WorldWideScience

Sample records for undergraduate science teaching

  1. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  2. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  3. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  4. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  5. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  6. Student Perceptions to Teaching Undergraduate Anatomy in Health Sciences

    Science.gov (United States)

    Anderton, Ryan S.; Chiu, Li Shan; Aulfrey, Susan

    2016-01-01

    Anatomy and physiology teaching has undergone significant changes to keep up with advances in technology and to cater for a wide array of student specific learning approaches. This paper examines perceptions towards a variety of teaching instruments, techniques, and innovations used in the delivery and teaching of anatomy and physiology for health…

  7. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    Science.gov (United States)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  8. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  9. Teaching Spatial Thinking in Undergraduate Geology Courses Using Tools and Strategies from Cognitive Science Research

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2015-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.

  10. An investigation of communication patterns and strategies between international teaching assistants and undergraduate students in university-level science labs

    Science.gov (United States)

    Gourlay, Barbara Elas

    This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to

  11. Teaching microbiology to undergraduate students in the humanities and the social sciences.

    Science.gov (United States)

    Oren, Aharon

    2015-10-01

    This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Research and Teaching: Encouraging Science Communication in an Undergraduate Curriculum Improves Students' Perceptions and Confidence

    Science.gov (United States)

    Train, Tonya Laakko; Miyamoto, Yuko J.

    2017-01-01

    The ability to effectively communicate science is a skill sought after by graduate and professional schools as well as by employers in science-related fields. Are content-heavy undergraduate science curricula able to incorporate opportunities to develop science communication skills, and is promoting these skills worth the time and effort? The…

  13. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  14. Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2015-01-01

    Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…

  15. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    Science.gov (United States)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  16. Teaching and Assessing Ethics and Social Responsibility in Undergraduate Science: A Position Paper

    Science.gov (United States)

    Schultz, Madeleine

    2014-01-01

    Institutional graduate capabilities and discipline threshold learning outcomes require science students to demonstrate ethical conduct and social responsibility. However, the teaching and assessment of these concepts are not straightforward. Australian chemistry academics participated in a workshop in 2013 to discuss and develop teaching and…

  17. A case based- shared teaching approach in undergraduate medical curriculum: the real integration in basic and clinical sciences

    Directory of Open Access Journals (Sweden)

    Soheil Peiman

    2017-05-01

    Full Text Available To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists. The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students’ reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78% and provided better understanding and application of the material learned in an integrated classroom course (74%. They believed that the sessions affected their view about medicine (73%, and should be continued in future courses (80%. The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.

  18. Standards-based teaching and educational digital libraries as innovations: Undergraduate science faculty in the adoption process

    Science.gov (United States)

    Ridgway, Judith Sulkes

    This study describes undergraduate science faculty in terms of their feelings of preparedness for and their use of standards-based teaching methods, their stages of concern related to Educational Digital Libraries (EDLs), and their adoption and diffusion of both innovations. These innovations may have a synergistic relationship that may result in enhanced adoption of both. The investigation began with a series of group meetings with life science, chemistry, physics, and geology faculty from a 2-year and a 4-year institution. Faculty were introduced to dimensions of standards-based teaching and examples of EDLs. Faculty completed the Demographics and Experience Questionnaire, the Standards-Based Teaching Instrument, and the Stages of Concern Questionnaire (SoCQ). Semi-structured interviews containing literature-based questions were conducted with one faculty member from each discipline from the 2-year and 4-year institutions. Document analyses were performed on mission/goal web-based statements for the institutions and their science departments. Triangulated data were used to construct individual faculty case studies based on four facets: background, standards-based teaching profile, EDLs profile, and rate of innovation diffusion. The individual case studies were used to perform cross-case analyses by type of institution, discipline, and locus of control. Individual case studies and cross-case analyses suggest the following conclusions: (a) faculty felt prepared to use and frequently used textbooks as a reference, (b) feelings of preparedness and frequency of use of standards-based teaching categories may be related to discipline, (c) all faculty had relatively high awareness and informational EDL concerns, and (d) faculty central to the locus of control were more likely to use methods to develop student conceptual understanding, use inquiry methods, and be agents of change. A grounded theoretical model connects study results with literature related to educational

  19. The Value of Understanding Students’ Prior Writing Experience in Teaching Undergraduate Science Writing

    Directory of Open Access Journals (Sweden)

    Jumani Clarke

    2015-06-01

    Full Text Available How should undergraduate science students’ writing be understood when it does not meet the conventions of scientific writing? Studies have shown that the writing that students produce in their course work on tasks that imitate authentic scientific writing practices often do not match the tone, vocabulary and grammatical choices made by professional scientists. However, from the perspective of looking at the students’ word and grammar choices alone, it is not easy to understand why students make their particular and varied word and grammar choices and how those choices can be related to their understanding of the goals and discourses that are typical of science practices. Studying the writing of four first year earth and geographical sciences students on a science faculty’s alternative access program, from an assignment in a course that introduced them to the research article, it seems that the students persist with the social purposes of their various school writing practices in attempting their new university writing tasks. It is this variety in the social purposes of the writing that the students continue to draw on in university that can explain some of the ways in which student writing does not meet even the broadest writing conventions of the discourses of science. Yet it seems that some of the social purposes and the related writing practices of some students can help them transition their writing more easily into a form that has the usual characteristics of a typical science genre. Therefore, understanding the social purposes that students bring with them can be crucial to successfully introducing them to the discourses of science and showing them how the social purposes of scientific practice can be served in a genre such as the research article.

  20. Referencing Science: Teaching Undergraduates to Identify, Validate, and Utilize Peer-Reviewed Online Literature

    Science.gov (United States)

    Berzonsky, William A.; Richardson, Katherine D.

    2008-01-01

    Accessibility of online scientific literature continues to expand due to the advent of scholarly databases and search engines. Studies have shown that undergraduates favor using online scientific literature to address research questions, but they often do not have the skills to assess the validity of research articles. Undergraduates generally are…

  1. Ideas and Approaches for Teaching Undergraduate Research Methods in the Health Sciences

    Science.gov (United States)

    Peachey, Andrew A.; Baller, Stephanie L.

    2015-01-01

    Training in research methodology is becoming more commonly expected within undergraduate curricula designed to prepare students for entry into graduate allied health programs. Little information is currently available about pedagogical strategies to promote undergraduate students' learning of research methods, and less yet is available discussing…

  2. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  3. Downscaling Climate Science to the Classroom: Diverse Opportunities for Teaching Climate Science in Diverse Ways to Diverse Undergraduate Populations

    Science.gov (United States)

    Jones, R. M.; Gill, T. E.; Quesada, D.; Hedquist, B. C.

    2015-12-01

    Climate literacy and climate education are important topics in current socio-political debate. Despite numerous scientific findings supporting global climate changes and accelerated greenhouse warming, there is a social inertia resisting and slowing the rate at which many of our students understand and absorb these facts. A variety of reasons, including: socio-economic interests, political and ideological biases, misinformation from mass media, inappropriate preparation of science teachers, and lack of numancy have created serious challenges for public awareness of such an important issue. Different agencies and organizations (NASA, NOAA, EPA, AGU, APS, AMS and others) have created training programs for educators, not involved directly in climatology research, in order to learn climate science in a consistent way and then communicate it to the public and students. Different approaches on how to deliver such information to undergraduate students in diverse environments is discussed based on the author's experiences working in different minority-serving institutions across the nation and who have attended AMS Weather and Climate Studies training workshops, MSI-REACH, and the School of Ice. Different parameters are included in the analysis: demographics of students, size of the institutions, geographical locations, target audience, programs students are enrolled in, conceptual units covered, and availability of climate-related courses in the curricula. Additionally, the feasibility of incorporating a laboratory and quantitative analysis is analyzed. As a result of these comparisons it seems that downscaling of climate education experiences do not always work as expected in every institution regardless of the student body demographics. Different geographical areas, student body characteristics and type of institution determine the approach to be adopted as well as the feasibility to introduce different components for weather and climate studies. Some ideas are shared

  4. Teaching Economic Forecasting to Undergraduates.

    Science.gov (United States)

    Donihue, Michael R.

    1995-01-01

    Contends that academic departments have come under increasing scrutiny in terms of the scope of curriculum and teaching methods. Describes a senior undergraduate economics course in which the primary objective was to give students opportunities to combine theoretical training with quantitative skills and apply them to real-world problems. (CFR)

  5. Mobilizing the Forgotten Army: Improving Undergraduate Math and Science Education through Professional Development of Graduate Teaching Assistants

    Science.gov (United States)

    Gerton, Jordan

    Evidence-based best practices for improving undergraduate STEM education abound. Unfortunately, these practices have not been widely adopted, in part because typical dissemination efforts are mediated in a top-down fashion and fail to obtain critical buy-in from key local stakeholders. Here, we present a novel framework to increase nationwide uptake of STEM-education best practices through grassroots propagation of Professional Development programs for Graduate Teaching Assistants (GTA-PD). Our model pays special attention to overcoming resistance to change by soliciting, from the very start, critical buy-in from departmental chairs, faculty, and GTAs who have direct control over and responsibility for instruction. A key component of our approach involves an annual National GTA Workshop where faculty-GTA leadership teams from many different Physics and Chemistry departments come together to develop best-practices-based GTA-PD improvement plans for their own departments while guided by a core group of nationally recognized expert practitioners in GTA-PD and STEM education. As a pre-condition for participation, each department chair must pledge to facilitate implementation of their leadership team's plan; additional and ongoing support is provided by the core group of experts, together with other teams from the workshop cohort. Our initial pilot efforts point to success via enthusiastic buy-in within each STEM department due to the potential for immediate positive impacts on both undergraduate instruction and the long term research productivity of GTAs. In the future, longitudinal data on the progress of the GTA-PD programs will be gathered and analyzed to provide guidance for improving the success of future GTA-PD programs. Financial support provided by the Research Corporation for Science Advancement and the American Chemical Society.

  6. Research and Teaching: Blooming, SOLO Taxonomy, and Phenomenography as Assessment Strategies in Undergraduate Science Education

    Science.gov (United States)

    Newton, Genevieve; Martin, Elizabeth

    2013-01-01

    Three alternative approaches to assessment of exam responses were applied in an undergraduate biochemistry course. First, phenomenography was used to categorize written exam responses into an inclusive hierarchy. Second, responses to the same question were similarly categorized according to the Structure of Observed Learning Outcome (SOLO)…

  7. How (and Whether) to Teach Undergraduates about the Replication Crisis in Psychological Science

    Science.gov (United States)

    Chopik, William J.; Bremner, Ryan H.; Defever, Andrew M.; Keller, Victor N.

    2018-01-01

    Over the past 10 years, crises surrounding replication, fraud, and best practices in research methods have dominated discussions in the field of psychology. However, no research exists examining how to communicate these issues to undergraduates and what effect this has on their attitudes toward the field. We developed and validated a 1-hr lecture…

  8. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  9. Teaching undergraduate astrophysics with PIRATE

    Science.gov (United States)

    Brodeur, M. S.; Kolb, U.; Minocha, S.; Braithwaite, N.

    2014-12-01

    PIRATE is a 0.43m semi-autonomous research and teaching observatory owned by The Open University, UK. Since 2010, it has been reserved for several months of each year for teaching astronomy in the OU's undergraduate programme. As students in these courses operate PIRATE remotely rather than travelling to the observatory itself, we chose to investigate whether effective learning was adversely affected by the absence of a more traditional `hands on' experience. We discuss student perspectives on the technologies employed (i.e., remote and virtual investigations), the impact these had on perceived course outcomes, and consider implications for future teaching and outreach.

  10. A New "Class" of Undergraduate Professors: Examining Teaching Beliefs and Practices of Science Faculty with Education Specialties

    Science.gov (United States)

    Addy, Tracie M.; Simmons, Patricia; Gardner, Grant E.; Albert, Jennifer

    2015-01-01

    Within higher education, science departments have been making efforts to place more emphasis on improving discipline-specific teaching and learning. One such shift is the increased hiring of science faculty with educational specialties (SFES). Although SFES have begun to multiply in number, there is little published on their teaching ideologies…

  11. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  13. The Necessity of Teaching for Aesthetic Learning Experiences in Undergraduate General Education Science

    Science.gov (United States)

    Biscotte, Stephen

    2015-01-01

    Students should have aesthetic experiences to be fully engaged in science learning at any level. A general education science instructor can foster opportunities for aesthetic educative learning experiences enabling student growth. Drawing on the work of John Dewey and expanding on others in the field, Uhrmacher identifies the characteristics of…

  14. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  15. Scaffolding the Science: Problem Based Strategies for Teaching Interdisciplinary Undergraduate Research Methods

    Science.gov (United States)

    Keebaugh, Alaine; Darrow, Lyndsey; Tan, David; Jamerson, Heather

    2009-01-01

    Previous research has highlighted the effectiveness of Problem-Based Learning (PBL) in multiple disciplinary settings, including medicine, teacher education, business, allied health, and the social sciences. Yet interdisciplinary educators have very little information about how to implement PBL in classrooms where multiple disciplines are…

  16. The Lack of Interdisciplinarity in Undergraduate Geography Teaching in Turkey

    Science.gov (United States)

    Bilgili, Münür

    2018-01-01

    The aim of this study is to understand and explore interdisciplinarity in geography and undergraduate geography courses in geography teaching departments in Turkey. There is a growing literature in science underscoring the importance of interdisciplinary approach and its beneficial outcomes. Increasing body of knowledge on social theory, on…

  17. Teaching programming and modelling skills to first-year earth & environmental science undergraduates: outcomes and lessons learned from a pilot project

    Science.gov (United States)

    Fisher, J. A.; Brewer, C.; O'Brien, G.

    2017-12-01

    Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings

  18. Cultures of Undergraduate Teaching at Research Universities.

    Science.gov (United States)

    Serow, Robert C.; Van Dyk, Pamela B.; McComb, Errin M.; Harrold, Adrian T.

    2002-01-01

    Data from five campuses revealed an explicitly oppositional culture among faculty committed to undergraduate teaching, which questions both the Scholarship of Teaching model and the ethos of competitive achievement. The views echo the longstanding populist tradition within U.S. higher education and represent a potential counterforce to the recent…

  19. Measuring Science Literacy in College Undergraduates

    Science.gov (United States)

    Impey, Chris David; Buxner, S. R.; Antonellis, J.; King, C.; Johnson, E.; CATS

    2010-01-01

    Initial results from a major study of scientific literacy are presented, involving nearly 10,000 undergraduates in science classes at a large Southwestern Land Grant public university over a 20-year period. The science content questions overlap with those in the NSF's Science Indicators series. About 10% of all undergraduates in the US take a General Education astronomy course, and NSF data and the work of Jon Miller show that the number of college science courses taken is the strongest predictor of civic scientific literacy. Our data show that gains in knowledge on any particular item through the time students graduate are only 10-15%. Among students who have taken most or all of their science requirements, one-in-three think that antibiotics kill viruses as well as bacteria, one-in-four think lasers work by focusing sound waves, one-in-five think atoms are smaller than electrons, and the same fraction is unaware that humans evolved from earlier species of animals and that the Earth takes a year to go around the Sun. The fraction of undergraduates saying that astrology is "not at all” scientific increases from 17% to a still-low 34% as they move through the university. Equally worrying, half of all science majors say that astrology is "sort of” or "very” scientific. Education majors - the cohort of future teachers - perform worse than average on most individual questions and in terms of their overall scientific literacy. Assuming the study institution is representative of the nation's higher education institutions, our instruction is not raising students to the level we would expect for educated citizens who must vote on many issues that relate to science and technology. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  20. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  1. Teaching nuclear and radiochemistry at undergraduate colleges

    International Nuclear Information System (INIS)

    Kinard, W.F.

    1993-01-01

    A large fraction of the potential graduate students in chemistry come from undergraduate colleges. The exposure of these students to the field of nuclear and radiochemistry is limited by the fact that few professionals actively involved in the field teach at these schools. There is also increasing competition for the limited number of chemistry students by other chemical specializations. Innovative approaches such as a short course to introduce students to nuclear and radiochemistry and some of the needs for undergraduate teaching are discussed. (author) 6 refs.; 2 figs

  2. Innovations in teaching undergraduate biology and why we need them.

    Science.gov (United States)

    Wood, William B

    2009-01-01

    A growing revolution is under way in the teaching of introductory science to undergraduates. It is driven by concerns about American competitiveness as well as results from recent educational research, which explains why traditional teaching approaches in large classes fail to reach many students and provides a basis for designing improved methods of instruction. Discipline-based educational research in the life sciences and other areas has identified several innovative promising practices and demonstrated their effectiveness for increasing student learning. Their widespread adoption could have a major impact on the introductory training of biology students.

  3. Teaching safe intravenous cannulation - an undergraduate imperative

    African Journals Online (AJOL)

    Adele

    Abstract. Bloom's taxonomy notes that learning happens in three areas: cognitive, skills and attitudes. In teaching undergraduates this skill one needs to cover all three aspects. The Graduate Entry. Programme at this University hold a compulsory workshop for students over two days for those students entering the clinical.

  4. A Laboratory Course for Teaching Laboratory Techniques, Experimental Design, Statistical Analysis, and Peer Review Process to Undergraduate Science Students

    Science.gov (United States)

    Gliddon, C. M.; Rosengren, R. J.

    2012-01-01

    This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and…

  5. Critiquing effectuation in the undergraduate entrepreneurship teaching

    DEFF Research Database (Denmark)

    Günzel-Jensen, Franziska; Robinson, Sarah

    effectuation it must be considered as a critical element from the initial meeting with the students. Teaching undergraduate students presents a range of challenges and teachers of entrepreneurship need to carefully consider how they approach teaching of effectuation in the classroom. Value....../Originality: This paper makes a two important contributions: First, we add to the literature on entrepreneurship education by informing the gap in our understanding of the mis-match between what we want to achieve and what we actually achieve in our classrooms when teaching effectuation. Second, we contribute...

  6. Undergraduate Laboratory for Surface Science

    Science.gov (United States)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  7. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    Directory of Open Access Journals (Sweden)

    C. R. C. Cruz et al.

    2017-07-01

    Full Text Available "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource management. OBJECTIVES. Correlate biochemistry importance of proteins and peptides with the development of new products. MATERIAL AND METHODS. Firstly, theoretical-practical classes were given with seminars to be presented by the groups, including topics that will be addressed in game. Groups of 5 students, with previously viewed themes drawn a goal to be achieved. There are two drawn goals variations: Academic or Commercial. Board is divided into provinces, which must be bought with an initial resource to complete the goal. Before the beginning each group will have 15 minutes to plan their actions. The objective is to develop the entire objective drawn with appropriate methodology, having at least 1 territory in each province. RESULTS. This game proved to be an excellent tool for complementary evaluation of students, which stimulated teamwork and a strong competitive spirit within classroom, which allowed to analyze students' perception regarding the protein subject and team work. On the other hand, for teacher and students participating in compulsory traineeship program this game demonstrated new ways to approach complex subjects in biochemistry using creativity with the development of new activities such as this board game. CONCLUSION: Overall, students had a good impression of “Biotecnological war” game since it helped to secure and administer the protein and peptides biochemical subject in a competitive and team work way.

  8. Assessment of Experiential Learning and Teaching Approaches in Undergraduate Programmes at the School of Agricultural Sciences, Makerere University, Uganda

    Science.gov (United States)

    Nakelet, Opolot Henry; Prossy, Isubikalu; Bernard, Obaa Bonton; Peter, Ebanyat; Dorothy, Okello

    2017-01-01

    Competent graduates are a critical input in enhancing the university's role in agricultural transformation. How graduates play their role in contributing to development mirrors on how they trained. Low quality graduates are believed to be a product of a more subject-centered and instructive style of teaching. The Makerere University Kampala School…

  9. Teaching Science through Research.

    Science.gov (United States)

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  10. Virtual and Traditional Slides for Teaching Cellular Morphology to Medical Laboratory Science Undergraduates: A Comparative Study of Performance Outcomes, Retention, and Self-Efficacy Beliefs

    Science.gov (United States)

    Solberg, Brooke L.

    2011-01-01

    As a result of massive retirement and educational program expense and closure, the field of Medical Laboratory Science (MLS) is facing a critical workforce shortage. Combatting this issue by increasing undergraduate class size is a difficult proposition due to the intense psychomotor curricular requirements of MLS programs. Technological advances…

  11. Registrars teaching undergraduate medical students

    African Journals Online (AJOL)

    registrars were mostly involved with on-the-job training, followed by ward rounds and practical sessions. The attitudes towards ... whether a need exists for training registrars as teachers. Methods. A questionnaire-based study with qualitative and quantitative aspects was conducted at the Faculty of Health Sciences, UP.

  12. Using a Multicultural Approach to Teach Chemistry and the Nature of Science to Undergraduate Non-Majors

    Science.gov (United States)

    Goff, Peter; Boesdorfer, Sarah B.; Hunter, William

    2012-01-01

    This research documents the creation, implementation, and evaluation of a novel chemistry curriculum. The curriculum allowed students to create theories situated in a variety of cultures while they investigated chemical phenomena central to all civilizations; it was a way of synthesizing chemistry, the history and nature of science, inquiry, and…

  13. Accreditation standards for undergraduate forensic science programs

    Science.gov (United States)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  14. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  15. Undergraduate Women's Persistence in the Sciences

    Science.gov (United States)

    George-Jackson, Casey E.

    2014-01-01

    This study uses longitudinal data of undergraduate students from five public land-grant universities to better understand undergraduate students' persistence in and switching of majors, with particular attention given to women's participation in science, technology, engineering, and mathematics (STEM) fields. Specifically, the study examines…

  16. Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes.

    Science.gov (United States)

    Banerjee, Anil C.

    1995-01-01

    Discusses some of the conceptual difficulties encountered by undergraduate students in learning certain aspects of chemical equilibrium and thermodynamics. Discusses teaching strategies for dealing with these difficulties. (JRH)

  17. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  18. Pharmacovigilance teaching in UK undergraduate pharmacy programmes.

    Science.gov (United States)

    Smith, Melvyn P; Webley, Sherael D

    2013-03-01

    Pharmacists in the UK are able to report spontaneous adverse drug reactions (ADRs) to the Medicines and Healthcare Products Regulatory Authority. The level of reporting by UK pharmacists remains low. This could be explained by poor knowledge of ADR reporting. The primary objective of this study was to investigate the level of pharmacovigilance education provided to pharmacy students on undergraduate pharmacy programmes in the UK. A cross-sectional survey was used to obtain data relating to the teaching of pharmacovigilance within schools of pharmacy. The survey was designed to reveal whether core elements pertinent to pharmacovigilance and specifically to spontaneous reporting were taught and to what extent. All of the respondents taught pharmacovigilance within an assessed compulsory module. A small number (23%) did not include pharmacovigilance law within their syllabus. In 54%, the amount of time devoted to teaching pharmacy students about their role in pharmacovigilance was less than 4 h in the 4-year course; only one respondent spent approximately 20 h, the remaining respondents (38%) spent between 4 and 8 h. The amount of time dedicated to the teaching of pharmacovigilance on pharmacy undergraduate degree programmes is low. Considering the importance of spontaneous reporting in drug safety and the shift in the role of the pharmacists, more time may need to be devoted to pharmacovigilance on pharmacy undergraduate courses. By doing so, new pharmacists would be more informed of the important role they play in drug safety and thereby potentially help enhance the level of ADR reporting. Copyright © 2012 John Wiley & Sons, Ltd.

  19. An Alternative to Assembly-Line Education: Undergraduate Teaching Assistants

    Science.gov (United States)

    Wallace, Ruth A.

    1974-01-01

    The author describes a teaching innovation in which undergraduates were used to lead weekly discussion sections of lower division sociology courses. The selection process of teaching assistants, student reactions, and possible solutions to potential problems are presented. (Author/DE)

  20. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  1. Bringing Nuclear Science into the Undergraduate Curriculum

    Science.gov (United States)

    Peaslee, Graham

    2006-04-01

    Think about the first time you encountered nuclear science in your formal curriculum. For most nuclear scientists this experience occurred as an undergraduate in an upper-level course in a traditional four-year institution. Because of changing student demographics, an explosion of interest in the life sciences, the end of the cold war and a variety of other factors, fewer undergraduates are encountering a traditional nuclear science course at all. For the field to remain vital, we suggest that educators in nuclear science will have to adapt to the changes in student populations and interests. To this end we now offer a variety of experiences to our undergraduate students that incorporate fundamental nuclear science. One component to our approach is to create exciting opportunities in undergraduate research, and another component involves creation of nuclear science modules that can fit within other courses. In recent years both of these components have evolved with an interdisciplinary flavor, but continue to yield students that become interested in pursuing nuclear science careers. We will discuss research opportunities offered to undergraduates at Hope College, and our success with collaborative research opportunities at a variety of extramural laboratories, as well as with our in-house research program with a low-energy accelerator. An overview of several pedagogical approaches we have adopted will also be presented, and there is clearly opportunity to pursue this approach much further. Although the examples are specific to Hope College, both components can clearly be adopted at a variety of other institutions.

  2. Undergraduate Training in Nutritional Science

    Science.gov (United States)

    Briggs, George M.

    1972-01-01

    Discusses need to establish minimum standards of training for nutrition educators,'' and standardized curricula at the undergraduate level. Gives attention to definitions, adequate training, and suggested guidelines as a starting point for further discussion. (LK)

  3. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  4. Undergraduate Teaching and Learning Evaluation: Focus on the Mechanism

    Science.gov (United States)

    Dongmei, Zeng; Jiangbo, Chen

    2009-01-01

    It is obvious to all that the National Undergraduate Teaching and Learning Evaluation plan for higher education institutions launched in 2003 has promoted undergraduate teaching at universities and colleges. At the same time, however, the authors have also witnessed problems with the evaluation work itself, for example, unified evaluation…

  5. Teaching Psychological and Social Gerontology to Millennial Undergraduates

    Science.gov (United States)

    Siegal, Brittany; Kagan, Sarah H.

    2012-01-01

    Matters of development and generation may create barriers in teaching millennial undergraduates psychological and social gerontology. We introduce strategy to mitigate these barriers by teaching psychological and social gerontology as undergraduate honors courses, augmented with the use of social networking tools. We detail honors programming,…

  6. Cultivating Citizen Scientists in the Undergraduate Science Classroom

    Science.gov (United States)

    Egger, A. E.

    2007-12-01

    Several studies indicate a strong correlation between the number of college science courses and science literacy. It is not surprising, then, that the majority of participants in citizen science projects are college graduates who enrolled in at least two science courses. If one goal of citizen science projects is to increase civic science literacy, research suggests that most are preaching to the choir. Attracting a wider audience to citizen science is, therefore, a key challenge. One way to address this challenge is to attract students to enroll and succeed in science courses in college, even if they do not pursue a major in the science, technology, engineering, and mathematics (STEM) disciplines. In fact, only 20% of students receive a degree in STEM, yet virtually all undergraduates are required to take at least one science course. Introductory science courses are therefore critical to cultivating citizen scientists, as they include a large proportion of non- STEM majors. Indeed, a major thrust of recent undergraduate STEM educational reform has been the promotion of 'science for all'. The science for all concept goes beyond recruiting students into the STEM disciplines to promoting a level of scientific literacy necessary to make informed decisions. A clear implication of this inclusive attitude is the need to redesign introductory science courses to make them accessible and explicitly related to scientific literacy. This does not mean dumbing down courses; on the contrary, it means engaging students in real scientific investigations and incorporating explicit teaching about the process of science, thus fostering a lifelong appreciation for (and, hopefully, participation in) science. Unfortunately, many students enter college with minimal understanding of the process of science. And when they arrive in their introductory classes, science is presented to them as a system of facts to be memorized - comparable to memorizing a poem in a foreign language without

  7. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  8. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students' Ability to Read Research Articles

    Science.gov (United States)

    Van Lacum, Edwin B.; Ossevoort, Miriam A.; Goedhart, Martin J.

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach--based on the work done in the field of genre analysis and argumentation theory--means that we teach students to read research articles by…

  9. Teaching Science Fiction by Women.

    Science.gov (United States)

    Donawerth, Jane

    1990-01-01

    Reviews the 200-year-old tradition of women science fiction authors. Discusses the benefits of teaching science fiction written by women. Describes 5 science fiction short stories and 5 science fiction novels suitable for high school students. (RS)

  10. Internet Use Among Science Undergraduate Students: A ...

    African Journals Online (AJOL)

    The objective of this study was to identify and determine the extent of students\\' access to, and use of the Internet using the Science Undergraduate Students of University of Ibadan and University of Lagos as a case study. The study also aimed at comparing the rate of use among this group of students and determine which ...

  11. Teaching Motivational Interviewing to Undergraduates: Evaluation of Three Approaches

    Science.gov (United States)

    Madson, Michael B.; Schumacher, Julie A.; Noble, Jeremy J.; Bonnell, Melissa A.

    2013-01-01

    Many undergraduate psychology students assume positions as mental health paraprofessionals during or after college. The present study was a quasi-experimental evaluation of the effectiveness of teaching motivational interviewing (MI), a counseling approach that applies to many paraprofessional occupations. Results from 83 undergraduates indicated…

  12. A Student-Centered Framework for Teaching Undergraduate Parasitology.

    Science.gov (United States)

    David, Andrew A

    2017-06-01

    Many biology subdisciplines are re-evaluating their undergraduate curriculum amid changing student attitudes towards education. However, a modern framework for undergraduate parasitology has yet to be formally outlined. We present a student-centered approach to teaching parasitology, which diminishes the power of the lectern and emphasizes the use of active learning techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Crossing professional barriers with peer-assisted learning: undergraduate midwifery students teaching undergraduate paramedic students.

    Science.gov (United States)

    McLelland, Gayle; McKenna, Lisa; French, Jill

    2013-07-01

    Peer assisted learning (PAL) has been shown in undergraduate programmes to be as effective as learning from instructors. PAL is a shared experience between two learners often with one being more senior to the other but usually both are studying within the same discipline. Interprofessional education occurs when two or more professionals learn with, from and about each other. Benefits of PAL in an interprofessional context have not been previously explored. As part of a final year education unit, midwifery students at Monash University developed workshops for second year undergraduate paramedic students. The workshops focused on care required during and after the birth of the baby. To investigate the benefits of an interprofessional PAL for both midwifery and paramedic students. Data for this project were obtained by both quantitative and qualitative methods. Questionnaires were distributed to both cohorts of students to explore experiences of peer teaching and learning. Results were analysed using Statistical Package for Social Sciences (SPSS). Focus groups were conducted separately with both cohorts of students and transcripts analysed using a thematic approach. Response rates from the midwifery and paramedic students were 64.9% and 44.0% respectively. The majority of students regardless of discipline enjoyed the interprofessional activity and wanted more opportunities in their curricula. After initial anxieties about teaching into another discipline, 97.3 (n = 36) of midwifery students thought the experience was worthwhile and personally rewarding. Of the paramedic students, 76.9% (n = 60) reported enjoying the interaction. The focus groups supported and added to the quantitative findings. Both midwifery and paramedic students had a new-found respect and understanding for each other's disciplines. Midwifery students were unaware of the limited knowledge paramedics had around childbirth. Paramedic students admired the depth of knowledge displayed by the midwifery

  14. Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.

    2016-01-01

    In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…

  15. Development of a Teaching Methodology for Undergraduate Human Development in Psychology

    Science.gov (United States)

    Rodriguez, Maria A.; Espinoza, José M.

    2015-01-01

    The development of a teaching methodology for the undergraduate Psychology course Human Development II in a private university in Lima, Peru is described. The theoretical framework consisted of an integration of Citizen Science and Service Learning, with the application of Information and Communications Technology (ICT), specifically Wikipedia and…

  16. Permanent foresty plots: a potentially valuable teaching resource in undergraduate biology porgrams for the Caribbean

    Science.gov (United States)

    H. Valles; C.M.S. Carrington

    2016-01-01

    There has been a recent proposal to change the way that biology is taught and learned in undergraduate biology programs in the USA so that students develop a better understanding of science and the natural world. Here, we use this new, recommended teaching– learning framework to assert that permanent forestry plots could be a valuable tool to help develop biology...

  17. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  18. Student Perceptions of Communication Skills in Undergraduate Science at an Australian Research-Intensive University

    Science.gov (United States)

    Mercer-Mapstone, Lucy D.; Matthews, Kelly E.

    2017-01-01

    Higher education institutions globally are acknowledging the need to teach communication skills. This study used the Science Student Skills Inventory to gain insight into how science students perceive the development of communication skills across the degree programme. Responses were obtained from 635 undergraduate students enrolled in a Bachelor…

  19. Are medical schools hesitant to teach undergraduate students teaching skills? A medical student's critical view.

    Science.gov (United States)

    Mileder, Lukas Peter

    2013-11-13

    Junior medical staff provides a large proportion of undergraduate student education. However, despite increasing numbers of resident-as-teacher training programs, junior doctors may still not be sufficiently prepared to teach medical students. Hence, medical schools should consider implementing formal teaching skills training into undergraduate curricula.

  20. Teaching Science with Technology

    Science.gov (United States)

    Gornostaeva, Svetlana

    2015-04-01

    This is a short introduction about me, description of different teaching methods, which is used in my teaching practice of Geography, biology and GIS systems education. The main part is tell about practical lesson with lab Vernier. My name is Svetlana Gornostaeva. I am a geography, biology and GIS systems teacher in Tallinn Mustjõe Gymnasium (www.mjg.ee) and private school Garant (http://www.erakoolgarant.ee/). In my teaching practice I do all to show that science courses are very important, interesting, and do not difficult. I use differentiated instruction methods also consider individual needs. At lessons is used different active teaching methods such as individual work of various levels of difficulty, team works, creative tasks, interactive exercises, excursions, role-playing games, meeting with experts. On my lessons I use visual aids (maps, a collection of rocks and minerals, herbarium, posters, Vernier data logger). My favorite teaching methods are excursions, meeting with experts and practical lesson with lab Vernier. A small part of my job demonstrate my poster. In the next abstract I want to bring a one practical work with Vernier which I do with my students, when we teach a theme "Atmosphere and climate". OUTDOOR LEARNING. SUBJECT "ATMOSPHERE AND CLIMATE". WEATHER OBSERVATIONS WITH VERNIER DATA LOGGER. The aim: students teach to use Vernier data logger and measure climatic parameters such as: temperature, humidity, atmospheric pressure, solar radiation, ultraviolet light radiation, wind speed. In working process pupils also teach work together, observe natural processes, analyze. Children are working by small groups, 4-5 in each group. Every one should personally measure all parameters and put numbers into the table. After it group observe cloudiness, analyze table and give conclusion "Is at this moment dominates cyclone or anticyclone ?". Children really like this kind of job. Vernier data logger it is really fantastic tool. It is mobile lab. This

  1. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    Science.gov (United States)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  2. Imitation in Undergraduate Teaching and Learning

    Science.gov (United States)

    Zhou, Jiangyuan; Guo, Wei

    2016-01-01

    Research in developmental psychology and neuroscience has demonstrated the critical role of imitation in human learning. Self-report questionnaires collected from 456 undergraduate students in two U.S. institutions and one Chinese institution demonstrated that undergraduate students from both U.S. and Chinese cultures used various imitations in…

  3. Undergraduate teaching in UK general practice: a geographical snapshot.

    Science.gov (United States)

    Derbyshire, Helen; Rees, Eliot; Gay, Simon P; McKinley, Robert K

    2014-06-01

    Learning in general practice is an essential component of undergraduate medical education; currently, on average, 13% of clinical placements in the UK are in general practice. However, whether general practice can sustainably deliver more undergraduate placements is uncertain. To identify the geographical distribution of undergraduate teaching practices and their distance from the host medical school. National survey of all medical schools in the UK. All 33 UK medical schools were invited to provide the postcodes of their undergraduate teaching practices. These were collated, de-duplicated, and mapped. The distance in kilometres and journey times by car and public transport between each medical school and its teaching practices was estimated using Transport Direct (www.transportdirect.info). The postcodes of every practice in the UK were obtained from the UK's health departments. All 33 UK medical schools responded; 4392 practices contributed to teaching, with a median (minimum-maximum) of 142 (17-385) practices per school. The median (minimum-maximum) distance between a school and a teaching practice was 28 km (0-1421 km), 41 (0:00-23:26) minutes' travel by car and 1 hour 12 (0:00-17:29) minutes' travel by public transport. All teaching practices were accessible by public transport in one school and 90-99% were in a further four schools; 24 schools had >20% of practices that were inaccessible by public transport. The 4392 undergraduate teaching general practices are widely distributed and potentially any practice, no matter how isolated, could contribute to undergraduate education. However, this is, at the price of a considerable travel burden. © British Journal of General Practice 2014.

  4. Scenario-based teaching in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Patel K

    2016-12-01

    Full Text Available Kunj Patel, Omar El Tokhy Faculty of Medicine, Imperial College London, London, UKWe read with great interest the study by Frost et al1 which highlights the importance of scenario-based teaching (SBT of clinical communication in medical undergraduate pediatrics teaching. SBT involves students navigating a storyline based around a complex problem, running in parallel with case-based learning. We were impressed by the results of the SBT program at Cardiff University School of Medicine. As medical students currently on our pediatric rotation at Imperial College London, we have experienced at first hand the benefits of SBT. Throughout the placement, it continues to help us tackle the complexities which arise when communicating with children and their families. We have noted its particular benefit in breaking bad news to families. Without effective teaching on this particular scenario, a failure to grasp this skill could exacerbate patient and parent concerns. Much like the authors of this study highlight,1 we believe specific teaching on communication skills should be a mandatory part of medical undergraduate education at every institution. Imperial College School of Medicine has developed a similar teaching style which has been unparalleled in its benefit to us during our pediatric rotation. Although there is scant literature available specifically addressing communicating with children and parents at undergraduate level, the use of SBT throughout undergraduate medical teaching should not be underestimated. Read the original paper by Frost et al

  5. Teaching evidence based practice to undergraduate nursing students.

    Science.gov (United States)

    Sin, Mo-Kyung; Bliquez, Rebecca

    Considering the heightened importance of evidence-based practice in healthcare settings, incorporating evidence-based practice into the nursing curriculum, especially in baccalaureate programs is essential because this is a first step to prepare students for their professional role as an RN, and the undergraduate nursing students are the ones who will spend the most time with patients at their bedside providing direct care. Teaching evidence-based practice at the undergraduate level, however, can be challenging. Creative and enjoyable teaching strategies are instrumental in order to promote students' engagement and learning about evidence-based practice. This paper describes useful strategies for teaching evidence-based practice in an undergraduate nursing research course. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Undergraduate teaching of forensic medicine in Saudi Arabia.

    Science.gov (United States)

    Madadin, Mohammed; Al-Saif, Dalia M; Khamis, Amar Hassan; Taha, Attia Z; Kharoshah, Magdy A; Alsayyah, Ahmed; Alfehaid, Suha; Yaghmour, Khalid; Hakami, Ahmad Yahia; Bamousa, Manal S; Menezes, Ritesh G; Almadani, Osama M

    2016-07-01

    Medico-legal tasks are not exclusive to forensic medical experts -any physician may face medico-legal issues in his career. Hence, the practice of medicine requires education in legal issues. In Saudi Arabia, there are 30 universities with medical colleges, but we do not know how they teach undergraduate forensic medicine and medico-legal issues. The aim of this study was to discover undergraduate training courses in forensic medicine in Saudi universities. We conducted a cross-sectional study involving all colleges of medicine in Saudi Arabia. A structured, self-administered questionnaire containing 13 items relating to the undergraduate forensic medicine course was distributed. Out of a total of 30 universities, 27 universities responded. Of these 27 universities, 16 (59.26%) teach forensic medicine to undergraduate medical students, and 11 (40.74%) do not teach forensic medicine in their undergraduate curriculum. Of the 27 universities that responded, none has a department of forensic medicine. Eleven universities that do not teach forensic medicine have no forensic medicine unit/division or faculty at all. Forensic medicine belongs to the pathology department in 11 universities, while it belongs to different departments in five universities. There is variation in teaching methods, years where the course is taught and length of the course. Practical and morgue visits take place in 7/16 (43.8%) universities, while 9/16 (56.3%) universities only teach the theoretical aspects of forensic medicine. All 16 universities teach forensic medicine only to medical students and do not teach it to students in other colleges such as dentistry and nursing. © The Author(s) 2016.

  7. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  8. Integrated modular teaching in dermatology for undergraduate students: A novel approach

    Directory of Open Access Journals (Sweden)

    Kaliaperumal Karthikeyan

    2014-01-01

    Full Text Available Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in

  9. Undergraduate Origins of Recent Science and Engineering Doctorate Recipients.

    Science.gov (United States)

    Hill, Susan T.; And Others

    Because undergraduate education is the foundation for graduate studies, it is important to know where our Nation's science and engineering (S&E) doctorate recipients are receiving their undergraduate training. Specifically, this report addresses the following broad questions: (1) What are the undergraduate origins of S&E doctorate holders? (2)…

  10. Life Science Professional Societies Expand Undergraduate Education Efforts

    Science.gov (United States)

    Matyas, Marsha Lakes; Ruedi, Elizabeth A.; Engen, Katie; Chang, Amy L.

    2017-01-01

    The "Vision and Change in Undergraduate Biology Education" reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by…

  11. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  12. Undergraduates achieve learning gains in plant genetics through peer teaching of secondary students.

    Science.gov (United States)

    Chrispeels, H E; Klosterman, M L; Martin, J B; Lundy, S R; Watkins, J M; Gibson, C L; Muday, G K

    2014-01-01

    This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non-majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS) students through a case study curriculum to discover the cause of a green tomato variant. The curriculum explored plant reproduction and genetic principles, highlighting variation in heirloom tomato fruits to reinforce the concept of the genetic basis of phenotypic variation. HS students were taught additional activities related to mole-cular biology techniques not included in the MS curriculum. We measured undergraduates' learning outcomes using pre/postteaching content assessments and the course final exam. Undergraduates showed significant gains in understanding of topics related to the curriculum they taught, compared with other course content, on both types of assessments. Undergraduates who taught HS students scored higher on questions specific to the HS curriculum compared with undergraduates who taught MS students, despite identical lecture content, on both types of assessments. These results indicate the positive effect of service-learning peer-teaching experiences on undergraduates' content knowledge, even for non-science major students. © 2014 H. E. Chrispeels et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Enhancing Student Learning of Research Methods through the Use of Undergraduate Teaching Assistants

    Science.gov (United States)

    Crowe, Jessica; Ceresola, Ryan; Silva, Tony

    2014-01-01

    By using a quasi-experimental design, in this study, we test the effect of undergraduate teaching assistants on student learning. Data were collected from 170 students enrolled in four sections of a quantitative research methods course, two sections without undergraduate teaching assistants and two sections with undergraduate teaching assistants,…

  14. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  15. Integrating popular science books into college science teaching

    Science.gov (United States)

    Lam, Lui

    2000-03-01

    We note that (1) many students in our introductory physics classes are not physics majors; (2) many of the undergraduate physics majors will not go on to get a Ph.D. in physics; (3) it is highly desirable to train our students to be knowledgeable in many disciplines, in order to be a marketable and productive worker in this rapidly changing world; (4) we want our college graduates to be informed in science matters and friendly to the science enterprise after they graduate, especially if they become millionaires or billionaires or influencial politicians who control our science budgets; (5) there is no textbook out there that teaches really, truly multiple disciplines for freshmen. We also note that (1) popular science books are available in almost every bookstore in almost every town; (2) many of them are written by pioneers themselves, or by Nobel laureates or very gifted science writers; (3) they are affordable to almost everybody (about 15 dollars for paperback); (4) these are the places to learn how research and discovery were actually done in very recent times; (5) these books are easy (no equations) and very entertaining to read. In the last two years, I integrated these popular science books into my teaching, with very positive results. I think every other college science teacher can do the same. This will improve science education (for the average citizens) in a very fundamental way, without any new funding.

  16. Undergraduate space science program at Alabama A&M University

    Science.gov (United States)

    Lal, R.; Tan, A.; Lyatsky, W.

    A new undergraduate Physics Program with Space Science as the major concentration area has been initiated at Alabama A&M University (AAMU) in 2001. This program is funded by NASAÆs OSS and OEOP Offices under the NRA 00-OSS-02 Minority University Education and Research Partnership Initiative in Space Science-2000. The partner institutions are NASA Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), Lawrence Livermore National Laboratory (LLNL) and The University of Alabama in Huntsville (UAH). A primary objective of this Program is to train undergraduate and graduate minority (principally African-American) students in the extremely underrepresented areas of Space Science and to prepare them for eventual teaching and/or research careers in this increasingly important field. The best way to achieve this is to recruit students early from high school, and not wait until they have already selected their specialty in college. Also, a student with a BS degree in Physics with specialization in Space Science will have a decisive advantage in pursuing graduate studies in Space Science than the others. The BS degree requires a student to take 30 credit hours of Physics courses and an additional 18 hours in the chosen area of concentration. Several basic traditional courses in Lower Atmosphere, Aeronomy, the Solar System and Orbital Mechanics have been developed. Additional courses in Plasma Physics, Solar Physics and Astronomy will be taught by NASA-MSFC scientists and UAH faculty. A parallel objective is to expose the student to research experience early in their ca- reers. Each student is required to complete a one semester Undergraduate Research Opportunity Project (UROP) on a relevant topic from Space Science. The students will be guided in research by AAMU and UAH faculty and MSFC scientists. Each student will be required to write a term paper and make an oral presentation before a committee of advisors. This experience will enhance the Space

  17. Sustainability Matters for Undergraduate Teaching and Learning

    Science.gov (United States)

    Fry, Catherine L.; Wei, Cynthia A.

    2015-01-01

    A growing body of evidence shows that infusing sustainability into undergraduate courses and programs can simultaneously benefit institutional goals, student learning outcomes, and society at large. In addition to being a globally relevant and urgent topic, sustainability can enhance learning of disciplinary concepts and development of broad…

  18. Teaching systems engineering to undergraduates; Experiences and considerations

    NARCIS (Netherlands)

    Muller, Gerrit; Bonnema, Gerrit Maarten; Adcock, R.; LeBlanc, R.; Scott, P.; Johnson, K.; Sobkiw, W.

    2013-01-01

    Undergraduates need a teaching style that fits their limited experience. Especially in systems engineering this is an issue, since systems engineering connects to so many different stakeholders with so many different concerns while the students have experienced only thus far only a few of these

  19. Minimum Competencies for Teaching Undergraduate Sport Philosophy Courses. Guidance Document

    Science.gov (United States)

    National Association for Sport and Physical Education, 2004

    2004-01-01

    Although sport philosophy is considered to be a sub-discipline with its own unique body of knowledge, sport philosophy is more commonly offered as a single course rather than a degree program. Therefore, these guidelines are offered specifically for the teaching of a single course at the undergraduate level. In order to be effective, the course…

  20. The Teaching of Undergraduate Health Psychology: A National Survey

    Science.gov (United States)

    Panjwani, Aliza A.; Gurung, Regan A. R.; Revenson, Tracey A.

    2017-01-01

    We conducted an online national survey to examine how undergraduate health psychology is taught, offer information about course design and content, and provide a needs analysis. Health psychology instructors (N = 126) answered questions about course format, teaching tools, importance of covering specific topics, and needed resources. A principal…

  1. Increasing Effectiveness in Teaching Ethics to Undergraduate Business Students.

    Science.gov (United States)

    Lampe, Marc

    1997-01-01

    Traditional approaches to teaching business ethics (philosophical analysis, moral quandaries, executive cases) may not be effective in persuading undergraduates of the importance of ethical behavior. Better techniques include values education, ethical decision-making models, analysis of ethical conflicts, and role modeling. (SK)

  2. Reflections on Our First Calculus Undergraduate Teaching Assistant

    Science.gov (United States)

    Deshler, Jessica M.

    2016-01-01

    This article describes some reflections from the first Calculus I undergraduate teaching assistant in our department as she explored the various ways in which she was able to support both novice and experienced Calculus teachers and the effect of her experience on her academic and career plans.

  3. Self Reflections of Undergraduate Students on Using Web-Supported Counterintuitive Science Demonstrations

    Science.gov (United States)

    Kumar, David Devraj; Dunn, Jessica

    2018-03-01

    Analysis of self-reflections of undergraduate education students in a project involving web-supported counterintuitive science demonstrations is reported in this paper. Participating students (N = 19) taught science with counterintuitive demonstrations in local elementary school classrooms and used web-based resources accessed via wireless USB adapters. Student reflections to seven questions were analyzed qualitatively using four components of reflection (meeting objectives/perception of learning, dynamics of pedagogy, special needs accommodations, improving teaching) deriving 27 initial data categories and 12 emergent themes. Overall the undergraduates reported meeting objectives, engaging students in pedagogically relevant learning tasks including, providing accommodations to students with special needs, and gaining practice and insight to improve their own teaching. Additional research is needed to arrive at generalizable findings concerning teaching with web-supported counterintuitive science demonstrations in elementary classrooms.

  4. Teaching statistics to medical undergraduates using interactive and participatory sessions

    Directory of Open Access Journals (Sweden)

    THULASINGAM MAHALAKSHMY

    2013-10-01

    Full Text Available Introduction: In India, medical undergraduates think that statistics is difficult to understand. Often, it is taught just before final assessment examination using didactic lectures, with little use of medical examples and less focus on application. Hence, we prepared interactive, participatory sessions for teaching biostatistics to medical undergraduate. Methods: The sessions were delivered by a facilitator. It had clearly specified objectives and teaching learning strategies. A needs assessment was done by interviewing the students who had undergone traditional biostatistics teaching methodology. Specific learning objectives for the sessions were finalized using the Delphi technique and review of University syllabus. Two trained Community Medicine faculties designed the lesson plans ‘backwards’ from desired outcome to content, teaching/learning strategies, assessment and evaluation process (Outcomes-based lesson planning. Forty, third-semester (Para-clinical phase of the second year medical undergraduates undertook these seven teaching sessions. The session followed adult learning principles and included group discussions, games and reflections. We evaluated the impact of the sessions using in-depth interviews, retrospective post-then-preself- assessment and a pre-announced written test. Results: With traditional statistics teaching methodology, students perceived it as a standalone subject and were not interested in statistics. Students who underwent the sessions commented that the sessions were enjoyable, interesting, and participatory and more than %90 of them felt they were engaged throughout the session. They also narrated various instances where they could apply the biostatistics learning. In the post-then-pre-assessment median post-session scores for all the objectives were significantly higher (p <0.050. Conclusion: Use of interactive, participatory sessions for teaching biostatistics to medical undergraduates resulted in a

  5. On Using GIS to Teach in the Social Sciences

    Science.gov (United States)

    Harris, Jill S.

    2012-01-01

    In this article, the author discusses how a professor can harness the power of Geographic Information Systems (GIS) and use GIS to teach in the social sciences. She shows examples of how GIS can illustrate concepts during lecture or discussion, and provides two specific GIS assignments: one for undergraduate students and the other for graduate…

  6. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  7. Teaching experientially in the undergraduate community psychology classroom.

    Science.gov (United States)

    Schlehofer, Michèle M; Phillips, Suzanne M

    2013-01-01

    Experiential learning is a useful teaching tool in the undergraduate community psychology classroom. In addition to improving student outcomes, experiential learning is particularly relevant for community psychology, as it aligns with several core values of the field and can prompt not only student learning, but also civic engagement, social justice, and community betterment. In this article, we provide an overview of the themed issue on "Experiential Teaching Practices in Undergraduate Community Psychology." The issue contains a variety of experiential teaching examples that fall into three clusters: (a) individual and group service-learning exercises; (b) using community experiences to augment in-class learning outside of a service-learning context; and (c) ways of having students draw on prior out-of-class or in-class community experiences to increase student understanding.

  8. Teaching for Multiple Intelligences in Undergraduate Education

    Science.gov (United States)

    Denny, Margaret

    Multiple intelligences theory has only recently entered the teaching and learning dialogue in education and research. It is argued that despite the rhetoric of a student centred approach, nurse education remains wedded to conventional teaching approaches, which fail to engage with the individual and unwittingly silence the student's voice. This study examines the concept of Multiple Intelligences (MI) and outlines Gardner's contention that the brain functions using eight intelligences, which can be employed to improve learning at an individual level.

  9. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  10. Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699

  11. Teaching the process of science: faculty perceptions and an effective methodology.

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  12. Assessing an effective undergraduate module teaching applied bioinformatics to biology students.

    Science.gov (United States)

    Madlung, Andreas

    2018-01-01

    Applied bioinformatics skills are becoming ever more indispensable for biologists, yet incorporation of these skills into the undergraduate biology curriculum is lagging behind, in part due to a lack of instructors willing and able to teach basic bioinformatics in classes that don't specifically focus on quantitative skill development, such as statistics or computer sciences. To help undergraduate course instructors who themselves did not learn bioinformatics as part of their own education and are hesitant to plunge into teaching big data analysis, a module was developed that is written in plain-enough language, using publicly available computing tools and data, to allow novice instructors to teach next-generation sequence analysis to upper-level undergraduate students. To determine if the module allowed students to develop a better understanding of and appreciation for applied bioinformatics, various tools were developed and employed to assess the impact of the module. This article describes both the module and its assessment. Students found the activity valuable for their education and, in focus group discussions, emphasized that they saw a need for more and earlier instruction of big data analysis as part of the undergraduate biology curriculum.

  13. Taking a Scientific Approach to Science Teaching

    Science.gov (United States)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  14. Development and Evaluation of an Undergraduate Science Communication Module

    Science.gov (United States)

    Yeoman, Kay H.; James, Helen A.; Bowater, Laura

    2011-01-01

    This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…

  15. Teaching Real Business Cycles to Undergraduates

    Science.gov (United States)

    Brevik, Frode; Gartner, Manfred

    2007-01-01

    The authors review the graphical approach to teaching the real business cycle model introduced in Barro. They then look at where this approach cuts corners and suggest refinements. Finally, they compare graphical and exact models by means of impulse-response functions. The graphical models yield reliable qualitative results. Sizable quantitative…

  16. Teaching Science in the Home

    Science.gov (United States)

    Ream, J. B.

    2011-12-01

    How to effectively teach science in a classroom setting has long been a topic of discussion. Teachers are given specific guidelines on what to teach in the school curriculum and outreach programs are commonly used to help teach science in classrooms through demonstrations and other activities. However, a growing number of people are taking their children out of traditional schools and choosing instead to teach them in their own homes. Statistics show that between 1999 and 2007, the number of homeschoolers rose from 850,000 to 1.5 million [National Center for Education Statistics July 2004, Dec 2008]. For many of these families, math and science are difficult subjects to teach because the parents do not know how to convey the ideas to their children in an engaging way. This is made more difficult because the parents themselves are not engaged. Classroom demonstrations and hands-on activities are a very effective ways to teach science concepts while showing that science itself can be fun and exciting but demonstrations do not typically include homeschooling families and in many cases doing the experiments on their own is not an option due to availability and cost of the materials. In this presentation we will discuss some ways to make demonstrations and hands-on activities more accessible to homeschooling families as well as looking at various ways of overcoming difficulties when teaching science in the home. References Princiotta, D., Bielick, S., and Chapman, C. (2004). 1.1 Million Homeschooled Students in the United States in 2003 (NCES 2004-115). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, D.C. Bielick S. (2008) 1.5 Million Homeschooled Students in the United States in 2007 (NCES 2009-030). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, D.C.

  17. Teaching Social Science Research Methods to Undergraduate Medical Students: The State of the Art and Opportunities for Practice and Curriculum Development

    Science.gov (United States)

    Forrest, Simon

    2017-01-01

    There is an expectation that medical students in the UK will be able to demonstrate conversancy with social science relevant to medicine and health, including the means by which the relevant bodies of knowledge are generated through the use of social science research methods. This paper explores the structural and pedagogical challenges and…

  18. The evolution of global health teaching in undergraduate medical curricula.

    Science.gov (United States)

    Rowson, Mike; Smith, Abi; Hughes, Rob; Johnson, Oliver; Maini, Arti; Martin, Sophie; Martineau, Fred; Miranda, J Jaime; Pollit, Vicki; Wake, Rae; Willott, Chris; Yudkin, John S

    2012-11-13

    Since the early 1990s there has been a burgeoning interest in global health teaching in undergraduate medical curricula. In this article we trace the evolution of this teaching and present recommendations for how the discipline might develop in future years. Undergraduate global health teaching has seen a marked growth over the past ten years, partly as a response to student demand and partly due to increasing globalization, cross-border movement of pathogens and international migration of health care workers. This teaching has many different strands and types in terms of topic focus, disciplinary background, the point in medical studies in which it is taught and whether it is compulsory or optional. We carried out a survey of medical schools across the world in an effort to analyse their teaching of global health. Results indicate that this teaching is rising in prominence, particularly through global health elective/exchange programmes and increasing teaching of subjects such as globalization and health and international comparison of health systems. Our findings indicate that global health teaching is moving away from its previous focus on tropical medicine towards issues of more global relevance. We suggest that there are three types of doctor who may wish to work in global health - the 'globalised doctor', 'humanitarian doctor' and 'policy doctor' - and that each of these three types will require different teaching in order to meet the required competencies. This teaching needs to be inserted into medical curricula in different ways, notably into core curricula, a special overseas doctor track, optional student selected components, elective programmes, optional intercalated degrees and postgraduate study. We argue that teaching of global health in undergraduate medical curricula must respond to changing understandings of the term global health. In particular it must be taught from the perspective of more disciplines than just biomedicine, in order to reflect

  19. The evolution of global health teaching in undergraduate medical curricula

    Science.gov (United States)

    2012-01-01

    Background Since the early 1990s there has been a burgeoning interest in global health teaching in undergraduate medical curricula. In this article we trace the evolution of this teaching and present recommendations for how the discipline might develop in future years. Discussion Undergraduate global health teaching has seen a marked growth over the past ten years, partly as a response to student demand and partly due to increasing globalization, cross-border movement of pathogens and international migration of health care workers. This teaching has many different strands and types in terms of topic focus, disciplinary background, the point in medical studies in which it is taught and whether it is compulsory or optional. We carried out a survey of medical schools across the world in an effort to analyse their teaching of global health. Results indicate that this teaching is rising in prominence, particularly through global health elective/exchange programmes and increasing teaching of subjects such as globalization and health and international comparison of health systems. Our findings indicate that global health teaching is moving away from its previous focus on tropical medicine towards issues of more global relevance. We suggest that there are three types of doctor who may wish to work in global health – the ‘globalised doctor’, ‘humanitarian doctor’ and ‘policy doctor’ – and that each of these three types will require different teaching in order to meet the required competencies. This teaching needs to be inserted into medical curricula in different ways, notably into core curricula, a special overseas doctor track, optional student selected components, elective programmes, optional intercalated degrees and postgraduate study. Summary We argue that teaching of global health in undergraduate medical curricula must respond to changing understandings of the term global health. In particular it must be taught from the perspective of more

  20. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  1. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  2. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  3. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  4. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  5. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Teaching about genetic testing issues in the undergraduate classroom: a case study.

    Science.gov (United States)

    Rogers, Jill Cellars; Taylor, Ann T S

    2011-06-01

    Educating undergraduates about current genetic testing and genomics can involve novel and creative teaching practices. The higher education literature describes numerous pedagogical approaches in the laboratory designed to engage science and liberal arts students. Often these experiences involve students analyzing their own genes for various polymorphisms, some of which are associated with disease states such as an increased risk for developing cancer. While the literature acknowledges possible ethical ramifications of such laboratory exercises, authors do not present recommendations or rubrics for evaluating whether or not the testing is, in fact, ethical. In response, we developed a laboratory investigation and discussion which allowed undergraduate science students to explore current DNA manipulation techniques to isolate their p53 gene, followed by a dialogue probing the ethical implications of examining their sample for various polymorphisms. Students never conducted genotyping on their samples because of ethical concerns, so the discussion served to replace actual genetic testing in the class. A basic scientist led the laboratory portion of the assignment. A genetic counselor facilitated the discussion, which centered around existing ethical guidelines for clinical genetic testing and possible challenges of human genotyping outside the medical setting. In their final papers, students demonstrated an understanding of the practice guidelines established by the genetics community and acknowledged the ethical considerations inherent in p53 genotyping. Given the burgeoning market for personalized medicine, teaching undergraduates about the psychosocial and ethical dimensions of human gene testing seems important and timely, and introduces an additional role genetic counselors can play in educating consumers about genomics.

  7. Portable Planetariums Teach Science

    Science.gov (United States)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  8. Teaching Data Science

    OpenAIRE

    Brunner, Robert J.; Kim, Edward J.

    2016-01-01

    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of ...

  9. Teaching Tectonics to Undergraduates with Web GIS

    Science.gov (United States)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  10. Fostering Change from Within: Influencing Teaching Practices of Departmental Colleagues by Science Faculty with Education Specialties

    Science.gov (United States)

    2016-01-01

    Globally, calls for the improvement of science education are frequent and fervent. In parallel, the phenomenon of having Science Faculty with Education Specialties (SFES) within science departments appears to have grown in recent decades. In the context of an interview study of a randomized, stratified sample of SFES from across the United States, we discovered that most SFES interviewed (82%) perceived having professional impacts in the realm of improving undergraduate science education, more so than in research in science education or K-12 science education. While SFES reported a rich variety of efforts towards improving undergraduate science education, the most prevalent reported impact by far was influencing the teaching practices of their departmental colleagues. Since college and university science faculty continue to be hired with little to no training in effective science teaching, the seeding of science departments with science education specialists holds promise for fostering change in science education from within biology, chemistry, geoscience, and physics departments. PMID:26954776

  11. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    Science.gov (United States)

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  12. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  13. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  14. Indian Institute of Science-Undergraduate Programme: Admissions ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Indian Institute of Science - Undergraduate Programme: Admissions for 2015. Information and Announcements Volume 20 Issue 2 February 2015 pp 186-186. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Connecting undergraduate science education with the needs of today's graduates.

    Science.gov (United States)

    Callier, Viviane; Singiser, Richard H; Vanderford, Nathan L

    2014-01-01

    Undergraduate science programs are not providing graduates with the knowledgebase and skills they need to be successful on today's job market. Curricular changes relevant to today's marketplace and more opportunities for internships and work experience during students' secondary education would facilitate a smoother transition to the working world and help employers find graduates that possess both the hard and soft skills needed in the workplace. In this article, we discuss these issues and offer solutions that would generate more marketplace-ready undergraduates.

  16. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  17. Evaluation of Undergraduate Teaching at Institutions of Higher Education in China: Problems and Reform

    Science.gov (United States)

    Yukun, Chen

    2009-01-01

    This paper reviews the achievements of the first cycle of undergraduate teaching evaluation at institutions of higher education in China. Existing problems are identified, and suggestions are made for corresponding reforms for improving the standard and quality of China's undergraduate teaching evaluation.

  18. Undergraduates Achieve Learning Gains in Plant Genetics through Peer Teaching of Secondary Students

    Science.gov (United States)

    Chrispeels, H. E.; Klosterman, M. L.; Martin, J. B.; Lundy, S. R.; Watkins, J. M.; Gibson, C. L.; Muday, G. K.

    2014-01-01

    This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non-majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS)…

  19. Chinese Undergraduates' Perceptions of Teaching Quality and the Effects on Approaches to Studying and Course Satisfaction

    Science.gov (United States)

    Yin, Hongbiao; Wang, Wenlan; Han, Jiying

    2016-01-01

    The quality of undergraduate teaching is an issue under heated dispute in China. This study examined Chinese undergraduate students' perceptions of teaching quality and the effects on their approaches to studying and course satisfaction. A sample of 2,043 students from two full-time universities in mainland China responded to a questionnaire…

  20. Undergraduate Research or Research-Based Courses: Which Is Most Beneficial for Science Students?

    Science.gov (United States)

    Olivares-Donoso, Ruby; González, Carlos

    2017-06-01

    Over the last 25 years, both research literature and practice-oriented reports have claimed the need for improving the quality of undergraduate science education through linking research and teaching. Two manners of doing this are reported: undergraduate research and research-based courses. Although there are studies reporting benefits of participating in these experiences, few synthesize their findings. In this article, we present a literature review aimed at synthesizing and comparing results of the impact of participating in these research experiences to establish which approach is most beneficial for students to develop as scientists. Twenty studies on student participation in undergraduate research and research-based courses were reviewed. Results show that both types of experiences have positive effects on students. These results have implications for both practice and research. Regarding practice, we propose ideas for designing and implementing experiences that combine both types of experiences. Concerning research, we identify some methodological limitations that should be addressed in further studies.

  1. Teaching medical ethics to undergraduate students in post-apartheid South Africa, 2003 2006.

    Science.gov (United States)

    Moodley, Keymanthri

    2007-11-01

    The apartheid ideology in South Africa had a pervasive influence on all levels of education including medical undergraduate training. The role of the health sector in human rights abuses during the apartheid era was highlighted in 1997 during the Truth and Reconciliation Commission hearings. The Health Professions Council of South Africa (HPCSA) subsequently realised the importance of medical ethics education and encouraged the introduction of such teaching in all medical schools in the country. Curricular reform at the University of Stellenbosch in 1999 presented an unparalleled opportunity to formally introduce ethics teaching to undergraduate students. This paper outlines the introduction of a medical ethics programme at the Faculty of Health Sciences from 2003 to 2006, with special emphasis on the challenges encountered. It remains one of the most comprehensive undergraduate medical ethics programmes in South Africa. However, there is scope for expanding the curricular time allocated to medical ethics. Integrating the curriculum both horizontally and vertically is imperative. Implementing a core curriculum for all medical schools in South Africa would significantly enhance the goals of medical education in the country.

  2. Teaching medical ethics to undergraduate students in post‐apartheid South Africa, 2003–2006

    Science.gov (United States)

    Moodley, Keymanthri

    2007-01-01

    The apartheid ideology in South Africa had a pervasive influence on all levels of education including medical undergraduate training. The role of the health sector in human rights abuses during the apartheid era was highlighted in 1997 during the Truth and Reconciliation Commission hearings. The Health Professions Council of South Africa (HPCSA) subsequently realised the importance of medical ethics education and encouraged the introduction of such teaching in all medical schools in the country. Curricular reform at the University of Stellenbosch in 1999 presented an unparalleled opportunity to formally introduce ethics teaching to undergraduate students. This paper outlines the introduction of a medical ethics programme at the Faculty of Health Sciences from 2003 to 2006, with special emphasis on the challenges encountered. It remains one of the most comprehensive undergraduate medical ethics programmes in South Africa. However, there is scope for expanding the curricular time allocated to medical ethics. Integrating the curriculum both horizontally and vertically is imperative. Implementing a core curriculum for all medical schools in South Africa would significantly enhance the goals of medical education in the country. PMID:17971474

  3. Perspectives on learning, learning to teach and teaching elementary science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2003-01-01

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and

  4. Undergraduate teaching in geriatric medicine: mapping the British Geriatrics Society undergraduate curriculum to Tomorrow's Doctors 2009.

    Science.gov (United States)

    Forrester-Paton, Calum; Forrester-Paton, Jayne; Gordon, Adam Lee; Mitchell, Hannah K; Bracewell, Nicola; Mjojo, Jocelyn; Masud, Tahir; Gladman, John R F; Blundell, Adrian

    2014-05-01

    in 2008, the British Geriatrics Society (BGS) developed the Recommended Undergraduate Curriculum in Geriatric Medicine. This was subsequently mapped to the second edition of Tomorrows' Doctors (TD2, 2003). Following the publication of the third edition of Tomorrow's Doctors in 2009 (TD3), the mapping exercise was repeated to verify the extent to which the updated General Medical Council recommendations supported teaching in ageing and geriatric medicine. we analysed TD3 and identified 48 aspects of its general guidance that were relevant to the teaching of medicine for older people. We then mapped these to the 2009 BGS curriculum. the BGS curriculum was supported in full by TD3. However, learning outcomes relating to the interpretation and conduct of research in TD3 had no corresponding outcomes in the BGS curriculum. the BGS curriculum for medical undergraduates continues to provide a specific and complete list of learning objectives, all of which could help to operationalise the general statements made in TD3 with relation to ageing and geriatric medicine. Learning outcomes in research in frail older patients have been added following this mapping exercise.

  5. Teaching Strategies for Personality Assessment at the Undergraduate Level.

    Science.gov (United States)

    Roche, Michael J; Jacobson, Nicholas C; Roche, Carley A

    2017-01-01

    Personality assessment is a crucial component of clinical practice, and the training and proficiency criteria to develop competence are complex and multifaceted. Like many advanced topics, the field of personality assessment would benefit from early exposure in undergraduate classroom settings. This research evaluates how an undergraduate personality course can be enhanced through 2 enrichment activities (self-assessments and a personality project). Students completed several self-assessments of their personality and wrote a comprehensive and integrative personality assessment about themselves. Results demonstrated that these activities increased interest in personality assessment, deepened understanding of course material, and promoted student growth and self-exploration. We discuss the benefits of these enrichment activities for the student, instructor, and field of personality science.

  6. Validating the effectiveness of Clinically Oriented Physiology Teaching (COPT in undergraduate physiology curriculum

    Directory of Open Access Journals (Sweden)

    Ramnarayan Komattil

    2008-07-01

    Full Text Available Abstract Background It has been proved that basic science knowledge learned in the context of a clinical case is actually better comprehended and more easily applied by medical students than basic science knowledge learned in isolation. The present study intended to validate the effectiveness of Clinically Oriented Physiology Teaching (COPT in undergraduate medical curriculum at Melaka Manipal Medical College (Manipal Campus, Manipal, India. Methods COPT was a teaching strategy wherein, students were taught physiology using cases and critical thinking questions. Three batches of undergraduate medical students (n = 434 served as the experimental groups to whom COPT was incorporated in the third block (teaching unit of Physiology curriculum and one batch (n = 149 served as the control group to whom COPT was not incorporated. The experimental group of students were trained to answer clinically oriented questions whereas the control group of students were not trained. Both the group of students undertook a block exam which consisted of clinically oriented questions and recall questions, at the end of each block. Results Comparison of pre-COPT and post-COPT essay exam scores of experimental group of students revealed that the post-COPT scores were significantly higher compared to the pre-COPT scores. Comparison of post-COPT essay exam scores of the experimental group and control group of students revealed that the experimental group of students performed better compared to the control group. Feedback from the students indicated that they preferred COPT to didactic lectures. Conclusion The study supports the fact that assessment and teaching patterns should fall in line with each other as proved by the better performance of the experimental group of students compared to the control group. COPT was also found to be a useful adjunct to didactic lectures in teaching physiology.

  7. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.

    Science.gov (United States)

    Danielson, Kathryn I; Tanner, Kimberly D

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. In Brief: Science teaching certificate

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  9. "Caenorhabditis Elegans" as an Undergraduate Educational Tool for Teaching RNAi

    Science.gov (United States)

    Andersen, Janet; Krichevsky, Alexander; Leheste, Joerg R.; Moloney, Daniel J.

    2008-01-01

    Discovery of RNA-mediated interference (RNAi) is widely recognized as one of the most significant molecular biology breakthroughs in the past 10 years. There is a need for science educators to develop teaching tools and laboratory activities that demonstrate the power of this new technology and help students to better understand the RNAi process.…

  10. Using Feature Films to Teach Observation in Undergraduate Research Methods

    Science.gov (United States)

    Tan, JooEan; Ko, Yiu-Chung

    2004-01-01

    Observation is an important component of data collection that forms the basis of a great deal of qualitative research and is also a building block for theorizing in sociology. This dimension of social science research is perhaps the most difficult to teach because there are no fixed guidelines to follow that can enable one to become an effective…

  11. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  12. Organ procurement: should we teach undergraduate medical and nursing students?

    Science.gov (United States)

    Korjian, Serge; Daaboul, Yazan; Stephan, Antoine; Aoun Bahous, Sola

    2015-04-01

    Organ procurement and transplant improve health outcomes among patients with organ failure. Although many strategies have been developed to overcome the organ shortage, the worldwide rates of organ donation remain suboptimal. The lack of commitment to the health care mission of organ donation and the limited expertise of health care professionals reflect 2 major barriers to organ procurement and raise the need to teach organ procurement to health care professionals early during their undergraduate education. To accommodate the various available curricular models and to develop a homogeneous and equitable teaching methodology irrespective of the adopted design, an early step is to set clear goals and objectives for an organ procurement program. Outcomes should be matched to different academic levels and tailored to the duration of each medical and nursing curriculum. In all cases, hands-on experience leads to a better understanding of the topic, especially with the advent of simulation techniques that may be useful for training as well as testing purposes. An effective program finally requires that attainment of objectives and outcomes are systematically tested using proper evaluation tools that adequately pair with the curricular design. In conclusion, organ procurement teaching should adopt a systematic evidence-based approach that simultaneously contributes to medical and nursing education and improves organ donation rates.

  13. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    Science classes for non-science majors present unique opportunities to create lifelong science aficionados and teach citizenship skills. Because no specific content is needed for future courses, subject matter can be selected to maximize interest and assignments can be focused on life skills such as science literacy instead of discipline-specific content mastery. Dinosaurs! is a very successful non-major science class with a minimum enrollment of 150 that is intended for sophomores. One of the goals of this class is to increase students' awareness of social issues, the political process, and opportunities for keeping up with science later in life. The main theme of this class is evolution. The bird-dinosaur link is the perfect vehicle for illustrating the process of science because the lines of evidence are many, convincing, and based on discoveries made throughout the last half-century and continuing to the present day. The course is also about evolution the social issue. The second writing assignment is an in-class affective writing based on a newspaper article about the Dover, PA court case. The primary purpose of this assignment is to create a comfort zone for those students with strong ideological biases against evolution by allowing them to express their views without being judged, and to instill tolerance and understanding in students at the other end of the spectrum. Another homework uses thomas.loc.gov, the government's public website providing information about all legislation introduced since the 93rd Congress and much more. The assignment highlights the difficulty of passing legislation and the factors that contribute to a given bill's legislative success or failure using the Paleontological Resources Preservation Act, S320. Details of these assignments and others designed to achieve the goals stated above will be presented. A very different undergraduate program, Marine Discovery, offers science majors the opportunity to earn upper division science

  14. How are we assessing near-peer teaching in undergraduate health professional education? A systematic review.

    Science.gov (United States)

    Irvine, Susan; Williams, Brett; McKenna, Lisa

    2017-03-01

    Near Peer teaching (NPT) is reported as an effective pedagogical approach to student learning and performance. Studies in medicine, nursing and health sciences have relied mainly on self-reports to describe its benefits, focusing on psychomotor and cognitive aspects of learning. Despite increasing research reports on peer teaching internationally, little is known about the various domains of learning used in assessment of performance and objective learning outcomes of NPT. To determine the domains of learning and assessment outcomes used in NPT in undergraduate health professional education. Quantitative systematic review was conducted in accord with the PRISMA protocol and the Joanna Briggs Institute processes. A wide literature search was conducted for the period 1990-November 2015 of fourteen databases. Grey literature was undertaken from all key research articles. Studies meeting the inclusion criteria were eligible for consideration, including measured learning outcomes of near-peer teaching in undergraduate education in nursing, medicine and health sciences. Set limitations included publications after 1990 (2015 inclusive), English language and objective learning outcomes. A quality appraisal process involving two independent reviewers was used to analyse the data. Of 212 selected articles, 26 were included in the review. Terminology was confusing and found to be a barrier to the review process. Although some studies demonstrated effective learning outcomes resulting from near-peer teaching, others were inconclusive. Studies focused on cognitive and psychomotor abilities of learners with none assessing metacognition, affective behaviours or learning outcomes from quality of understanding. The studies reviewed focused on cognitive and psychomotor abilities of learners. Even though evidence clearly indicates that metacognition and affective behaviours have direct influence on learning and performance, indicating more research around this topic is warranted

  15. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  16. Use of Lecture Capture in Undergraduate Biological Science Education

    Science.gov (United States)

    Wiese, Candace; Newton, Genevieve

    2013-01-01

    This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F), gender, and year of post-secondary…

  17. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  18. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  19. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program.

    Science.gov (United States)

    Keen-Rhinehart, E; Eisen, A; Eaton, D; McCormack, K

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one's field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty.

  20. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Science.gov (United States)

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one’s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  1. Faculty Views on the Appropriateness of Teaching Undergraduate Psychology Courses Online

    Science.gov (United States)

    Mandernach, B. Jean; Mason, Teresa; Forrest, Krista D.; Hackathorn, Jana

    2012-01-01

    This study examines faculty views concerning the appropriateness of teaching specific undergraduate psychology courses in an online format. Faculty express concern about teaching methodology and counseling/clinical content courses online, but endorse teaching introductory and nonclinical content courses in either format; faculty report diverse…

  2. Undergraduate Geographers' Understandings of Geography, Learning and Teaching: A Phenomenographic Study

    Science.gov (United States)

    Bradbeer, John; Healey, Mick; Kneale, Pauline

    2004-01-01

    This paper uses phenomenography to identify undergraduates' conceptions of teaching, learning and geography and examine whether there are any differences between students in Australia, New Zealand, the United Kingdom and the United States. The paper shows that there are several distinct conceptions of teaching, learning and geography. Teaching is…

  3. Students' attitudes towards science and science learning in an introductory undergraduate biology course

    Science.gov (United States)

    Floro, Nicole

    Science education strives to cultivate individuals who understand scientific concepts as well as the nature of science and science learning. This study focused on the potential benefits of the flipped classroom on students' attitudes towards science and science learning. Our study investigated changes in and effects of students' attitudes towards science and science learning in a flipped introductory biology course at the University of Massachusetts Boston. We used The Colorado Learning Attitudes about Science Survey for Biology to assess students' attitudes at pre and post-instruction. We investigated the effect of a flipped classroom on students' attitudes towards science and science learning by measuring the impact of different teaching approaches (flipped vs. traditional lecture). Following the prior literature, we hypothesized that there would be a negative shift in students' attitudes over the semester in the traditional classroom and that this negative shift would not occur in the flipped. Our results showed there was no significant difference in the shift of students' attitudes between the traditional and flipped sections. We also examined the relationship between students' attitudes and academic performance. We hypothesized there would be a positive correlation between students' attitudes and their academic performance, as measured by exam average. In support of the prior literature, we found a significant positive correlation. Finally, we examined whether the relationship between students' attitudes and performance was mediated by learning behavior. Specifically, we considered if students with more favorable attitudes solved more on-line problems correctly and whether this aspect of problem solving was associated with greater achievement. We hypothesized there would be a positive correlation between attitudes and problem solving behavior as well as problem solving behavior and achievement. We did not find a significant correlation between attitudes and

  4. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  5. Mapping the level of scientific reasoning skills to instructional methodologies among Malaysian science-mathematics-engineering undergraduates

    Science.gov (United States)

    Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman

    2012-05-01

    The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other

  6. Science Literacy of Undergraduates in the United States

    Science.gov (United States)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  7. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students’ Ability to Read Research Articles

    Science.gov (United States)

    Lacum, Edwin B. Van; Goedhart, Martin J.

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach—based on the work done in the field of genre analysis and argumentation theory—means that we teach students to read research articles by teaching them which rhetorical moves occur in research articles and how they can identify these. Because research articles are persuasive by their very nature, we focused on the rhetorical moves that play an important role in authors’ arguments. We designed a teaching strategy using cognitive apprenticeship as the pedagogical approach. It was implemented in a first-year compulsory course in the life sciences undergraduate program. Comparison of the results of a pretest with those of the posttest showed that students’ ability to identify these moves had improved. Moreover, students themselves had also perceived that their ability to read and understand a research article had increased. The students’ evaluations demonstrated that they appreciated the pedagogical approach used and experienced the assignments as useful. On the basis of our results, we concluded that students had taken a first step toward becoming expert readers. PMID:26086657

  8. Challenging Ideals of Reciprocity in Undergraduate Teaching: The Unexpected Benefits of Unpredictable Cross-Cultural Fieldwork

    Science.gov (United States)

    Hammersley, Laura A.; Bilous, Rebecca H.; James, Sarah W.; Trau, Adam M.; Suchet-Pearson, Sandie

    2014-01-01

    Geographers are increasingly grappling with the theoretical and practical implications of integrating an ethics of reciprocity into undergraduate learning and teaching. This paper draws on the unexpected experiences of a third-year human geography research methods fieldtrip to examine the process of balancing undergraduate student learning and…

  9. The Teaching of Ethics in Undergraduate Accounting Programmes: The Students' Perspective

    Science.gov (United States)

    Graham, Alan

    2012-01-01

    This paper solicits the views of students in order to assess the goals and effectiveness of the teaching of ethics in undergraduate Accounting programmes. Using a survey and interviews, the opinions of second-year undergraduate students at a UK university were obtained. Their perception of the aims and importance of ethics and their preferred…

  10. Podcasting to Provide Teaching and Learning Support for an Undergraduate Module on English Language and Communication

    Science.gov (United States)

    Edirisingha, Palitha; Rizzi, Chiara; Nie, Ming; Rothwell, Libby

    2007-01-01

    This paper reports findings from research into the benefits of integrating podcasts into a first year undergraduate module on English Language and Communication at Kingston University. As part of a Faculty teaching and learning support scheme for first year undergraduates, six podcasts were developed to improve students' learning and study skills…

  11. The Impact of Teaching Communication Strategies on English Speaking of Engineering Undergraduates

    Science.gov (United States)

    Kongsom, Tiwaporn

    2016-01-01

    This study investigates the impact of teaching communication strategies on Thai engineering undergraduate students' communication strategy use and strategic competence. Fifty-seven engineering undergraduate students were taught ten communication strategies for ten weeks and responded to a self-report communication strategy questionnaire before and…

  12. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  13. Junior doctors and undergraduate teaching: the influence of gender on the provision of medical education.

    LENUS (Irish Health Repository)

    Prichard, David

    2012-02-01

    BACKGROUND: International experience has demonstrated that the medical profession is becoming less dominated by men. This "feminization of medicine" has been a topic of much debate in the medical literature. As the gender ratio in the profession changes, it is likely that a greater proportion of undergraduate education will be provided by women. Whether this shift away from the male-dominated provision of medical education will have an effect on undergraduate education is unknown. PURPOSE: The aim of this research was to clarify whether there are differences between the attitudes and practices of male and female junior doctors regarding the practice of undergraduate teaching. METHOD: A survey methodology among a cohort of nonconsultant hospital doctors in a major Irish teaching hospital was utilized. The overall response rate was 93%. The cohort held a positive attitude toward teaching undergraduates, and the majority were actively engaged in this activity. Doctors of both genders expressed a willingness to undertake teacher training. RESULTS: There were no significant differences between the genders regarding the self-reported quantity of teaching provided to undergraduates. Male doctors perceived themselves as more confident educators when compared to female doctors, but this is likely to reflect cohort demographics in which a greater proportion of male doctors were more senior. CONCLUSIONS: This study demonstrates that male and female doctors have similar attitudes toward, and practices in, voluntary undergraduate teaching. As a result, any gender shift in medicine is unlikely to result in a significant change in junior doctors\\' attitudes toward undergraduate medical education.

  14. Junior doctors and undergraduate teaching: the influence of gender on the provision of medical education.

    Science.gov (United States)

    Prichard, David; Collins, Niamh; Boohan, Mairead; Wall, Catherine

    2011-04-01

    International experience has demonstrated that the medical profession is becoming less dominated by men. This "feminization of medicine" has been a topic of much debate in the medical literature. As the gender ratio in the profession changes, it is likely that a greater proportion of undergraduate education will be provided by women. Whether this shift away from the male-dominated provision of medical education will have an effect on undergraduate education is unknown. The aim of this research was to clarify whether there are differences between the attitudes and practices of male and female junior doctors regarding the practice of undergraduate teaching. A survey methodology among a cohort of nonconsultant hospital doctors in a major Irish teaching hospital was utilized. The overall response rate was 93%. The cohort held a positive attitude toward teaching undergraduates, and the majority were actively engaged in this activity. Doctors of both genders expressed a willingness to undertake teacher training. There were no significant differences between the genders regarding the self-reported quantity of teaching provided to undergraduates. Male doctors perceived themselves as more confident educators when compared to female doctors, but this is likely to reflect cohort demographics in which a greater proportion of male doctors were more senior. This study demonstrates that male and female doctors have similar attitudes toward, and practices in, voluntary undergraduate teaching. As a result, any gender shift in medicine is unlikely to result in a significant change in junior doctors' attitudes toward undergraduate medical education.

  15. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    Science.gov (United States)

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  16. Methods of teaching the physics of climate change in undergraduate physics courses

    Science.gov (United States)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  17. Facilitating awareness of philosophy of science, ethics and communication through manual skills training in undergraduate education.

    Science.gov (United States)

    Kordahl, Hilde Lund; Fougner, Marit

    2017-03-01

    philosophy of science, ethics and communication. Our study will be an incitement to further develop a manual skills teaching program that incorporates philosophy of science, ethics and communication in undergraduate education.

  18. Articulating Learning Objectives for an Undergraduate Teaching Assistant Program: Merging Teaching Practicum, Leadership Seminar, and Service Learning

    Science.gov (United States)

    Murray, Jeffrey W.

    2015-01-01

    Since its inception in 2009, the Undergraduate Teaching Assistant Program (in the Department of Focused Inquiry at Virginia Commonwealth University) has evolved and expanded into an amalgamation of three distinct but overlapping elements: (i) teaching practicum, (ii) leadership seminar, and (iii) service learning experience. But only recently have…

  19. Undergraduate Computer Science and Engineering Curriculum in India

    OpenAIRE

    Rajaraman, Vaidyeswaran

    1993-01-01

    The undergraduate computer science and engineering degree in India is a professional engineering degree and follows the general structure of other engineering degree programs. It aims to provide a good breadth in basic engineering and 50% of the curriculum in common with all engineering disciplines. The curriculum has a strong electrical engineering bias. At present there is no formal accreditation of engineering programs in India and each university is expected to maintain their own standard...

  20. The relevance of basic sciences in undergraduate medical education.

    Science.gov (United States)

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  1. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin...

  2. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  3. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    Directory of Open Access Journals (Sweden)

    Haim Eshach

    2013-04-01

    Full Text Available Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS. The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story, showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  4. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    The main purpose of the study was to explore pre-service secondary science teachers' self-efficacy beliefs regarding science teaching. The study also compared pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational level. Data were collected by administering the science ...

  5. Science teachers and docents as mentors to science and mathematics undergraduates in formal and information settings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koran, J.J. Jr. [Florida Museum of Natural History, Gainesville, FL (United States)

    1993-10-15

    Twenty-four undergraduate science and mathematics majors who were juniors and seniors in the colleges of Liberal Arts and Sciences and Engineering were recruited, and paid, to participate in an orientation seminar and act as teacher aides in regional schools and the Florida Museum of Natural History. Aides worked with teachers in the schools one semester and as docents in the natural history museum a second semester. Mentoring took place by the principal investigator and participating teachers and docents throughout the program. Success of the program was measured by a specially prepared attitude instrument which was administered to participants before the mentoring started and when it ended each semester. Written logs (field notes) were also prepared and submitted by participants at the end of each semester. Further, a tally was kept of the number of participants who decided to go into science or mathematics teaching as a result of the experience.

  6. Teaching advanced science concepts through Freshman Research Immersion

    Science.gov (United States)

    Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.

    2017-03-01

    We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.

  7. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    Science.gov (United States)

    Niemeyer, H

    1986-01-01

    teaching undergraduate students in sciences. Teachers in graduate programs should be qualified active researchers. 4. The creation is proposed of a Consejo Nacional de Universidades (National Council of Universities), to be autonomous and composed primarily of outstanding scientists. One of the main functions of this Council would be to licence universities to grant undergraduate and graduate academic degrees in science. 5. The Sociedad de Biología de Chile must maintain an interest in the evaluation of undergraduate and graduate studies in life sciences.

  8. Clinical medical sciences for undergraduate dental students in the United Kingdom and Ireland - a curriculum.

    LENUS (Irish Health Repository)

    Mighell, A J

    2011-08-01

    The technical aspects of dentistry need to be practised with insight into the spectrum of human diseases and illnesses and how these impact upon individuals and society. Application of this insight is critical to decision-making related to the planning and delivery of safe and appropriate patient-centred healthcare tailored to the needs of the individual. Provision for the necessary training is included in undergraduate programmes, but in the United Kingdom and Ireland there is considerable variation between centres without common outcomes. In 2009 representatives from 17 undergraduate dental schools in the United Kingdom and Ireland agreed to move towards a common, shared approach to meet their own immediate needs and that might also be of value to others in keeping with the Bologna Process. To provide a clear identity the term \\'Clinical Medical Sciences in Dentistry\\' was agreed in preference to other names such as \\'Human Disease\\' or \\'Medicine and Surgery\\'. The group was challenged to define consensus outcomes. Contemporary dental education documents informed, but did not drive the process. The consensus curriculum for undergraduate Clinical Medical Sciences in Dentistry teaching agreed by the participating centres is reported. Many of the issues are generic and it includes elements that are likely to be applicable to others. This document will act as a focus for a more unified approach to the outcomes required by graduates of the participating centres and act as a catalyst for future developments that ultimately aim to enhance the quality of patient care.

  9. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    Science.gov (United States)

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  10. A survey of undergraduate orthodontic teaching and factors affecting pursuit of postgraduate training.

    Science.gov (United States)

    Jauhar, P; Mossey, P A; Popat, H; Seehra, J; Fleming, P S

    2016-10-21

    Background Undergraduate orthodontic teaching has been focused on developing an understanding of occlusal development in an effort to equip practitioners to make appropriate referrals for specialist-delivered care. However, there is a growing interest among general dentists in delivering more specialised treatments, including short-term orthodontic alignment. This study aimed to assess the levels of knowledge of occlusal problems among final year undergraduate dental students, as well as their interest in various orthodontics techniques and training.Methods A 36-item electronic questionnaire was sent to all final year undergraduate students in four dental institutes in the UK (Barts and the London, Kings College London, Cardiff and Dundee). The questionnaire explored satisfaction with undergraduate orthodontic teaching; students' perception of knowledge, based on General Dental Council learning outcomes; perceptions of the need for specialist involvement in the management of dental problems; interest in further training in orthodontics; and potential barriers to undertaking specialist training.Results The overall response rate was 66% (239/362). The majority of students (84.1%) were aware of GDC guidance in terms of undergraduate teaching. Students reported a preference for case-based and practical teaching sessions in orthodontics, with less interest in lectures or problem-based learning approaches. A high percentage were interested in further teaching in interceptive orthodontics (60.3%) and fixed appliance therapy (55.7%). Further training including specialist orthodontic training (36.4%), Invisalign (59%) and Six Month Smiles (41%) courses appealed to undergraduates. Levels of student debt, course fees and geographical issues were seen as potential barriers to formal, specialist training pathways.Conclusions Satisfaction with undergraduate orthodontic teaching is high and interest in further training, including specialist training pathways, continues to be high

  11. The Pattern of History of Psychology Teaching on British Undergraduate Psychology Courses

    Science.gov (United States)

    Richards, Graham

    2005-01-01

    Teaching of History of Psychology is likely to become increasingly important as the British Psychological Society's 2002 guidelines for approved undergraduate courses are implemented. Results of a survey of History of Psychology teaching during the academic year 1999-2000 are summarised and discussed in the light of these new requirements. While…

  12. Enhancing an Undergraduate Business Statistics Course: Linking Teaching and Learning with Assessment Issues

    Science.gov (United States)

    Fairfield-Sonn, James W.; Kolluri, Bharat; Rogers, Annette; Singamsetti, Rao

    2009-01-01

    This paper examines several ways in which teaching effectiveness and student learning in an undergraduate Business Statistics course can be enhanced. First, we review some key concepts in Business Statistics that are often challenging to teach and show how using real data sets assist students in developing deeper understanding of the concepts.…

  13. Teaching Quantified Self methods to health care undergraduates : 18-19 september

    NARCIS (Netherlands)

    Dr. Martijn de Groot

    2015-01-01

    Breakout session at Quantified Self Conference, 18-19 September 2015, Amsterdam. We’ll share highlights of our three years of experience in teaching n=1 and self-experimentation to allied health care and nursing undergraduates. We’d love to hear what kind of QS teaching you are doing or what ideas

  14. From Teaching to Learning--a New Paradigm for Undergraduate Education.

    Science.gov (United States)

    Barr, Robert B.; Tagg, John

    1995-01-01

    Two alternative paradigms for undergraduate education are compared; one holds teaching as its purpose, the other learning. The natures of the two paradigms are examined on the following dimensions: mission and purposes, criteria for success, teaching and learning structures, underlying learning theory, concepts of productivity and methods of…

  15. Revisiting the Art of Undergraduate Teaching in Higher Education: One Person's Journey towards Enlightenment

    Science.gov (United States)

    Douglas, Max E.

    2014-01-01

    The purpose of this article is to offer reflections regarding teaching undergraduate students spanning a forty-five year career in higher education. The author discusses his teaching philosophy coupled with his perspective focusing on the "best" pedagogical practices that he has used to enhance student learning. The selected methods are…

  16. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  17. Teaching Web Application Development: A Case Study in a Computer Science Course

    Science.gov (United States)

    Del Fabro, Marcos Didonet; de Alimeda, Eduardo Cunha; Sluzarski, Fabiano

    2012-01-01

    Teaching web development in Computer Science undergraduate courses is a difficult task. Often, there is a gap between the students' experiences and the reality in the industry. As a consequence, the students are not always well-prepared once they get the degree. This gap is due to several reasons, such as the complexity of the assignments, the…

  18. The Art of Talking about Science: Beginning to Teach Physiology Students How to Communicate with Nonscientists

    Science.gov (United States)

    Petzold, Andrew M.; Dunbar, Robert L.

    2018-01-01

    The ability to clearly disseminate scientific knowledge is a skill that is necessary for any undergraduate student within the sciences. Traditionally, this is accomplished through the instruction of scientific presentation or writing with a focus on peer-to-peer communication at the expense of teaching communication aimed at a nonscientific…

  19. A Model of Effective Teaching in Arts, Humanities, and Social Sciences

    Science.gov (United States)

    Tahir, Khazima; Ikram, Hamid; Economos, Jennifer; Morote, Elsa-Sophia; Inserra, Albert

    2017-01-01

    The purpose of this study was to examine how graduate students with undergraduate majors in arts, humanities, and social sciences perceived individualized consideration, Student-Professor Engagement in Learning (SPEL), intellectual stimulation, and student deep learning, and how these variables predict effective teaching. A sample of 251 graduate…

  20. Magnetism Teaching Sequences Based on an Inductive Approach for First-Year Thai University Science Students

    Science.gov (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Arayathanitkul, Kwan; Cowie, Bronwen

    2010-01-01

    The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after…

  1. Self-Reported Learning from Co-Teaching Primary Science Lessons to Peers at University

    Science.gov (United States)

    Hudson, Peter; Nykvist, Shaun; Mukherjee, Michelle

    2016-01-01

    Universities are challenged continuously in reviews to improve teacher education, which includes providing substantial theory-practice connections for undergraduates. This study investigated second year preservice teachers' (n = 48) self-reported learning as a result of co-teaching primary science to their peers within the university setting. From…

  2. Astrobites: Engaging Undergraduate Science Majors with Current Astrophysical Research

    Science.gov (United States)

    Zevin, Michael; Astrobites

    2017-01-01

    Astrobites is a graduate-student organization that publishes an online astrophysical literature blog (astrobites.com). The purpose of the site is to make current astrophysical research accessible to and exciting for undergraduate physical science majors and astronomy enthusiasts, and the site now hosts an archive of over 1300 posts summarizing recent astrophysical research. In addition, Astrobites presents posts on career guidance, practical 'how-to' articles, conference summaries, and astronomy news. Astrobites has an average of more than 1000 pageviews per day and reaches not only its target audience of undergraduates, but also graduate students and professionals within astronomy, astronomy enthusiasts, and educators. As we enter our seventh year of successful blogging, we share here the most up-to-date summary of our organization, readership, and growth.

  3. Science and ecological literacy in undergraduate field studies education

    Science.gov (United States)

    Mapp, Kim J.

    There is an ever-increasing number of issues that face our world today; from climate change, water and food scarcity, to pollution and resource extraction. Science and ecology play fundamental roles in these problems, and yet the understanding of these fields is limited in our society (Miller, 2002; McBride, Brewer, Berkowitz, and Borrie, 2013). Across the nation students are finishing their undergraduate degrees and are expected to enter the workforce and society with the skills needed to succeed. The deficit of science and ecological literacy in these students has been recognized and a call for reform begun (D'Avanzo, 2003 and NRC, 2009). This mixed-methods study looked at how a field studies course could fill the gap of science and ecological literacy in undergraduates. Using grounded theory, five key themes were data-derived; definitions, systems thinking, human's role in the environment, impetus for change and transference. These themes where then triangulated for validity and reliability through qualitative and quantitative assessments. A sixth theme was also identified, the learning environment. Due to limited data to support this themes' development and reliability it is discussed in Chapter 5 to provide recommendations for further research. Key findings show that this field studies program influenced students' science and ecological literacy through educational theory and practice.

  4. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  5. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    Science.gov (United States)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will

  6. Graduate and undergraduate students’ reaction to the teaching procedures used in semipresential classes

    Directory of Open Access Journals (Sweden)

    Henry Maia Peixoto

    2013-12-01

    Full Text Available The objective of this study was to investigate the reactions of undergraduate and graduate students to the teaching procedures used in semipresential classes. This exploratory study was performed with a quantitative approach at a public university, with undergraduate and graduate students who had completed semipresential classes on health promotion education. Among the 19 evaluated teaching procedures, 15 (78.9% did not show any statistically significant differences between the two academic levels. The means and medians for most variables, for both undergraduate (78.9% and graduate (89.5% students, were above 7 in a scale ranging between 0 (awful and 10 (excellent. Therefore, it is concluded that both groups showed similar reactions to the teaching procedures and gave satisfactory opinions in this regard. Understanding these aspects can support designing class disciplines that use teaching procedures that are adequate to university students. Descriptors: Education, Distance; Education, Higher; Learning; Educational Measurement.

  7. How diverse are physics instructors’ attitudes and approaches to teaching undergraduate level quantum mechanics?

    Science.gov (United States)

    Siddiqui, Shabnam; Singh, Chandralekha

    2017-05-01

    Understanding instructors’ attitudes and approaches to teaching undergraduate-level quantum mechanics can be helpful in developing effective instructional tools to help students learn quantum mechanics. Here we discuss the findings from a survey in which 12 university faculty members reflected on various issues related to undergraduate-level quantum mechanics teaching and learning. Topics included faculty members’ thoughts on the goals of a college quantum mechanics course, general challenges in teaching the subject matter, students’ preparation for the course, views about foundational issues and the difficulty in teaching certain topics, reflection on their own learning of quantum mechanics when they were students versus how they teach it to their students and the extent to which they incorporate contemporary topics into their courses. The findings related to instructors’ attitudes and approaches discussed here can be useful in improving teaching and learning of quantum mechanics.

  8. How diverse are physics instructors’ attitudes and approaches to teaching undergraduate level quantum mechanics?

    International Nuclear Information System (INIS)

    Siddiqui, Shabnam; Singh, Chandralekha

    2017-01-01

    Understanding instructors’ attitudes and approaches to teaching undergraduate-level quantum mechanics can be helpful in developing effective instructional tools to help students learn quantum mechanics. Here we discuss the findings from a survey in which 12 university faculty members reflected on various issues related to undergraduate-level quantum mechanics teaching and learning. Topics included faculty members’ thoughts on the goals of a college quantum mechanics course, general challenges in teaching the subject matter, students’ preparation for the course, views about foundational issues and the difficulty in teaching certain topics, reflection on their own learning of quantum mechanics when they were students versus how they teach it to their students and the extent to which they incorporate contemporary topics into their courses. The findings related to instructors’ attitudes and approaches discussed here can be useful in improving teaching and learning of quantum mechanics. (paper)

  9. Teaching global public health in the undergraduate liberal arts: a survey of 50 colleges.

    Science.gov (United States)

    Hill, David R; Ainsworth, Robert M; Partap, Uttara

    2012-07-01

    Undergraduate public health and global health studies are usually found at universities with graduate programs in the disciplines. Following the experience of teaching a short course in global health within the liberal arts, we reviewed global and public health offerings at 50 liberal arts colleges for the 2009-2010 academic year. Forty-two percent had a track, concentration, or program, and 30% had global or public health student organizations. All colleges listed at least one course in the fields, with the highest number in the social sciences. However, many colleges had not coordinated them into a theme. Values of a liberal arts education are found in the study of global and public health: social responsibility, critical thinking, ethical reasoning, and knowledge of the wider world. We propose identifying these programs within the undergraduate liberal arts as global public health. Capturing interest in global public health will enhance the curriculum and student experience.In this day and age, when the world is so fluid with regard to news and information, the knowledge that unnecessary deaths are occurring and that health care lags so far behind in some regions cannot be ignored. From the standpoint of basic human rights, suffering and inequity cannot be tolerated. Williams College student during a global health short course.

  10. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  11. Self-directed Learning Readiness Is Independent of Teaching and Learning Approach in Undergraduate Nursing Education.

    Science.gov (United States)

    Qamata-Mtshali, Nomawethu; Bruce, Judith C

    2017-12-29

    Selecting appropriate teaching and learning strategies within an overarching teaching philosophy is 1 way of influencing nursing students' self-directedness. We conducted research to compare the self-directed learning readiness and learning attributes in different years of study of undergraduate nursing students who are exposed to traditional, lecture-based learning and problem-based learning strategies. We found that readiness for self-directed learning is not dependent on the dominant teaching-learning strategy used in the nursing program.

  12. Science Teaching and Learning Activities and Students' Engagement in Science

    Science.gov (United States)

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  13. Teaching Computer Science Courses in Distance Learning

    Science.gov (United States)

    Huan, Xiaoli; Shehane, Ronald; Ali, Adel

    2011-01-01

    As the success of distance learning (DL) has driven universities to increase the courses offered online, certain challenges arise when teaching computer science (CS) courses to students who are not physically co-located and have individual learning schedules. Teaching CS courses involves high level demonstrations and interactivity between the…

  14. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  15. A pragmatic conception of science: Implications for science teaching

    Science.gov (United States)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  16. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  17. A Teaching Strategy with a Focus on Argumentation to Improve Undergraduate Students' Ability to Read Research Articles.

    Science.gov (United States)

    Van Lacum, Edwin B; Ossevoort, Miriam A; Goedhart, Martin J

    2014-01-01

    The aim of this study is to evaluate a teaching strategy designed to teach first-year undergraduate life sciences students at a research university how to learn to read authentic research articles. Our approach-based on the work done in the field of genre analysis and argumentation theory-means that we teach students to read research articles by teaching them which rhetorical moves occur in research articles and how they can identify these. Because research articles are persuasive by their very nature, we focused on the rhetorical moves that play an important role in authors' arguments. We designed a teaching strategy using cognitive apprenticeship as the pedagogical approach. It was implemented in a first-year compulsory course in the life sciences undergraduate program. Comparison of the results of a pretest with those of the posttest showed that students' ability to identify these moves had improved. Moreover, students themselves had also perceived that their ability to read and understand a research article had increased. The students' evaluations demonstrated that they appreciated the pedagogical approach used and experienced the assignments as useful. On the basis of our results, we concluded that students had taken a first step toward becoming expert readers. © 2014 E. B. Van Lacum et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Using videos, apps and hands-on experience in undergraduate hydrology teaching

    Science.gov (United States)

    Van Loon, Anne

    2016-04-01

    Hydrological sciences teaching always needs to make a link between the classroom and the outside world. This can be done with fieldwork and excursions, but the increasing availability of open educational resources gives more-and-more other options to make theory more understandable and applicable. In the undergraduate teaching of hydrology at the University of Birmingham we make use of a number of tools to enhance the hydrology 'experience' of students. Firstly, we add hydrological science videos available in the public domain to our explanations of theory. These are both visualisations of concepts and recorded demonstrations in the field or the lab. One example is the concept of catchments and travel times which has been excellently visualised by MetEd. Secondly, we use a number of mobile phone apps, which provide virtual reality information and real-time monitoring information. We use the MySoil App (by Natural Environment Research Council (NERC), British Geological Survey (BGS) and Centre for Ecology & Hydrology (CEH)) and iGeology / iGeology3D (by BGS) to let students explore soil properties and hydrogeology of an area of interest. And we use the River Levels App (by OGL based on Environment Agency real time data) for exploring real time river levels and investigating spatial variability. Finally, we developed small hands-on projects for students to apply the theory outside the classroom. We for instance let them do simple infiltration experiments and ask them to them design a measurement plan. Evaluations have shown that students enjoy these activities and that it helps their learning. In this presentation we hope to share our experience so that the options for using open (educational) resources for hydrology teaching become more used in linking the classroom to the outside world.

  19. Does the Pedagogy for the Teaching of First Year Undergraduate Laboratory Practicals Still Meet the Needs of the Curriculum?

    Directory of Open Access Journals (Sweden)

    Ann Hopper

    2014-06-01

    Full Text Available This work examines the teaching approach for chemistry laboratory practicals for first year undergraduate students to determine if the underpinning pedagogical strategy meets the requirements for these students for the remainder of their undergraduate programme. This is based on the knowledge, skills, content and learning outcomes for undergraduate chemistry courses. This work aims to enhance the first year experience of chemistry education by facilitating greater student engagement and “deeper” learning of relevant content during practical laboratory experiences by focusing on the learners’ needs. During this research, a survey of undergraduate science students from 2nd, 3rd and 4th years was carried out to determine if first year chemistry practicals facilitated the development of skills needed in further science education. It concluded that overall there was a positive response to first year laboratory practicals, that students engaged with them and felt they assisted with skills required for subsequent years of undergraduate study. Participants were most satisfied with the organic chemistry experiments while, for the physical/analytical chemistry experiments, the results obtained reiterated difficulties with mathematical calculations that are accepted as an issue in other aspects of third level STEM (Science, Technology, Engineering and Mathematics subjects. As a result of these findings, modifications that were made to the laboratory practical element included a pre-populated workbook supplied to the students and the introduction of pre-laboratory questions to be completed by each student before each session to reduce cognitive load and improve the students’ knowledge and understanding of 2 the purpose and potential outcomes of each laboratory practical. Also, the total first year chemistry syllabus was re-organised, as was the scheduling of the experiments to synchronise the theory lectures with the experiments as far as was

  20. An integrated literature review of undergraduate peer teaching in allied health professions

    Directory of Open Access Journals (Sweden)

    S van Vuuren

    2017-03-01

    Full Text Available Background. The concept of peer-assisted teaching or peer-assisted learning (PAL has been receiving more attention in the teaching of medical and allied health students. Many advantages have been described in the literature, but much more research is needed. Challenges with the academic platform at a specific institution of higher learning necessitate investigation into the current literature on PAL, which can inform decisions in terms of teaching and learning of allied health professions students. Objective. To critically appraise evidence of the effectiveness and implementation of PAL during the professional clinical skills training of undergraduate students in allied health professions to make informed future decisions on teaching and learning. Methods. A literature search was conducted by an experienced librarian in the Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa and the researcher in multiple electronic databases (MEDLINE, CINAHL, Africa-Wide Information, ERIC and PubMed published from 2000 to 2014. Results. One hundred and seventy-five articles on PAL in health professions training were identified. The selected articles (n=20 were independently critically appraised by two researchers by means of the standardised critical appraisal skills programme (CASP and the Author Manuscript of the National Institutes of Health on Appraising Quantitative Research in Health Education. Nine articles were identified to be reviewed (two by the same author. Conclusion. The findings with regard to the limited number of articles reviewed suggested that PAL may address some of the needs of the new generation of students and may be beneficial to the student tutor, student tutee and clinical supervisor. More evidence is needed in terms of the questions arising from the review, especially with regard to occupational therapy, dietetics and nutrition, and optometry, to fully implement PAL.

  1. College student perceptions of science teachers and the effect on science teaching as a career path

    Science.gov (United States)

    Cost, Michael George

    2000-10-01

    Past research documented that student perceptions of scientists constituted a stereotypical image that had a negative effect on the students' attitudes towards science and resulted in low numbers of students studying to become scientists and engineers in college. The present study paralleled the research on student perceptions of scientists to investigate to what extent student perceptions of science teachers affect their willingness to consider science teaching as a career. This was accomplished by surveying 91 college students and 25 science teachers at the beginning, middle, and end of the collegiate career path of becoming a science teacher. Each survey contained quantitative data utilizing seven-point semantic differential scales and written open response questions. In-depth interviews with two members of each level were conducted to supplement the survey data. The study found that college students begin college with a positive perception of teaching as a career and highly rank teachers, especially science teachers, as having a positive influence on their career path. The qualities of job enjoyment, job stability, and helping others that are characteristic of teaching were also found to be of high importance. Perceptions of the personal, social, professional, and career qualities of a science teacher were found to differ from a scientist. While both science teachers and scientists were found to be responsible, persistent, and productive, science teachers were perceived as being a distinct career possessing qualities that make them more personable, sociable, and wise than scientists. Some gender differences were detected but there was no evidence of gender bias affecting students choosing a career path to science teaching. Science teachers were perceived to be very supportive of females pursuing scientific career paths. The study also found evidence that some introductory level college students steer away from science teaching because of low salary, the lack of

  2. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  3. A writing-intensive course improves biology undergraduates' perception and confidence of their abilities to read scientific literature and communicate science.

    Science.gov (United States)

    Brownell, Sara E; Price, Jordan V; Steinman, Lawrence

    2013-03-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

  4. The Effects of Teaching and Learning Experiences, Tempo, and Mode on Undergraduates' and Children's Symphonic Music Preferences.

    Science.gov (United States)

    Flowers, Patricia J.

    1988-01-01

    Presents a study which assessed undergraduates' and children's music preferences for examples of symphonic music. Serving as a teaching and planning experience for undergraduates, the study revealed that children's preferences were increased through undergraduate presentations and that college students used larger vocabularies when describing…

  5. A narrative review of undergraduate peer-based healthcare ethics teaching.

    Science.gov (United States)

    Hindmarch, Thomas; Allikmets, Silvia; Knights, Felicity

    2015-12-12

    This study explores the literature in establishing the value of undergraduate peer-based healthcare ethics teaching as an educational methodology. A narrative review of the literature concerning peer-based ethics teaching was conducted. MEDLINE, EMBASE, CINAHL, SCOPUS databases, and the Cochrane Library, were systematically searched for studies of peer-based ethics or professionalism teaching. Selected studies related peer-based teaching to ethics education outcomes. Ten publications were identified. Selected studies were varied in their chosen intervention methodology and analysis. Collectively, the identified studies suggest peer-based ethics education is an effective and valued educational methodology in training healthcare professionals. One paper suggests peer-based ethics teaching has advantages over traditional didactic methods. Peer-based ethics teaching also receives positive feedback from student participants. However, the limited literature base demonstrates a clear need for more evaluation of this pedagogy. The current literature base suggests that undergraduate peer based healthcare ethics teaching is valuable in terms of efficacy and student satisfaction. We conclude that the medical community should invest in further study in order to capitalise upon the potential of peer-based ethics teaching in undergraduate healthcare education.

  6. Case based teaching at the bed side versus in classroom for undergraduates and residents of pediatrics

    Directory of Open Access Journals (Sweden)

    MAHDI SHAHRIARI

    2014-07-01

    Full Text Available Introduction: Bedside teaching is defined as teaching in the presence of a patient, it is a vital component of medical education. The aim of this study was to evaluate the effectiveness of two methods of case based teaching (at the bedside and in the classroom in the teaching hospitals (for both undergraduates and residents of pediatrics. Methods: Thirty undergraduates and twenty pediatric residents were asked to study a topic of their curriculum from their text then pretest was taken from learners in the two levels; then either lecture with power point or case presentation or bed side discussion were conducted. One week later posttest was taken, and then evaluation of these three methods was done by a questionnaire from learners. Results: The majority of under-graduates and all of pediatric residents had evaluated case based teaching superior to bedside teaching and these two methods superior to lecture method. Conclusion: They believed that in the case based teaching they are more relaxed and have more self-esteem than at the bedside of the patients. Clinician teacher must involve patients and learners in the process of bedside teaching, by preparing a comfortable situation and by using available technolgy.

  7. Epistemologies and scientific reasoning skills among undergraduate science students

    Science.gov (United States)

    Mollohan, Katherine N.

    Non-cognitive factors such as students' attitudes and beliefs toward a subject and their proficiency in scientific reasoning are important aspects of learning within science disciplines. Both factors have been studied in relation to science education in various discplines. This dissertation presents three studies that investigate student epistemologies and scientific reasoning in the domain of biology education. The first study investigated students' epistemic viewpoints in two introductory biology courses, one for science majors and one for non-science majors. This quantitative investigation revealed that the majors exhibited a negative shift in their attitudes and beliefs about biology and learning biology during a semester of introductory instruction. However, the non-science majors did not exhibit a similar shift. If fact, the non-science majors improved in their attitudes and beliefs during a semester of instruction, though not significantly so. The second study expands epistemological research to a population that has often been left out of this work, that is, intermediate-level biology majors. Quantitative and qualitative data was collected to reveal that junior and senior ranked students for the most part were able to characterize their views about biology and learning biology, and were able to associate factors with their epistemic improvement. Finally, the third study expands epistemology research further to determine if scientific reasoning and student attitudes and beliefs about learning science (specifically biology) are related. After a description of how various science and engineering majors compare in their scientific reasoning skills, this study indicated that among intermediate level biology majors there is no relationship between scientific reasoning skills and epistemologies, nor is there a relationship with other educational factors, including the number of courses taken during an undergraduate career, cumulative GPA, and standardized test

  8. Evaluation of a filmed clinical scenario as a teaching resource for an introductory pharmacology unit for undergraduate health students: A pilot study.

    Science.gov (United States)

    East, Leah; Hutchinson, Marie

    2015-12-01

    Simulation is frequently being used as a learning and teaching resource for both undergraduate and postgraduate students, however reporting of the effectiveness of simulation particularly within the pharmacology context is scant. The aim of this pilot study was to evaluate a filmed simulated pharmacological clinical scenario as a teaching resource in an undergraduate pharmacological unit. Pilot cross-sectional quantitative survey. An Australian university. 32 undergraduate students completing a healthcare degree including nursing, midwifery, clinical science, health science, naturopathy, and osteopathy. As a part of an undergraduate online pharmacology unit, students were required to watch a filmed simulated pharmacological clinical scenario. To evaluate student learning, a measurement instrument developed from Bloom's cognitive domains (knowledge, comprehension, application, analysis, synthesis and evaluation) was employed to assess pharmacological knowledge conceptualisation and knowledge application within the following fields: medication errors; medication adverse effects; medication interactions; and, general pharmacology. The majority of participants were enrolled in an undergraduate nursing or midwifery programme (72%). Results demonstrated that the majority of nursing and midwifery students (56.52%) found the teaching resource complementary or more useful compared to a lecture although less so compared to a tutorial. Students' self-assessment of learning according to Bloom's cognitive domains indicated that the filmed scenario was a valuable learning tool. Analysis of variance indicated that health science students reported higher levels of learning compared to midwifery and nursing. Students' self-report of the learning benefits of a filmed simulated clinical scenario as a teaching resource suggest enhanced critical thinking skills and knowledge conceptualisation regarding pharmacology, in addition to being useful and complementary to other teaching and

  9. Exploring face-to-face and Web-based pedagogy in undergraduate natural resource sciences

    Science.gov (United States)

    Mbabaliye, Theogene

    Little has been published about Internet instruction compared to traditional classroom teaching in undergraduate natural resource science (NRS) education. This study hypothesized associations between teaching environments (face-to-face only (FF), Web only (WE), mixed mode (MI)); and teaching philosophy, practices, and perceived course outcomes. A questionnaire was sent to 142 faculty members with experience teaching in these environments in Western US. Sixty percent responded. Data were analyzed using factor analysis and multivariate statistics. Only statistically significant differences are presented. Most respondents were male (68%) 50-59 years old (80%) and tenured (74%). Overall, Web-based instruction was not seen as equivalent to face to face instruction. Adoption of the Internet for teaching was beyond critical mass. Most faculty members ranked their ability to use the Internet as average (27%) or expert (22%). Faculty rarely perceived students' learning experience in a WE course as "better" than FF. Web-based courses were not usually required of majors in the offering department. Faculty age, gender and experience are significant variables in use of some teaching practices. Faculty members who used the Internet favored a constructivist teaching philosophy, while FF and MI instruction tended towards a behaviorist philosophy. Respondents' most frequent teaching practices addressed connections, collaboration, meaning making, and learner autonomy. Collaborative teaching strategies were seldom used in Web-based instruction relative to FF. Learning assessments focused on learner interactions, efforts (individual or groups), and recall. The latter assessment was used less on the Web. Respondents viewed effective teaching in all teaching environments as achieving competency and application of knowledge. Personal experience, resource availability, and feedback were the most important influences on teaching. Resource availability constrained Internet instruction most

  10. [The undergraduate program in forensic science: a national challenge].

    Science.gov (United States)

    García Castillo, Zoraida; Graue Wiechers, Enrique; Durante Montiel, Irene; Herrera Saint Leu, Patricia

    2014-01-01

    The challenge in achieving an ideal state of justice is that each "proof" has the highest degree of reliability. This is the main responsibility of the forensic scientist. Up to now, criminal investigations in Mexico have been supported by forensic work from a wide variety of disciplinary backgrounds that give testimony in a particular area, even though they may have become forensic witnesses in a complementary and experiential manner. In January 2013, the Universidad Nacional Autónoma de México (UNAM) approved the "Forensic Science" undergraduate program that, in collaboration with various academic entities and government institutions, will develop forensic scientists trained in science, law, and criminology. This is focused on contributing to the national demand that the justice system has more elements to procure and administer justice in dealing with crime.

  11. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  12. The Education Professorate: Teaching an "Artificial" Science.

    Science.gov (United States)

    Wagener, James W.

    This paper argues that conceiving the education professor's role in higher education as that of teaching an "artificial" science is a helpful metaphor for re-contextualizing this mission. How the use of the metaphor of an artificial science bears on the role of the education professorate is examined by applying the purposive-inner…

  13. An Experiential Course for Teaching Social Science.

    Science.gov (United States)

    Baldridge, J. Victor; And Others

    In an effort to put new vigor into the learning situation, an experiential approach to the teaching of social sciences in higher education is offered in this paper. The paper describes how the experiential approach is being used in an academic sociology course at Stanford which is adaptable to a wide variety of social sciences courses. Differing…

  14. Teaching Science from Cultural Points of Intersection

    Science.gov (United States)

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  15. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  16. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    Science.gov (United States)

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  17. Teaching Science Fact with Science Fiction

    Science.gov (United States)

    Raham, R. Gary

    2004-01-01

    The literature of science fiction packs up the facts and discoveries of science and runs off to futures filled with both wonders and warnings. Kids love to take the journeys it offers for the thrill of the ride, but they can learn as they travel, too. This book will provide the reader with: (1) an overview of the past 500 years of scientific…

  18. Undergraduate teaching of nuclear medicine: a comparison between Central and Eastern Europe and European Union countries

    International Nuclear Information System (INIS)

    Lass, P.; Scheffler, J.; Bandurski, T.

    2003-01-01

    This paper overviews the curricula of nuclear medicine (NM) undergraduate training in 34 Central and Eastern European (CEE) and 37 European Union (EU) medical faculties. The data show enormous variation in the number of hours devoted to nuclear medicine, varying between 1-2 to 40 hours and highly differentiated concepts/ideas of nuclear medicine training in particular countries. In most EU countries this teaching is integrated with that of radiology or clinical modules, also with training in clinical physiology. In many CEE countries teaching and testing of NM are independent, although integration with other teaching modules is frequent. The paper discusses the differences in particular approaches to nuclear medicine teaching. (author)

  19. Evidence for Experiential Learning in Undergraduate Teaching Farm Courses

    Science.gov (United States)

    Mazurkewicz, Melissa; Harder, Amy; Roberts, T. Grady

    2012-01-01

    Higher education institutions are attempting to use teaching farms to provide hands-on learning experiences to students, but there is a lack of research on the degree of cognitive engagement at teaching farms. Kolb's model provided the theoretical framework for assessing evidence of experiential learning in courses using teaching farms.…

  20. Patient participation in general practice based undergraduate teaching: a focus group study of patient perspectives

    Science.gov (United States)

    Park, Sophie E; Allfrey, Caroline; Jones, Melvyn M; Chana, Jasprit; Abbott, Ciara; Faircloth, Sofia; Higgins, Nicola; Abdullah, Laila

    2017-01-01

    Background Patients make a crucial contribution to undergraduate medical education. Although a national resource is available for patients participating in research, none is as yet available for education. Aim This study aimed to explore what information patients would like about participation in general practice based undergraduate medical education, and how they would like to obtain this information. Design and setting Two focus groups were conducted in London-based practices involved in both undergraduate and postgraduate teaching. Method Patients both with and without teaching experience were recruited using leaflets, posters, and patient participation groups. An open-ended topic guide explored three areas: perceived barriers that participants anticipated or had experienced; patient roles in medical education; and what help would support participation. Focus groups were audiorecorded, transcribed, and analysed thematically. Results Patients suggested ways of professionalising the teaching process. These were: making information available to patients about confidentiality, iterative consent, and normalising teaching in the practice. Patients highlighted the importance of relationships, making information available about their GPs’ involvement in teaching, and initiating student–patient interactions. Participants emphasised educational principles to maximise exchange of information, including active participation of students, patient identification of student learner needs, and exchange of feedback. Conclusion This study will inform development of patient information resources to support their participation in teaching and access to information both before and during general practice based teaching encounters. PMID:28360073

  1. Social Constructivism and Teaching of Social Science

    OpenAIRE

    Mishra, Rishabh

    2014-01-01

    The paper presents an overview of prevailing pedagogic practices of social science at school level in India. It has been sketched with the help of social science teachers’ interviews. The analysis of teachers’ interview revealed that the teaching of social science is a reflection of teacher’s own biases and beliefs; dominated by deficit model of thinking and learning. Against this backdrop the paper tries to address the question do we have any alternative of ‘deficit model’ of tea...

  2. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    to the classroom behaviour of the teacher, involving openness to new ideas and the development of positive .... In a study to identify changes in pre-service elementary teachers' sense of efficacy in teaching science ... any other perceptions of science teachers about their self-efficacy changes according to gender and years ...

  3. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  4. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  5. Engaging Undergraduates in Social Science Research: The Taking the Pulse of Saskatchewan Project

    Science.gov (United States)

    Berdahl, Loleen

    2014-01-01

    Although student involvement in research and inquiry can advance undergraduate learning, there are limited opportunities for undergraduate students to be directly involved in social science research. Social science faculty members typically work outside of laboratory settings, with the limited research assistance work being completed by graduate…

  6. Anaesthetic specialist registrars in Ireland: current teaching practices and perceptions of their role as undergraduate teachers.

    LENUS (Irish Health Repository)

    Walsh, K

    2012-02-03

    BACKGROUND AND OBJECTIVES: Teaching is an important responsibility of non-consultant hospital doctors. In Ireland, specialist registrars (SpRs) in anaesthesia are contractually obliged to teach medical students, other doctors and nurses. Both medical students and fellow non-consultant hospital doctors attribute between 30 and 40% of their knowledge gain to non-consultant hospital doctors. METHODS: We carried out a confidential telephone survey of anaesthetic SpRs in Ireland regarding their current teaching practices and the perceptions of their role as undergraduate teachers. All the SpRs currently working in clinical practice in Ireland were eligible. RESULTS: Fifty-five of the 79 (70%) SpRs responded to the questionnaire. Only 7 (12.7%) of the respondents said they had been well trained as a teacher. The majority of the respondents stated that they would attend a learning-to-teach course\\/workshop if one was available, and felt that such a course would improve their ability as a teacher. Only 8 (14.5%) agreed that adequate emphasis is placed on commitment to teaching in the assessment of SpRs, both by individual departments and by the College of Anaesthetists. Anaesthetic SpRs in Ireland spend a considerable amount of time each day teaching undergraduate medical students, the majority (68.9%) stated that they had inadequate time to prepare for teaching. CONCLUSION: The majority of the respondents stated that they enjoy teaching, feel that they play an important role in undergraduate teaching but have inadequate time to prepare for teaching. An adequate emphasis is not placed on their commitment to teaching.

  7. The use of simulation as a novel experiential learning module in undergraduate science pathophysiology education.

    Science.gov (United States)

    Chen, Hui; Kelly, Michelle; Hayes, Carolyn; van Reyk, David; Herok, George

    2016-09-01

    Teaching of pathophysiology concepts is a core feature in health professional programs, but it can be challenging in undergraduate medical/biomedical science education, which is often highly theoretical when delivered by lectures and pen-and-paper tutorials. Authentic case studies allow students to apply their theoretical knowledge but still require good imagination on the part of the students. Lecture content can be reinforced through practical learning experiences in clinical environments. In this study, we report a new approach using clinical simulation within a Human Pathophysiology course to enable undergraduate science students to see "pathophysiology in action" in a clinical setting. Students role played health professionals, and, in these roles, they were able to interact with each other and the manikin "patient," take a medical history, perform a physical examination and consider relevant treatments. Evaluation of students' experiences suggests that using clinical simulation to deliver case studies is more effective than traditional paper-based case studies by encouraging active learning and improving the understanding of physiological concepts. Copyright © 2016 The American Physiological Society.

  8. Undergraduate-driven interventions to increase representation in science classrooms

    Science.gov (United States)

    Freilich, M.; Aluthge, D.; Bryant, R. M.; Knox, B.; McAdams, J.; Plummer, A.; Schlottman, N.; Stanley, Z.; Suglia, E.; Watson-Daniels, J.

    2014-12-01

    Recognizing that racial, ethnic, and gender underrepresentation in science classrooms persists despite intervention programs and institutional commitments to diversity, a group of undergraduates from a variety of backgrounds and academic disciplines came together for a group independent study to (a) study the theoretical foundations of the current practice of science and of programs meant to increase diversity, (b) utilize the experiences of course participants and our peers to better understand the drivers of underrepresentation, and (c) design and implement interventions at Brown University. We will present on individual and small group projects designed by course members in collaboration with faculty. The projects emerged from an exploration of literature in history, philosophy, and sociology of science, as well as an examination of anthropological and psychological studies. We also evaluated the effectiveness of top-down and bottom-up approaches that have already been attempted in developing our projects. They focus on the specific problems faced by underrepresented minorities, women, LGBTQ+ people, and well-represented minorities. We will share experiences of faculty-student collaboration and engaged scholarship focused on representation in science and discuss student-designed interventions.

  9. Prescribing knowledge in the light of undergraduate clinical pharmacology and therapeutics teaching in India: views of first-year postgraduate students

    Directory of Open Access Journals (Sweden)

    Upadhyaya P

    2012-06-01

    Full Text Available Prerna Upadhyaya,1 Vikas Seth,2 Monika Sharma,1 Mushtaq Ahmed,1 Vijay Vasant Moghe,1 Zafar Yab Khan,1 Vinay Kumar Gupta,1 Shipra Vikram Jain,1 Utkarsh Soni,1 Manohar Bhatia,1 Kumar Abhijit,1 Jaswant Goyal11Department of Pharmacology, Mahatma Gandhi Medical College, Jaipur, 2Department of Pharmacology, Hind Institute of Medical Sciences, Lucknow, IndiaObjectives: The study aimed to review the prescribing knowledge of first-year postgraduate doctors in a medical college in India, using the principles of good prescribing, to suggest strategies to improve rational prescribing, and to recommend what curriculum planners can do to accomplish this objective.Methods: Fifty first-year postgraduate doctors were asked to fill in a structured questionnaire that sought information regarding their undergraduate training in clinical pharmacology and therapeutics, prescribing habits, and commonly consulted drug information sources. Also, the questionnaire assessed any perceived deficiencies in their undergraduate clinical pharmacology teaching and sought feedback regarding improvement in the teaching.Results: Eighty-eight percent of residents said that they were taught prescription writing in undergraduate pharmacology teaching; 48% of residents rated their prescribing knowledge at graduation as average, 28% good, 4% excellent, 14% poor, and 4% very poor; 58% felt that their undergraduate training did not prepare them to prescribe safely, and 62% felt that their training did not prepare them to prescribe rationally. Fifty-eight percent of residents felt that they had some specific problems with writing a prescription during their internship training, while 92% thought that undergraduate teaching should be improved. Their suggestions for improving teaching methods were recorded.Conclusions: This study concludes that efforts are needed to develop a curriculum that encompasses important aspects of clinical pharmacology and therapeutics along with incorporation of

  10. Practicing the triad teaching-research- extension in supervised internship of licentiateship in biological sciences

    Directory of Open Access Journals (Sweden)

    Lilliane Miranda Freitas

    2012-06-01

    Full Text Available In this paper we report an educational experience based on the triad teaching-research-extension occurred in the supervised internship in licentiateship in Biological Sciences. In this experiment, the students made a transposition of the scientific knowledge produced in their course conclusion work to the knowledge of basic education curriculum. We analyze in this article the impressions of undergraduates after completion of pedagogical actions. We discuss, based on the reports, how the knowledge that is constructed and reconstructed in academic research can contribute directly to the improvement of the science education quality through science literacy and also in teacher training of undergraduates, through the reflection on their own practice. Therefore, we consider that, with the practice of the inseparability of teaching-research-extension, there will be more return for academic research and also for the school community, generating significant changes in educational practices in schools

  11. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  12. Effectiveness of teaching strategies on the development of critical thinking in undergraduate nursing students: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Larissa Bertacchini de Oliveira

    2016-04-01

    Full Text Available Abstract OBJECTIVE To evaluate the effectiveness of teaching strategies used for development of critical thinking (CT in undergraduate nursing students. METHOD Systematic review with meta-analysis based on the recommendations of the Joanna Briggs Institute . Searches were conducted in the following databases: PubMed, CINAHL, EMBASE, Web of Science, SCOPUS, LILACS, Cochrane CENTRAL, PsycINFO, ERIC, and a database of theses from four continents. The initial selection and evaluation of studies and assessment of methodological quality was performed by two reviewers independently. RESULTS Twelve randomized clinical trials were included in the study. In the meta-analysis of the four studies included that evaluated the strategy of problem-based learning (PBL, compared to lectures, the effectiveness of PBL was demonstrated with statistical significance (SMD = 0.21 and 95% CI = 0.01 to 0.42; p = 0.0434 for the development of CT in undergraduate nursing students, and the studies were homogeneous (chi-square = 6.10, p = 0.106. CONCLUSION The effectiveness of PBL was demonstrated in the increase of overall CT scores. Further studies need to be conducted in order to develop, implement and evaluate teaching strategies that are guided in high methodological rigor, and supported in theoretical models of teaching and learning.

  13. Insights into teaching quantum mechanics in secondary and lower undergraduate education

    Science.gov (United States)

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-06-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.

  14. Preparing minority undergraduate students for successful science careers.

    Science.gov (United States)

    Akundi, Murty

    2008-03-01

    Graduate Placement Office and a Center for Undergraduate Research to facilitate students' pursuit of gradate studies. The results of these efforts indicate a 40 percent graduation rate in four years and increased to 90 percent in six years in the natural sciences and 50 percent of these graduates pursue graduate/professional careers.

  15. Teaching Cognitive-Behavioral Therapy to Undergraduate Psychology Students

    Science.gov (United States)

    Ryan, Tracey Ellen; Blau, Shawn; Grozeva, Dima

    2011-01-01

    This article describes an experimental undergraduate psychology course that ran for two semesters during the 2009 academic year at a private, urban university in the United States. Students learned the techniques and strategies of cognitive behavioral therapy (CBT) and rational emotive behavior therapy (REBT) with a focus on the practical elements…

  16. The challenge of teaching undergraduates evidence-based veterinary medicine.

    Science.gov (United States)

    Dean, R; Brennan, M; Ewers, R; Hudson, C; Daly, J M; Baillie, S; Eisler, M C; Place, E J; Brearley, J; Holmes, M; Handel, I; Shaw, D; McLauchlan, G; McBrearty, A; Cripps, P; Jones, P; Smith, R; Verheyen, K

    2017-09-16

    The Royal College of Veterinary Surgeons now lists 'How to evaluate evidence' as a day one competence for newly qualified vets. In this article, representatives from each of the veterinary schools in the UK discuss how the challenge of delivering and assessing the concepts of evidence-based veterinary medicine in a crowded undergraduate curriculum can be met. British Veterinary Association.

  17. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  18. SCALE(ing)-UP Teaching: A Case Study of Student Motivation in an Undergraduate Course

    Science.gov (United States)

    Chittum, Jessica R.; McConnell, Kathryne Drezek; Sible, Jill

    2017-01-01

    Teaching large classes is increasingly common; thus, demand for effective large-class pedagogy is rising. One method, titled "SCALE-UP" (Student-Centered Active Learning Environment for Undergraduate Programs), is intended for large classes and involves collaborative, active learning in a technology-rich and student-centered environment.…

  19. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    Science.gov (United States)

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  20. A survey to assess family physicians' motivation to teach undergraduates in their practices.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available BACKGROUND: In Germany, family physicians (FPs are increasingly needed to participate in undergraduate medical education. Knowledge of FPs' motivation to teach medical students in their practices is lacking. PURPOSE: To describe a novel questionnaire that assesses the motivation of FPs to teach undergraduates in their practices and to show the results of a subsequent survey using this instrument. METHODS: The questionnaire was developed based on a review of the literature. Previously used empirical instruments assessing occupational values and motivation were included. A preliminary version was pretested in a pilot study. The resulting 68-item questionnaire was sent to 691 FPs involved in undergraduate medical education. Reliability was assessed and subgroups were analyzed with regard to differences in motivation. RESULTS: A total of 523 physicians in n = 458 teaching practices participated (response rate 75.7%. 'Helping others' and 'interest' were revealed as the predominant motives. Responses showed a predominantly intrinsic motivation of the participating FPs. Their main incentives were an ambition to work as a medical preceptor, to generally improve undergraduate education and to share knowledge. Material compensation was of minor importance. Time restraints were indicated as a barrier by some FPs, but were not a general concern. CONCLUSION: German FPs involved in medical education have altruistic attitudes towards teaching medical students in their practices. Motivational features give an important insight for the recruitment of FP preceptors as well as for their training in instructional methods.

  1. Ethics as an Undergraduate Psychology Outcome: When, Where, and How to Teach It

    Science.gov (United States)

    Ruiz, Ana; Warchal, Judith

    2014-01-01

    The American Psychological Association (APA) recently approved a new set of "Guidelines for the undergraduate psychology major, version 2.0" (APA, 2013a) which addressed ethics specifically. Yet the teaching of ethics receives little attention in publications, national and international institutes, and conferences. Few guidelines for…

  2. On the Effects, Problems, and Countermeasures of Undergraduate Teaching Evaluation in Higher Education

    Science.gov (United States)

    Xianjun, Liu; Yang, Yu; Junchao, Zhang; Shuguang, Wei; Ling, Ding

    2016-01-01

    The Undergraduate Teaching Evaluation of General Institutions of Higher Education from 2003 to 2008 was the largest-scale evaluation in Chinese higher education history. It exerted a tremendous influence as a key exploration of quality assurance with Chinese characteristics. Based on existing research, this study combines quantitative and…

  3. Promoting Visual Literacy among Undergraduate Students in Geography: Teaching a Visualized Latin America

    Science.gov (United States)

    Hollman, Verónica

    2014-01-01

    This study offers a discussion of the role of the visual in the professional training of geographers arguing that visual literacy is not necessarily promoted during geography undergraduate studies. It then analyzes an experience of teaching a visualized Latin America developed in Argentina, as an illustrative example: on the one hand, it reveals…

  4. Teaching Macroeconomics after the Crisis: A Survey among Undergraduate Instructors in Europe and the United States

    Science.gov (United States)

    Gärtner, Manfred; Griesbach, Björn; Jung, Florian

    2013-01-01

    The Great Recession raised questions of what and how macroeconomists teach at academic institutions around the globe, and what changes in the macroeconomics curriculum should be made. The authors conducted a survey of undergraduate macroeconomics instructors affiliated with colleges and universities in Europe and the United States at the end of…

  5. Multimedia as a Means to Enhance Teaching Technical Vocabulary to Physics Undergraduates in Rwanda

    Science.gov (United States)

    Rusanganwa, Joseph

    2013-01-01

    This study investigates whether the integration of ICT in education can facilitate teaching and learning. An example of such integration is computer assisted language learning (CALL) of English technical vocabulary by undergraduate physics students in Rwanda. The study draws on theories of cognitive load and multimedia learning to explore learning…

  6. Civic Learning and Teaching as a Resource for Sexual Justice: An Undergraduate Religious Studies Course Module

    Science.gov (United States)

    Vasko, Elisabeth T.

    2017-01-01

    Civic learning and teaching, a form of critical and democratically engaged pedagogy, is utilized in an upper-level undergraduate sexual ethics course to leverage public problem solving around the sexual violence on a mid-size Catholic collegiate campus. Through the course, students, faculty, staff, and community members work together to deepen…

  7. The Joyce of Teaching: Some Notes on Presenting James Joyce to Undergraduates.

    Science.gov (United States)

    Scarry, John

    Problems in the teaching of James Joyce to undergraduates are explored in a discussion of the "Dubliners", "A Portrait of the Artist", "Ulysses", and "Finnegans Wake". Several multimedia approaches, including the use of records and film-making, are suggested for overcoming other problems encountered due to time factors, presentation of background…

  8. Insights into teaching quantum mechanics in secondary and lower undergraduate education

    NARCIS (Netherlands)

    Krijtenburg-Lewerissa, Kim; Pol, Hendrik Jan; Brinkman, Alexander; van Joolingen, Wouter

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences

  9. Insights into teaching quantum mechanics in secondary and lower undergraduate education: A literature review

    NARCIS (Netherlands)

    Krijtenburg-Lewerissa, Kim; Pol, Henk; Brinkman, Alexander; van Joolingen, Wouter

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences

  10. On the Advantage and Disadvantage of History for Teaching Political Theory to Undergraduates

    Science.gov (United States)

    Johnson, Jeffrey Alan

    2008-01-01

    This paper argues that the standard approach to teaching the history of political thought does not serve the ultimate goals of political theory education, and that alternative approaches are needed to make the history of thought appropriate for undergraduates. A history of political thought for life ought to enhance a person's capacity to act as a…

  11. Enhancing Teaching and Learning Wi-Fi Networking Using Limited Resources to Undergraduates

    Science.gov (United States)

    Sarkar, Nurul I.

    2013-01-01

    Motivating students to learn Wi-Fi (wireless fidelity) wireless networking to undergraduate students is often difficult because many students find the subject rather technical and abstract when presented in traditional lecture format. This paper focuses on the teaching and learning aspects of Wi-Fi networking using limited hardware resources. It…

  12. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    Science.gov (United States)

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  13. Effectiveness of E-Content Package on Teaching IUPAC Nomenclature of Organic Chemistry at Undergraduate Level

    Science.gov (United States)

    Devendiran, G.; Vakkil, M.

    2017-01-01

    This study attempts to discover the effectiveness of an e-content package when teaching IUPAC nomenclature of organic chemistry at the undergraduate level. The study consisted of a Pre-test-Post-test Non Equivalent Groups Design, and the sample of 71 (n = 71) students were drawn from two colleges. The overall study was divided into two groups, an…

  14. When Theory Meets Practice: A New Approach for Teaching Undergraduate Sales Management Courses

    Science.gov (United States)

    O'Reilly, Kelley A.

    2015-01-01

    Most sales management undergraduate courses teach students about sales management rather than how to successfully manage a sales team. A desire to change this paradigm resulted in a newly designed hands-on, skill-based sales management course that uses business case studies in combination with students developing, practicing, and performing the…

  15. Clarity in Teaching and Active Learning in Undergraduate Microbiology Course for Non-Majors

    Science.gov (United States)

    Marbach-Ad, Gili; McGinnis, J. Randy; Pease, Rebecca; Dai, Amy H.; Schalk, Kelly A.; Benson, Spencer

    2010-01-01

    We investigated a pedagogical innovation in an undergraduate microbiology course (Microbes and Society) for non-majors and education majors. The goals of the curriculum and pedagogical transformation were to promote active learning and concentrate on clarity in teaching. This course was part of a longitudinal project (Project Nexus) which…

  16. Teaching Creative Problem Solving Methods to Undergraduate Economics and Business Students

    Science.gov (United States)

    Cancer, Vesna

    2014-01-01

    This paper seeks to explore the need for and possibility of teaching current and potential problem solvers--undergraduate students in the economic and business field to define problems, to generate and choose creative and useful ideas and to verify them. It aims to select an array of quick and easy-to-use creative problem solving (CPS) techniques.…

  17. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    Science.gov (United States)

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural…

  18. Insights into Teaching Quantum Mechanics in Secondary and Lower Undergraduate Education

    Science.gov (United States)

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and…

  19. An Evaluation of the Chemical Origin of Life as a Context for Teaching Undergraduate Chemistry

    Science.gov (United States)

    Venkataraman, Bhawani

    2011-01-01

    The chemical origin of life on earth has been used as a conceptual framework in an introductory, undergraduate chemistry course. The course explores the sequence of events through which life is believed to have emerged, from atoms to molecules to macromolecular systems, and uses this framework to teach basic chemical concepts. The results of this…

  20. Using Experiential Learning to Teach Entrepreneurship: A Study with Brazilian Undergraduate Students

    Science.gov (United States)

    Krakauer, Patricia Viveiros de Castro; Serra, Fernando Antonio Ribeiro; de Almeida, Martinho Isnard Ribeiro

    2017-01-01

    Purpose: The purpose of this paper is to provide further understanding of entrepreneurship education, seeking to comprehend the use of experience in this context. Based on the theory of experiential learning, the authors sought to develop and test a conceptual model for teaching entrepreneurship at the undergraduate degree level.…

  1. A survey of physical examination skills taught in undergraduate nursing programs: are we teaching too much?

    Science.gov (United States)

    Giddens, Jean Foret; Eddy, Linda

    2009-01-01

    Because content saturation is a growing concern, as reflected in the nursing literature, the content taught in undergraduate nursing curricula should be critically examined. The purpose of this descriptive cross-sectional research was to determine and analyze the physical assessment content currently taught in undergraduate nursing programs. A total of 198 individuals teaching in undergraduate nursing programs completed a Web-based survey. Of the 122 skills included on the survey, 81% were reportedly being taught in most of the nursing programs. Total scores for 18 systems-based assessment categories were significantly different among associate and baccalaureate nursing programs in all but three categories: assessment of integument, breast, and female genitals. Previous research has shown that nurses use less than 25% of these same skills regularly in clinical practice, regardless of their educational preparation. Findings from this research raise questions about the breadth to which physical examination content should be taught in undergraduate nursing education.

  2. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  3. A Data-enhanced On-line Learning Environment for Undergraduate Earth System Science Education

    Science.gov (United States)

    di, L.; Deng, M.

    2004-12-01

    Earth system science (ESS) research often requires integrating, analyzing, and modeling with large amount of multi-disciplinary, multi-source geospatial data. Satellite remote sensing is one of the major sources of such data. Currently, NASA EOSDIS has archived more than three petabytes of Earth remote sensing data. Those data are essential for conducting ESS research. Therefore, training students on how to effectively use large amount of remote sensing data in ESS research is the essential part of their ESS education. However, currently most of undergraduate students have never been trained to handle the huge volume of available data because of lack of resources and suitable teaching technology at ESS colleges. In order to reduce this problem, we are developing a web-based geospatial information system, called GeoBrain, for providing a data-enhanced on-line learning and research environment for ESS education and research. The system makes petabytes of NASA EOS data and information easily accessible to higher-education users. The system allows users to dynamically and collaboratively develop interoperable, web-executable geospatial process and analysis modules and models, and run them on-line against any part of the peta-byte archives for getting back the customized information products rather than raw data. The system makes a data-enhanced ESS learning and research environment, backed by petabytes of NASA EOS data and unavailable to students and professors before, available to them at their desktops. In order to integrate this new learning environment into the undergraduate ESS teaching and research, a NASA EOS Higher Education Alliance (NEHEA), consisting of the GeoBrain development team led by GMU and a group of Earth science educators selected from an open RFP process, has been formed. NEHEA members are incorporating the data enhanced learning environment into their teaching and on-going research and will develop new courses for taking advantages of the

  4. Chemistry Teaching: Science or Alchemy?

    Science.gov (United States)

    Johnstone, A. H.

    1997-01-01

    Suggests that the development of good chemistry teaching and the pursuit of research have essentially the same structure. Similarities include the need for a clear focus, efficiency in time and effort, and a direction that is more often right than wrong. (DDR)

  5. Teaching science through video games

    Science.gov (United States)

    Smaldone, Ronald A.; Thompson, Christina M.; Evans, Monica; Voit, Walter

    2017-02-01

    Imagine a class without lessons, tests and homework, but with missions, quests and teamwork. Video games offer an attractive educational platform because they are designed to be fun and engaging, as opposed to traditional approaches to teaching through lectures and assignments.

  6. Undergraduate teaching in geriatric medicine using computer-aided learning improves student performance in examinations.

    Science.gov (United States)

    Daunt, Laura A; Umeonusulu, Patience I; Gladman, John R F; Blundell, Adrian G; Conroy, Simon P; Gordon, Adam L

    2013-07-01

    computer-aided learning (CAL) is increasingly used to deliver teaching, but few studies have evaluated its impact on learning within geriatric medicine. We developed and implemented CAL packages on falls and continence, and evaluated their effect on student performance in two medical schools. traditional ward based and didactic teaching was replaced by blended learning (CAL package combined with traditional teaching methods). Examination scores were compared for cohorts of medical students receiving traditional learning and those receiving blended learning. Control questions were included to provide data on cohort differences. in both medical schools, there was a trend towards improved scores following blended learning, with a smaller number of students achieving low scores (P learning was associated with improvement in student examination performance, regardless of the setting or the methods adopted, and without increasing teaching time. Our findings support the use of CAL in teaching geriatric medicine, and this method has been adopted for teaching other topics in the undergraduate curriculum.

  7. In Sync with Science Teaching

    Science.gov (United States)

    Scribner-MacLean, Michelle; Nikonchuk, Andrew; Kaplo, Patrick; Wall, Michael

    2006-01-01

    Science educators are often among the first to use emerging technologies in the classroom and laboratory. For the technologically savvy science teacher, the handheld computer is a terrific tool. A handheld computer is a portable electronic device that helps organize (via calendars, contact lists, to-do lists) and integrate electronic data…

  8. Nuclear War and Science Teaching.

    Science.gov (United States)

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  9. Absenteeism among medical and health science undergraduate students at Hawassa University, Ethiopia.

    Science.gov (United States)

    Desalegn, Anteneh Assefa; Berhan, Asres; Berhan, Yifru

    2014-04-14

    Student absenteeism is a major concern for university education worldwide. This study was conducted to determine the prevalence and causes of absenteeism among undergraduate medical and health sciences students at Hawassa University. We conducted a cross-sectional study using a pretested self-administered structured questionnaire from May-June 2013. The primary outcome indicator was self-reported absenteeism from lectures in the semester preceding the study period. The study included all regular undergraduate students who were enrolled in the University for at least one semester. The data was entered and analyzed using SPSS version 20. The association between class absenteeism and socio-demographic and behavioral correlates of absenteeism was determined by bivariate and multivariate analyses. Results were reported as crude odds ratios (COR), adjusted odds ratios (AOR) and 95% confidence intervals (CI). 1200 students consented and filled the questionnaire. Of these students, 43.7% had missed three or more lectures and 14.1% (95% CI = 12.2-16.2) missed more than 8 lectures in the preceding semester. There was a significant association between missing more than 8 lectures and age of students, chosen discipline (medicine), and social drug use. The main reasons reported for missing lectures were preparing for another examination, lack of interest, lecturer's teaching style, and availability of lecture material. At Hawassa University College of Medicine and Health Science student habits and teacher performance play a role in absenteeism from lectures. A university culture that promotes discipline and integrity especially among medical and older students discourages social drug use will likely improve motivation and attendance. Training in teaching methodologies to improve the quality and delivery of lectures should also help increase attendance.

  10. Academically Gifted Undergraduate Students: Their Preferred Teaching Strategies

    Science.gov (United States)

    AL-Khayat, Majed M.; AL-Hrout, Mosa A.; Hyassat, Mizyed A.

    2017-01-01

    Much attention is being paid to the students who give evidence of high achievement capability in specific academic fields. This interest includes choosing sufficient teaching strategies that suit their characteristics. However, this study aims at identifying what teaching strategies are preferred by academically gifted students in Princess Rahma…

  11. Undergraduate Convexity

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimin......Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier......-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point...... algorithm....

  12. The teaching of nursing management in undergraduate: an integrative review

    Directory of Open Access Journals (Sweden)

    Mara Solange Gomes Dellaroza

    2015-03-01

    Full Text Available The study aims to identify the dynamics of teaching management in nursing degree. It is an integrative literature review with research conducted in the following online database platforms: SciELO, Medline, Lilacs and BDENF. The keywords used in the study were: competency-based education, professional competence, education, nursing, organization and administration, management, nursing, educational assessment, organization of management services, management of professional practice and education. All articles published in the last 10 years which answered the question presented to approach the teaching of nursing management in Brazil, published in any language were included. Those that were not presented in full text were excluded. Of the 1432 studies identified after matching the keywords, only 8 were selected for answering objective of this review. From these results, three related themes emerged: the teaching plans, workload and program content; methodologies of teaching and learning in nursing management; challenges faced in developing the teaching of nursing management.

  13. Engaging Undergraduates in Science Research: Not Just About Faculty Willingness

    OpenAIRE

    Eagan, M. Kevin; Sharkness, Jessica; Hurtado, Sylvia; Mosqueda, Cynthia M.; Chang, Mitchell J.

    2010-01-01

    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members’ decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members’ likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute’s 2007–2008 Facu...

  14. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-01-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology…

  15. Engaging Undergraduates in Science Research: Not Just about Faculty Willingness

    Science.gov (United States)

    Eagan, M. Kevin, Jr.; Sharkness, Jessica; Hurtado, Sylvia; Mosqueda, Cynthia M.; Chang, Mitchell J.

    2011-01-01

    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty…

  16. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  17. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  18. Teaching Twentieth-Century Science

    Science.gov (United States)

    Lemke, J. L.

    1974-01-01

    Considers the question: Can fundamental modern concepts of special relativity and quantum mechanics be taught to students with minimal preparation in science and mathematics in anything other than oversimplified terms? (PEB)

  19. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    Science.gov (United States)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase

  20. An analysis of undergraduate exercise science programs: an exercise science curriculum survey.

    Science.gov (United States)

    Elder, Craig L; Pujol, Thomas J; Barnes, Jeremy T

    2003-08-01

    Undergraduate exercise science programs develop curricula by referring to standards set by professional organizations. A web-based survey was administered to 235 institutions with exercise science undergraduate programs to evaluate their adherence to stated curricular guidelines. Results indicate that 29% of institutions considered American College of Sports Medicine (ACSM) Knowledge, skills, and abilities (KSAs); 33% both ACSM and National Association for Sport and Physical Education (NASPE) guidelines; 6% ACSM, NASPE, and National Strength and Conditioning Association (NSCA); 8% ACSM, NASPE, NSCA, and American Society of Exercise Physiologists, and 5% NASPE. The two largest subgroups had good compliance with the areas of exercise physiology, biomechanics, and human anatomy and physiology. However, neither subgroup adhered to the areas of exercise prescription, testing, and implementation; exercise and aging; or exercise with special populations. Regardless of the implemented guideline(s), most institutions placed minimal emphasis on areas related to health promotion and many curricula did not require any field experience.

  1. Undergraduates Learn Evolution Through Teaching Kindergartners About Blind Mexican Cavefish

    Science.gov (United States)

    Gross, Joshua B.; Gangidine, Andrew; Schafer, Rachel E.

    2017-01-01

    The development and implementation of a scientific outreach activity comes with a number of challenges. A successful outreach event must match the sophistication of content to the audience, be engaging, expand the knowledge base for participants, and be inclusive for a diverse audience. Ideally, a successful event will also convey the importance of scientific outreach for future scientists and citizens. In this paper, we present a simple, hands-on guide to a scientific outreach event targeted to kindergarten learners. This activity also pursued a second goal: the inclusion of undergraduate students in the development and delivery of the event. We provided a detailed set of four activities, focusing on the blind Mexican cavefish, which were enthusiastically received by kindergarten audiences. The engagement of undergraduate students in the development of this activity encouraged public outreach involvement and fostered new scientific and communication skills. The format of the outreach event we describe is flexible. We provide a set of guidelines and suggestions for adapting this approach to other biological topics. The activity and approach we describe enables the implementation of effective scientific outreach, using active learning approaches, which benefits both elementary school learners and undergraduate students. PMID:28936469

  2. Understanding Poverty: Teaching Social Justice in Undergraduate Nursing Education.

    Science.gov (United States)

    Hellman, Ann N; Cass, Cary; Cathey, Heather; Smith, Sarah L; Hurley, Shelia

    This article presents results of an exploratory qualitative study examining gains in empathy and social justice beliefs among undergraduate nursing students. As undergraduate nursing education provides the foundation for future forensic nurses, developing successful methods to increase beliefs and behaviors of social empathy and social justice among nursing students will have a beneficial effect on the specialty of forensic nursing. As such, a team of nursing researchers explored the effects of a poverty simulation on the social empathy and social justice beliefs held by undergraduate students. The research team conducted an exploratory qualitative study of student reflective journals. Using an inductive interpretive process, the researchers performed a content analysis of student responses. The researchers identified three constitutive patterns and eight supporting themes as reflected in the students' reflective journals after participation in poverty simulation sessions. This research study found that, when nursing students participate in poverty simulation experiences, they gain an increased understanding of the vulnerability and complexities of living in poverty and are motivated to both advocate for patients and become change agents. Such increases in social empathy and promotion of social justice will inevitably positively affect their future practice and inform their development as forensic nurses.

  3. Teaching Health and Safety through Science

    Science.gov (United States)

    School Science Review, 2013

    2013-01-01

    Experimental and investigative work has been an integral element in the teaching of science in schools for many years. Although students have always been taught to work safely, there is now a more general requirement that they will be taught about health and safety and how it should be implemented. That is, they must understand something of the…

  4. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.|info:eu-repo/dai/nl/304827614

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  5. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  6. Teaching Science, with Faith in Mind

    Science.gov (United States)

    Eisen, Arri; Westmoreland, David

    2009-01-01

    Last summer, Governor Bobby Jindal signed the Louisiana Science Education Act into law. Although the name of the bill sounds innocuous, it is backed by the intelligent-design movement and will no doubt lead to yet another court case on teaching evolution and creationism in school and college classrooms. After all, courts and classrooms have served…

  7. Social Constructivism and Teaching of Social Science

    Directory of Open Access Journals (Sweden)

    Rishabh Kumar Mishra

    2014-10-01

    Full Text Available The paper presents an overview of prevailing pedagogic practices of social science at school level in India. It has been sketched with the help of social science teachers’ interviews. The analysis of teachers’ interview revealed that the teaching of social science is a reflection of teacher’s own biases and beliefs; dominated by deficit model of thinking and learning. Against this backdrop the paper tries to address the question do we have any alternative of ‘deficit model’ of teaching learning? If yes, what is it? How it can be designed and executed? In the present descriptive study the researcher adopts the theoretical underpinnings of Socio-cultural approach to learning and tries to design and execute constructivist pedagogic setting for teaching social science. It emerges from the analysis of these constructivists pedagogic settings that it helps to develop and sustain a culture of inquiry in the classroom where the strong interface between students’ everyday knowledge and school knowledge take place. The paper establishes the argument that for moving deficit model of teaching-learning, knowledge should be viewed as co-constructed, negotiated and situated entity, knower should have agency and the voice in process of knowing and the process learning should be dialogic.

  8. Teaching Science in English through Cognitive Strategies

    Science.gov (United States)

    Bueno Hernández, Yuly Andrea

    2012-01-01

    This study shows the impact and results of implementing three cognitive strategies in science teaching in English. The three-month study was carried out with 144 second grade students at a public school of Bogota's Bilingualism program, but only 40 students contributed in the data collection process. Data collected from observations and…

  9. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    2008-09-30

    Sep 30, 2008 ... Shri Aurobindo highlighted three basic principles of the teaching- learning process: 1. Nothing can be taught – the teacher is not an instructor or task- ..... created. Funding for all these grants needs to be enhanced several- fold in the XI Plan. Although the suggestions in our proposal are for science and ...

  10. Science student teacher's perceptions of good teaching ...

    African Journals Online (AJOL)

    kofi.mereku

    This study provides a rich narrative on a university of technology's science students' ... Good teaching is that which promotes student learning, it is not ... Learning happens when students read, talk, write, explain, make connections between ideas, try things out and observe the results, analyse, evaluate and organise their ...

  11. Research, development, and preliminary testing of interactive engagements for teaching quantum mechanics to undergraduate physics majors

    Science.gov (United States)

    Axmann, Waldemar Jay

    The Advanced Visual Quantum Mechanics project was conceived to provide computer-centered, activities-based instructional materials to upper-level undergraduate physics majors. This study implements one curriculum development cycle of research, development, and classroom testing for a single unit, The Shape and Behavior of the Wave Function, of these materials. It is designed to be a proof of concept pilot study for the project. The cycle began with an extensive review of existing research drawing on results from the general fields of cognitive science and educational research as well as more specific research regarding the use of computers in instruction and the teaching and learning of quantum mechanics. It continued with the development of written materials, a computer program, and assessment instruments all extensively based on this research. It concluded with a field test garnering an outcome of positive student and instructor attitudes and perceptions of learning gains as well as actual gains similar or superior to traditional instruction---even in the face of usage that diverged widely from that intended. Based on these results, we recommend the continuation of the Advanced Visual Quantum Mechanics project. This work would include further testing and revision of these materials, similar development and classroom testing of further materials, and new research within the context of that testing. Consideration should also be given to similar projects that address other physics subject areas.

  12. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  13. An integrated literature review of undergraduate peer teaching in ...

    African Journals Online (AJOL)

    PAL) has been receiving more attention in the teaching of medical and allied health students. Many advantages have been described in the literature, but much more research is needed. Challenges with the academic platform at a specific ...

  14. The Use of Project Work in Undergraduate Geography Teaching.

    Science.gov (United States)

    Silk, John; Bowlby, Sophia

    1981-01-01

    Describes the use of optional group projects for third-year college-level geography students. The authors conclude that this format, besides being intellectually rewarding, teaches students valuable research, problem solving, and social skills. (AM)

  15. Use of Lecture Capture in Undergraduate Biological Science Education

    Directory of Open Access Journals (Sweden)

    Candace Wiese

    2013-12-01

    Full Text Available This study examined the use of lecture capture in students in a large 3rd year undergraduate biological science course at the University of Guelph. Data regarding viewing behaviour, academic performance, and attendance were analyzed in relation to student learning approach (as assessed by the R-SPQ-2F, gender, and year of post-secondary education. It was found that relative to historic controls, students provided lecture capture videos increased their final exam grade by approximately 5%. It was also found that learning approach was significantly related to video viewing behaviour, final exam performance, and attendance, with a deep learning approach being associated with more video views, better performance, and a greater tendency to watch videos to master and review material. A surface approach showed contrasting associations. Moreover, a higher deep approach score was related to fewer absences, while a higher surface approach score was related to more absences and increased the likelihood of a student missing a class. Gender also influenced viewing behaviour, with females being more likely than males to watch videos to generate notes and to review material. This research demonstrates that learning approach and gender are significant predictors of lecture capture behaviour, performance, and/or attendance in biological science education, and provides support for the use of lecture capture as a tool to improve academic performance.

  16. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    Science.gov (United States)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  17. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  18. Strengthening STEM performance and persistence: Influence of undergraduate teaching assistants on entry-level STEM students

    Science.gov (United States)

    Philipp, Stephanie B.

    Increasing retention of students in science, technology, engineering, or mathematics (STEM) programs of study is a priority for many colleges and universities. This study examines an undergraduate teaching assistant (UTA) program implemented in a general chemistry course for STEM majors to provide peer learning assistance to entrylevel students. This study measured the content knowledge growth of UTAs compared to traditional graduate teaching assistants (GTAs) over the semester, and described the development of peer learning assistance skills of the UTAs as an outcome of semesterlong training and support from both science education and STEM faculty. Impact of the UTA program on final exam grades, persistence of students to enroll in the next chemistry course required by their intended major, and STEM identity of students were estimated. The study sample comprised 284 students in 14 general chemistry recitation sections led by six UTAs and 310 students in 15 general chemistry recitation sections led by three traditional GTAs for comparison. Results suggested that both UTAs and GTAs made significant learning gains in general chemistry content knowledge, and there was no significant difference in content knowledge between UTA and GTA groups. Student evaluations, researcher observations, and chemistry faculty comments confirm UTAs were using the learning strategies discussed in the semester-long training program. UTA-led students rated their TAs significantly higher in teaching quality and student care and encouragement, which correlated with stronger STEM recognition by those students. The results of hierarchical linear model (HLM) analysis showed little variance in final exam grades explained by section-level variables; most variance was explained by student-level variables: mathematics ACT score, college GPA, and intention to enroll in the next general chemistry course. Students having higher college GPAs were helped more by having a UTA. Results from logistic

  19. Reflections on Tutoring Ancient Greek Philosophy: A Case Study of Teaching First-Year Undergraduates in the UK

    Science.gov (United States)

    Vázquez, Daniel

    2014-01-01

    This is a case study of my reflections on teaching a first-year undergraduate tutorial on Ancient Greek Philosophy in the UK. This study draws upon the notion of reflective practice as an essential feature of teaching, in this case applied to Higher Education. My aim is to show how a critical engagement with my teaching practices and the overall…

  20. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  1. Brownfield Action Online - An Interactive Undergraduate Science Course in Environmental Forensics

    Science.gov (United States)

    Liddicoat, Joseph; Bower, Peter

    2014-05-01

    Brownfield Action (BA) is a web-based, interactive, three dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collectively to explore problems in environmental forensics. Created at Barnard College (BC) in conjunction with the Center for New Media Teaching and Learning at Columbia University, BA has a 12-year history at BC of use in one semester of a two-semester Introduction to Environmental Science course that is taken by more than 100 female undergraduate non-science majors to satisfy their science requirement. The pedagogical methods and design of the BA model are grounded in a substantial research literature focused on the design, use, and effectiveness of games and simulation in education. The successful use of the BA simulation at BC and 14 other institutions in the U.S. is described in Bower et al. (2011 and 2014). Soon to be taught online to non-traditional undergraduate students, BA has 15 modules that include a reconnaissance survey; scale; topographic, bedrock, and water table maps; oral and written reports from residents and the municipal government; porosity and permeability measurements of the regolith (sand) in the area of interest; hydrocarbon chemistry; direction and velocity of groundwater flow; and methods of geophysical exploration (soil gas, ground penetrating radar, magnetic metal detection, excavation, and drilling). Student performance is assessed by weekly exercises and a semester ending Environmental Site Assessment Phase I Report that summarizes the individual and collective discoveries about a contaminated subsurface plume that emanates from a leaking underground storage tank at a gasoline station upgrade from the water well that serves the surrounding community. Texts for the course are Jonathan Harr's A Civil Action and Rachel Carson's Silent Spring, which are accompanied by questions that direct the reading.

  2. Teaching ergonomics to undergraduate physical therapy students: new methodologies and impressions of a Brazilian experience.

    Science.gov (United States)

    Barbosa, Letícia Holtz; Pinheiro, Maria Helena Câmara

    2012-01-01

    Being ergonomics a scientific discipline based on knowledge of several areas, it is important to use education methodologies that promote critical thinking and reflective during the educational process. The article discusses the importance of interdisciplinarity in undergraduate courses in health care in particular in disciplines that address the ergonomics issue. The aspects of the introduction of new education methodologies, as well as case studies in undergraduate courses in Brazil, are discussed in this study. Based on the literature review conducted, some proposals for action in the interdisciplinary teaching of ergonomics in Physiotherapy courses are presented.

  3. A Week in the Wilderness of the Great Smoky Mountains Institute at Tremont: An Outdoor Science Education Course for Graduate and Undergraduate Students

    Science.gov (United States)

    Radencic, S.; Walker, R. M.; Anthony, K. V.

    2014-12-01

    Graduate and undergraduate students with an interest in science education complete an intensive three-week "Maymester" course at Mississippi State University that includes one week of field experience teaching science in outdoor environments. The focus of the course includes the history and rationales for interdisciplinary outdoor education and informal learning environments while promoting successful pedagogical practices to enhance science instruction. Students gain valuable outdoor education field experience through a week of full emersion at a residential environmental learning center at the Great Smoky Mountains Institute at Tremont, TN (www.gsmit.org) that challenges perceptions of what many believe are "good teaching" practices. Tremont offers multiple overnight educational options for K-12 schools, teacher professional development programs, master naturalists trainings, and citizen science opportunities to the public. Being fully immersed in the outdoors teaching and learning about Earth Science interdisciplinary topics creates a paradigm shift in what is considered to be effective teaching by the graduate and undergraduate participants. Prior to the week at Tremont, students select a Tremont created outdoor educational activity to teach their fellow the graduate and undergraduate students while at Tremont. All activities promote inquiry and hands-on exploration utilizing authentic science process skills in outdoor field research settings that can also be adapted for local school environments. At Tremont the students reside in platform tents located at the center to allow complete immersion in the culture of informal learning unique to outdoor education. In addition to gaining personal experiences leading outdoor science activities, the college students get to actively observe experts in the field of outdoor ecological education model exemplary pedagogical practices of guided inquiry and effective questioning strategies. The impact of the full emersion

  4. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The notion of excellence in science is universally attributed to the “pathfinders” – those whose distinction lies in their research work: New results, new interpretations, new research techniques are the driving force of scientific progress. This holds in a general sense as well as for the individual scientist. Still, while scientific ...

  5. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  6. An integrated undergraduate pain curriculum, based on IASP curricula, for six health science faculties.

    Science.gov (United States)

    Watt-Watson, Judy; Hunter, Judi; Pennefather, Peter; Librach, Larry; Raman-Wilms, Lalitha; Schreiber, Martin; Lax, Leila; Stinson, Jennifer; Dao, Thuan; Gordon, Allan; Mock, David; Salter, Michael

    2004-07-01

    Pain education, especially for undergraduates, has been identified as important to changing problematic pain practices, yet, no published data were found describing an integrated, interprofessional pain curriculum for undergraduate students. Therefore, this project aimed to develop, implement, and evaluate an integrated pain curriculum, based on the International Association for the Study of Pain curricula [http://www.iasp-pain.org/curropen.html], for 540 students from six Health Science Faculties/Departments. Over an 18-month period, the University of Toronto Centre for the Study of Pain's Interfaculty Pain Education Committee developed a 20-h undergraduate pain curriculum to be delivered during a 1-week period. Students from Dentistry, Medicine, Nursing, Pharmacy, Physical Therapy, and Occupational Therapy participated as part of their 2nd or 3rd year program. Teaching strategies included large and small groups, Standardized Patients, and 63 facilitators. Evaluation methods included: (a) pre- and post-tests of the Pain Knowledge and Beliefs Questionnaire (PKBQ) and (b) Daily Content and Process Questionnaire (DCPQ) to obtain feedback about process, content, and format across the curriculum's 5 days. A significant improvement in pain knowledge and beliefs was demonstrated (t = 181.28, P < 0.001), although non-responders were problematic at the post-test. DCPQ overall ratings of 'exceeding or meeting expectations' ranged from 74 to 92%. Ratings were highest for the patient-related content and panel, and the small-group discussions with Standardized Patients. Overall evaluations were positive, and statistically significant changes were demonstrated in students' pain knowledge and beliefs. This unique and valuable learning opportunity will be repeated with some modifications next year.

  7. Teaching Science through the Science Technology and Society ...

    African Journals Online (AJOL)

    ... the teaching methods course of all teacher training Programmes and that the science syllabus be reviewed regularly so that it responds to current needs. Relevant authorities need inject more resources towards in-service programmes and come up with legislation on in-service programmes e.g. promotion or salary hikes ...

  8. A Flexible e-Learning Resource Promoting the Critical Reading of Scientific Papers for Science Undergraduates

    Science.gov (United States)

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-01-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this…

  9. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  10. Integrating simulated teaching/learning strategies in undergraduate nursing education.

    Science.gov (United States)

    Sinclair, Barbara; Ferguson, Karen

    2009-01-01

    In this article, the results of a mixed-methods study integrating the use of simulations in a nursing theory course in order to assess students' perceptions of self-efficacy for nursing practice are presented. Nursing students in an intervention group were exposed to a combination of lecture and simulation, and then asked to rate their perceptions of self-efficacy, satisfaction and effectiveness of this combined teaching and learning strategy. Based on Bandura's (1977, 1986) theory of self-efficacy, this study provides data to suggest that students' self-confidence for nursing practice may be increased through the use of simulation as a method of teaching and learning. Students also reported higher levels of satisfaction, effectiveness and consistency with their learning style when exposed to the combination of lecture and simulation than the control group, who were exposed to lecture as the only method of teaching and learning.

  11. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-02-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching as a career. Analysis of interns' subsequent career plans revealed the internships were not effective in recruiting the interns into the secondary science teacher education program, although many interns thought they might consider becoming teachers later in their lives. Reasons for not pursuing teaching included continued indecisiveness, inflexibility of required plans of study, and concerns about teachers' pay and classroom management.

  12. Hybrid teaching method for undergraduate student in Marine Geology class in Indonesia

    Science.gov (United States)

    Yusuf Awaluddin, M.; Yuliadi, Lintang

    2016-04-01

    Bridging Geosciences to the future generations in interesting and interactive ways are challenging for lecturers and teachers. In the past, one-way 'classic' face-to-face teaching method has been used as the only alternative for undergraduate's Marine Geology class in Padjadjaran University, Indonesia. Currently, internet users in Indonesia have been increased significantly, among of them are young generations and students. The advantage of the internet as a teaching method in Geosciences topic in Indonesia is still limited. Here we have combined between the classic and the online method for undergraduate teaching. The case study was in Marine Geology class, Padjadjaran University, with 70 students as participants and 2 instructors. We used Edmodo platform as a primary tool in our teaching and Dropbox as cloud storage. All online teaching activities such as assignment, quiz, discussion and examination were done in concert with the classic one with proportion 60% and 40% respectively. We found that the students had the different experience in this hybrid teaching method as shown in their feedback through this platform. This hybrid method offers interactive ways not only between the lecturers and the students but also among students. Classroom meeting is still needed to expose their work and for general discussion.Nevertheless, the only problem was the lack of internet access in the campus when all our students accessing the platform at the same time.

  13. Peer-assisted learning--beyond teaching: How can medical students contribute to the undergraduate curriculum?

    Science.gov (United States)

    Furmedge, Daniel S; Iwata, Kazuya; Gill, Deborah

    2014-09-01

    Peer-assisted learning (PAL) has become increasingly popular over recent years with many medical schools now formally incorporating peer-teaching programs into the curriculum. PAL has a sound evidence base with benefit to both peer-teacher and peer-learner. Aside from in teaching delivery, empowering students to develop education in its broadest sense has been much less extensively documented. Five case studies with supportive evaluation evidence illustrate the success of a broad range of peer-led projects in the undergraduate medical curriculum, particularly where these have been embedded into formal teaching practices. These case studies identify five domains of teaching and support of learning where PAL works well: teaching and learning, resource development, peer-assessment, education research and evaluation and mentoring and support. Each case offers ways of engaging students in each domain. Medical students can contribute significantly to the design and delivery of the undergraduate medical program above and beyond the simple delivery of peer-assisted "teaching". In particular, they are in a prime position to develop resources and conduct research and evaluation within the program. Their participation in all stages enables them to feel involved in course development and education of their peers and ultimately leads to an increase in student satisfaction.

  14. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    Science.gov (United States)

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  15. Improving scientific learning and supporting civic engagement for undergraduate non-science majors

    Science.gov (United States)

    Taylor, Alana Presley

    In prior research focusing on teaching and learning science, a definitive trend toward a new approach for undergraduate non-major science courses has emerged. Instruction should be refocused from information-transfer to giving students experiences that allow them to explore and engage in their new knowledge and find ways to integrate it into their everyday lives. One technique is to focus class material on real issues of interest and relevance. Course development that allows for civic engagement and self discovery connects learning to the lives of students and their communities. This study used a quasi-- experimental design to see if students who engaged in their learning had improved learning gains, increased motivation, and ability to relate it to their lives. The results showed that students were more motivated to connect the subject to their lives when they engaged through civic engagement projects. Techniques used in this research can be used in the future to develop science courses that focus on the needs of 21st century learners.

  16. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    Science.gov (United States)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  17. Introducing an Undergraduate Degree of Cosmetic Science and Formulation Design within a College of Pharmacy

    Directory of Open Access Journals (Sweden)

    Gabriella Baki

    2017-01-01

    Full Text Available As a unique and versatile undergraduate degree program, a Bachelor of Science in Pharmaceutical Sciences (BSPS is offered by a number of colleges/schools of pharmacy. These provide a bachelor's degree concentrated in pharmaceutical sciences, and can be a non-Doctor of Pharmacy option, possibly before progressing to graduate degree studies. Recently implemented at the University of Toledo College of Pharmacy and Pharmaceutical Sciences (UTCPPS, one such BSPS major is Cosmetic Science and Formulation Design. This new undergraduate major was created to serve the needs of the cosmetic and personal care industry, with a great need identified for well-trained new professionals with basic knowledge in the sciences and business. This Cosmetic Science and Formulation Design major was added to four other BSPS majors at UTCPPS. Introduced in 2013, this major is the only functioning undergraduate degree in Cosmetic Science and Formulation Design in the United States. Preliminary job placement data provides promising evidence that this undergraduate major has helped graduates launch a career in the cosmetic and personal care, or pharmaceutical industries. Based on our experience from the past three years, we believe that this cosmetic science major has been worth its resource investment. We hope others designing new undergraduate pharmaceutical sciences programs might integrate advice from this experience into their impending programs.   Type: Idea Paper

  18. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  19. How Successful Has Earth Science Education Been in Teaching Deep Time and Terminology of the Earth's Structure?

    Science.gov (United States)

    Murphy, Phil

    2012-01-01

    A very limited questioning of undergraduate Environmental Science students at the start of their studies suggests the age of the Earth is being successfully taught in high schools. The same cannot be said for the teaching of the structure of the Earth.

  20. Teaching Introductory Undergraduate Physics Using Commercial Video Games

    Science.gov (United States)

    Mohanty, Soumya D.; Cantu, Sergio

    2011-01-01

    Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate…

  1. Teaching the Sociocultural Norms of an Undergraduate Community of Practice

    Science.gov (United States)

    Couper, Graeme; Denny, Heather; Watkins, Annette

    2016-01-01

    The importance of teaching second language learners the pragmatic norms of relevant communities of practice is widely recognised. Familiarisation with these norms is also an important aspect of socialisation for native speakers entering a new community of practice. This study focuses on pragmatic instruction of English as an additional language…

  2. Integrating Catholic Social Teaching into Undergraduate Accounting Courses

    Science.gov (United States)

    Haen, Jason

    2013-01-01

    The world of work that students enter after graduation will not mirror the straightforward world portrayed by their textbooks. They will be required to make decisions that will affect more than the bottom line. Faculty at Catholic business schools can integrate the components of Catholic social teaching (CST) into the classroom to help equip…

  3. The Teaching of Computing in an Undergraduate Physics Course.

    Science.gov (United States)

    Humberston, J. W.; McKenzie, J.

    1984-01-01

    Describes an approach to teaching interactive computing for physics students beginning with the use of BASIC and video terminals during the first year of study (includes writing solution programs for practical problems). Second year students learn FORTRAN and apply it to interpolation, numerical integration, and differential equations. (JM)

  4. Journalism Meets Interaction Design: An Interdisciplinary Undergraduate Teaching Initiative

    Science.gov (United States)

    Angus, Daniel; Doherty, Skye

    2015-01-01

    As the media industry moves to a post-industrial model, there is a need for journalists--current and future--to have a deeper understanding of the ways that technology impacts their work and how best to produce journalism for mobile and networked devices. This article examines a teaching initiative designed to introduce journalism students to…

  5. Teaching Race: Pedagogical Challenges in Predominantly White Undergraduate Theology Classrooms

    Science.gov (United States)

    Scheid, Anna Floerke; Vasko, Elisabeth T.

    2014-01-01

    While a number of scholars in the field of Christian theology have argued for the importance of teaching diversity and social justice in theology and religious studies classrooms, little has been done to document and assess formally the implementation of such pedagogy. In this article, the authors discuss the findings of a yearlong Scholarship of…

  6. Teaching with Moodle in Soil Science

    Science.gov (United States)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  7. Using Calendars to Teach Science

    Directory of Open Access Journals (Sweden)

    Eric A. Kincanon

    2017-07-01

    Full Text Available This paper considers the use of calendar construction as an activity for 5th through 8th graders to reinforce science and mathematics concepts. The fundamental cyclic nature of many processes makes it possible to posit alternatives to the modern calendar. Students, in constructing their own calendars, will better appreciate the scientific basis of the modern calendar as well as the cyclic nature of the processes considered in the construction of alternatives. This enhances STEM skills by requiring the students to apply creative mathematical and scientific solutions to a real world problem: tracking cyclic time.

  8. Research and Teaching: Assessing the Effect of Problem-Based Learning on Undergraduate Student Learning in Biomechanics

    Science.gov (United States)

    Mandeville, David; Stoner, Mark

    2015-01-01

    The aim of this study was to assess the effect of using the problem-based learning (PBL) teaching strategy on student academic achievement and secondary learning outcomes when compared with the traditional lecture (TL) for an undergraduate Biomechanics course. Successive undergraduate Biomechanics courses--a TL cohort and a PBL cohort--were…

  9. Effects of a research-infused botanical curriculum on undergraduates' content knowledge, STEM competencies, and attitudes toward plant sciences.

    Science.gov (United States)

    Ward, Jennifer Rhode; Clarke, H David; Horton, Jonathan L

    2014-01-01

    In response to the American Association for the Advancement of Science's Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors' courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers' field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students' knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules' assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project's pedagogical impact. © 2014 J. R. Ward et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  10. Teaching children the structure of science

    Science.gov (United States)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  11. How Do People Think about the Science They Encounter in Fiction? Undergraduates Investigate Responses to Science in "The Simpsons"

    Science.gov (United States)

    Orthia, Lindy A.; Dobos, Amy R.; Guy, Tristan; Kan, Shanan Z.; Keys, Siân E.; Nekvapil, Stefan; Ngu, Dalton H. Y.

    2012-01-01

    In this study, students and staff involved in an undergraduate science communication course investigated people's responses to a science-rich episode of the animated sitcom "The Simpsons". Using focus groups, we sought to find out if and how the episode influenced our 34 participants' perceptions of science, but our results problematised…

  12. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  13. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  14. Teaching Critical Appraisal to Sport & Exercise Sciences and Biosciences Students

    Science.gov (United States)

    Phillips, Anna C.

    2009-01-01

    Seminars were implemented to develop undergraduates' critical appraisal skills and their effectiveness was evaluated. Participants were 140 undergraduate students consisting of 103 students from Sport and Exercise Sciences and 37 from Biosciences. Four seminars were employed to develop and reinforce critical thinking and provide an opportunity for…

  15. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  16. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  17. The science knowledge, conceptions of the nature of science, attitudes about teaching science, and science instructional strategies of bilingual and English-only elementary teachers

    Science.gov (United States)

    Alegria, Adelina Victoria

    use of similar instructional strategies, many of which are known to support science learning in the classroom (laboratory/hands-on activities, whole group discussion, questioning, and cooperative/small group activities). Concerning assessment strategies, both the bilingual and English-only groups reported very similar answers. They reported usually making use of students' projects, student's logs/journals/diaries, performance activities such as lab practicals and hands-on tests to assess science learning. They also reported seldom or never making use of paper/pencil quizzes nor end-of-chapter/unit tests. There was not enough clear information to decide whether bilingual and English-only elementary respondents hold similar or different views of science. This study's implications encompass two different areas: (a) changes that bilingual and elementary credentialing programs need to undergo and (b) further bilingual science teaching research. The findings concerned with science knowledge, that both bilingual and English-only elementary teachers possess a limited science knowledge base leads me to suggest, just as the science teaching literature has suggested, that elementary credentialing programs need to strengthen their candidates' science content by increasing the science content addressed in the science methodology courses and/or by requiring a greater number of science undergraduate courses (most liberal arts majors require no more than five courses, San Diego State University, 1999). (Abstract shortened by UMI.)

  18. Psychological Distress and Sources of Stressors amongst Medical and Science Undergraduate Students in Malaysia

    OpenAIRE

    Ali S Radeef; Ghasak G Faisal

    2017-01-01

    Background: This study aims to compare the prevalence of psychological distress between medical and science undergraduate students and to assess the sources of stressors that are attributing to it. Methods: A sample of 697 undergraduate students participated in this study, in which 501 were medical students and the remaining 196 were Science students. Psychological distress was assessed using the 12-item General Health Questionnaire. The students were given a list of possible sources of stres...

  19. Teaching of Research Methodology in Nursing History: evaluation of educational strategy for undergraduation students

    Directory of Open Access Journals (Sweden)

    Luciana Barizon Luchesi

    2009-12-01

    Full Text Available The objective is to identify the impact of the use of a pedagogical strategy for teaching research methodology in the History of Nursing in a course designed for undergraduate students in Nursing. This is a descriptive, quantitative research, which had as source of data a self-administered questionnaire with closed and open questions and an essay prepared by nursing students at the end of the course about their perception of the importance of study History of Nursing during undergraduation course. Among the course participants 33.3% participated in the study. It was concluded that the course was successful in the evaluation of students, and it contributed for more mature professional, scientific and cultural development of the students, there was demonstration of internalization of concepts described in the scientific literature and also presented as impact the production of five micro research projects and consolidation of an interinstitutional laboratory of studies. Descriptors: Nursing, History of Nursing, Teaching.

  20. Teaching and Assessing Communication Skills in Medical Undergraduate Training.

    Science.gov (United States)

    Modi, Jyoti Nath; Anshu, -; Chhatwal, Jugesh; Gupta, Piyush; Singh, Tejinder

    2016-06-08

    Good communication skills are essential for an optimal doctor-patient relationship, and also contribute to improved health outcomes. Although the need for training in communication skills is stated as a requirement in the 1997 Graduate Medical Education Regulations of the Medical Council of India, formal training in these skills has been fragmentary and non-uniform in most Indian curricula. The Vision 2015 document of the Medical Council of India reaffirms the need to include training in communication skills in the MBBS curriculum. Training in communication skills needs approaches which are different from that of teaching other clinical subjects. It is also a challenge to ensure that students not only imbibe the nuances of communication and interpersonal skills, but adhere to them throughout their careers. This article addresses the possible ways of standardizing teaching and assessment of communication skills and integrating them into the existing curriculum.

  1. Introducing Taiwanese Undergraduate Students to the Nature of Science through Nobel Prize Stories

    Science.gov (United States)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel…

  2. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    Science.gov (United States)

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  3. Internet use by library and information science undergraduates in ...

    African Journals Online (AJOL)

    The study recommended that undergraduates should be trained to be ICT literate as well as be given increased access to internet facilities to enable them maximize the benefits of internet use. The study concluded that although there is a rise in the use of internet by undergraduates, they primarily use the internet for social ...

  4. So much more than just a list: exploring the nature of critical questioning in undergraduate sciences

    Science.gov (United States)

    Pedrosa-de-Jesus, Helena; Moreira, Aurora; Lopes, Betina; Watts, Mike

    2014-05-01

    Background: Critical thinking is one of the very highest orders of cognitive abilities and a key competency in higher education. Asking questions is an important component of rich learning experiences, structurally embedded in the operations of critical thinking. Our clear sense is that critical thinking and, within that, critical questioning, is heavily context dependent, in the sense that is applied, used by critical learners in a contextualised way. Purpose: Our research deals with enhancing science undergraduates' critical questioning. We are interested in understanding and describing the nature and development of students' critical questioning. The purpose is to conceptualise critical questioning as a competency, into three domains - knowledge, skills and attitudes/dispositions. We have no interest in a taxonomic category of context-free question-types called 'critical questions'. In contrast, our view is that 'being a critical questioner' trades heavily on context. Sources of evidence: Four cases are considered as illuminative of the dimensions of science undergraduates' critical questioning. Data were collected in natural learning environments through non-participant observation, audio-taping teacher-students interactions and semi-structured interviews. Students' written material resulting from diverse learning tasks was also collected. Main argument: Our supposition is that one vehicle for achieving university students as critical thinkers is to enable them not just to ask critical questions, but to be critical questioners. We relate critical questioning to three domains: (1) context, (2) competency and (3) delivery, and propose a model based on illuminating examples of the in-classroom action. Conclusions: The dimensions of the competency-context-delivery model provide a framework for describing successful student critical questioning, showing that students' capacity to be critical can be developed. It is possible, in our view, to generate critical

  5. A STUDY ON FOREIGN LANGUAGE TEACHING MODEL FOR UNDERGRADUATE PROGRAMS IN TOURISM

    OpenAIRE

    TEMİZKAN, Rahman; TEMİZKAN, Saadet Pınar

    2014-01-01

    Abstract Referring to the fact that the tourism sector offers a lot of job opportunities tourism undergraduate programs have an important place in the tourism education system in Turkey.Due to the importance of foreign language (FL) skills in the tourism sector, it is necessary to revise foreign language teaching models of these programs. The purpose of the study is to determine the perceptions, expectations and suggestions of students and faculty members regarding the foreign language teachi...

  6. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    OpenAIRE

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set...

  7. Undergraduate palliative care teaching in Swiss medical faculties: a nationwide survey and improved learning objectives

    OpenAIRE

    Eychmüller, Steffen; Forster, M; Gudat, H; Lütolf, U M; Borasio, G D

    2015-01-01

    BACKGROUND In 2007, a first survey on undergraduate palliative care teaching in Switzerland has revealed major heterogeneity of palliative care content, allocation of hours and distribution throughout the 6 year curriculum in Swiss medical faculties. This second survey in 2012/13 has been initiated as part of the current Swiss national strategy in palliative care (2010 - 2015) to serve as a longitudinal monitoring instrument and as a basis for redefinition of palliative care learning obje...

  8. Shifting the clinical teaching paradigm in undergraduate nursing education to address the nursing faculty shortage.

    Science.gov (United States)

    Richardson, Hila; Gilmartin, Mattia J; Fulmer, Terry

    2012-04-01

    To address the faculty shortage problem, schools of nursing are reexamining how they provide clinical education to undergraduate students to find ways to use faculty resources more efficiently and to maintain student enrollment. We describe a unique clinical teaching model implemented at the New York University College of Nursing. The new model currently being evaluated shifts from the traditional clinical education model, in which all clinical education is in a hospital or agency setting, to a model that substitutes high-fidelity human patient simulation for up to half of the clinical education experience. This article describes the clinical teaching model and its effects on nurse faculty capacity. Copyright 2012, SLACK Incorporated.

  9. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  10. Finding Clarity by Fostering Confusion: Reflections on Teaching an Undergraduate Integrated Biological Systems Course

    Science.gov (United States)

    Martin, Kirsten H.

    2015-01-01

    Undergraduate biology programs in smaller liberal arts colleges are increasingly becoming focused on health science fields. This narrowing of focus potentially decreases opportunities for these students to explore other sub-fields of biology. This perspectives article highlights how one small university in Connecticut decided to institute a…

  11. Basic practical skills teaching and learning in undergraduate medical education - a review on methodological evidence.

    Science.gov (United States)

    Vogel, Daniela; Harendza, Sigrid

    2016-01-01

    Practical skills are an essential part of physicians' daily routine. Nevertheless, medical graduates' performance of basic skills is often below the expected level. This review aims to identify and summarize teaching approaches of basic practical skills in undergraduate medical education which provide evidence with respect to effective students' learning of these skills. Basic practical skills were defined as basic physical examination skills, routine skills which get better with practice, and skills which are also performed by nurses. We searched PubMed with different terms describing these basic practical skills. In total, 3467 identified publications were screened and 205 articles were eventually reviewed for eligibility. 43 studies that included at least one basic practical skill, a comparison of two groups of undergraduate medical students and effects on students' performance were analyzed. Seven basic practical skills and 15 different teaching methods could be identified. The most consistent results with respect to effective teaching and acquisition of basic practical skills were found for structured skills training, feedback, and self-directed learning. Simulation was effective with specific teaching methods and in several studies no differences in teaching effects were detected between expert or peer instructors. Multimedia instruction, when used in the right setting, also showed beneficial effects for basic practical skills learning. A combination of voluntary or obligatory self-study with multimedia applications like video clips in combination with a structured program including the possibility for individual exercise with personal feedback by peers or teachers might provide a good learning opportunity for basic practical skills.

  12. Online Teaching Tool Simplifies Faculty Use of Multimedia and Improves Student Interest and Knowledge in Science

    Science.gov (United States)

    Walsh, John P.; Chih-Yuan Sun, Jerry; Riconscente, Michelle

    2011-01-01

    Digital technologies can improve student interest and knowledge in science. However, researching the vast number of websites devoted to science education and integrating them into undergraduate curricula is time-consuming. We developed an Adobe ColdFusion– and Adobe Flash–based system for simplifying the construction, use, and delivery of electronic educational materials in science. The Online Multimedia Teaching Tool (OMTT) in Neuroscience was constructed from a ColdFusion-based online interface, which reduced the need for programming skills and the time for curriculum development. The OMTT in Neuroscience was used by faculty to enhance their lectures in existing curricula. Students had unlimited online access to encourage user-centered exploration. We found the OMTT was rapidly adapted by multiple professors, and its use by undergraduate students was consistent with the interpretation that the OMTT improved performance on exams and increased interest in the field of neuroscience. PMID:21885826

  13. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  14. [Geriatric teaching at undergraduate level: are Spanish Medical Schools following European recommendations?].

    Science.gov (United States)

    Mateos-Nozal, Jesús; Cruz-Jentoft, Alfonso Jose; Ribera Casado, José Manuel

    2015-01-01

    To compare the learning objectives proposed by the European Union of Medical Specialists Geriatric section (UEMS-GS) with those approved in Spain for undergraduate teaching. Learning objectives included in the European Undergraduate Curriculum in Geriatric Medicine developed by the UEMS-GS in 2013 were compared with those listed in different Spanish official documents: Boletín Oficial del Estado (BOE, Spanish State Gazette), white book on Medicine of the Spanish Accreditation Agency (ANECA), and list of learning objectives of Spanish Medical Schools. the European curriculum recommends to teach 42 competencies divided in 10 sections, while the BOE mentions 37 general competencies and some other specific competencies, and the ANECA mentions 23 generic and 34 specific competencies (similar to the 37 of the BOE), and a list of common contents in which Geriatrics is included. The BOE includes 38% of the European competencies (range 17-100% of competencies in different sections), while the ANECA includes 52% of them (range 17-100%). Spanish regulations include from one third to half of the European recommendations for Geriatrics teaching at undergraduate level. In the future, it seems advisable that official requirements in Spain should converge with European recommendations. This task should also be performed by Spanish Medical Schools. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  15. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  16. Children's Science Journals: Tools for Teaching, Learning, and Assessing.

    Science.gov (United States)

    Shepardson, Daniel P.; Britsch, Susan J.

    1997-01-01

    Discusses effective ways of using children's journals in science teaching and methods for assessing children's journals for science learning. Emphasizes the importance of children's own cognitive and verbal efforts to make sense of science phenomena. (JRH)

  17. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  18. Promoting Learning by Inquiry Among Undergraduates in Soil Sciences: Scaffolding From Project-based Courses to Student-Staff Research Grants by the National Research Agency in Oman

    Science.gov (United States)

    Al-Ismaily, Said; Kacimov, Anvar; Al-Maktoumi, Ali

    2016-04-01

    Three strategies in a soil science undergraduate programme with inquiry-based learning (IBL) principles at Sultan Qaboos University, Oman, are presented. The first strategy scaffolds courses into three phases: with direct instructional guidance, structured IBL, and finally, guided to open IBL. The second strategy involves extra-curricular activities of undergraduates, viz. conducting workshops on soils for pupils in grades 7-9 with their teachers. The third strategy promotes the teaching-research nexus through collaboration between the undergraduates and faculty within a student-supporting, government-funded programme through 1-year long research grants of up to 5,500 US/project. The efficiency of the strategies was evaluated by students' evaluations of courses and instructors and questionnaire-based surveys. Statistics of students' responses in teaching evaluations of IBL courses showed a significantly higher level of satisfaction compared with regular courses taught in the department and college. In surveys of other constituencies of the program, viz. the secondary schools, more than 90% of respondents "agreed" or "strongly agreed" that they had learned new information/secrets about soils. The indicators of success in the third strategy are: winning a highly competitive grant and, moreover, earning an even more competitive annual national award for the best executed research project. The two top graduates of the IBL soil programme progressed into the MSc programme with the university and national scholarships. Key words: inquiry based learning, soil science undergraduate program, scaffold of courses, outreach activities, teaching-research nexus, evaluation of program's efficiency

  19. Teaching communication skills and medical ethics to undergraduate medical student

    Directory of Open Access Journals (Sweden)

    SADIA AHSIN

    2013-07-01

    Full Text Available Introduction: The purpose of this study was to improve communication skills and knowledge of bioethics of last year medical students doing clerkship and to evaluate the effectiveness of using workshops for this purpose from students’ point of view, in order to continue such programs in future. Methods: After Ethical approval for the study a two-day workshop on teaching effective communication skills and principles of medical ethics was planned and conducted by the department of Medical Education through multidisciplinary faculty of Foundation University Medical College, Pakistan. A total of 102 last year medical students participated in this workshop. The students were divided into 8 groups each containing 12 students. A team of pre trained facilitators for each group conducted the group activities. Teaching strategies including interactive discussions on basic principles of doctor-patient relationship, power point presentations, day to day case scenarios, video clips and presentations involving students in role plays were used. Pre and post workshop self evaluation proformas about knowledge and skills of communication and medical ethics were rated (0=none, 1=below average, 2=average, 3=above average, 4=very good, 5=excellent by the students. Results: 89 out of 102 participants returned the proformas. A significant percentage of students (%82 showed improvement in their knowledge and skills of appreciating bioethical issues like valid informed consent, patient confidentiality, end of life issues and breaking bad news by rating as “very good” after participation in the workshop. More than %70 students recommended this activity for other students. Conclusion: Teaching through interactive workshops was found to be an effective method as reflected by students’ feedback. Therefore, the program will be continued in future.

  20. INTRODUCING SCIENCE BY DISTANCE EDUCATION TO UNDERGRADUATE STUDENTS

    Directory of Open Access Journals (Sweden)

    P. Avila Jr.

    2007-05-01

    Full Text Available Exponential growing of scientific and technological knowledge of nowadayssociety demands new abilities and competences of theirs citizens. In the otherhand, the development of Information and Communication Technologies (ICTsand the low cost of equipments provide a new teaching strategy, namely distanceeducation, through intranet or internet. The familiarity with of scientific methodstimulates autonomy in obtaining information, critical thinking and logical analysisof data. These are useful abilities for science students as well as for commoncitizens. Aiming the development of such abilities a distance course wasdeveloped in 45 hours, using mainly forum and chat in the Claroline platform withtechnical support of the Centro Nacional de Supercomputação da UFRGS. All thestudents attending the course were from Fundação Faculdade Federal deCiências Médicas de Porto Alegre. In this course the following topics wereexplored: (1 scientific knowledge x common sense, (2 different conceptions ofscience, (3 scientific method, (4 different categories of science publications, (5principles of Logic, (6 deduction x induction (7 paper analysis simulation.Scientific project writing was taught/learned through the following items: (1 choiceof a problem, (2 bibliography revision, (3 agencies for funding, (4 projectpresentation by videoconference and (5 analysis of results.The course was evaluated by Likert-type questionnaire and the results fromstudents and teachers indicate a very successful outcome.

  1. Teaching forensic pathology to undergraduates at Zhongshan School of Medicine.

    Science.gov (United States)

    Zhou, Nan; Wu, Qiu-Ping; Su, Terry; Zhao, Qian-Hao; Yin, Kun; Zheng, Da; Zheng, Jing-Jing; Huang, Lei; Cheng, Jian-Ding

    2018-01-01

    Producing qualified forensic pathological practitioners is a common difficulty around the world. In China, forensic pathology is one of the required major subspecialties for undergraduates majoring in forensic medicine, in contrast to forensic education in Western countries where forensic pathology is often optional. The enduring predicament is that the professional qualities and abilities of forensic students from different institutions vary due to the lack of an efficient forensic pedagogical model. The purpose of this article is to describe the new pedagogical model of forensic pathology at Zhongshan School of Medicine, Sun Yat-sen University, which is characterised by: (a) imparting a broad view of forensic pathology and basic knowledge of duties and tasks in future careers to students; (b) educating students in primary skills on legal and medical issues, as well as advanced forensic pathological techniques; (c) providing students with resources to broaden their professional minds, and opportunities to improve their professional qualities and abilities; and (d) mentoring students on occupational preparation and further forensic education. In the past few years, this model has resulted in numerous notable forensic students accomplishing achievements in forensic practice and forensic scientific research. We therefore expect this pedagogical model to establish the foundation for forensic pathological education and other subspecialties of forensic medicine in China and abroad.

  2. First Experiences with Reading Primary Literature by Undergraduate Life Science Students

    Science.gov (United States)

    van Lacum, Edwin; Ossevoort, Miriam; Buikema, Hendrik; Goedhart, Martin

    2012-08-01

    Learning to read and understand research articles (primary literature) is an important step in the enculturation of higher education students into the scientific community. We presume, based on ideas from the field of genre analysis, that it is important for the development of reading skills to become conscious of the rhetorical structures in research articles. So, we determined how well science students are able to identify 2 important elements of this rhetorical structure: conclusions and grounds. First-year undergraduate life science students who followed a course called 'Biomedical Research' made assignments in which they had to identify these 2 elements. We analysed the answers of 20 students in detail and compared their answers with 2 expert readers. Furthermore, we conducted task-based interviews with 4 students to gain more insight into their reading strategies and to determine how they identify conclusions and grounds. Our results show that students and experts defined conclusions and grounds in different ways. Students and experts agreed on the most important conclusion of the articles. However, students identified a wide range of sentences which were not seen as conclusions by the experts. The grounds students mentioned mostly matched their conclusions. Students sometimes failed to mention important grounds for a particular conclusion. In conclusion, our study shows the differences between student and expert readers of primary literature. Based on our results, we formulated criteria for the design of a teaching strategy that aims to improve students' skills for reading primary literature.

  3. Brownfield Action: An education through an environmental science simulation experience for undergraduates

    Science.gov (United States)

    Kelsey, Ryan Daniel

    Brownfield Action is a computer simulation experience used by undergraduates in an Introduction to Environmental Science course for non-science majors at Barnard College. Students play the role of environmental consultants given the semester-long task of investigating a potentially contaminated landsite in a simulated town. The simulation serves as the integration mechanism for the entire course. The project is a collaboration between Professor Bower and the Columbia University Center for New Media Teaching and Learning (CCNMTL). This study chronicles the discovery, design, development, implementation, and evaluation of this project over its four-year history from prototype to full-fledged semester-long integrated lecture and lab experience. The complete project history serves as a model for the development of best practices in contributing to the field of educational technology in higher education through the study of fully designed and implemented projects in real classrooms. Recommendations from the project focus on linking the laboratory and lecture portions of a course, the use of simulations (especially for novice students), instructor adaptation to the use of technology, general educational technology project development, and design research, among others. Findings from the study also emphasize the uniqueness of individual student's growth through the experience, and the depth of understanding that can be gained from embracing the complexity of studying sophisticated learning environments in real classrooms.

  4. An Analysis of Questionnaire Survey on Online Evaluation of Teaching by University Undergraduates

    Science.gov (United States)

    Sun, Dongyun

    2013-01-01

    This paper takes into consideration of the problems discovered in the teaching evaluation data statistics over the years in Changchun University of Science and Technology and cooperates with related departments to conduct a questionnaire survey on an online evaluation of teaching, with the purpose of detecting cognition of students in evaluation…

  5. Teaching the concept of brain death in undergraduate medical education.

    Science.gov (United States)

    Holling, Markus; Stummer, Walter; Friederichs, Hendrik

    2015-01-01

    To establish and evaluate a new approach to teach medical students how to assess brain death in patients. A total of 120 fourth-year medical students at Münster Medical School (Germany) participated in a 1-hour lecture on how to assess brain death in patients. After this lecture, students were assigned to 2 groups. One group attended an additional practical course on the evaluation of brain death and received training using a new high-fidelity simulation device. The other group did not participate in any additional training session. All students completed a questionnaire before the lecture and a second questionnaire at the conclusion of the study. For the group undergoing the additional training, the second questionnaire was completed after the additional training session. The additional practical training session significantly improved the students' performance in assessing brain death and promoted the self-assessment and motivation of the medical students. The establishment of a new practical teaching concept led to significant improvements in medical students' assessments of brain death in a practical session. These improvements in medical education could have significant implications for the clinical assessment of patients in the future. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Registrars teaching undergraduate medical students: A pilot study at ...

    African Journals Online (AJOL)

    To evaluate the perception and attitudes of registrars with regard to their role as teachers of UG medical students. Methods. A questionnaire-based study with qualitative and quantitative aspects was conducted at the Faculty of Health Sciences, University of Pretoria, South Africa. Results. Despite numerous attempts, the ...

  7. Using Industry Professionals in Undergraduate Teaching: Effects on Student Learning

    Science.gov (United States)

    Gentelli, Liesel

    2015-01-01

    Tutorials are a common complementary method of achieving student engagement with material covered in lectures, as students achieve deeper understanding by being involved in small group discussions. However, in an attempt to provide students with a taste of everything the industry has to offer, the Centre for Forensic Science at the University of…

  8. Exploring teaching style in an undergraduate medical college following traditional curriculum in Pakistan.

    Science.gov (United States)

    Ahmed, Syed Danish Haseen; Mubeen, Syed Muhammed

    2013-11-01

    To find out the teaching style and its differences among teachers in a medical college setup. The observational cross-sectional study was carried out from June to August 2011 at a private medical and dental college in Karachi, using traditional curriculum and comprising 77 faculty members. Self-assessment Staffordshire Evaluation of Teaching Styles questionnaire was used for data collection. SPSS version 15.0 was used for analysis of categorical variables and t-test and analysis of variance were used to compare data variables. Of the total, 28 (36.4%) teachers preferred all round flexible and adaptable style; 19 (24.7%) preferred student-centred, sensitive; 4 (5.2%) official curriculum; 5 (6.5%) straight facts no nonsense; 6 (7.8%) big conference; 1 (1.3%) one-off; and 14 (18.2%) mixed. Percentage of 'all round flexible and adaptable' was higher among females, senior faculty and clinical sciences when compared to males, junior faculty and basic sciences. However, females, junior faculty, and basic science teachers attained significantly higher in official curriculum scores compared to males, senior faculty, and clinical sciences respectively. Similarly, basic sciences teachers attained significantly higher in big conference teaching style score compared to clinical sciences teachers (p Traditional curriculum does not support all round flexible and adaptable teaching style. Gender, curriculum, teaching strategies and faculty rank of the teacher influence the teaching style. To train teachers, effective faculty development should be done in medical colleges.

  9. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  10. Teach the Teacher! Building ROV's to Teach Polar Science

    Science.gov (United States)

    Bartholow, S.; Warburton, J.

    2014-12-01

    In 2013, the Arctic Research Consortium of the United States (ARCUS) a non-profit corporation consisting of institutions organized and operated for educational, professional, or scientific purposes, received funding from Lockheed Martin to design and host a workshop for teachers. Middle School teachers participated in a three-day Polar Workshop designed to enlighten teachers regarding marine polar science and exploration through the use of remotely operated vehicles, or ROVs. The Polar Workshop was offered as part of a teacher professional development activity that took at the Monterey Bay Aquarium Research Institute. The workshop provided training for teachers alongside polar scientists and teacher mentors. The overall purpose of the workshop was to teach teachers about marine polar science and technology that could be used with students in classrooms. Teachers were teamed with a polar scientist and with a teacher mentor for the three-day project. Results from the evaluation of the Polar Workshop indicate this workshop was an excellent opportunity for the teachers who participated as well as for the scientists. In this presentation, we will share the evaluation data, best practices of the workshop model, and how teacher mentors, scientists, and graduate students can help teach teachers successfully.

  11. Oral surgery undergraduate teaching and experience in the United Kingdom: a national survey.

    Science.gov (United States)

    Macluskey, M; Durham, J

    2009-02-01

    The aim of this work was to determine the structure, mode of delivery, mode of assessment and staffing of the oral surgery undergraduate curriculum within UK dental schools. A questionnaire was distributed by e-mail in January 2006 to each of the 15 dental schools with undergraduate dental degree programmes in Ireland and the UK. Those providing feedback then met to clarify any areas as required. Thirteen completed questionnaires were returned. There were a total of 55 academics involved in the teaching of oral surgery at these 13 institutions. Over the three clinical years the mean number of clinical sessions was 51. The mean staff student ratio for supervision of forceps exodontia was 1:5. On average 51 teeth were extracted by each student in the clinical years. The mean staff student ratio for surgical extractions was 1:2. The mean number of surgical extractions for each student was 6. All schools formatively assessed competency in forceps exodontia and 9 of 13 assessed surgical extractions. Summative assessment of exodontia was done in six schools and surgical extractions in 4 of 13 schools. All 13 schools deliver teaching programmes designed to meet the requirements of the frameworks governing the central curriculum. There were, however, variations between individual schools in the content and delivery of the oral surgery clinical teaching programmes. There were dramatic variations in the numbers of academic staff involved and some institutions relied on their NHS colleagues to deliver the clinical teaching.

  12. Ultrasound-based teaching of cardiac anatomy and physiology to undergraduate medical students.

    Science.gov (United States)

    Hammoudi, Nadjib; Arangalage, Dimitri; Boubrit, Lila; Renaud, Marie Christine; Isnard, Richard; Collet, Jean-Philippe; Cohen, Ariel; Duguet, Alexandre

    2013-10-01

    Ultrasonography is a non-invasive imaging modality that offers the opportunity to teach living cardiac anatomy and physiology. The objectives of this study were to assess the feasibility of integrating an ultrasound-based course into the conventional undergraduate medical teaching programme and to analyse student and teacher feedback. An ultrasound-based teaching course was implemented and proposed to all second-year medical students (n=348) at the end of the academic year, after all the conventional modules at our faculty. After a brief theoretical and practical demonstration, students were allowed to take the probe and use the ultrasound machine. Students and teachers were asked to complete a survey and were given the opportunity to provide open feedback. Two months were required to implement the entire module; 330 (95%) students (divided into 39 groups) and 37 teachers participated in the course. Student feedback was very positive: 98% of students agreed that the course was useful; 85% and 74% considered that their understanding of cardiac anatomy and physiology, respectively, was improved. The majority of the teachers (97%) felt that the students were interested, 81% agreed that the course was appropriate for second-year medical students and 84% were willing to participate to future sessions. Cardiac anatomy and physiology teaching using ultrasound is feasible for undergraduate medical students and enhances their motivation to improve their knowledge. Student and teacher feedback on the course was very positive. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. [Exploration of the concept of genetic drift in genetics teaching of undergraduates].

    Science.gov (United States)

    Wang, Chun-ming

    2016-01-01

    Genetic drift is one of the difficulties in teaching genetics due to its randomness and probability which could easily cause conceptual misunderstanding. The “sampling error" in its definition is often misunderstood because of the research method of “sampling", which disturbs the results and causes the random changes in allele frequency. I analyzed and compared the definitions of genetic drift in domestic and international genetic textbooks, and found that the definitions containing “sampling error" are widely adopted but are interpreted correctly in only a few textbooks. Here, the history of research on genetic drift, i.e., the contributions of Wright, Fisher and Kimura, is introduced. Moreover, I particularly describe two representative articles recently published about genetic drift teaching of undergraduates, which point out that misconceptions are inevitable for undergraduates during the studying process and also provide a preliminary solution. Combined with my own teaching practice, I suggest that the definition of genetic drift containing “sampling error" can be adopted with further interpretation, i.e., “sampling error" is random sampling among gametes when generating the next generation of alleles which is equivalent to a random sampling of all gametes participating in mating in gamete pool and has no relationship with artificial sampling in general genetics studies. This article may provide some help in genetics teaching.

  14. Americans aim to overhaul science teaching by 2061

    CERN Multimedia

    1990-01-01

    Project 2061 is a long-term initiative by the AAAS to reform classroom science. Deputy director Walter Gillespie claims that the aim is for schools to teach less content but teach it better (1/2 page).

  15. Relationships among Instructor, Peer, and Self-Evaluations of Undergraduate Music Education Majors' Micro-Teaching Experiences

    Science.gov (United States)

    Napoles, Jessica

    2008-01-01

    The author investigates relationships between instructor, peer, and self-evaluations. Undergraduate music education students each taught three micro-teaching segments. Immediately after teaching, they filled out an evaluation for themselves indicating four things they did well, one suggestion for improvement, and an effectiveness score from 1 to…

  16. Integrating Research-Informed Teaching within an Undergraduate Level 4 (Year 1) Diagnostic Radiography Curriculum: A Pilot Study

    Science.gov (United States)

    Higgins, Robert; Hogg, Peter; Robinson, Leslie

    2013-01-01

    This article discusses the piloting and evaluation of the Research-informed Teaching experience (RiTe) project. The aim of RiTe was to link teaching and learning with research within an undergraduate diagnostic radiography curriculum. A preliminary pilot study of RiTe was undertaken with a group of level 4 (year 1) volunteer BSc (Hons) diagnostic…

  17. Establishing Common Course Objectives for Undergraduate Exercise Physiology

    Science.gov (United States)

    Simonson, Shawn R.

    2015-01-01

    Undergraduate exercise physiology is a ubiquitous course in undergraduate kinesiology/exercise science programs with a broad scope and depth of topics. It is valuable to explore what is taught within this course. The purpose of the present study was to facilitate an understanding of what instructors teach in undergraduate exercise physiology, how…

  18. Science in Cinema. Teaching Science Fact through Science Fiction Films.

    Science.gov (United States)

    Dubeck, Leroy W.; And Others

    Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…

  19. Historical outline about the undergraduate teaching of astronomy in Brazil from 1808 to 1889.

    Science.gov (United States)

    Bretones, Paulo Sergio; Videira, Antonio Augusto Passos

    2002-08-01

    In this poster we present the main events occurred in the history of astronomy teaching in undergraduate courses existing in Brazil since the arrival of the Portuguese Royal Family in 1808 until the end of the monarchic period. In order to compose this historic outline, we mainly use didactic books, rules, decrees and laws that organized the contents offered and the careers of those in charge for the discipline. In the analyses of the used material, we searched for the presence of philosophical and scientific assumptions that may have oriented the contents of the disciplines. Comparisons with the teaching of astronomy in other countries haven't been made. We have ended showing that the teaching of astronomy, during the monarchic period, was more directed to forming engineers than astronomers. We would like to observe that the present poster doesn't aim to approach the subject in a complete and detailed way.

  20. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  1. Undergraduate Neuroscience Education in the U.S.: Quantitative Comparisons of Programs and Graduates in the Broader Context of Undergraduate Life Sciences Education.

    Science.gov (United States)

    Ramos, Raddy L; Esposito, Anthony W; O'Malley, Shannon; Smith, Phoebe T; Grisham, William

    2016-01-01

    The impact of undergraduate neuroscience programs on the broader landscape of life sciences education has not been described. Using data from the National Center for Education Statistics, we found that the number of undergraduate neuroscience programs in the U.S. continues to grow. Within any given institution, neuroscience programs exist alongside a small number of other life sciences undergraduate programs, suggesting that neuroscience is one of few major options from which students can choose from at many institutions. Neuroscience majors constitute a substantial proportion of all life sciences graduates at many institutions, and in several cases, neuroscience majors were the majority of life sciences graduates. Thus, neuroscience programs contribute substantially to life sciences education, and neuroscience is a highly attractive major among undergraduate students where these programs are available. These data have implications for institutions with existing neuroscience programs as well as for institutions seeking to establish a new program.

  2. Science Thought and Practices: A Professional Development Workshop on Teaching Scientific Reasoning, Mathematical Modeling and Data Analysis

    Science.gov (United States)

    Robbins, Dennis; Ford, K. E. Saavik

    2018-01-01

    The NSF-supported “AstroCom NYC” program, a collaboration of the City University of New York and the American Museum of Natural History (AMNH), has developed and offers hands-on workshops to undergraduate faculty on teaching science thought and practices. These professional development workshops emphasize a curriculum and pedagogical strategies that uses computers and other digital devices in a laboratory environment to teach students fundamental topics, including: proportional reasoning, control of variables thinking, experimental design, hypothesis testing, reasoning with data, and drawing conclusions from graphical displays. Topics addressed here are rarely taught in-depth during the formal undergraduate years and are frequently learned only after several apprenticeship research experiences. The goal of these workshops is to provide working and future faculty with an interactive experience in science learning and teaching using modern technological tools.

  3. Getting to the core of medicine: Developing undergraduate forensic medicine and pathology teaching.

    Science.gov (United States)

    Jones, Richard Martin

    2017-11-01

    Teaching and learning of forensic medicine and pathology in the undergraduate medical curriculum has been in decline for decades in the UK, and yet graduates are expected to be able to recognise, and protect, those who are most vulnerable in society - i.e. at risk of abuse or neglect - a matter highly relevant to the role of the forensic medical practitioner. When Cardiff University School of Medicine created a new 'learner-centred' undergraduate curriculum, championing case-based discussion in small groups, and earlier clinical contact, residual teaching on 'the pathology of trauma' disappeared. An opportunity to create a new course for the year 3 core curriculum, however, led to re-emergence of forensic medicine and pathology, with a focus on identification, and protection, of the 'vulnerable patient'. This paper describes the development process of the first two iterations of that course, and the influence of 'listening to the student voice'. Forensic medicine and pathology remain relevant in undergraduate medical education; effective, and ethical, safeguarding of the vulnerable is an essential 'core' skill of the modern medical graduate, and forensic medical practitioners can play an integral role in the preparation of medical students for their future clinical practice. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  5. Lecturing undergraduate science in Danish and in English

    DEFF Research Database (Denmark)

    Thøgersen, Jacob; Airey, John

    2011-01-01

    , and that the lecturer speaks 23% more slowly in L2 than in L1. In the second part of the paper these differences are investigated through a qualitative analysis of parallel extracts from the same data set. Here it is found that when teaching in English the lecturer uses a higher degree of repetition and adopts a more......This paper investigates the consequences of L2 use in university lectures. Data in the study stem from parallel lectures held by the same experienced lecturer in Danish (L1) and English (L2). It is found that the lecturer takes 22% longer to present the same content in L2 compared to L1...... formal and condensed style as compared to the rhetorical style in L1. Finally, the potential consequences of these quantitative and qualitative differences for student learning are discussed. Research highlights ¿ We analyse five science lectures: three in Danish (L1) and two in English (L2). ¿ The same...

  6. Lecturing undergraduate science in Danish and in English

    DEFF Research Database (Denmark)

    Thøgersen, Jacob; Airey, John

    2011-01-01

    formal and condensed style as compared to the rhetorical style in L1. Finally, the potential consequences of these quantitative and qualitative differences for student learning are discussed. Research highlights ¿ We analyse five science lectures: three in Danish (L1) and two in English (L2). ¿ The same......This paper investigates the consequences of L2 use in university lectures. Data in the study stem from parallel lectures held by the same experienced lecturer in Danish (L1) and English (L2). It is found that the lecturer takes 22% longer to present the same content in L2 compared to L1......, and that the lecturer speaks 23% more slowly in L2 than in L1. In the second part of the paper these differences are investigated through a qualitative analysis of parallel extracts from the same data set. Here it is found that when teaching in English the lecturer uses a higher degree of repetition and adopts a more...

  7. Teaching Medical Ethics in Graduate and Undergraduate Medical Education: A Systematic Review of Effectiveness.

    Science.gov (United States)

    de la Garza, Santiago; Phuoc, Vania; Throneberry, Steven; Blumenthal-Barby, Jennifer; McCullough, Laurence; Coverdale, John

    2017-08-01

    One objective was to identify and review studies on teaching medical ethics to psychiatry residents. In order to gain insights from other disciplines that have published research in this area, a second objective was to identify and review studies on teaching medical ethics to residents across all other specialties of training and on teaching medical students. PubMed, EMBASE, and PsycINFO were searched for controlled trials on teaching medical ethics with quantitative outcomes. Search terms included ethics, bioethics, medical ethics, medical students, residents/registrars, teaching, education, outcomes, and controlled trials. Nine studies were found that met inclusion criteria, including five randomized controlled trails and four controlled non-randomized trials. Subjects included medical students (5 studies), surgical residents (2 studies), internal medicine house officers (1 study), and family medicine preceptors and their medical students (1 study). Teaching methods, course content, and outcome measures varied considerably across studies. Common methodological issues included a lack of concealment of allocation, a lack of blinding, and generally low numbers of subjects as learners. One randomized controlled trial which taught surgical residents using a standardized patient was judged to be especially methodologically rigorous. None of the trials incorporated psychiatry residents. Ethics educators should undertake additional rigorously controlled trials in order to secure a strong evidence base for the design of medical ethics curricula. Psychiatry ethics educators can also benefit from the findings of trials in other disciplines and in undergraduate medical education.

  8. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    Science.gov (United States)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  9. To Stay or Leave: Factors That Impact Undergraduate Women's Persistence in Science Majors

    Science.gov (United States)

    Gayles, Joy Gaston; Ampaw, Frim

    2016-01-01

    This study examined factors that influenced undergraduates' decision to enter, leave, or stay within science majors. In addition, we sought to understand if such decisions differed by gender and type of science major. Using Beginning Postsecondary Students (BPS) longitudinal survey data, we found that women were less likely to select a science…

  10. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    Science.gov (United States)

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  11. Successful Programs for Undergraduate Women in Science and Engineering: "Adapting" versus "Adopting" the Institutional Environment

    Science.gov (United States)

    Fox, Mary Frank; Sonnert, Gerhard; Nikiforova, Irina

    2009-01-01

    This article focuses upon programs for undergraduate women in science and engineering, which are a strategic research site in the study of gender, science, and higher education. The design involves both quantitative and qualitative approaches, linking theory, method, questions, and analyses in ways not undertaken previously. Using a comprehensive,…

  12. A Portable Bioinformatics Course for Upper-Division Undergraduate Curriculum in Sciences

    Science.gov (United States)

    Floraino, Wely B.

    2008-01-01

    This article discusses the challenges that bioinformatics education is facing and describes a bioinformatics course that is successfully taught at the California State Polytechnic University, Pomona, to the fourth year undergraduate students in biological sciences, chemistry, and computer science. Information on lecture and computer practice…

  13. Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class

    Science.gov (United States)

    Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen

    2018-01-01

    Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…

  14. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    Science.gov (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  15. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  16. An investigation of information seeking behaviour of Computer Science and Information Technology undergraduates: a qualitative approach

    OpenAIRE

    Saad, M. S. M.; Zainab, A. N.

    2009-01-01

    It is a common fallacy to assume that undergraduates are skilled in finding and evaluating resources for their various learning needs. Information professionals need to find out strategies and courses of action undertaken by undergraduate students in order to perhaps improve information literacy skills or user education programmes. This qualitative study uses the diary, emails interaction and in depth face to face interview approach involving 14 final year Computer Science and Information Tec...

  17. Undergraduate Research as a Process for STEM Teaching and Learning Systemic Change: Lessons Learned from the Council on Undergraduate Research NSF CCLI and TUES Projects

    Science.gov (United States)

    Ambos, E. L.; Havholm, K. G.; Malachowski, M.; Osborn, J.; Karukstis, K.

    2013-12-01

    concerted efforts to affect policy, workload, tenure and promotion and resource issues, which are often core factors in any STEM education change process. Several systems are now connecting individual campus-based undergraduate research efforts more effectively, and tying undergraduate research to regional workforce and economic development programs. Many campus teams are moving their department and colleges toward curricular innovations that emphasize scaffolding undergraduate research throughout the undergraduate curriculum. An NSF EAGER/WIDER supplement to the CUR CCLI III award was received in October 2012 and expanded the scope of the project to include deeper study of the changes processes underway at each of the six systems and to tease out the factors that can either promote or retard expansion of undergraduate research as a teaching and learning paradigm. Lessons learned from one of the six systems, the University of Wisconsin, will be highlighted.

  18. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  19. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    Science.gov (United States)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  20. Using ultrasonography as a teaching support tool in undergraduate medical education - time to reach a decision.

    Science.gov (United States)

    Mircea, Petru-Adrian; Badea, Radu; Fodor, Daniela; Buzoianu, Anca Dana

    2012-09-01

    Medical education and the process of teaching and learning, respectively, are constantly changing. This is induced by the pace at which knowledge, teaching methodology and its related tools are updated, the use of simulation, virtual depiction and the use of static and/or dynamic images. In this respect, X-ray images have been used in the understanding of macroanatomy ever since the beginning of the last century. Starting with the 1990s, when high-performing and relatively less costly equipment started to emerge, several experts in the field of education anticipated the huge resource that ultrasound could become in the field of medicine. The method is easy to understand, intuitive and available to anyone studying human anatomy and, subsequently, the major pathological issues during undergraduate medical studies. The present paper reviews the attempts made at using ultrasound as an educational support tool, from the first experiences in teaching anatomy (Hannover Medical School, 1996) until the recent development of an entire medical university curriculum integrating ultrasound (University of South Carolina, School of Medicine, 2006-2011). It is an exciting journey proving beyond any doubt that the method should be learned, understood and developed in medical schools from the undergraduate stage, together with the other clinical skills.

  1. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers

    Science.gov (United States)

    Westerback, Mary E.

    These studies examined attitude toward teaching science (ATTS) using an adaptation of the Bratt Attitude Test (M-BAT); anxiety about teaching science (ANX-TS), as measured by the State-Trait Anxiety Inventory (STAI A-State); and selected demographic variables in preservice elementary teachers for the 1977-1978 and 1978-1979 academic years and a follow-up of those students who completed their student teaching in May 1979. The M-BAT and STAI were administered in September at the beginning of Science 6 (earth science and biology course), in December on the next to last day of Science 6, in May on the next to the last day of Science 5 (physical science), and in May 1979 after student teaching. In the two academic years, both ATTS and ANX-TS became more positive during the sequence Science 6-5. Both changes in ATTS and ANX-TS continued to change in a positive direction after completion of Science 6-5, after student teaching. There were differences in the times that the greatest changes in ATTS and ANX-TS occurred. In both studies, the greatest change in ATTS took place between September and December, during Science 6. The greatest change in ANX-TS, however, took place during Science 5 between December and May in the 1977-1978 study. In the 1978-1979 study, the greatest changes in ANX-TS occurred in Science 6, between September and December. The delayed reduction of ANX-TS in the 1977-1978 study may be explained by differences in teaching patterns. In 1977-1978, two teachers taught only their academic specialty, biology or earth science, to students who switched teachers midsemester. In 1978-1979, the same two instructors taught both biology and earth science to the same students. Correlation coefficients for successive and corresponding administrations of both the M-BAT and STAI suggest these variables are related. Students with more positive ATTS tended to have reduced ANX-TS. Neither the number of high school or college science and math courses completed nor the level

  2. Teaching the Scientific Method in the Social Sciences

    Science.gov (United States)

    Keyes, Grace

    2010-01-01

    Many undergraduates can tell you what the scientific method means but just a little probing reveals a rather shallow understanding as well as a number of misconceptions about the method. The purpose of this paper is to indicate why such misconceptions occur and to point out some implications and suggestions for teaching the scientific method in…

  3. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    Science.gov (United States)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  4. Medical student perceptions of clinical neurosurgery teaching in an undergraduate medical school curriculum.

    Science.gov (United States)

    Knight, James; Stroud, Lauren; Geyton, Thomas; Stead, Anthony; Cock, Hannah R

    2017-12-01

    The aim of this study was to evaluate undergraduate medical student perceptions as to the value of different types of neurosurgical teaching to their general neuroscience education, delivered in the penultimate year of a U.K medical school. We surveyed penultimate-year medical students at St George's Hospital Medical School, University of London (SGUL), who were undertaking their clinical neuroscience attachment from August 2014 to July 2015. A questionnaire comprising closed Likert scale questions and an open question inviting participants to comment freely was used to assess student perception about the value of Neurosurgical sessions within their overall neuroscience education. Of the 316 students in the year we surveyed 247 (78.2%), of whom 201 responded (response rate 81.4%). On average, 82.8% of students either agreed or strongly agreed that neurosurgical teaching sessions made a valuable contribution to their learning. In particular, lectures by neurosurgeons, clinical teaching on the Glasgow Coma Scale in neuro-ITU, bedside teaching and neurosurgical clinics were considered the most beneficial. The majority of students felt the sessions improved their understanding of neurological examination, signs, and 'red-flags'. The sessions were also beneficial for learning neuro-imaging and understanding of neurosurgical emergencies. Over two thirds felt that theatre sessions were beneficial, significantly more so amongst students invited to 'scrub-in'. Students rated neurosurgical sessions highly and valued the contribution they made not only to their learning of neurosurgical conditions and emergencies, but also to their learning of general neurology and clinical neurosciences overall. Student perceived learning from theatre sessions was significantly correlated with whether or not the student had been invited to 'scrub-in'. Expert neurosurgical teaching can make a valuable, and arguably essential contribution to the undergraduate medical curriculum.

  5. Basic practical skills teaching and learning in undergraduate medical education – a review on methodological evidence

    Directory of Open Access Journals (Sweden)

    Vogel, Daniela

    2016-08-01

    Full Text Available Objective: Practical skills are an essential part of physicians’ daily routine. Nevertheless, medical graduates’ performance of basic skills is often below the expected level. This review aims to identify and summarize teaching approaches of basic practical skills in undergraduate medical education which provide evidence with respect to effective students’ learning of these skills.Methods: Basic practical skills were defined as basic physical examination skills, routine skills which get better with practice, and skills which are also performed by nurses. We searched PubMed with different terms describing these basic practical skills. In total, 3467 identified publications were screened and 205 articles were eventually reviewed for eligibility. Results: 43 studies that included at least one basic practical skill, a comparison of two groups of undergraduate medical students and effects on students’ performance were analyzed. Seven basic practical skills and 15 different teaching methods could be identified. The most consistent results with respect to effective teaching and acquisition of basic practical skills were found for structured skills training, feedback, and self-directed learning. Simulation was effective with specific teaching methods and in several studies no differences in teaching effects were detected between expert or peer instructors. Multimedia instruction, when used in the right setting, also showed beneficial effects for basic practical skills learning.Conclusion: A combination of voluntary or obligatory self-study with multimedia applications like video clips in combination with a structured program including the possibility for individual exercise with personal feedback by peers or teachers might provide a good learning opportunity for basic practical skills.

  6. Basic practical skills teaching and learning in undergraduate medical education – a review on methodological evidence

    Science.gov (United States)

    Vogel, Daniela; Harendza, Sigrid

    2016-01-01

    Objective: Practical skills are an essential part of physicians’ daily routine. Nevertheless, medical graduates’ performance of basic skills is often below the expected level. This review aims to identify and summarize teaching approaches of basic practical skills in undergraduate medical education which provide evidence with respect to effective students’ learning of these skills. Methods: Basic practical skills were defined as basic physical examination skills, routine skills which get better with practice, and skills which are also performed by nurses. We searched PubMed with different terms describing these basic practical skills. In total, 3467 identified publications were screened and 205 articles were eventually reviewed for eligibility. Results: 43 studies that included at least one basic practical skill, a comparison of two groups of undergraduate medical students and effects on students’ performance were analyzed. Seven basic practical skills and 15 different teaching methods could be identified. The most consistent results with respect to effective teaching and acquisition of basic practical skills were found for structured skills training, feedback, and self-directed learning. Simulation was effective with specific teaching methods and in several studies no differences in teaching effects were detected between expert or peer instructors. Multimedia instruction, when used in the right setting, also showed beneficial effects for basic practical skills learning. Conclusion: A combination of voluntary or obligatory self-study with multimedia applications like video clips in combination with a structured program including the possibility for individual exercise with personal feedback by peers or teachers might provide a good learning opportunity for basic practical skills. PMID:27579364

  7. Undergraduate palliative care teaching in Swiss medical faculties: a nationwide survey and improved learning objectives.

    Science.gov (United States)

    Eychmüller, S; Forster, M; Gudat, H; Lütolf, U M; Borasio, G D

    2015-11-27

    In 2007, a first survey on undergraduate palliative care teaching in Switzerland has revealed major heterogeneity of palliative care content, allocation of hours and distribution throughout the 6 year curriculum in Swiss medical faculties. This second survey in 2012/13 has been initiated as part of the current Swiss national strategy in palliative care (2010 - 2015) to serve as a longitudinal monitoring instrument and as a basis for redefinition of palliative care learning objectives and curriculum planning in our country. As in 2007, a questionnaire was sent to the deans of all five medical faculties in Switzerland in 2012. It consisted of eight sections: basic background information, current content and hours in dedicated palliative care blocks, current palliative care content in other courses, topics related to palliative care presented in other courses, recent attempts at improving palliative care content, palliative care content in examinations, challenges, and overall summary. Content analysis was performed and the results matched with recommendations from the EAPC for undergraduate training in palliative medicine as well as with recommendations from overseas countries. There is a considerable increase in palliative care content, academic teaching staff and hours in all medical faculties compared to 2007. No Swiss medical faculty reaches the range of 40 h dedicated specifically to palliative care as recommended by the EAPC. Topics, teaching methods, distribution throughout different years and compulsory attendance still differ widely. Based on these results, the official Swiss Catalogue of Learning Objectives (SCLO) was complemented with 12 new learning objectives for palliative and end of life care (2013), and a national basic script for palliative care was published (2015). Performing periodic surveys of palliative care teaching at national medical faculties has proven to be a useful tool to adapt the national teaching framework and to improve the

  8. National Genome Research Initiative: A New Paradigm For Teaching Research To Undergraduates In South America

    Directory of Open Access Journals (Sweden)

    Rafael Ovalle

    2012-05-01

    Full Text Available Introduction: From 2007 to 2011, the Howard Hughes Medical Institute (HHMI recruited professors across the US to test a new paradigm in undergraduate education: the National Genome Research Initiative (NGRI. Undergraduates were taught to isolate bacteriophages, characterize their findings, and report to the scientific community.Objective: The educational goal of the NGRI program was to expose science undergraduates to an authentic research experience to increase graduation rates. The scientific goal was to isolate mycobacteriophages to be used as therapeutic agents against disease-causing mycobacteria.Materials and Methods: In a one-semester lab course undergraduates are taught to find, grow, and purify bacteriophages. In the second semester, students use bioinformatic software to annotate sequences of their bacteriophages.Results: Ahead of data on student graduation rates, the NGRI program has generated expanded productivity for US undergraduates. Over a four year period, thousands of participants were taught to collect bacteriophages, annotate sequences, and present their findings. Those undergraduates will have isolated 2300+ phages, annotated 250+ sequences, presented hundreds of posters at conferences across the US, and are co-authors on papers published by labs participating in the NGRI program.Discussion: Many professors in the US academic community are convinced that the NGRI program will have lasting impact on the US educational system. Several professors have banded together to form the Phage Galaxy Consortium to continue HHMI’s goal of implementation of the NGRI program at all US colleges.Conclusions: HHMI’s paradigm is ready for distribution to Central and South America.

  9. A Computer Security Course in the Undergraduate Computer Science Curriculum.

    Science.gov (United States)

    Spillman, Richard

    1992-01-01

    Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…

  10. Benefits and Limitations of Online Instruction in Natural Science Undergraduate Liberal Arts Courses

    Science.gov (United States)

    Liddicoat, Joseph; Roberts, Godfrey; Liddicoat, Kendra; Porzecanski, Ana Luz; Mendez, Martin; McMullen, David

    2013-04-01

    Online courses in the Natural Sciences are taught three ways at New York University to undergraduate students majoring in the liberal arts and professional programs - synchronous courses in which students communicate online with the instructor and classmates in real time, asynchronous courses when faculty present course material for students to access and learn at their leisure, and hybrid or blended courses when part is taught asynchronously and part is taught face-to-face in a classroom with all students present. We have done online courses each way - Global Ecology (synchronous); Stars, Planets, and Life (synchronous and asynchronous); Darwin to DNA: An Overview of Evolution (asynchronous); Biodiversity Conservation (asynchronous); and Biology of Hunger and Population (blended). We will present the advantages and challenges we experienced teaching courses online in this fashion. Besides the advantages listed in the description for this session, another can be programmed learning that allows a set of sequential steps or a more complex branching of steps that allows students to repeat lessons multiple times to master the material. And from an academic standpoint, course content and assessment can be standardized, making it possible for each student to learn the same material. Challenges include resistance to online learning by a host of stakeholders who might be educators, students, parents, and the community. Equally challenging might be the readiness of instructors and students to teach and learn online. Student integrity issues such as plagiarism and cheating are a concern in a course taught online (Thormann and Zimmerman, 2012), so we will discuss our strategies to mitigate them.

  11. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    Science.gov (United States)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  12. A Social Capital Perspective on the Mentoring of Undergraduate Life Science Researchers: An Empirical Study of Undergraduate-Postgraduate-Faculty Triads.

    Science.gov (United States)

    Aikens, Melissa L; Sadselia, Sona; Watkins, Keiana; Evans, Mara; Eby, Lillian T; Dolan, Erin L

    2016-01-01

    Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as "postgraduates") and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate's research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates' research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The "closed triad," in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist. © 2016 M. L. Aikens et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. How to engage undergraduate students in Soil Science: some strategies to enhance their motivation

    Science.gov (United States)

    Zornoza, Raúl; Lozano-García, Beatriz; Acosta, Jose A.; Martínez-Martínez, Silvia; Parras-Alcántara, Luis; Faz, Angel

    2017-04-01

    Teaching soil science can be a challenge in those degrees where students are not familiar with the soil system and do not understand the importance of soil science for their future career. This is the case of students of Biology, Agronomy or Environmental Science, who normally consider soil as a mere substrate for vegetation development, with no interest about how soil determines productivity and quality of terrestrial ecosystems. Thus, students lack of initial motivation to study Soil Science, and just attend lectures and practical lessons as mandatory procedure to get the degree. To engage undergraduate students from Biology, Agronomy and Environmental Sciences in Soil Science, we developed a strategy to enhance their motivation by means of making them participants of the selection of the soils and analyses used for their training. By means of dichotomous keys, students, grouped in pairs, first select the main purpose of their study from different options (land productivity, soil biodiversity, soil fertility, effectiveness of restoration, effect of land use, effect of management, etc). Once objective is decided, we give them some information about sampling strategies, so that they select how soil sampling is going to be performed, and the number of samples to be taken. In terms of the initial objective, they also decide from a given list the properties they should measure. In a practical basis, from the list of selected properties to be measured, professors decide the ones they can really develop in terms of timing, resources and space demand. After that, they are aware about the fact that they have an experimental design developed by them to achieve the goal they meant. Under this perspective, their motivation is enhanced since students are the ones deciding what to study in terms of their personal and professional interests, so that learning is more effective. The negative aspect of this strategy is that it involves many hours of tutorials for the professor

  14. The transformation of science and mathematics content knowledge into teaching content by university faculty

    Science.gov (United States)

    Flynn, Natalie P.

    This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their

  15. Promovendo a argumentação no ensino superior de química Promoting argumentation in undergraduate chemistry teaching

    Directory of Open Access Journals (Sweden)

    Luciana Passos Sá

    2007-01-01

    Full Text Available Studies have demonstrated the importance of argumentation in science education. Based on this assertion, we have tried to develop argumentative abilities in chemistry undergraduate students through a teaching methodology based on case studies. The process culminated with class presentations by student groups about possible solutions for the cases. To assess the quality of students' argumentation, videotapes of group presentations were collected and analyzed using Toulmin's Argument Pattern (TAP. TAP illustrates the nature of an argument in terms of claims, data, warrants, backings, and rebuttals. The findings of this work support the idea that the case study approach is an effective strategy for enhancing students' ability to argument.

  16. History of Science in Physics Teaching: A Study About the Teaching of Gravitational Attraction Developed Among Prospective Teachers

    Directory of Open Access Journals (Sweden)

    Sandra Regina Teodoro Gatti

    2010-03-01

    Full Text Available We report here some outcomes of a research related to a didactical experience aiming to integrate the History of Science to the Physics Teaching, taking as background the historical development of the gravitational attraction. The research, of qualitative approach, is a case study and it was carried out in a sample of eleven students belonging to an undergraduate physics program (called licenciatura in Brazil designed to from High School physics teachers in a São Paulo State Public University. We tried initially to reveal prospective teachers’ conceptions in order to provide a prepare that was used to guide the activities from the reality’s diagnosis. The aim was to promote discussions on the existence and persistence of alternative conceptions, on the historical evolution of the subject gravitational attraction, through readings and debates of texts contemplating recent subjects on the Science Education research, in order to generate dissatisfaction with traditional teaching models. The future High School physics teachers were asked to construct their own teaching proposal, through the development, in real situations, in a High School, of a mini-course based on: debates and synthesis developed in University classroom, the History of the Science and the student’s alternative conceptions. In this paper we will analyze future teachers’ alternative conceptions, the development of the course proposed, and details of the mini-courses taught by the prospective teachers in real situations, among High School students, its coherence and the posture changes observed in them.

  17. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  18. Teaching civility to undergraduate nursing students using a virtue ethics-based curriculum.

    Science.gov (United States)

    Russell, Martha Joan

    2014-06-01

    As professionals, nurses are expected to engage in respectful relationships with clients, other health care professionals, and each other. Regulatory bodies set standards and codes of ethics for professional behavior in nursing that clearly communicate expectations for civility. However, the wealth of literature on incivility in the profession indicates that nurses often fall short of meeting these standards in their interactions with other nurses. Currently, few effective strategies exist for nurse educators to teach civility to nursing students and prepare them to engage in healthy relationships with their colleagues. This article argues for the use of virtue ethics as a philosophical framework for teaching civility to undergraduate nursing students. The pedagogical strategies proposed may help students contribute to the development of healthy workplaces. Copyright 2014, SLACK Incorporated.

  19. The Graduating European Dentist: Contemporaneous Methods of Teaching, Learning and Assessment in Dental Undergraduate Education.

    Science.gov (United States)

    Field, J C; Walmsley, A D; Paganelli, C; McLoughlin, J; Szep, S; Kavadella, A; Manzanares Cespedes, M C; Davies, J R; DeLap, E; Levy, G; Gallagher, J; Roger-Leroi, V; Cowpe, J G

    2017-12-01

    It is often the case that good teachers just "intuitively" know how to teach. Whilst that may be true, there is now a greater need to understand the various processes that underpin both the ways in which a curriculum is delivered, and the way in which the students engage with learning; curricula need to be designed to meet the changing needs of our new graduates, providing new, and robust learning opportunities, and be communicated effectively to both staff and students. The aim of this document is to draw together robust and contemporaneous methods of teaching, learning and assessment that help to overcome some of the more traditional barriers within dental undergraduate programmes. The methods have been chosen to map specifically to The Graduating European Dentist, and should be considered in parallel with the benchmarking process that educators and institutions employ locally. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Iconic Gestures as Undervalued Representations during Science Teaching

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin; Tan, Kim Chwee Daniel

    2015-01-01

    Iconic gestures that are ubiquitous in speech are integral to human meaning-making. However, few studies have attempted to map out the role of these gestures in science teaching. This paper provides a review of existing literature in everyday communication and education to articulate potential contributions of iconic gestures for science teaching.…

  1. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  2. Teaching Political Science to first-year university students ...

    African Journals Online (AJOL)

    Perspectives in Education ... This paper explores the situated nature of the epistemological values of a social science discipline as it finds expression in a particular department. ... Keywords: Academic literacies; epistemology; disciplinary tribes and territories; teaching and learning regimes; teaching the social sciences ...

  3. Conceptual astronomy: A novel model for teaching postsecondary science courses

    Science.gov (United States)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  4. Putting the pieces together: teaching undergraduate research from a theoretical perspective.

    Science.gov (United States)

    Dobratz, Marjorie C

    2003-02-01

    PROBLEM/PURPOSE: Baccalaureate graduates are expected to utilize research across a wide variety of practice settings. While the literature reports a variety of teaching approaches, few studies examine baccalaureate students' comprehension of research content. Teaching techniques that focus on a conceptual or theoretical approach may foster research comprehension. Therefore, the purpose of this paper is to evaluate teaching/learning outcomes of an undergraduate nursing research course designed from a conceptual or theoretical approach. Two classes of senior baccalaureate nursing students (n = 47) at a private institution, whose curriculum was based on the Roy adaptation model, were surveyed in 1990 and 1991 at the end of their undergraduate research course. The survey tool consisted of seven three-point Likert scale questions, four open-ended questions, and one unstructured comment. Findings showed that 72% strongly agreed that they would continue to read nursing articles in their practice field, 57% disagreed that they were intimidated by research language, and 55% agreed that they trusted their ability to use and utilize nursing research in practice. The most helpful learning activity was the research critique (34%) followed by group work (28%). The support of the teacher and Instructor's use of own research examples was also seen as most helpful (36%), while abstract cards (8%) were least helpful. Nonetheless, 23% requested more group activities, 13% wanted more class examples, and 11% asked for more time to comprehend definitions. Students who approached research from the perspective of a nursing conceptual framework indicated that they put the pieces of the research puzzle together by working in groups, being supported by the Instructor, and learning from a variety of teaching methods.

  5. HAS THE TIME COME TO CHANGE THE WAY WE TEACH COMMUNITY MEDICINE TO UNDERGRADUATE STUDENTS?

    Directory of Open Access Journals (Sweden)

    Rahul Bansal

    2013-05-01

    Full Text Available Why the need to change ? Substantial increase in the content of subject : The content of the subject has grown by at least 30 % from the time when I was an undergraduate student and we used to read the 7th edition of Preventive and Social Medicine by Park. At that time this book had only 686 pages (size of pages was at least 30 % less than now had only 16 chapters .The 21st edition of the same book has 868 pages and 23 chapters. This goes on to show that the content of subject has increased substantially. 12 weeks of clinical posting added : Medical Council of India has added 12 weeks of clinical posting to the teaching of Community Medicine similar to the postings in major clinical subjects, where in the students are available to us in small groups for approximately 3 hours everyday. In spite of the increase in subject content and the opportunity for small group teaching during postings, I personally feel that we have not been able to inspire students to learn Community Medicine with enthusiasm. Why the subject has not become much popular among under graduate students? Before going into the further details let us look at the following observations made by the WHO -SEARO expert group on “Improving the teaching of Public Health at undergraduate level in medical schools – suggested guidelines.” – Today most of the teaching in public health is carried out using didactic lectures within the ivory tower of an institution with limited exposure to the community .Public health education has to be an active process ,student centered , inquiry driven , evidence based and problem solving as well addressing the needs of the community .The role of the teacher should be to facilitate the student to acquire the competencies through field based experiential learning of public health competencies involving dedicated time for practice , receiving feedback and reflecting on its application in their future role as primary care doctors1.

  6. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  7. Teaching Tomorrow: A Handbook of Science Fiction for Teachers.

    Science.gov (United States)

    Calkins, Elizabeth; McGhan, Barry

    Science Fiction appeals to young people and is suited for use in a wide range of classrooms. This handbook of Science Fiction for Teachers suggests ways of using Science Fiction to teach literature and English skills. Study guides based on two Science Fiction stories are presented, with activities such as individual papers and small group…

  8. Knowledge of healthy foods does not translate to healthy snack consumption among exercise science undergraduates.

    Science.gov (United States)

    McArthur, Laura H; Valentino, Antonette; Holbert, Donald

    2017-06-01

    This cross-sectional survey study compared the on- and off-campus snack choices and related correlates of convenience samples of exercise science (ES) ( n = 165, M = 45%, F = 55%) and non-exercise science (NES) ( n =160, M = 43%, F = 57%) undergraduates. The hypothesis posed was that knowledge of healthy foods will not translate to healthier snack consumption by the ES students, and that the snack choices and related correlates of ES and NES students will be similar. Data were collected using self-administered questionnaires completed in classrooms (ES sample) and at high-traffic locations on-campus (NES sample). Chi-square and t-test analyses compared ES and NES students on snack correlates. Snacks consumed most often by the ES and NES students on-campus were health bars/squares ( n = 56 vs. n = 48) and savory snacks ( n = 55 vs. n = 71), and off-campus were savory snacks ( n = 60 vs. n = 71) and fruits ( n = 41 vs. n = 34). Over half of both samples believed their snack choices were a mix of unhealthy and healthy. Fruits were considered healthier snacks and chips less healthy by both samples, and fruits were the most often recommended snack. About 20% believed these choices would impact their health unfavorably, and about two thirds self-classified in the action stages for healthy snacking. Since knowledge about healthy food choices did not translate to healthy snack selection, these students would benefit from interventions that teach selection and preparation of healthy snacks on a restricted budget.

  9. Science Instructors' Views of Science and Nature of Science

    Science.gov (United States)

    Karakas, Mehmet

    2011-01-01

    This qualitative study examined how college science faculty who teach introductory level undergraduate science courses including the fields of chemistry, biology, physics, and earth science, understand and define science and nature of science (NOS). Participants were seventeen science instructors from five different institutions in the…

  10. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  11. PODCASTING TO PROVIDE TEACHING AND LEARNING SUPPORT FOR AN UNDERGRADUATE MODULE ON ENGLISH LANGUAGE AND COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Palitha EDIRISINGHA,

    2007-07-01

    Full Text Available ABSTRACTThis paper reports findings from research into the benefits of integrating podcasts into a first year undergraduate module on English Language and Communication at Kingston University. As part of a Faculty teaching and learning support scheme for first year undergraduates, six podcasts were developed to improve students’ learning and study skills and to provide advice on portfolio development and presentation skills. Student learning experience through podcasts was evaluated through two focus groups, personal interviews (six students and an end of semester evaluation questionnaire (n=35. The paper describes the teaching and learning context and how the podcasts were integrated as part of the blended learning delivery. It discusses to what extent podcasts were able to achieve of the intended outcomes and the processes involved in achieving those outcomes. The findings led to development of a model for integrating podcasts in on-campus blended learning, and which can have potential applications in distance learning contexts. The model is based on three main features of podcasts identified as facilitating student learning: learner choice and flexibility offered by podcasts; tacit knowledge and experience of peers conveyed in discussions; and a sense of informality brought into formal learning.The research reported in the paper was carried out as part of a UK national research project entitled Informal Mobile Podcasting and Learning Adaptation (IMPALA with funding from the UK Higher Education Academy.

  12. Teaching Literature Written in English in Undergraduate Language Teacher Education Programs: A Dialogic-Pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Orison Marden Bandeira de Melo Júnior

    2015-04-01

    Full Text Available This article aims to be part of the ongoing discussion on the teaching of literature written in English (LWE in literature classes in undergraduate language programs. In order to do that, it shows the challenges posed by the Letras DCN (National Curriculum Guidelines for the undergraduate Language Teacher Education programs as well as the reality literature teachers face due to the reduced number of hours of literature classes assigned in course curricula and to students' limited knowledge of English. Based on the dialogical concept of language and on the possibility of cooperation between scientific trends, we present a cooperative work between DDA (Dialogical Discourse Analysis and Pragmatics, showing how consonant and dissonant they are. Besides, we present part of the analysis of Alice Walker's short story Her Sweet Jerome done by students, which, in this context of teaching LWE to students with limited knowledge of English, pointed to the possibility of Pragmatics being the first step towards a dialogical analysis of literary texts.

  13. Inspiration from drones, Lidar measurements and 3D models in undergraduate teaching

    Science.gov (United States)

    Blenkinsop, Thomas; Ellis, Jennifer

    2017-04-01

    Three-dimensional models, photogrammetry and remote sensing are increasingly common techniques used in structural analysis. We have found that using drones and Lidar on undergraduate field trips has piqued interest in fieldwork, provided data for follow-up laboratory exercises, and inspired undergraduates to attempt 3D modelling in independent mapping projects. The scale of structures visible in cliff and sea shore exposures in South Wales is ideal for using drones to capture images for 3D models. Fault scarps in the South Wales coalfield were scanned by Lidar and drone. Our experience suggests that the drone data were much easier to acquire and process than the Lidar data, and adequate for most teaching purposes. In the lab, we used the models to show the structure in 3D, and as the basis for an introduction to geological modelling software. Now that tools for photogrammetry, drones, and processing software are widely available and affordable, they can be readily integrated into teaching. An additional benefit from the images and models is that they may be used for exercises that can be substituted for fieldwork to achieve some (but not all) of the learning outcomes in the case that field access is prevented.

  14. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  15. Management of impacted wisdom teeth: teaching of undergraduate students in UK dental schools.

    Science.gov (United States)

    Ali, K; McCarthy, A; Robbins, J; Heffernan, E; Coombes, L

    2014-08-01

    Wisdom tooth removal is one of the most common oral surgical procedures performed across the world. The aim of this study was to gauge the teaching and training of impacted wisdom teeth in undergraduate dental programmes across the UK. The objectives were to identify consistencies and variations in theoretical instructions and clinical training as well as approaches to management of impacted wisdom teeth. This was a cross-sectional survey utilising an online questionnaire. A purposefully designed pro forma with open- as well as closed-ended questions was used. The questionnaire was hosted online on the school's blackboard academic suite (Emily). Prior to conducting the study, approval was gained from the Research and Ethics Committee, and all the ethical principles pertaining to data protection were strictly followed. E-mail invitations were sent to oral surgery leads in all dental schools in the UK. The participants were provided with an information sheet, and an informed consent was obtained. The participants were invited by e-mail to complete the questionnaire online voluntarily. A total of 16 dental schools offering an undergraduate course in dentistry in the UK, 13 responded positively. (response rate = 81.25%). In majority of dental schools, this subject is taught in the 4th and 5th years. A pre-clinical competency on phantom heads is a requirement in six schools, whilst only one school requires the students to pass a clinical competency. The clinical exposure of students to wisdom tooth surgery is quite variable. Although the dental schools are fairly consistent in their teaching with regard to the indications for surgical intervention, diagnostic/treatment modalities as well as the post-operative care, interesting variations were also observed. This study, perhaps the first of its kind, provides useful insights into management of impacted wisdom teeth, as taught in the undergraduate dental programmes across the UK. © 2013 John Wiley & Sons A/S. Published

  16. Effective teaching of communication to health professional undergraduate and postgraduate students: A Systematic Review.

    Science.gov (United States)

    MacDonald-Wicks, Lesley; Levett-Jones, Tracy

    2012-01-01

    The objective is to identify and assess the effectiveness of tools and methods of teaching communication skills to health professional students in undergraduate and postgraduate programs, to facilitate communication in hospitals, nursing homes and mental health institutions.For this review, effective communication will be defined as that which enhances patient satisfaction, safety, symptom resolution, psychological status, or reduces the impact/burden of disease and/or improved communication skills within undergraduate or postgraduate studentsThe review question is: What is the best available evidence on strategies to effectively teach communication skills to undergraduate and postgraduate medical, nursing and allied health students (nutrition and dietetics, occupational therapy, physiotherapy, speech pathology etc)? Communication is a two-way interaction where information, meanings and feelings are shared both verbally and non-verbally. Effective communication is when the message being conveyed is understood as intended. Effective communication between the health professional and patient is increasingly being recognised as a core clinical skill. Research has identified the far reaching benefits of effective communication skills including enhanced patient satisfaction, patient safety, symptom resolution and improvements in functional and psychological status. Poor communication can result in omitted or misinterpretation of information resulting in declining health of the patient. Despite the importance of effective communication in ensuring positive outcomes for both the patient and health professional, there is concern that contemporary teaching and learning approaches do not always facilitate the development of a requisite level of communication skills, both verbal and written and a difficulty for the current generation of communication skills teachers is that many have not had the experience of being taught communication skills themselves.Studies have shown that

  17. Defining the structure of undergraduate medical leadership and management teaching and assessment in the UK.

    Science.gov (United States)

    Stringfellow, Thomas D; Rohrer, Rebecca M; Loewenthal, Lola; Gorrard-Smith, Connor; Sheriff, Ibrahim H N; Armit, Kirsten; Lees, Peter D; Spurgeon, Peter C

    2014-10-10

    Abstract Medical leadership and management (MLM) skills are essential in preventing failings of healthcare; it is unknown how these attitudes can be developed during undergraduate medical education. This paper aims to quantify interest in MLM and recommends preferred methods of teaching and assessment at UK medical schools. Two questionnaires were developed, one sent to all UK medical school faculties, to assess executed and planned curriculum changes, and the other sent to medical students nationally to assess their preferences for teaching and assessment. Forty-eight percent of UK medical schools and 260 individual student responses were recorded. Student responses represented 60% of UK medical schools. 65% of schools valued or highly valued the importance of teaching MLM topics, compared with 93.2% of students. Students' favoured teaching methods were seminars or lectures (89.4%) and audit and quality improvement (QI) projects (77.8%). Medical schools preferred portfolio entries (55%) and presentations (35%) as assessment methods, whilst simulation exercises (76%) and audit reports (61%) were preferred by students. Preferred methods encompass experiential learning or simulation and a greater emphasis should be placed on encouraging student audit and QI projects. The curriculum changes necessary could be achieved via further integration into future editions of Tomorrow's Doctors.

  18. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.

    Science.gov (United States)

    Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.

  19. UK medical teaching about ageing is improving but there is still work to be done: the Second National Survey of Undergraduate Teaching in Ageing and Geriatric Medicine.

    Science.gov (United States)

    Gordon, Adam Lee; Blundell, Adrian; Dhesi, Jugdeep K; Forrester-Paton, Calum; Forrester-Paton, Jayne; Mitchell, Hannah K; Bracewell, Nicola; Mjojo, Jocelyn; Masud, Tahir; Gladman, John R F

    2014-03-01

    in 2008, a UK national survey of undergraduate teaching about ageing and geriatric medicine identified deficiencies, including failure to adequately teach about elder abuse, pressure ulcers and bio- and social gerontology. We repeated the survey in 2013 to consider whether the situation had improved. the deans of all 31 UK medical schools were invited to nominate a respondent with an overview of their undergraduate curriculum. Nominees were invited by email and letter to complete an online questionnaire quantifying topics taught, type of teaching and assessment undertaken, and the amount of time spent on teaching. one school only taught pre-clinical medicine and declined to participate. Of the 30 remaining schools, 20 responded and 19 provided analysable data. The majority of the schools (95-100%) provided teaching in delirium, dementia, stroke, falls, osteoporosis, extra-pyramidal disorders, polypharmacy, incontinence, ethics and mental capacity. Only 68% of the schools taught about elder abuse. Thirty-seven per cent taught a recognised classification of the domains of health used in Comprehensive Geriatric Assessment (CGA). The median (range) total time spent on teaching in ageing and geriatric medicine was 55.5 (26-192) h. There was less reliance on informal teaching and improved assessment:teaching ratios compared with the 2008 survey. there was an improvement in teaching and assessment of learning outcomes in ageing and geriatric medicine for UK undergraduates between 2008 and 2013. However, further work is needed to increase the amount of teaching time devoted to ageing and to improve teaching around elder abuse and the domains of health used in CGA.

  20. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  1. Overtly Teaching Critical Thinking and Inquiry-Based Learning: A Comparison of Two Undergraduate Biotechnology Classes

    Science.gov (United States)

    Friedel, Curtis; Irani, Tracy; Rudd, Rick; Gallo, Maria; Eckhardt, Erin; Ricketts, John

    2008-01-01

    Some researchers have argued that science classrooms must move away from rote and passive applications of memorized concepts to the use of critical thinking skills as a primary component in facilitating learning. Yet few studies have examined the effect of overtly teaching for critical thinking on subsequent skill development. The purpose of this…

  2. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors

    Science.gov (United States)

    Gross, Erin M.

    2013-01-01

    An undergraduate lecture course in Green Chemistry and Sustainability has been developed and taught to a "multidisciplinary" group of science and nonscience majors. The course introduced students to the topics of green chemistry and sustainability and also immersed them in usage of the scientific literature. Through literature…

  3. Management Science in U.S. AACSB International-Accredited Core Undergraduate Business School Curricula

    Science.gov (United States)

    Palocsay, Susan W.; Markham, Ina S.

    2014-01-01

    In 2003, accreditation standards were revised to require coverage of management science (MS) after previously removing it in 1991. Meanwhile, increasing awareness of the value of business analytics stimulated a renewed interest in MS. To examine its present status in undergraduate core business curricula, the authors conducted two studies to…

  4. Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.

    Science.gov (United States)

    Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W

    2017-12-01

    Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.

  5. Lessons Learned from Undergraduate Students in Designing a Science-Based Course in Bioethics

    Science.gov (United States)

    Loike, John D.; Rush, Brittany S.; Schweber, Adam; Fischbach, Ruth L.

    2013-01-01

    Columbia University offers two innovative undergraduate science-based bioethics courses for student majoring in biosciences and pre-health studies. The goals of these courses are to introduce future scientists and healthcare professionals to the ethical questions they will confront in their professional lives, thus enabling them to strategically…

  6. Factors Influencing Achievement in Undergraduate Social Science Research Methods Courses: A Mixed Methods Analysis

    Science.gov (United States)

    Markle, Gail

    2017-01-01

    Undergraduate social science research methods courses tend to have higher than average rates of failure and withdrawal. Lack of success in these courses impedes students' progression through their degree programs and negatively impacts institutional retention and graduation rates. Grounded in adult learning theory, this mixed methods study…

  7. Factors Contributing to the Success of Undergraduate Business Students in Management Science Courses

    Science.gov (United States)

    Brookshire, Robert G.; Palocsay, Susan W.

    2005-01-01

    The introductory management science (MS) course has historically been recognized as one of the most difficult core courses in the business school curriculum. This study uses multiple regression to examine the factors that contribute to the success of undergraduate business students in an MS course, based on data gathered from the college…

  8. Citation Behavior of Undergraduate Students: A Study of History, Political Science, and Sociology Papers

    Science.gov (United States)

    Hendley, Michelle

    2012-01-01

    The goal of this analysis was to obtain local citation behavior data on undergraduates researching history, political science, and sociology papers. The study found that students cited books and journals even with the availability of web sources; however, usage varied by subject. References to specific websites' domains also varied across subject…

  9. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    Science.gov (United States)

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  10. A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates

    Science.gov (United States)

    Dark, Marta L.

    2011-01-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…

  11. Exploring Undergraduates' Perceptions of the Use of Active Learning Techniques in Science Lectures

    Science.gov (United States)

    Welsh, Ashley J.

    2012-01-01

    This paper examines students' mixed perceptions of the use of active learning techniques in undergraduate science lectures. Written comments from over 250 students offered an in-depth view of why students perceive these techniques as helping or hindering their learning and experience. Fourth- and fifth-year students were more likely to view…

  12. Connecting Self-Efficacy and Views about the Nature of Science in Undergraduate Research Experiences

    Science.gov (United States)

    Quan, Gina M.; Elby, Andrew

    2016-01-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects…

  13. Undergraduate Involvement in Extracurricular Activities and Leadership Development in College of Agriculture and Life Sciences Students

    Science.gov (United States)

    Foreman, Elizabeth A.; Retallick, Michael S.

    2012-01-01

    The purpose of this study was to identify and describe experiences of undergraduate extracurricular involvement that result in increased leadership development. Senior students in the College of Agriculture and Life Sciences at Iowa State University completed an online questionnaire about their extracurricular experiences. Leadership development…

  14. Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology

    Science.gov (United States)

    Kopteva, Irina A.; Arkowski, Donna; Craft, Elaine L.

    2015-01-01

    This article discusses the development, implementation, and evaluation of a tiered internship program for undergraduate students in geospatial science and technology (TIMSGeoTech). The internship program assists education programs in providing skill development that is relevant and useful, and it aligns graduates and their skills with industry…

  15. The ontology of science teaching in the neoliberal era

    Science.gov (United States)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  16. Deep Knowledge: Learning to Teach Science for Understanding and Equity. Teaching for Social Justice

    Science.gov (United States)

    Larkin, Douglas B.

    2013-01-01

    "Deep Knowledge" is a book about how people's ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories,…

  17. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  18. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    Science.gov (United States)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  19. Methodology for developing teaching activities and materials for use in fluid mechanics courses in undergraduate engineering programs

    OpenAIRE

    Gámez Montero, Pedro Javier; Raush Alviach, Gustavo Adolfo; Domènech Rubio, Luis Miguel; Castilla López, Roberto; García Vilchez, Mercedes; Moreno Llagostera, Hipòlit; Carbo Bech, Alberto Antonio

    2015-01-01

    “Mechanics” and “Fluids” are familiar concepts for any newly-registered engineering student. However, when combined into the term “Fluid Mechanics”, students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate engineering program, along with the teaching methodology, teaching materials and results obtained, evaluating the final objective in terms of student satsfaction and level of learning....

  20. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  1. United States Naval Academy Polar Science Program; Undergraduate Research and Outreach in Polar Environments

    Science.gov (United States)

    Woods, J. E.

    2013-12-01

    The United States Naval Academy (USNA) Polar Science Program (PSP), has been very active completing its own field campaign out of Barrow, AK, sent students to the South Pole, participated in STEM activities and educated over 100 future Naval Officers about the Polar Regions. Each activity is uniquely different, but has the similar undertone of sharing the recent rapid changes in the Cryosphere to a wide range of audiences. There is further room for development and growth through future field campaigns and new collaborations. The Naval Academy Ice Experiment (NAICEX) 2013 was based out of the old Naval Arctic Research Laboratory (NARL) in Barrow, AK. In joint collaboration with the University of Delaware, University of Washington, and Naval Research Laboratory we successfully took multiple measurements for over a week on the fast ice just offshore. Five undergraduate students from USNA, as well as 3 graduate students from University of Delaware participated, as well as multiple professors and instructors from each institution. Data collected during the experiment will be used in capstone courses and thesis research. There was also an outreach component to the experiment, where local students from Barrow H.S. have been assigned to the USNA ice observations project for their own high school course work. Local students will be analyzing data that will contribute into the larger research effort at USNA through coordinated remote efforts and participation in future field experiments. The USNA STEM office is one of the most robust in the entire country. The USNA PSP is active within this program by developing polar specific modules that are integrated varying length outreach opportunities from a few hours to week long camps. USNA PSP also engages in educator training that is held at the Naval Academy each summer. Through this program of educating the educators, the far reaching levels of awareness are multiplied exponentially. Also, the USNA Oceanography Department has

  2. Are UK undergraduate Forensic Science degrees fit for purpose?

    Science.gov (United States)

    Welsh, Charles; Hannis, Marc

    2011-09-01

    In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Educational strategies for teaching evidence-based practice to undergraduate health students: systematic review

    Directory of Open Access Journals (Sweden)

    Konstantinos Kyriakoulis

    2016-09-01

    Full Text Available Purpose The aim of this systematic review was to find best teaching strategies for teaching evidence-based practice (EBP to undergraduate health students that have been adopted over the last years in healthcare institutions worldwide. Methods The authors carried out a systematic, comprehensive bibliographic search using Medline database for the years 2005 to March 2015 (updated in March 2016. Search terms used were chosen from the USNLM Institutes of Health list of MeSH (Medical Subject Headings and free text key terms were used as well. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Critical appraisal was done to determine the effects of strategy of teaching evidence-based medicine (EBM. Results Twenty articles were included in the review. The majority of the studies sampled medical students (n=13 and only few conducted among nursing (n=2, pharmacy (n=2, physiotherapy/therapy (n=1, dentistry (n=1, or mixed disciplines (n=1 students. Studies evaluated a variety of educational interventions of varying duration, frequency and format (lectures, tutorials, workshops, conferences, journal clubs, and online sessions, or combination of these to teach EBP. We categorized interventions into single interventions covering a workshop, conference, lecture, journal club, or e-learning and multifaceted interventions where a combination of strategies had been assessed. Seven studies reported an overall increase to all EBP domains indicating a higher EBP competence and two studies focused on the searching databases skill. Conclusion Followings were deduced from above analysis: multifaceted approach may be best suited when teaching EBM to health students; the use of technology to promote EBP through mobile devices, simulation, and the web is on the rise; and the duration of the interventions

  4. Educational strategies for teaching evidence-based practice to undergraduate health students: systematic review.

    Science.gov (United States)

    Kyriakoulis, Konstantinos; Patelarou, Athina; Laliotis, Aggelos; Wan, Andrew C; Matalliotakis, Michail; Tsiou, Chrysoula; Patelarou, Evridiki

    2016-01-01

    The aim of this systematic review was to find best teaching strategies for teaching evidence-based practice (EBP) to undergraduate health students that have been adopted over the last years in healthcare institutions worldwide. The authors carried out a systematic, comprehensive bibliographic search using Medline database for the years 2005 to March 2015 (updated in March 2016). Search terms used were chosen from the USNLM Institutes of Health list of MeSH (Medical Subject Headings) and free text key terms were used as well. Selected articles were measured based on the inclusion criteria of this study and initially compared in terms of titles or abstracts. Finally, articles relevant to the subject of this review were retrieved in full text. Critical appraisal was done to determine the effects of strategy of teaching evidence-based medicine (EBM). Twenty articles were included in the review. The majority of the studies sampled medical students (n=13) and only few conducted among nursing (n=2), pharmacy (n=2), physiotherapy/therapy (n=1), dentistry (n=1), or mixed disciplines (n=1) students. Studies evaluated a variety of educational interventions of varying duration, frequency and format (lectures, tutorials, workshops, conferences, journal clubs, and online sessions), or combination of these to teach EBP. We categorized interventions into single interventions covering a workshop, conference, lecture, journal club, or e-learning and multifaceted interventions where a combination of strategies had been assessed. Seven studies reported an overall increase to all EBP domains indicating a higher EBP competence and two studies focused on the searching databases skill. Followings were deduced from above analysis: multifaceted approach may be best suited when teaching EBM to health students; the use of technology to promote EBP through mobile devices, simulation, and the web is on the rise; and the duration of the interventions varying form some hours to even months was

  5. Observations of Undergraduate Geoscience Instruction in the US: Measuring Student Centered Teaching

    Science.gov (United States)

    Teasdale, R.; Manduca, C. A.; Mcconnell, D. A.; Bartley, J. K.; Bruckner, M. Z.; Farthing, D.; Iverson, E. A. R.; Viskupic, K. M.

    2014-12-01

    The Reformed Teaching Observation Protocol (RTOP; Swada, et al., 2002) has been used by a trained team of On the Cutting Edge (CE) observers to characterize the degree of student-centered teaching in US college and university geoscience classrooms. Total RTOP scores are derived from scores on 25 rubric items used to characterize teaching practices in categories of lesson design, content delivery, student-instructor and student-student interactions. More than 200 classroom observations have been completed by the RTOP team in undergraduate courses at a variety of US institution types (e.g., community colleges, research universities). A balanced mix of early career, mid-career, and veteran faculty are included, and the study examines class sizes ranging from small (80 students). Observations are limited to one class session and do not include laboratories or field activities. Data include RTOP scores determined by a trained observer during the classroom observation and an online survey in which the observed instructors report on their teaching practices. RTOP scores indicate that the observed geoscience classes feature varying degrees of student-centered teaching, with 30% of observed classes categorized as teacher-centered (RTOP scores ≤30), 45% of observed classes categorized as transitional classrooms (RTOP scores 31-49) and 25% are student-centered (RTOP scores ≥ 50). Instructor self-report survey data and RTOP scores indicate that geoscience faculty who have participated in one or more CE professional development event and use the CE website have an average RTOP score of 49, which is significantly higher (> 15 points) than the average score of faculty who have not participated in CE events and have not used the website. Approximately 60% of student-centered classes (those with high RTOP scores) use some traditional lecture nearly every day, but are also are likely to include an in-class activity or group discussion (e.g. Think-Pair-Share). More than 50% of

  6. Optical versus Virtual: Teaching Assistant Perceptions of the Use of Virtual Microscopy in an Undergraduate Human Anatomy Course

    Science.gov (United States)

    Collier, Larissa; Dunham, Stacey; Braun, Mark W.; O'Loughlin, Valerie Dean

    2012-01-01

    Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed…

  7. Teaching Business Statistics with Real Data to Undergraduates and the Use of Technology in the Class Room

    Science.gov (United States)

    Singamsetti, Rao

    2007-01-01

    In this paper an attempt is made to highlight some issues of interpretation of statistical concepts and interpretation of results as taught in undergraduate Business statistics courses. The use of modern technology in the class room is shown to have increased the efficiency and the ease of learning and teaching in statistics. The importance of…

  8. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  9. Integration in Science Teaching - Learning: Problems and Prospects ...

    African Journals Online (AJOL)

    Integration in Science Teaching - Learning: Problems and Prospects. ... AFRREV STECH: An International Journal of Science and Technology ... the current emerging problems are: Institutions of learning in Nigeria especially schools and faculties of education must accommodate Basic Science and Technology as a course.

  10. Mutualism in museums: A model for engaging undergraduates in biodiversity science.

    Science.gov (United States)

    Hiller, Anna E; Cicero, Carla; Albe, Monica J; Barclay, Theresa L W; Spencer, Carol L; Koo, Michelle S; Bowie, Rauri C K; Lacey, Eileen A

    2017-11-01

    Museums have an untapped potential to engage students in hands-on learning. Here, we describe the development of a tiered museum-based program at the University of California, Berkeley as a model for engaging undergraduates in biodiversity science. This decade-long effort to increase student participation in collections demonstrates the mutual benefits of undergraduate involvement. Museums benefit from critical help in collections care and an increased intellectual vitality, while students simultaneously gain essential research skills and an unparalleled exposure to biodiversity. Five first steps to creating a program are: dedicate a coordinator, offer credit, diversify participation, create a tiered structure, and build community.

  11. Mutualism in museums: A model for engaging undergraduates in biodiversity science

    Science.gov (United States)

    Cicero, Carla; Albe, Monica J.; Barclay, Theresa L. W.; Spencer, Carol L.; Koo, Michelle S.; Bowie, Rauri C. K.; Lacey, Eileen A.

    2017-01-01

    Museums have an untapped potential to engage students in hands-on learning. Here, we describe the development of a tiered museum-based program at the University of California, Berkeley as a model for engaging undergraduates in biodiversity science. This decade-long effort to increase student participation in collections demonstrates the mutual benefits of undergraduate involvement. Museums benefit from critical help in collections care and an increased intellectual vitality, while students simultaneously gain essential research skills and an unparalleled exposure to biodiversity. Five first steps to creating a program are: dedicate a coordinator, offer credit, diversify participation, create a tiered structure, and build community. PMID:29161253

  12. Kimchi: Spicy Science for the Undergraduate Microbiology Laboratory

    Directory of Open Access Journals (Sweden)

    Virginia A. Young

    2014-02-01

    Full Text Available Undergraduate microbiology courses offer a perfect opportunity to introduce students to historical food preservation processes that are still in use today. The fermentation of vegetables, as occurs in the preparation of sauerkraut and kimchi, uses an enrichment step to select for the growth of naturally occurring lactic acid bacteria (LAB.  This is an active learning exercise in which students learn a food preparation skill and basic microbiological terms such as selection and enrichment.  When performed in conjunction with cultured fermentations, such as yogurt making, students can see the difference between fermentations by naturally occurring microorganisms versus inoculated microorganisms. Additionally, this exercise introduces students to concepts of food safety, intrinsic factors influencing microbial growth such as pH, and cultural uses of fermentation to preserve locally available foods.

  13. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  14. Teaching on the spiritual dimension in care to undergraduate nursing students: the content and teaching methods.

    Science.gov (United States)

    Baldacchino, Donia R

    2008-07-01

    The study unit on 'The spiritual dimension in care'had a Judeo-Christian orientation. It was introduced to the Diploma nursing curriculum at the University of Malta in the academic year 2002-2003. The aim was to increase students' awareness about the essence of spirituality in care so as to enable them to implement holistic care. Spirituality may or may not incorporate religiosity. Thus, believers may have spiritual needs which may include religious needs whilst the atheists and agnostics may still have spiritual needs. While considering secularisation, the Christian culture of Malta was addressed in this study unit. This article describes the content structure of the study unit based on the ASSET model (Narayanasamy, A., 1999. ASSET: a model for actioning spirituality and spiritual care education and training in nursing. Nurse Education Today 19, 274-285) and outlines the various teaching methods used. Following feedback from the first and second cohort groups in 2003 and 2004, respectively, the reviewed study unit was delivered to the third cohort group of students (n=65) in Semester 2 in the academic year 2004-2005. Apart from the use of traditional teaching methods, such as lessons and a seminar, other methods were used constantly throughout the study unit, for example, self-reflection exercises, case-studies and small group discussions to enhance learning. Recommendations are proposed to review the content of this study unit and to introduce other teaching methods for effective learning.

  15. Undergraduate female science-related career choices: A phenomenological study

    Science.gov (United States)

    Curry, Kathy S.

    This qualitative phenomenological study used a modified Groenewald's five steps method with semi-structured, recorded, and transcribed interviews to focus on the underrepresentation of females in science-related careers. The study explored the lived experiences of a purposive sample of 25 senior female college students attending a college in Macon, Georgia. Ten major themes emerged from the research study that included (a) journey to a science-related career; (b) realization of career interest; (c) family support (d) society's role; (e) professors' treatment of students; (f) lack of mentors and models; (g) gender and career success; (h) females and other disadvantages in science-related careers; (i) rewards of the journey; and (j) advice for the journey. The three minor themes identified were (a) decision-making; (b) career awareness; and (c) guidance. The key findings revealed that females pursuing a science degree or subsequent science-related career, shared their experience with other females interested in science as a career choice, dealt with barriers standing in the way of their personal goals, lack role models, and received little or no support from family and friends. The study findings may offer information to female college students interested in pursuing science-related careers and further foundational research on gender disparities in career choice.

  16. Teaching science to science teachers: Lessons taught and lessons learned

    Science.gov (United States)

    Douglas, E. M.; Hashimoto-Martell, E. A.; Balicki, S.; Oglavie, D. R.

    2009-12-01

    The Boston Science Partnership has created a comprehensive set of graduate courses that immerse teachers in the science topics most relevant to their teaching practices. In these courses, teachers become students of science, developing their conceptual understandings through scientific inquiry. All courses are co-taught by a university faculty and teacher leaders from the Boston Public Schools. Each course provides contextual linkages between the science content and the standards-based curriculum of the Boston Public School district. One of the most relevant science topics to teachers and students of all disciplines is climate change. This served as the overarching theme for our course delivered during summer 2008 and 2009. This course focused on weather and the pivotal role that water and solar radiation play in the exchange of energy at the Earth's surface. Basic concepts such as the behavior of gases, energy flow, density changes, phase changes, heat capacities, and thermal convection were applied to examine short-term weather and water dynamics and longer-term impacts on global warming and climate change. The course was designed to embrace the 7E learning cycle and instructional model, as proposed by Eisenkraft in his landmark 2003 Science Teacher article. This inquiry-based instructional model builds upon prior conceptions and engages the learner in activities in which they begin to construct meaning of a concept prior to being given an explanation. Each day focused on an essential topic related to weather and climate change, and experiential learning was our main objective. There were many successes and challenges with our course. Twenty-five participants were enrolled, and all had different background knowledge and skill sets. Additionally, their level of teaching varied greatly, from K-12, so the level of depth with which to learn the content in order to bring it back to their classrooms varied a great deal as well. Therefore differentiating instruction for

  17. Practicing biology: Undergraduate laboratory research, persistence in science, and the impact of self-efficacy beliefs

    Science.gov (United States)

    Berkes, Elizabeth

    As undergraduate laboratory research internships become more popular and universities devote considerable resources towards promoting them, it is important to clarify what students specifically gain through involvement in these experiences and it is important to understand their impact on the science pipeline. By examining recent findings describing the primary benefits of undergraduate research participation, along with self-efficacy theory, this study aims to provide more explanatory power to the anecdotal and descriptive accounts regarding the relationship between undergraduate research experiences and interest in continuing in science. Furthermore, this study characterizes practices that foster students' confidence in doing scientific work with detailed description and analysis of the interactions of researchers in a laboratory. Phase 1 of the study, a survey of undergraduate biology majors (n=71) at a major research university, investigates the relationships among participation in biology laboratory research internships, biology laboratory self-efficacy strength, and interest in persisting in science. Phase 2 of the study, a two-year investigation of a university biology research laboratory, investigates how scientific communities of practice develop self-efficacy beliefs. The findings suggest that participation in lab internships results in increased interest in continuing in life science/biology graduate school and careers. They also suggest that a significant proportion of that interest is related to the students' biology laboratory self-efficacy. The findings of this study point to two primary ways that undergraduate research participation might work to raise self-efficacy strength. First, university research laboratory communities can provide students with a variety of resources that scaffold them into biology laboratory mastery experiences. Second, university research laboratory communities can provide students with coping and mastery Discourse models

  18. Teaching undergraduate nursing research: a comparison of traditional and innovative approaches for success with millennial learners.

    Science.gov (United States)

    McCurry, Mary K; Martins, Diane C

    2010-05-01

    Historically, nursing students have questioned the value of a nursing research course and have not appreciated the research-practice link. These are important concerns in light of the increasing emphasis on evidence-based nursing practice. The purpose of this study was to develop innovative strategies for teaching undergraduate nursing research that engage millennial learners and emphasize the relationship between evidence-based practice and clinical outcomes. Innovative assignments were developed that included interactive learning, group work, and practical applications preferred by these learners. Using a Likert scale, students' perceived effectiveness of innovative assignments and more traditional assignments were compared. Results indicated a preference for active learning assignments, reading quizzes, clinical nurse researcher presentations, and collaboration with clinical course assignments. By combining traditional assignments with innovative strategies and nursing practice applications, millennial learners were engaged and able to clearly articulate the value of the research-practice link vital to evidence-based nursing practice.

  19. Six classroom exercises to teach natural selection to undergraduate biology students.

    Science.gov (United States)

    Kalinowski, Steven T; Leonard, Mary J; Andrews, Tessa M; Litt, Andrea R

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students' understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities.

  20. Using institutional arrangements to teach undergraduates about commons in Thailand, and beyond

    Directory of Open Access Journals (Sweden)

    Laura S. Meitzner Yoder

    2012-08-01

    Full Text Available How can we introduce more people to the concepts of commons and institutions earlier in their careers?  Despite the wide variety of academic fields that contribute to commons research, there are few undergraduate university courses that center on this theme. This study describes how a study abroad program in Thailand uses guiding questions about institutional arrangements to teach North American undergraduate students about commons resource-dependent communities' control and access regarding coasts, forests, and rivers.  Components that will enable students to transfer this learning to other, more familiar settings are built into the field-based courses.  This paper outlines how students learn institution-focused questioning on history of local resource management groups, resource access and use, exclusionary mechanisms, strategic collaborations, and power relations in very unfamiliar contexts.  Through the lens of political ecology, the paper describes how focusing on institutions has shaped students’ understanding of the commons, and how they have been able to transfer their newly acquired institutional perspective to a range of situations in their home contexts.