through analyses of DEMs of hill slope diffusion models and geomorphic indices, and evaluation of fault geometry hypotheses via 3D elastic modeling. Most of these assignments were focused on a single research site. While students primarily used Excel, ArcMap, and Poly3D, no previous knowledge of these was required or assumed. Through this iterative approach, students used increasingly more complex methods as well as gained greater ownership of the research process with time. The course culminated with a 4-week independent research project in which each student investigated a question of their own

  1. Comments on gravitoelectromagnetism of Ummarino and Gallerati in ''Superconductor in a weak static gravitational field'' vs other versions

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Harihar [BIET Higher Secondary School, Physics Department, Dhenkanal, Odisha (India)

    2017-12-15

    Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c{sub g} (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields. (orig.)

  2. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  3. Static Transition Compression

    DEFF Research Database (Denmark)

    Damian, Daniel; Danvy, Olivier

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...

  4. A wheel-shaped single-molecule magnet of [MnII 3MnIII 4]: quantum tunneling of magnetization under static and pulse magnetic fields.

    Science.gov (United States)

    Koizumi, Satoshi; Nihei, Masayuki; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Bircher, Roland; Waldmann, Oliver; Ochsenbein, Stefan T; Güdel, Hans U; Fernandez-Alonso, Felix; Oshio, Hiroki

    2007-01-01

    The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.

  5. Dynamic-energetic balance of agricultural tractors: active systems for the measurement of the power requirements in static tests and under field conditions

    Directory of Open Access Journals (Sweden)

    Daniele Pochi

    2013-09-01

    Full Text Available Modern tractors are characterized by the introduction of devices designed to increase the operative performances of the machines, such as systems for monitoring and controlling various functions (through a massive use of electronics and hydraulics, or deputed to improve the comfort of the driver (paying more attention to ergonomics, air-conditioning, noise and vibration. Such devices need energy to be operated, affecting the energetic balance of the tractor. In this context, the availability of suitable methodologies and instrumental systems could be useful to provide objective, accurate and reliable measurements of the performances of the tractors under different conditions, also considering the power requirements from ancillary services and/or simulating the coupling with operating machines. The tests on the performances of tractors are now made using different methods, including the trial codes issued by the OECD Codes. Beyond their undoubted validity, they fix standard test conditions that often do not adequately represent the operative reality, so that, much remains to investigate on the actual performances provided by the tractors. From this point of view and with reference to fixed point tests, a test bench was developed for the measurement of the power required by various devices, such as transmission and air conditioning. It was used in experimental tests on a tracked tractor and on a wheeled tractor, aimed at validating the test device, measuring the power absorption related to the rotational speed of the organs of propulsion and to the characteristics curves, in order to quantify the power drawn by the transmission and by the air conditioning and assess the residual power for other tractor functions. As to field conditions, a study is being conducted at CRA-ING, within the project PTO (Mi.P.A.A.F., to develop a mobile test bench aimed at evaluating the power required by different operations, such as self displacement, traction, use of

  6. Static analysis for blinding

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde; Nielson, Hanne Riis

    2006-01-01

    operation blinding. In this paper we study the theoretical foundations for one of the successful approaches to validating cryptographic protocols and we extend it to handle the blinding primitive. Our static analysis approach is based on Flow Logic; this gives us a clean separation between the specification...

  7. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...

  8. Why Static Clings

    Science.gov (United States)

    Naab, Laurie; Henry, David

    2009-01-01

    Using Wiggins and McTighe's (1998) concept of Big Ideas, the authors planned and designed an electricity investigation to address common student misconceptions about static electricity. With Styrofoam plates and transparent tape, elementary students investigated many properties of electrically charged and uncharged objects in a 5E learning cycle…

  9. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  10. Static Analysis for Java Servlets and JSP

    DEFF Research Database (Denmark)

    Kirkegaard, Christian; Møller, Anders

    2006-01-01

    We present an approach for statically reasoning about the behavior of Web applications that are developed using Java Servlets and JSP. Specifically, we attack the problems of guaranteeing that all output is well-formed and valid XML and ensuring consistency of XHTML form fields and session state...

  11. Elucidating Bioethics with Undergraduates.

    Science.gov (United States)

    Hoskins, Betty B.; Shannon, Thomas A.

    1977-01-01

    Discusses the importance of developing bioethics programs for undergraduate students. Two aspects are considered: (1) current areas of concern and sources of bibliographic information; and (2) problems encountered in undergraduate projects. A list of references is provided. (HM)

  12. Static and dynamic stresses

    DEFF Research Database (Denmark)

    Tishin, A.M.; Spichkin, Yu.I.; Bohr, Jakob

    1999-01-01

    to the appearance of anomalies in elastic constants, as well as to additional damping of sound oscillations in the lanthanide materials. The importance of understanding the nature of magnetoelastic interactions and related effects arises from the scientific desire to gather a better knowledge of magnetism, as well......In this chapter we shall consider the properties of lanthanide metals, their alloys and compounds which can be studied using static and alternating mechanical stresses. The main attention will be paid to the effects related to magnetoelastic interactions. These interactions in magnetic materials...... can display themselves in static magnetostriction deformations (this effect is not considered here) and in the changing of the magnetic state under mechanical stress. The latter causes variation of the magnetic phase transition temperatures, magnetization and magnetic structures, and leads...

  13. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  14. Microprocessor controlled static converter

    Directory of Open Access Journals (Sweden)

    Stefan Szabo

    2005-10-01

    Full Text Available This paper wants to demonstrate a way of implementing a microcontroller into an DC motor speed control loop. The static power converter is a fully controlled rectifier bridge, using standard SCR's. The bridge's control signals are supplied by the microcontroller and are phase-angle or burst types. The automation loop contains a software PI-style regulator. All the experimental results shows that this aproach is flexibile enough to be used on a large scale.

  15. Engaging Undergraduates in Economics

    Science.gov (United States)

    Gajwani, Kiran; Miron, Jeffrey

    2015-01-01

    Siegfried and Stock (2007) explore the undergraduate training of PhD economists. Their findings show that among U.S. undergraduate economics programs, the Harvard University Economics Department produces many eventual economics PhD recipients. In this article, the authors discuss Harvard's undergraduate economics program and highlight some key…

  16. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF, Adipose-derived Stem Cells (ASCs and those labeled by superparamagnetic iron oxide (SPIO nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT assay, proliferation by cell counting and bromodeoxyuridine (BrdU incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF, Insulin-like Growth Factor-1 (IGF-1, Transforming Growth Factor Beta 1 (TGF-β1, genetic markers comprising Stem Cell Antigen-1 (Sca1, Octamer-4 (Oct-4, ATP-binding Cassette Subfamily B Member 1 (ABCB1, adipogenic marker genes containing Lipoprotein Lipase (LPL, Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ, and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1 and Osterix (OSX. Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling.

  17. Exposure to static magnetic fields increases insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

    Science.gov (United States)

    Mao, Libin; Wang, Huiqin; Ma, Fenghui; Guo, Zhixia; He, Hongpeng; Zhou, Hao; Wang, Nan

    2017-08-01

    To evaluate the effect of static magnetic fields (SMFs) on insulin secretion and explore the mechanisms underlying exposure to SMF-induced insulin secretion in rat insulinoma INS-1 cells. INS-1 cells were exposed to a 400 mT SMF for 72 h, and the proliferation of INS-1 cells was detected by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The secretion of insulin was measured with an enzyme linked immunosorbent assays (ELISA), the expression of genes was detected by real-time PCR, and the expression of proteins was measured by Western blotting. Exposure to an SMF increased the expression and secretion of insulin by INS-1 cells but did not affect cell proliferation. Moreover, SMF exposure up-regulated the expression of several pancreas-specific transcriptional factors. Specifically, the activity of the rat insulin promoter was enhanced in INS-1 cells exposed to an SMF, and the expression levels of synaptosomal-associated protein 25 (SNAP-25) and syntaxin-1A were up-regulated after exposure to an SMF. SMF exposure can promote insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

  18. Illumination of Double Snapback Mechanism in High Voltage Operating Grounded Gate Extended Drain N-type Metal-Oxide-Semiconductor Field Effects Transistor Electro-Static Discharge Protection Devices

    Science.gov (United States)

    Kim, Kil Ho; Jung, Yong Icc; Shim, Jin Seop; So, Hyung Tae; Lee, Ji Hyun; Hwang, Lee Yeun; Park, Jin Won

    2004-10-01

    High current behaviors of the ‘grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor’ (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analyses demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. This implies the co-existence of two different on-states in high current region. The 2nd on-state, characterized by extremely low snapback holding voltage and low on-resistance, seems to be responsible for the vulnerability of the device under ESD stress. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Further studies reveal that the N-drift implant dose, among various process parameters, is a critical factor to determine the formation of deep electron channeling and consequential occurrence of the 2nd on-state. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  19. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  20. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  1. A conference experience for undergraduates

    International Nuclear Information System (INIS)

    Collins, L.A.; Magee, N.H.; Bryant, H.C.; Zeilik, M.

    1999-01-01

    Programs launched by many universities and the federal government expose many undergraduate students in the physical sciences to research early in their careers. However, in their research experiences, undergraduates are not usually introduced to the modes by which scientific knowledge, which they may have helped gather, is communicated and evaluated by working scientists. Nor is it always made clear where the research frontiers really lie. To this end, we guided a selected group of undergraduates through a national scientific conference, followed by a week of tutorials and discussions to help them better understand what had transpired. The program complemented the basic undergraduate research endeavors by emphasizing the importance of disseminating results both to other scientists and to society in general. Tutors and discussion leaders in the second week were experts in their fields and included some of the invited speakers from the main meeting. A considerable improvement in the understanding of the issues and prospects for a career in physics was discernible among the students after their two-week experience. copyright 1999 American Association of Physics Teachers

  2. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  3. The Static Baryon Potential

    CERN Document Server

    Alexandrou, C; Tsapalis, A; Forcrand, Ph. de

    2002-01-01

    Using state of the art lattice techniques we investigate the static baryon potential. We employ the multi-hit procedure for the time links and a variational approach to determine the ground state with sufficient accuracy that, for distances up to $\\sim 1.2$ fm, we can distinguish the $Y$- and $\\Delta$- Ans\\"atze for the baryonic Wilson area law. Our analysis shows that the $\\Delta$-Ansatz is favoured. This result is also supported by the gauge-invariant nucleon wave function which we measure for the first time.

  4. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, Mike [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada); Roa, Wilson; Drodge, Suzanne [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Ghosh, Sunita [Department of Medical Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Murray, Brad [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada); Scrimger, Rufus [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Gabos, Zsolt, E-mail: zgabos@ualberta.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada)

    2015-01-01

    The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48 Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van't Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R{sub 100%}, p < 0.0001), the maximum dose 2 cm away from the PTV (D{sub 2} {sub cm}, p = 0.005), and van't Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R{sub 50%}, p = 0.05). VMAT was significantly better than CA for R{sub 100%} (p < 0.0001), R{sub 50%} (p < 0.0001), D{sub 2} {sub cm} (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility.

  5. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  6. Static electricity: A literature review

    Science.gov (United States)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  7. Variational approach for static mirror structures

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, E. A. [P.N. Lebedev Physical Institute RAS, 53 Leninsky Ave., 119991 Moscow (Russian Federation); Space Research Institute RAS, 84/32 Profsoyuznaya str., 117997 Moscow (Russian Federation); L.D. Landau Institute for Theoretical Physics RAS, 2 Kosygin str., 119334 Moscow (Russian Federation); Passot, T.; Sulem, P. L. [UNS, CNRS, Observatoire de la Côte d' Azur, CS 34229, 06304 Nice Cedex 4 (France); Ruban, V. P. [L.D. Landau Institute for Theoretical Physics RAS, 2 Kosygin str., 119334 Moscow (Russian Federation)

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  8. Static traversable wormholes in Lyra manifold

    Science.gov (United States)

    Jahromi, A. Sayahian; Moradpour, H.

    At first, considering the Einstein framework, we introduce some new static traversable wormholes and study the effects of a dark energy-like source on them. Thereinafter, a brief review on Einstein field equations in Lyra manifold is presented, and we address some static traversable wormholes in the Lyra manifold which satisfy the energy conditions. It is also shown that solutions introduced in the Einstein framework may also meet the energy conditions in the Lyra manifold. Finally, we focus on vacuum Lyra manifold and find some traversable asymptotically flat wormholes. In summary, our study shows that it is theoretically possible to find a Lyra displacement vector field in a manner in which traversable wormholes satisfy the energy conditions in a Lyra manifold.

  9. Static Validation of XSL Transformations

    DEFF Research Database (Denmark)

    Møller, Anders; Olesen, Mads Østerby; Schwartzbach, Michael Ignatieff

    2007-01-01

    no static guarantees that, under the assumption that the input is valid relative to the input schema, the output of the transformation is valid relative to the output schema. We present a validation technique for XSLT based on the XML graph formalism introduced in the static analysis of JWIG Web services...... and XACT XML transformations. Being able to provide static guarantees, we can detect a large class of errors in an XSLT stylesheet at the time it is written instead of later when it has been deployed, and thereby provide benefits similar to those of static type checkers for modern programming languages...

  10. Static Analysis Using the Cloud

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-10-01

    Full Text Available In this paper we describe our experience of using Microsoft Azure cloud computing platform for static analysis. We start by extending Static Driver Verifier to operate in the Microsoft Azure cloud with significant improvements in performance and scalability. We present our results of using SDV on single drivers and driver suites using various configurations of the cloud relative to a local machine. Finally, we describe the Static Module Verifier platform, a highly extensible and configurable platform for static analysis of generic modules, where we have integrated support for verification using a cloud services provider (Microsoft Azure in this case.

  11. No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory

    Science.gov (United States)

    Kunduri, Hari K.; Lucietti, James

    2018-03-01

    We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.

  12. Teaching nuclear and radiochemistry at undergraduate colleges

    International Nuclear Information System (INIS)

    Kinard, W.F.

    1993-01-01

    A large fraction of the potential graduate students in chemistry come from undergraduate colleges. The exposure of these students to the field of nuclear and radiochemistry is limited by the fact that few professionals actively involved in the field teach at these schools. There is also increasing competition for the limited number of chemistry students by other chemical specializations. Innovative approaches such as a short course to introduce students to nuclear and radiochemistry and some of the needs for undergraduate teaching are discussed. (author) 6 refs.; 2 figs

  13. Statics and Mechanics of Structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...

  14. Assessing the influence of field- and GIS-based inquiry on student attitude and conceptual knowledge in an undergraduate ecology lab.

    Science.gov (United States)

    Simmons, M E; Wu, X B; Knight, S L; Lopez, R R

    2008-01-01

    Combining field experience with use of information technology has the potential to create a problem-based learning environment that engages learners in authentic scientific inquiry. This study, conducted over a 2-yr period, determined differences in attitudes and conceptual knowledge between students in a field lab and students with combined field and geographic information systems (GIS) experience. All students used radio-telemetry equipment to locate fox squirrels, while one group of students was provided an additional data set in a GIS to visualize and quantify squirrel locations. Pre/postsurveys and tests revealed that attitudes improved in year 1 for both groups of students, but differences were minimal between groups. Attitudes generally declined in year 2 due to a change in the authenticity of the field experience; however, attitudes for students that used GIS declined less than those with field experience only. Conceptual knowledge also increased for both groups in both years. The field-based nature of this lab likely had a greater influence on student attitude and conceptual knowledge than did the use of GIS. Although significant differences were limited, GIS did not negatively impact student attitude or conceptual knowledge but potentially provided other benefits to learners.

  15. Using ultrasonography as a teaching support tool in undergraduate medical education - time to reach a decision.

    Science.gov (United States)

    Mircea, Petru-Adrian; Badea, Radu; Fodor, Daniela; Buzoianu, Anca Dana

    2012-09-01

    Medical education and the process of teaching and learning, respectively, are constantly changing. This is induced by the pace at which knowledge, teaching methodology and its related tools are updated, the use of simulation, virtual depiction and the use of static and/or dynamic images. In this respect, X-ray images have been used in the understanding of macroanatomy ever since the beginning of the last century. Starting with the 1990s, when high-performing and relatively less costly equipment started to emerge, several experts in the field of education anticipated the huge resource that ultrasound could become in the field of medicine. The method is easy to understand, intuitive and available to anyone studying human anatomy and, subsequently, the major pathological issues during undergraduate medical studies. The present paper reviews the attempts made at using ultrasound as an educational support tool, from the first experiences in teaching anatomy (Hannover Medical School, 1996) until the recent development of an entire medical university curriculum integrating ultrasound (University of South Carolina, School of Medicine, 2006-2011). It is an exciting journey proving beyond any doubt that the method should be learned, understood and developed in medical schools from the undergraduate stage, together with the other clinical skills.

  16. Insights From the Development of an Environmental Science Professional Development Field Course for Undergraduates from Two-Year and Four-Year Colleges.

    Science.gov (United States)

    Schmidt, C. M.; Hall, S. R.; Walker, B.; Paul, J.

    2017-12-01

    Existing STEM retention and diversity programs have identified access to field and professional experiences as critical to helping students identify as scientists, form networks, and gain important skills necessary for employment. This program reimagines the traditional geology field course as a professional development experience for students at 2-year and 4-year institutions interested in environmental careers. Students participate in a summer field course in the Sierra Nevada of California, during which time they complete geology, geomorphology, hydrology, and ecology field projects designed to compliment the curriculum of Environmental Geoscience, Environmental Science, and Environmental Studies programs. During the course students interact with local professionals in the environmental sector and work to earn badges based on the skills demonstrated during field projects. Badges create transparent documentation of skill mastery for students and provide a new way for students to understand and market their skills and competencies to potential employers. We will report on the curriculum development, implementation and assessment of the first cohort of students to participate in the program. Preliminary results of formative and summative assessments and their implications for student success and program design will be addressed.

  17. Comparison of methods for static charge energy harvesting on aircraft

    Science.gov (United States)

    Kiziroglou, M. E.; Becker, Th.; Yeatman, E. M.; Schmid, U.; Evans, J. W.; Wright, P. K.

    2017-05-01

    In this paper, the possibility of using the static charge that accumulates on aircraft during flight as a source to power monitoring sensors is examined. The assessed methods include using a pair of materials with different air-flow charging rates, contact discharging of the fuselage to neutral metallic bodies, charge motion induction by the fuselage field and inductive harvesting of fuselage-to-air corona discharges at static discharge wicks. The installation and potential advantages of each method are discussed. The feasibility of directly charging a storage capacitor from accumulated static charge is studied experimentally, demonstrating a voltage of 25V on a 25nF capacitor.

  18. perception of undergraduates of undergraduates' about computer

    African Journals Online (AJOL)

    eobe

    Computer and internet has omputer and internet has omputer and internet has brought innovative chang brought innovative chang computer and IT related courses have recently been i level. Therefore, level. Therefore, it was important to know the perc it was important to know the perc undergraduate students about the.

  19. Principles for Quality Undergraduate Education in Psychology

    Science.gov (United States)

    American Psychologist, 2011

    2011-01-01

    The principles for undergraduate education in psychology presented here are designed for creating a world-class educational system that provides students with the workplace skills needed in this information age; a solid academic background that prepares them for advanced study in a wide range of fields; and the knowledge, skills, and abilities…

  20. University Undergraduate Students, Perceptions of The Wireless ...

    African Journals Online (AJOL)

    The study focused on Uni versity Undergraduate students' perceptions of the use of the wireless internet of Abubakar Tafawa Balewa University, Bauchi, Nigeria. Using emperical and new field data, this exploratory study investigated the students' perceptions of internet use in relation to library use. The study adopted a ...

  1. Online course Geometrical Optics for undergraduate students

    Science.gov (United States)

    Bakholdin, Alexey; Voznesenskaya, Anna; Romanova, Galina; Ivanova, Tatiana; Tolstoba, Nadezhda; Ezhova, Kseniia; Garshin, Aleksei; Trifonov, Oleg; Sazonenko, Dmitry; Ekimenkova, Alisa

    2017-08-01

    The paper is devoted to the description of the on-line course "Geometrical Optics" placed on the national open-education platform. The course is purposed mainly for undergraduate students in optics and related fields. We discuss key features of the on-line form of this course, the issues of its realization and learning outcomes' evaluation.

  2. Statics of Historic Masonry Constructions

    CERN Document Server

    Como, Mario

    2013-01-01

    Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum,  the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.

  3. Statics and mechanics of structures

    CERN Document Server

    Krenk, Steen

    2013-01-01

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...

  4. SPIC Undergraduate Programme

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. SPIC Undergraduate Programme. P K Subrahmanyam. Information and Announcements Volume 3 Issue 12 December 1998 pp 108-110. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Static and Dynamic Traversable Wormholes

    Science.gov (United States)

    Adamiak, Jaroslaw P.

    2008-09-01

    The aim of this work is to discuss the effects found in static and dynamic wormholes that occur as a solution of Einstein equations in general relativity. The ground is prepared by presentation of faster than light effects, then the focus is narrowed to Morris-Thorne framework for a static spherically symmetric wormhole. Two types of dynamic worm-holes, evolving and rotating, are considered.

  6. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  7. Journal of Undergraduate Research, Volume IX, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2009-01-01

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.

  8. Static analysis of software the abstract interpretation

    CERN Document Server

    Boulanger, Jean-Louis

    2013-01-01

    The existing literature currently available to students and researchers is very general, covering only the formal techniques of static analysis. This book presents real examples of the formal techniques called ""abstract interpretation"" currently being used in various industrial fields: railway, aeronautics, space, automotive, etc. The purpose of this book is to present students and researchers, in a single book, with the wealth of experience of people who are intrinsically involved in the realization and evaluation of software-based safety critical systems. As the authors are people curr

  9. Static current profile control and RFP confinement

    International Nuclear Information System (INIS)

    Scheffel, Jan; Mirza, Ahmed A.; Schnack, Dalton D.

    2013-01-01

    Static current profile control (CPC) is shown numerically to substantially enhance plasma confinement in the reversed-field pinch (RFP). By suitable application of an auxiliary electric field and adjustment of its internal location, width and amplitude, strongly decreased levels of dynamo fluctuations are obtained. The simulations are performed using a fully non-linear, resistive magnetohydrodynamic model, including the effects of ohmic heating as well as parallel and perpendicular heat conduction along stochastic field lines. The importance of controlling the parallel current profile in the core plasma to minimize the effects of tearing modes on confinement is thus confirmed. A near three-fold increase in energy confinement is found and poloidal plasma beta increases by 30% from 0.20 to 0.27. The edge heat flux is reduced to a third of that of the conventional RFP. The high-confinement phase is interrupted here by a crash, characterized by a rapid decrease in confinement. A detailed study of the crash phase is carried out by the standard Δ′ theory and a fully resistive linearized time-spectral method; the generalized weighted residual method. The analysis suggests that the instability is caused by pressure-driven, resistive g-modes. Inclusion of anisotropic thermal conduction reduces the linear growth rates. As compared with our earlier numerical studies of CPC in the RFP, employing feedback control, the present static control scheme should be more easily implemented experimentally. (paper)

  10. Bringing Nuclear Science into the Undergraduate Curriculum

    Science.gov (United States)

    Peaslee, Graham

    2006-04-01

    Think about the first time you encountered nuclear science in your formal curriculum. For most nuclear scientists this experience occurred as an undergraduate in an upper-level course in a traditional four-year institution. Because of changing student demographics, an explosion of interest in the life sciences, the end of the cold war and a variety of other factors, fewer undergraduates are encountering a traditional nuclear science course at all. For the field to remain vital, we suggest that educators in nuclear science will have to adapt to the changes in student populations and interests. To this end we now offer a variety of experiences to our undergraduate students that incorporate fundamental nuclear science. One component to our approach is to create exciting opportunities in undergraduate research, and another component involves creation of nuclear science modules that can fit within other courses. In recent years both of these components have evolved with an interdisciplinary flavor, but continue to yield students that become interested in pursuing nuclear science careers. We will discuss research opportunities offered to undergraduates at Hope College, and our success with collaborative research opportunities at a variety of extramural laboratories, as well as with our in-house research program with a low-energy accelerator. An overview of several pedagogical approaches we have adopted will also be presented, and there is clearly opportunity to pursue this approach much further. Although the examples are specific to Hope College, both components can clearly be adopted at a variety of other institutions.

  11. Statics and Mechanics of Structures

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...... of trusses and frames, as well as linearized stability analysis. The book’s final section presents related strength of materials subjects in greater detail; these include stress and strain, failure criteria, and normal and shear stresses in general beam flexure and in beam torsion....

  12. What Is Undergraduate Research?

    Science.gov (United States)

    Halstead, Judith A.

    1997-12-01

    The Council on Undergraduate Research promotes and assists development of collaborative student/faculty research at primarily undergraduate colleges and universities. Most science educators today accept such research as a critical component of an undergraduate science education. Research provides the primary opportunity for students to engage in the practice of science. We can draw an analogy between sports training and the education of young scientists. We cannot train future tennis players exclusively by providing them with lectures on tennis and supervising them performing skill-development drills. To become skilled at their game, tennis players must engage in active competition. Similarly, young scientists must engage in the enterprise that affords our understanding of the physical universe. Only by participating in scientific investigation can students understand the nature of science and become scientists.

  13. NOAA's Undergraduate Scholarship Program Outcomes and Opportunities

    Science.gov (United States)

    Kaplan, M.; Jabanoski, K.; Christenson, T.

    2017-12-01

    NOAA supports about 115 - 150 undergraduates per year through the Ernest F. Hollings Scholarship and the Educational Partnership Program Undergraduate Scholarship. These programs provide tuition support and paid summer internships at NOAA to exceptional students majoring in the geosciences. Multiple methods were used to evaluate program outcomes and track the career trajectories, including mining LinkedIn data and conducting evaluation surveys of recipients as well as students who applied but did not receive the award. Results show more than 75% of scholars continued on to graduate school, primarily in a NOAA mission fields. This compared to only 56% of nonrecipients. More than 60% of alumni had at least one professional record, with the most alumni working in private industry, followed by nongovernmental organizations and federal, state and local government. The evaluation identified 77 other scholarship programs applied to by NOAA scholarship recipients. The most commonly reported program was the NSF Research Experiences for Undergraduates (REU) for which 20% of scholars applied and 46% of applications were successful. Other common scholarships included the Goldwater Scholarship (received by 5% of NOAA scholars) and the Udall Scholarship (received by 4% of scholars). In the most recent class of 118 undergraduate scholars, 24% reported having another research experience by the time they arrived for orientation at the end of their sophomore year. These results suggest coordination across scholarship opportunities may be useful to engage and retain students in geoscience fields.

  14. Undergraduate Program: Philadelphia

    Science.gov (United States)

    Betsock, Lori

    2008-08-01

    Undergraduate chemical science students—join us in Philadelphia on August 17 and 18, 2008, for an educational and career-oriented program designed specifically for you. Attend symposia about global climate change and clean energy; hear Nobel Laureate F. Sherwood Rowland speak about his fascinating career, "A Life in Tracer Chemistry". Weigh options for your future by attending the Graduate School Reality Check and graduate school recruiting events. All events will take place in the Sheraton Philadelphia City Center at 17th and Race Streets, except the Undergraduate Poster Sessions and Sci-Mix, which will be held in the Pennsylvania Convention Center.

  15. Static Analysis for Dynamic XML

    DEFF Research Database (Denmark)

    Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff

    2002-01-01

    We describe the summary graph lattice for dataflow analysis of programs that dynamically construct XML documents. Summary graphs have successfully been used to provide static guarantees in the JWIG language for programming interactive Web services. In particular, the JWIG compiler is able to check...

  16. Some Static Properties of Slinky

    OpenAIRE

    Eskandari-asl, Amir

    2018-01-01

    In this paper we use a simple discrete model for Slinky to explore some of its static properties. We derive some relations for vertically and U-shaped suspended Slinkies, based on which, some demonstrations are proposed that can be simply done in freshmen physics classes.

  17. Static Analysis of Dynamic Languages

    DEFF Research Database (Denmark)

    Madsen, Magnus

    with static type systems, such as Java and C# , but the same features are rarely available for dynamic languages such as JavaScript. The aim of this thesis is to investigate techniques for improving the tool- support for dynamic programming languages without imposing any artificial restrictions...

  18. Static Verification for Code Contracts

    Science.gov (United States)

    Fähndrich, Manuel

    The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.

  19. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  20. Static Correctness of Hierarchical Procedures

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1990-01-01

    A system of hierarchical, fully recursive types in a truly imperative language allows program fragments written for small types to be reused for all larger types. To exploit this property to enable type-safe hierarchical procedures, it is necessary to impose a static requirement on procedure calls...

  1. Conducting Mathematical Research with Undergraduates

    Science.gov (United States)

    Roberts, Gareth E.

    2013-01-01

    The notion that undergraduates are capable of making profound and original contributions to mathematical research is rapidly gaining acceptance. Undergraduates bring their enthusiasm, creativity, curiosity, and perseverance to bona fide research problems. This article discusses some of the key issues concerning undergraduate mathematical research:…

  2. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  3. Light-Matter Interaction Atoms and Molecules in External Fields and Nonlinear Optics

    CERN Document Server

    Hill, Wendell T

    2006-01-01

    This book draws together the principal ideas that form the basis of atomic, molecular, and optical science and engineering. It covers the basics of atoms, diatomic molecules, atoms and molecules in static and electromagnetic fields and nonlinear optics. Exercises and bibliographies supplement each chapter, while several appendices present such important background information as physics and math definitions, atomic and molecular data, and tensor algebra. Accessible to advanced undergraduates, graduate students, or researchers who have been trained in one of the conventional curricula of physic

  4. Computational Physics Undergraduate Research Experience (A case Study)

    Science.gov (United States)

    Sadaghiani, Homeyra; Samll, Alex

    2009-03-01

    There is a growing trend of inclusion of more research programs into undergraduate education. In spite of that, the assessment of undergraduate-research experience in physics is limited. This presentation describes a ten weeks undergraduate summer research experience in computational physics in the field of biophysics for two upper division physics students at Cal Poly Pomona. The analysis of Pre/post test data suggests more gains on research methodologies and skills than actual physical concepts underling the research project. We also discuss student attitude change measured by survey and interviews.

  5. Nuclear magnetic resonance system with continuous flow of polarized water to obtain the traceability to static magnetic fields; Sistema de ressonancia magnetica nuclear com fluxo continuo de agua polarizada para obtencao da rastreabilidade para campos magneticos estaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ramon Valls; Nazarre, Diego Joriro, E-mail: ramon@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2013-07-01

    We have developed a system to obtain the traceability of field or magnetic induction intensity in the range of 2 μT up to 2 T, even in the presence of magnetic field gradients or noisy environments. The system is based on a nuclear magnetic resonance magnetometer, built in streaming water. The calibration procedure of a coil for magnetic field generation is described, as well as the results obtained and the estimated uncertainty (author)

  6. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ...

  7. Matter ouside a Static Higher-dimensional Black Hole

    OpenAIRE

    Rogatko, Marek

    2012-01-01

    We considered matter fields composed of a perfect fluid in the static higher-dimensional spherically symmetric asymptotically flat black hole spacetime. The proof of the nonexistence of perfect fluid matter in such a background was provided under the auxiliary condition, which can be interpreted as a relation connecting the stellar mass and the black hole mass in question.

  8. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    Science.gov (United States)

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  9. Statics of historic masonry constructions

    CERN Document Server

    Como, Mario

    2016-01-01

    This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...

  10. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  11. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  12. Static Analysis of Mobile Programs

    Science.gov (United States)

    2017-02-01

    and not allowed, to do. The second issue was that a fully static analysis was never a realistic possibility, because Java , the programming langauge...not justified by the test data). This idea came to define the project: use dynamic analyiss to guess the correct properties a program points of interest...scale to large programs it had to handle essentially all of the features of Java and could also be used as a general-purpose analysis engine. The

  13. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  14. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  15. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  16. Three Inexpensive Static-Electricity Demonstrations.

    Science.gov (United States)

    Gore, Gordon R.; Gregg, William R.

    1992-01-01

    Describes demonstrations to (1) construct an inexpensive static electricity detector; (2) obtain an abundant supply of either negative or positive charge using household items; and (3) create static electricity using a Tesla coil or Van de Graaff generator. (MDH)

  17. Undergraduate Laboratory for Surface Science

    Science.gov (United States)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  18. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  19. Non-static local string in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Very recently Dando and Gregory [10] also obtained non-static solutions for a global string in dilaton gravity. The gravitational field equations in B–D theory are given by. = М. +. ¾. -1. 2. « « +. 1. (. - □). (1) where is a dimensionless constant parameter of the theory and. = (Ц) is the B–D scalar field. The wave equation for the ...

  20. Undergraduate Program: New Orleans

    Science.gov (United States)

    Betsock, Lori

    2008-03-01

    Undergraduate chemical science students—join us in New Orleans on April 6-7, 2008 for an educational program designed specifically for you. Attend symposia on chemistry in sports and health and learn how it impacts your life everyday; meet with graduate school recruiters. Focus on your professional future in chemistry by learning more about careers in public health and how to communicate and work effectively with cross-functional teams. Hear eminent scientist Richard B. Silverman (John Evans Professor of Chemistry, Northwestern University and author of The Organic Chemistry of Drug Design and Drug Action 2004) speak about "Drug Discovery: Ingenuity or Serendipity?" All events will take place at the Hilton Riverside Hotel in New Orleans, except the Undergraduate Research Poster Sessions and Sci-Mix, both of which will be held in Hall A of the Ernest N. Morial Convention Center.

  1. Researching with undergraduate students

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard; Mogensen, Kevin; Hjort-Madsen, Peder

    2013-01-01

    The article presents a particular case of undergraduate students working on subprojects within the framework of their supervisors' (the authors') research project during Autumn Semester 2012 and Spring Semester 2013. The article's purpose is to show that an institutionalized focus on students...... as "research learners" rather than merely curriculum learners proves productive for both research and teaching. We describe the specific university learning context and the particular organization of undergraduate students' supervision and assistantships. The case builds on and further enhances a well......-established and proven university model of participant-directed, problem-oriented project work. We explore students' and researchers' experiences of being part of the collaboration, focusing on learning potentials and dilemmas associated with the multiple roles of researcher and student that characterized...

  2. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency; Etude de l'emision electronique par effet de champ sur des surfaces larges en regime statique et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics ({beta}, A{sub e}) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  3. 30 CFR 18.26 - Static electricity.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity. 18.26 Section 18.26 Mineral... § 18.26 Static electricity. Nonmetallic rotating parts, such as belts and fans, shall be provided with a means to prevent an accumulation of static electricity. ...

  4. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  5. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  6. Static and dynamic friction of hierarchical surfaces.

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  7. Measurement of excited state static moments

    International Nuclear Information System (INIS)

    Sergolle, Henri

    Electric quadrupole and magnetic dipole moments are defined from a classical description of the nucleus and a quantum expression is given for the operators. The principal characteristics of the moment interaction with an outer electric or magnetic field are recalled. The study of the perturbed angular distributions of nuclear reaction products allows half-lives of high spin isomer states to be measured (from a few ps to several hours). The decay gamma rays present, under certain conditions, a strong anisotropy; in principle only one detector is sufficient to observe the angular distribution; coincidences are unnecessary and a high counting rate becomes possible. The measurement of the Coulomb excitation probabilities give the electric (dynamic and static) moments and indirectly quadrupolar moments; two techniques are used: the analysis of elastically and inelastically scattered particles and measurement of the deexcitation γ rays in coincidence with the scattered ions. Quadrupole moments can be measured from the precession of the angular distribution [fr

  8. Neurobehavioral effects among subjects exposed to high static and gradient magnetic fields from a 1.5 Tesla magnetic resonance imaging system--a case-crossover pilot study.

    Science.gov (United States)

    de Vocht, Frank; van-Wendel-de-Joode, Berna; Engels, Hans; Kromhout, Hans

    2003-10-01

    The interactive use of magnetic resonance imaging (MRI) techniques is increasing in operating theaters. A study was performed on 17 male company volunteers to assess the neurobehavioral effects of exposure to magnetic fields from a 1.5 Tesla MRI system. The subjects' neurobehavioral performances on a neurobehavioral test battery were compared in four 1-hr sessions with and without exposure to magnetic fields, and with and without additional movements. Adverse effects were found for hand coordination (-4%, P Tesla MRI system may lead to neurobehavioral effects. Further research is recommended, especially in members of operating teams using interactive MRI systems. Copyright 2003 Wiley-Liss, Inc.

  9. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  10. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  11. STATIC ANALYSIS OF LEAF SPRING

    OpenAIRE

    E VENUGOPAL GOUD; G HARINATH GOWD

    2012-01-01

    Leaf springs are special kind of springs used in automobile suspension systems. The advantage of leaf spring over helical spring is that the ends of the spring may be guided along a definite path as it deflects to act as a structural member in addition to energy absorbing device. The main function of leaf spring is not only tosupport vertical load but also to isolate road induced vibrations. It is subjected to millions of load cycles leading to fatigue failure. Static analysis determines the ...

  12. Static Validation of Security Protocols

    DEFF Research Database (Denmark)

    Bodei, Chiara; Buchholtz, Mikael; Degano, P.

    2005-01-01

    We methodically expand protocol narrations into terms of a process algebra in order to specify some of the checks that need to be made in a protocol. We then apply static analysis technology to develop an automatic validation procedure for protocols. Finally, we demonstrate that these techniques ...... suffice to identify several authentication flaws in symmetric and asymmetric key protocols such as Needham-Schroeder symmetric key, Otway-Rees, Yahalom, Andrew secure RPC, Needham-Schroeder asymmetric key, and Beller-Chang-Yacobi MSR...

  13. Statistical mechanics framework for static granular matter

    Science.gov (United States)

    Henkes, Silke; Chakraborty, Bulbul

    2009-06-01

    The physical properties of granular materials have been extensively studied in recent years. So far, however, there exists no theoretical framework which can explain the observations in a unified manner beyond the phenomenological jamming diagram. This work focuses on the case of static granular matter, where we have constructed a statistical ensemble which mirrors equilibrium statistical mechanics. This ensemble, which is based on the conservation properties of the stress tensor, is distinct from the original Edwards ensemble and applies to packings of deformable grains. We combine it with a field theoretical analysis of the packings, where the field is the Airy stress function derived from the force and torque balance conditions. In this framework, Point J characterized by a diverging stiffness of the pressure fluctuations. Separately, we present a phenomenological mean-field theory of the jamming transition, which incorporates the mean contact number as a variable. We link both approaches in the context of the marginal rigidity picture proposed by Wyart and others.

  14. Cognitive diversity in undergraduate engineering: Dyslexia

    Science.gov (United States)

    Fitzpatrick, Velvet R.

    In the United States, institutions have established multiple programs and initiatives aimed at increasing the diversity of both faculty and students in engineering as means to produce a workforce that will better serve society. However, there are two major problems in addressing engineering student diversity. First, the engineering education research community has paid little attention to date as to how engineering education research characterizes diversity in its broadest sense. Second, research on persons with disabilities in undergraduates engineering, a population of interests within diversity, is minimal. Available disability studies tend to be skewed toward physical disabilities, leading to a neglect of cognitive differences such as learning disabilities (LD). In addition, disability research questions and study designs are inherently steeped in ability bias. The purpose of this dissertation is to explore the meaning of ability for students with dyslexia while in undergraduate engineering and establish the significance of cognitive diversity, focusing on LD and more specifically dyslexia, in undergraduate engineering education and answer the following research question: How do undergraduate engineering students with dyslexia experience ability while pursuing and persisting in engineering? The motivation was to lay the groundwork for future engineering education studies on undergraduate students with LD in general but dyslexia in specific. The first goal was to conduct a critical literature review pertaining to the academic strengths of undergraduate students with LD, specifically, dyslexia and the second goal was to describe how undergraduate engineering students with dyslexia experience ability. The intent was not to redefine dyslexia or disability. The intent is to provide an inclusive account of dyslexia, weakness and strengths, within the field of engineering education. This study was conducted from a qualitative inquiry approach, within the social

  15. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  16. Integrating Clinical Neuropsychology into the Undergraduate Curriculum.

    Science.gov (United States)

    Puente, Antonio E.; And Others

    1991-01-01

    Claims little information exists in undergraduate education about clinical neuropsychology. Outlines an undergraduate neuropsychology course and proposes ways to integrate the subject into existing undergraduate psychology courses. Suggests developing specialized audio-visual materials for telecourses or existing courses. (NL)

  17. Sage for undergraduates

    CERN Document Server

    Bard, Gregory V

    2015-01-01

    Professor Bard has provided a valuable service by carefully explaining everything an undergraduate student of mathematics, or a teacher of these topics, needs to get started with Sage quickly and easily. It will also be useful for any student or teacher of another STEM discipline. There is an excellent mix of the most frequently used commands, along with warnings about common pitfalls or caveats. I highly recommend it for anyone new to Sage, or who desires an overview of the system's impressive capabilities. -Robert A. Beezer, University of Puget Sound This book is a sort of "Missing Manual"

  18. Resolving the cycle skip introduced by the multi-layer static model using a hybrid approach

    Science.gov (United States)

    Tawadros, Emad Ekladios Toma

    Cycle skips (breaks) in seismic data are occasionally irresolvable using conventional static correction programs. Such artificial cycle skips can be misleading for interpreters and introduce false subsurface images. After applying datum static corrections using either the single-layer or multi-layer models, artificial cycle skips might develop in the data. Although conventional residual static correction techniques are occasionally able to solve this problem, they fail in solving many other cases. A new approach is introduced in this study to resolve this problem by forming a static model that is free of these artificial cycle skips, which can be used as a pilot volume for residual statics calculation. The pilot volume is formed by combining the high-frequency static component of the single-layer model which show better static solution at the static problem locations and the low-frequency static component of the two-layer model. This new approach is applied on a 3-D seismic data set from Haba Field of Eastern Saudi Arabia where a major cycle skip was introduced by the multilayer model. Results show a better image of the subsurface structure after application of the new approach.

  19. The Predictive Validity of the Static-99, Static-99R, and Static-2002/R: Which One to Use?

    Science.gov (United States)

    Reeves, Sophie G; Ogloff, James R P; Simmons, Melanie

    2017-06-01

    The use of Static tools (Static-99, Static-99R, Static-2002, and Static-2002R) in risk decision making involving sexual offenders is widespread internationally. This study compared the predictive accuracy and incremental validity of four Static risk measures in a sample of 621 Australian sexual offenders. Results indicated that approximately 45% of the sample recidivated (with 18.8% committing sexual offenses). All of the Static measures investigated yielded moderate predictive validity for sexual recidivism, which was comparable with other Australian and overseas studies. Area under the curve (AUC) values for the four measures across the 5-, 10-, and 15-year intervals ranged from .67 to .69. All of the Static measures discriminated quite well between low-risk and high-risk sexual offenders but less well for the moderate risk categories. When pitted together, none of the tools accounted for additional variance in sexual recidivism, above and beyond what the other measures accounted for. The overall results provide support for the use of Static measures as a component of risk assessment and decision making with Australian sexual offending populations. The limitations of this study and recommendations for further research are also discussed.

  20. Undergraduate Students' Information Search Practices

    Science.gov (United States)

    Nikolopoulou, Kleopatra; Gialamas, Vasilis

    2011-01-01

    This paper investigates undergraduate students' information search practices. The subjects were 250 undergraduate students from two university departments in Greece, and a questionnaire was used to document their search practices. The results showed that the Web was the primary information system searched in order to find information for…

  1. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  2. Undergraduate students' perceived academic environmental ...

    African Journals Online (AJOL)

    This study examined the relationship between undergraduates' perception of the academic environment, their attitude to academic work and achievement. A total of 348 undergraduates who formed the sample were drawn from five departments in three universities in Nigeria. The study revealed that four dimensions of the ...

  3. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  4. Static and dynamic thyroid scintigraphy

    International Nuclear Information System (INIS)

    Mahlstedt, J.

    1986-01-01

    Static images as isolated investigation in thyroid diagnosis mainly provides morphologic information, and therefore sonography is largely applied for this purpose. 99m Tc-pertechnetate scans or 123 I-scans are indicated in cases of malpositions and serve to clarify lesions of unknown dignity. Additionally 201 Tl-chloride is suited for examinations with regard to metabolically active thyroid tissue, whereby differential diagnostic laboratory tests must be carried out to exclude parathyroid adenoma. Dynamic thyroid scans before and after regulation tests (suppression, stimulation) reflect the physiological correlation between the iodine avidity of the thyroid, the peripheral thyroid hormone concentrations and the hypophyseal regulation in the TRH-test. The main application of this procedure is the clarification of thyroid autonomy, i.e. indication, detection, quantification or exclusion of thyroid autonomy. For the treatment of immunogenic thyrotoxicosis, dynamic thyroid scintigraphy provides important information about the onset of remission, thus permitting to end thyreostatic therapy. (orig.) [de

  5. Statics learning from engineering examples

    CERN Document Server

    Emri, Igor

    2016-01-01

    This textbook introduces and explains the basic concepts on which statics is based utilizing real engineering examples. The authors emphasize the learning process by showing a real problem, analyzing it, simplifying it, and developing a way to solve it. This feature teaches students intuitive thinking in solving real engineering problems using the fundamentals of Newton’s laws. This book also: · Stresses representation of physical reality in ways that allow students to solve problems and obtain meaningful results · Emphasizes identification of important features of the structure that should be included in a model and which features may be omitted · Facilitates students' understanding and mastery of the "flow of thinking" practiced by professional engineers.

  6. Static Behaviour of Bucket Foundations

    DEFF Research Database (Denmark)

    Larsen, Kim André

    theory is proposed. The proposed expression applies to plane strain as well as axis-symmetric stress conditions for foundations with smooth or rough bases. A thorough experimental investigation of the static behaviour of bucket foundations subjected to combined loading is carried out. Laboratory tests...... as well as large-scale tests on bucket foundations subjected to low vertical load are performed during this work. Numerical simulations of the tests performed are carried out using the Mohr Coulomb material model and the commercial finite element code ABAQUS. Based on the present work, the finite element...... method is concluded to be a superior method in estimating the post peak behaviour as well as the combined capacity of bucket foundations in relation to the offshore wind turbine problem....

  7. The Professionalization of Human Resource Management: Examining Undergraduate Curricula and the Influence of Professional Organizations

    Science.gov (United States)

    Parks-Leduc, Laura; Rutherford, Matthew A.; Becker, Karen L.; Shahzad, Ali M.

    2018-01-01

    This study explores the state of undergraduate human resource management (HRM) curricula worldwide in an effort to understand the extent to which there is an agreed-upon body of knowledge underpinning the field of HRM. We reviewed the undergraduate curricula for all business schools that were accredited by either the Association to Advance…

  8. Interdisciplinary Biomathematics: Engaging Undergraduates in Research on the Fringe of Mathematical Biology

    Science.gov (United States)

    Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona

    2013-01-01

    The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…

  9. Fieldwork in Geography Education: Defining or Declining? The State of Fieldwork in Canadian Undergraduate Geography Programs

    Science.gov (United States)

    Wilson, Heather; Leydon, Joseph; Wincentak, Joanna

    2017-01-01

    This paper investigates the prevalence of fieldwork in undergraduate Geography programs in Canada. It examines the presence of fieldwork, provided through both field courses and courses that include fieldwork components, by reviewing program requirements and course offerings in undergraduate geography programs. The research explores the extent to…

  10. Successfully Mentoring Undergraduates in Research: A How to Guide for Mathematicians

    Science.gov (United States)

    Dorff, Michael; Henrich, Allison; Pudwell, Lara

    2017-01-01

    Undergraduate research occurs in a variety of mathematical fields and in diverse settings, but all mentors of undergraduates face a number of common considerations. This article is a brief guide to help faculty with various levels of previous mentoring experience lead students in research projects. In particular, we discuss the issues of picking…

  11. The Evaluation of Pre-Registration Undergraduate Degrees in Nursing and Midwifery Programmes.

    Science.gov (United States)

    Phillips, Terry; And Others

    England's preregistration undergraduate degree in nursing and midwifery programs were subjected to a comprehensive evaluation that included the following data collection activities: in-depth field studies of 26 of 32 three- and four-year undergraduate nursing and midwifery programs; individual interviews with 129 lecturers, 54 students, 52…

  12. Static negative capacitance of a ferroelectric nano-domain nucleus

    Science.gov (United States)

    Sluka, Tomas; Mokry, Pavel; Setter, Nava

    2017-10-01

    Miniaturization of conventional field effect transistors (FETs) approaches the fundamental limits beyond which opening and closing the transistor channel require higher gate voltage swing and cause higher power dissipation and heating. This problem could be eliminated by placing a ferroelectric layer between the FET gate electrode and the channel, which effectively amplifies the gate voltage. The original idea of using a bulk ferroelectric negative capacitor suffers however from irreversible multi-domain ferroelectric switching, which does not allow us to stabilize static negative capacitance, while a recent reversible solution with super-lattices may be difficult to integrate onto FET. Here, we introduce a solution which provides static negative capacitance from a nano-domain nucleus. Phase-field simulations confirm the robustness of this concept, the conveniently achievable small effective negative capacitance and the potentially high compatibility of such a negative nano-capacitor with FET technology.

  13. Pulsed Current Static Electrical Contact Experiment

    National Research Council Canada - National Science Library

    Jones, Harry N; Neri, Jesse M; Boyer, Craig N; Cooper, Khershed P; Meger, Robert A

    2006-01-01

    Railguns involve both static and sliding electrical contacts, which must transmit the large transient electrical currents necessary to impart high forces onto a projectile for acceleration to hypervelocity...

  14. A Comparison of a Traditional Lecture-Based and Online Supplemental Video and Lecture-Based Approach in an Engineering Statics Class

    Science.gov (United States)

    Halupa, Colleen M.; Caldwell, Benjamin W.

    2015-01-01

    This quasi-experimental research study evaluated two intact undergraduate engineering statics classes at a private university in Texas. Students in the control group received traditional lecture, readings and homework assignments. Those in the experimental group also were given access to a complete set of online video lectures and videos…

  15. Cosmological simulations using a static scalar-tensor theory

    International Nuclear Information System (INIS)

    RodrIguez-Meza, M A; Gonzalez-Morales, A X; Gabbasov, R F; Cervantes-Cota, Jorge L

    2007-01-01

    We present ΛCDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group

  16. Static black holes with back reaction from vacuum energy

    Science.gov (United States)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    We study spherically symmetric static solutions to the semi-classical Einstein equation sourced by the vacuum energy of quantum fields in the curved space-time of the same solution. We found solutions that are small deformations of the Schwarzschild metric for distant observers, but without horizon. Instead of being a robust feature of objects with high densities, the horizon is sensitive to the energy–momentum tensor in the near-horizon region.

  17. Study of static properties of magnetron-type space charges

    International Nuclear Information System (INIS)

    Delcroix, Jean-Loup

    1953-01-01

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  18. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  19. Developing Effective Undergraduate Research Experience

    Science.gov (United States)

    Evans, Michael; Ilie, Carolina C.

    2011-03-01

    Undergraduate research is a valuable educational tool for students pursuing a degree in physics, but these experiences can become problematic and ineffective if not handled properly. Undergraduate research should be planned as an immersive learning experience in which the student has the opportunity to develop his/her skills in accordance with their interests. Effective undergraduate research experiences are marked by clear, measurable objectives and frequent student-professor collaboration. These objectives should reflect the long and short-term goals of the individual undergraduates, with a heightened focus on developing research skills for future use. 1. Seymour, E., Hunter, A.-B., Laursen, S. L. and DeAntoni, T. (2004), ``Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three-year study''. Science Education, 88: 493--534. 2. Behar-Horenstein, Linda S., Johnson, Melissa L. ``Enticing Students to Enter Into Undergraduate Research: The Instrumentality of an Undergraduate Course.'' Journal of College Science Teaching 39.3 (2010): 62-70.

  20. The Undergraduate ALFALFA Team: A Model for Involving Undergraduates in Major Legacy Astronomy Research

    Science.gov (United States)

    Troischt, Parker; Koopmann, Rebecca A.; Haynes, Martha P.; Higdon, Sarah; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David; Durbala, Adriana; Finn, Rose; Hoffman, G. Lyle; Kornreich, David A.; Lebron, Mayra E.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Rosenberg, Jessica L.; Venkatesan, Aparna; Wilcots, Eric M.; Alfalfa Team

    2015-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 19 institutions founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The collaborative nature of the UAT allows faculty and students from a wide ​range of public and private colleges and especially those with small astronomy programs to develop scholarly collaborations. Components of the program include an annual undergraduate workshop at Arecibo Observatory, observing runs at Arecibo, computer infrastructure, summer and academic year research projects, and dissemination at national meetings (e.g., Alfvin et al., Martens et al., Sanders et al., this meeting). Through this model, faculty and students are learning how science is accomplished in a large collaboration while contributing to the scientific goals of a major legacy survey. In the 7 years of the program, 23 faculty and more than 220 undergraduate students have participated at a significant level. 40% of them have been women and members of underrepresented groups. Faculty, many of whom were new to the collaboration and had expertise in other fields, contribute their diverse sets of skills to ALFALFA ​related projects via observing, data reduction, collaborative research, and research with students. 142 undergraduate students have attended the annual workshops at Arecibo Observatory, interacting with faculty, graduate students, their peers, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 131 summer research projects and 94 academic year (e.g., senior thesis) projects. 62 students have traveled to Arecibo Observatory for observing runs and 46 have presented their results at national meetings. 93% of alumni are attending graduate school and/or pursuing a career in STEM. Half of those pursuing graduate degrees in Physics or Astronomy are women. This work has been