WorldWideScience

Sample records for uncooled ir detectors

  1. Overview of DRS uncooled VOx infrared detector development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  2. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  3. Perspective of Australian uncooled IR sensor technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2000-12-01

    This paper presents an overview of the development in Australia of resistance bolometer technology and associated uncooled infrared sensors. A summary is given of research achievements, with the aim of placing in historic perspective Australian work in comparison with overseas research and development. Extensive research in this field was carried out at the Defence Science and Technology Organisation (DSTO), Salisbury, South Australia, in collaboration with the Australian microelectronic and electro-optic industries, with supporting research in Australian universities. The DSTO research has a history covering five decades, commencing with simple thin film bolometers employed in radiometric sensors, followed by protracted R&D culminating in development of micromachined focal plane detector arrays for non-imaging sensors and lightweight thermal imagers. DSTO currently maintains a microbolometer processing capability for the purposes of research collaboration and support for commercial initiatives based on patented technology. Expertise in microbolometer design, performance and processing technology has transferred to Electro-optic Sensor Design (EOSD) through a licensing agreement. Contemporary development will be described.

  4. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  5. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    Science.gov (United States)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  6. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  7. Uncooled Radiation Hard Large Area SiC X-ray and EUV Detectors and 2D Arrays, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize large area, uncooled and radiative hard 4H-SiC EUV ? soft X-ray detectors capable of ultra...

  8. Progress on uncooled PbSe detectors for low-cost applications

    Science.gov (United States)

    Vergara, German; Gomez, Luis J.; Villamayor, Victor; Alvarez, M.; Rodrigo, Maria T.; del Carmen Torquemada, Maria; Sanchez, Fernando J.; Verdu, Marina; Diezhandino, Jorge; Rodriguez, Purificacion; Catalan, Irene; Almazan, Rosa; Plaza, Julio; Montojo, Maria T.

    2004-08-01

    This work reports on progress on development of polycrystalline PbSe infrared detectors at the Centro de Investigacion y Desarrollo de la Armada (CIDA). Since mid nineties, the CIDA owns an innovative technology for processing uncooled MWIR detectors of polycrystalline PbSe. Based on this technology, some applications have been developed. However, future applications demand smarter, more complex, faster yet cheaper detectors. Aiming to open new perspectives to polycrystalline PbSe detectors, we are currently working on different directions: 1) Processing of 2D arrays: a) Designing and processing low density x-y addressed arrays with 16x16 and 32x32 elements, as an extension of our standard technology. b) Trying to make compatible standard CMOS and polycrystalline PbSe technologies in order to process monolithic large format arrays. 2) Adding new features to the detector such as monolithically integrated spectral discrimination.

  9. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    Science.gov (United States)

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  10. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  11. Fast rise time IR detectors for lepton colliders

    International Nuclear Information System (INIS)

    Drago, A.; Bini, S.; Guidi, M. Cestelli; Marcelli, A.; Pace, E.

    2016-01-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  12. Advanced uncooled infrared focal plane development at CEA/LETI

    Science.gov (United States)

    Tissot, Jean-Luc; Mottin, Eric; Martin, Jean-Luc; Yon, Jean-Jacques; Vilain, Michel

    2017-11-01

    LETI/LIR has been involved for a few year in the field of uncooled detectors and has chosen amorphous silicon for its microbolometer technology development. Uncooled IR detectors pave the way to reduced weight systems aboard satellites. The silicon compatibility of our thermometer is a key parameter which has enabled a very fast technology development and transfer to industry. This competitive technology is now able to provide a new approach for IR detectors for space applications. This paper presents the main characteristics of the CEA / LETI technology which is based on a monolithically integrated structure over a fully completed readout circuit from a commercially available 0.5 μm design rules CMOS line. The technology maturity will be illustrated by the results obtained at LETI/LIR and SOFRADIR on a 320 x 240 with a pitch of 45 μm. First improvement on device reliability and characterization results will be presented.

  13. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  14. Improved optical properties and detectivity of an uncooled silicon carbide mid-wave infrared optical detector with increased dopant concentration

    International Nuclear Information System (INIS)

    Lim, Geunsik; Kar, Aravinda; Manzur, Tariq

    2012-01-01

    An n-type 4H-SiC substrate is doped with gallium using a laser doping technique and its optical response is investigated at the mid-wave infrared (MWIR) wavelength 4.21 μm as a function of the dopant concentration. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. Therefore, Ga-doped SiC can be used as an uncooled MWIR detector because an optical signal was obtained at this wavelength when the sample was at room temperature. The energy level of the Ga dopant in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. A higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15 × 10 19 to 6.25 × 10 20 cm −3 . The detectivity of the optical photodetector is found to be 1.07 × 10 10 cm Hz 1/2 W −1 for the case of doping with four laser passes. (paper)

  15. Uncooled infrared photodetectors in Poland

    Science.gov (United States)

    Piotrowski, J.; Piotrowski, A.

    2006-03-01

    The history and present status of the middle and long wavelength Hg1-xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche. Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapour phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition (MOCVD), frequently in combination with the ISOVPE. Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. At present, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1-15 μm and 200-300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.

  16. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  17. A car-borne highly sensitive near-IR diode-laser methane detector

    International Nuclear Information System (INIS)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-01-01

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-μm laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO 2 , HF, NO 2 , H 2 O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  18. La détection infrarouge avec les plans focaux non refroidis : état de l'artUncooled focal plane infrared detectors: the state of the art

    Science.gov (United States)

    Tissot, Jean-Luc

    2003-12-01

    The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J

  19. Uncooled LWIR imaging: applications and market analysis

    Science.gov (United States)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  20. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  1. Fast uncooled module 32×32 array of polycrystalline PbSe used for muzzle flash detection

    Science.gov (United States)

    Kastek, Mariusz; Dulski, Rafał; Trzaskawka, Piotr; Bieszczad, Grzegorz

    2011-06-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe uncooled 32×32 detectors array. This system for muzzle flash detection works in MWIR (3 - 5 microns) region and it is based on VPD (Vapor Phase Deposition) technology. The low density uncooled 32×32 array is suitable for being used in low cost IR imagers sensitive in the MWIR band with frame rates exceeding 1.000 Hz. The FPA detector, read-out electronics and processing electronics (allowing the implementation of some algorithms for muzzle flash detection) has been presented. The system has been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The initial results of testing of some algorithms for muzzle flash detection have been also presented.

  2. Uncooled monolithic ferroelectric IRFPA technology

    Science.gov (United States)

    Belcher, James F.; Hanson, Charles M.; Beratan, Howard R.; Udayakumar, K. R.; Soch, Kevin L.

    1998-10-01

    Once relegated to expensive military platforms, occasionally to civilian platforms, and envisioned for individual soldiers, uncooled thermal imaging affords cost-effective solutions for police cars, commercial surveillance, driving aids, and a variety of other industrial and consumer applications. System prices are continuing to drop, and swelling production volume will soon drive prices substantially lower. The impetus for further development is to improve performance. Hybrid barium strontium titanate (BST) detectors currently in production are relatively inexpensive, but have limited potential for improved performance. The MTF at high frequencies is limited by thermal conduction through the optical coating. Microbolometer arrays in development at Raytheon have recently demonstrated performance superior to hybrid detectors. However, microbolometer technology lacks a mature, low-cost system technology and an abundance of upgradable, deployable system implementations. Thin-film ferroelectric (TFFE) detectors have all the performance potential of microbolometers. They are also compatible with numerous fielded and planned system implementations. Like the resistive microbolometer, the TFFE detector is monolithic; i.e., the detector material is deposited directly on the readout IC rather than being bump bonded to it. Imaging arrays of 240 X 320 pixels have been produced, demonstrating the feasibility of the technology.

  3. Biotechnology Opens New Routes to High-Performance Materials for Improved Photovoltaics, Batteries, Uncooled IR Detectors, Ferroelectrics and Optical Applications

    National Research Council Canada - National Science Library

    Morse, Daniel E

    2006-01-01

    ... the capabilities of present human engineering. Using the tools of biotechnology and genetic engineering, we discovered the unanticipated mechanism of simultaneous catalysis and templating governing the nanofabrication of silica in a biological system...

  4. Persistence in the WFC3 IR Detector: Intrinsic Variability

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-03-01

    When the WFC3 IR detector is exposed to a bright source or sources, the sources can appear as afterimages in subsequent exposures, a phenomenon known as persistence. This can affect the science obtained with the IR channel. We have been involved in an effort to predict the brightness of the afterimages so that users can (at a minimum) flag the affected pixels and remove them from their analysis or (even better) subtract the afterimages from their science images to salvage the data. The ability of any model to remove afterimages depends on the degree to which persistence is the same for identical sets of exposures. We investigate possible time variability of persistence in the WFC3 detector using sets of (almost) identical visits comprised of single exposures of Omega Cen followed by a series of darks in which persistence is measured. We analyze 8 data sets, each consisting of two or three identical visits, with stimulus exposures between 49 and 1199 s, and find clear evidence of variability in several of the datasets in darks taken within 1000 s of the stimulus exposure. In most of the datasets, the difference in persistence for saturated pixels in the stimulus exposure is a power law decay; the visit with higher persistence has a higher power law amplitude. There was nothing unusual about the observing conditions preceding and during each of these visits that can explain the discrepancy in persistence levels. Variation in persistence implies that: (1) Unless and until the source of the variability is understood, any persistence model for the WFC3 array will be limited in its ability to predict persistence in a single observation, and, (2) as a consequence, users should always carefully inspect the results of any attempt to subtract persistence from WFC3 IR data based on a model prediction.

  5. Advantages of using 192Ir γ-ray flaw detector for some products

    International Nuclear Information System (INIS)

    Qin Xiqi

    1989-01-01

    This paper describes the advantages of 192 Ir γ-ray flaw detector made in China in welding seam testings. The authors made a comparison between 192 Ir γ-ray and X-ray machine. 192 Ir γ-ray machine showed many advantages, such as shorter working hours and less labour intensity

  6. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  7. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  8. Recent progress in infrared detector technologies

    Science.gov (United States)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  9. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    A thermopile-based detector array for use in a miniaturized Infrared (IR) spectrometer has been designed and fabricated using CMOS compatible MEMS technology. The emphasis is on the optimal of the detector array at the system level, while considering the thermal design, the dimensional constraints

  10. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  11. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  12. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  13. Uncooled infrared sensors: rapid growth and future perspective

    Science.gov (United States)

    Balcerak, Raymond S.

    2000-07-01

    The uncooled infrared cameras are now available for both the military and commercial markets. The current camera technology incorporates the fruits of many years of development, focusing on the details of pixel design, novel material processing, and low noise read-out electronics. The rapid insertion of cameras into systems is testimony to the successful completion of this 'first phase' of development. In the military market, the first uncooled infrared cameras will be used for weapon sights, driver's viewers and helmet mounted cameras. Major commercial applications include night driving, security, police and fire fighting, and thermography, primarily for preventive maintenance and process control. The technology for the next generation of cameras is even more demanding, but within reach. The paper outlines the technology program planned for the next generation of cameras, and the approaches to further enhance performance, even to the radiation limit of thermal detectors.

  14. Low-cost uncooled VOx infrared camera development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Cook, Grady; Kubala, Kenny; Bates, Robert; Temple, Dorota; Lannon, John; Hilton, Allan; Glukh, Konstantin; Hardy, Busbee

    2013-06-01

    The DRS Tamarisk® 320 camera, introduced in 2011, is a low cost commercial camera based on the 17 µm pixel pitch 320×240 VOx microbolometer technology. A higher resolution 17 µm pixel pitch 640×480 Tamarisk®640 has also been developed and is now in production serving the commercial markets. Recently, under the DARPA sponsored Low Cost Thermal Imager-Manufacturing (LCTI-M) program and internal project, DRS is leading a team of industrial experts from FiveFocal, RTI International and MEMSCAP to develop a small form factor uncooled infrared camera for the military and commercial markets. The objective of the DARPA LCTI-M program is to develop a low SWaP camera (costs less than US $500 based on a 10,000 units per month production rate. To meet this challenge, DRS is developing several innovative technologies including a small pixel pitch 640×512 VOx uncooled detector, an advanced digital ROIC and low power miniature camera electronics. In addition, DRS and its partners are developing innovative manufacturing processes to reduce production cycle time and costs including wafer scale optic and vacuum packaging manufacturing and a 3-dimensional integrated camera assembly. This paper provides an overview of the DRS Tamarisk® project and LCTI-M related uncooled technology development activities. Highlights of recent progress and challenges will also be discussed. It should be noted that BAE Systems and Raytheon Vision Systems are also participants of the DARPA LCTI-M program.

  15. Persistence in the WFC3 IR Detector: An Area Dependent Model

    Science.gov (United States)

    Long, Knox S.; Baggett, Sylvia M.

    2018-05-01

    When the IR detector on WFC3 is exposed to a bright source or sources, the sources not only appear in the original exposure, but can appear as afterimages in later exposures, a phenomenon known as persistence. The magnitude and duration of persistence for a fixed stimulus varies somewhat across the face of the detector. Our previous attempts to characterize this variation were limited to a correction that captures only the variation in the magnitude. Here we describe a simple model which allows for variations both in the magnitude and the duration of the persistence, and then evaluate quantitatively how much improvement this model provides. We conclude that while this was a useful experiment, it does not result in a marked improvement in our ability to predict persistence in the WFC3/IR array. We discuss why this was the case, and possible paths forward.

  16. Dosimetric measurements of an 192Ir HDR source with a diamond detector

    International Nuclear Information System (INIS)

    Rustgi, Surendra N.

    1996-01-01

    Purpose: To study the feasibility of using a diamond detector for the dosimetry of a high dose rate (HDR) 192 Ir source and to compare the measurement results with published data and calculations from a commercial treatment planning system. Materials and methods: The sensitive volume of the diamond detector consists of a disk of 0.26 mm thickness and 3 mm diameter. The detector was applied an external bias of +100 V and was preirradiated to a dose of 500 cGy to stabilize its response. The 192 Ir source from the Nucletron microSelectron unit has an active diameter of 0.6 mm and a length of 3.5 mm. Photon fluence anisotropy factors in air were measured at distances of 5 and 10 cm from two sources and compared with TLD measurements. Dose profiles and isodose distributions were measured at several distances from the source and compared with calculations from a Nucletron treatment planning system. These dose calculations in water use a point source approximation with the anisotropy factors independent of the radial distance from the source. Results: The photon fluence around the 192 Ir HDR source, measured with a diamond detector at distances of 5 and 10 cm from the source, is very anisotropic. Compared to the source transverse direction, the photon fluence intensity along the source axis reduces to approximately 60%. Measurements performed on two sources indicate that the photon anisotropy does not change with distance in air. Within experimental uncertainty, similar results were obtained with TLD rods and are in excellent agreement with published anisotropy factors 1 . Dose profiles, measured with the diamond detector in a water phantom, at distances of 1,2,3 and 5 cm from the source, are found to be in excellent agreement with the Nucletron planning system calculations. Similar excellent agreement is observed between the measured and calculated isodose curves in planes parallel to the source plane. Conclusion: The diamond detector has been demonstrated to be suitable

  17. Study on the mechanism of using IR illumination to improve the carrier transport performance of CdZnTe detector

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun

    2018-04-01

    Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.

  18. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    Science.gov (United States)

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  19. Modular uncooled video engines based on a DSP processor

    Science.gov (United States)

    Schapiro, F.; Milstain, Y.; Aharon, A.; Neboshchik, A.; Ben-Simon, Y.; Kogan, I.; Lerman, I.; Mizrahi, U.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Gazit, R.

    2011-06-01

    The market demand for low SWaP (Size, Weight and Power) uncooled engines keeps growing. Low SWaP is especially critical in battery-operated applications such as goggles and Thermal Weapon Sights. A new approach for the design of the engines was implemented by SCD to optimize size and power consumption at system level. The new approach described in the paper, consists of: 1. A modular hardware design that allows the user to define the exact level of integration needed for his system 2. An "open architecture" based on the OMAPTM530 DSP that allows the integrator to take advantage of unused hardware (FPGA) and software (DSP) resources, for implementation of additional algorithms or functionality. The approach was successfully implemented on the first generation of 25μm pitch BIRD detectors, and more recently on the new, 640 x480, 17 μm pitch detector.

  20. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  1. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  2. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    -to-noise ratio. The two detectors are compared for the detection of a coherent degenerate four-wave mixing (DFWM) signal in the mid-infrared, and applied to measure trace-level acetylene in a gas flow at atmospheric pressure, probing its fundamental rovibrational transitions. In addition to lower noise...

  3. HST/WFC3: new capabilities, improved IR detector calibrations, and long-term performance stability

    Science.gov (United States)

    MacKenty, John W.; Baggett, Sylvia M.; Brammer, Gabriel; Hilbert, Bryan; Long, Knox S.; McCullough, Peter; Riess, Adam G.

    2014-08-01

    Wide Field Camera 3 (WFC3) is the most used instrument on board the Hubble Space Telescope. Providing a broad range of high quality imaging capabilities from 200 to 1700mn using Silicon CCD and HgCdTe IR detectors, WFC3 is fulfilling both our expectations and its formal requirements. With the re-establishment of the observatory level "spatial scan" capability, we have extended the scientific potential ofWFC3 in multiple directions. These controlled scans, often in combination with low resolution slit-less spectroscopy, enable extremely high precision differential photometric measurements of transiting exo-planets and direct measurement of sources considerably brighter than originally anticipated. In addition, long scans permit the measurement of the separation of star images to accuracies approaching 25 micro-arc seconds (a factor of 10 better than prior FGS or imaging measurements) enables direct parallax observations out to 4 kilo-parsecs. In addition, we have employed this spatial scan capability to both assess and improve the mid­ spatial frequency flat field calibrations. WFC3 uses a Teledyne HgCdTe 1014xl014 pixel Hawaii-lR infrared detector array developed for this mission. One aspect of this detector with implications for many types of science observations is the localized trapping of charge. This manifests itself as both image persistence lasting several hours and as an apparent response variation with photon arrival rate over a large dynamic range. Beyond a generally adopted observing strategy of obtaining multiple observations with small spatial offsets, we have developed a multi-parameter model that accounts for source flux, accumulated signal level, and decay time to predict image persistence at the pixel level. Using a running window through the entirety of the acquired data, we now provide observers with predictions for each individual exposure within several days of its acquisition. Ongoing characterization of the sources on infrared background and

  4. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  5. A characterization of persistence at short times in the WFC3/IR detector

    Science.gov (United States)

    Gennaro, M.; Bajaj, V.; Long, K.

    2018-05-01

    Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.

  6. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    Science.gov (United States)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for

  7. Development of optics and microwave multiplexers for far-IR and millimeter detector arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of experimental cosmology and astrophysics is intimately tied to the progress of remote sensing technology of millimeter and far-IR instruments. I will...

  8. Y-Ba-Cu-O thin films as high speed IR detectors

    International Nuclear Information System (INIS)

    Kwok, H.S.; Zheng, J.P.; Ying, Q.Y.

    1990-01-01

    Y-Ba-Cu-O thin film infrared detectors were fabricated and studied with various lasers. Operation of the detector in both the bolometric and nonbolometric modes was investigated at 10 microns with a CO2 laser. In the bolometric mode, the detectivity of the detector at 90 K was 2.1 x 10 to the 8th cm sq rt Hz/W with a response time of 15 microsec, corresponding to a bandwidth of 70 KHz. The speed of the detector in the nonbolometric mode was much faster and was beyond the instrument resolution. With a picosecond N2 laser, the output showed an instrument limited duration of 2 ns. The detectivity could not be determined in the nonbolometric mode due to the extremely low noise. The superconducting film quality is critical to the performance of these detectors. 27 refs

  9. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  10. HVCMOS 35v1 Detector Characterization Using an IR eTCT Setup

    CERN Document Server

    Laroche, Stewart

    2015-01-01

    Silicon detectors are exposed to very high fluences (in excess of 1E16 particles*cm-2) in experiments like ATLAS and CMS, so it is paramount that their behavior is understood even after irradiation. To that end, irradiated prototype HVCMOS detectors were characterized using eTCT and IV curves. It was found that acceptor removal via irradiation increased the size of the charge collection region. At sufficient fluences, trap introduction became the dominant effect, and the charge collection region shrinks again.

  11. Application of military uncooled infrared sensors to homeland defense

    Science.gov (United States)

    Hornberger, Chris

    2002-08-01

    During the early 1990's, uncooled microbolometer thermal imaging technology began a journey from Government and corporate laboratories to practical application in addressing military, Government, and commercial customer needs. Today, that transition could arguably be considered complete, punctuated by BAE SYSTEMS' delivery of the 10,000th microbolometer camera on 12 February 2002. While microbolometer developmental research continues to advance the state-of-the-art at an ever increasing pace, uncooled infrared cameras are widely deployed serving society in meaningful ways; from preventative maintenance and process inspection to law enforcement and rescue operations. Following last years terrorist attacks in New York and Virginia, President Bush appointed Governor Ridge to lead federal coordination efforts for defense of the homeland. While uncooled microbolometer sensors served in Homeland Security long before September 2001, it is certain that new applications will be identified for surveillance, security, law enforcement and protection needs. In this paper we will describe advances in military uncooled infrared sensor technology and how these sensors can serve in the role of Homeland Defense. Developments in uncooled sensors that will be described include the rugged performance validation of a thermal weapon sight and head-mounted imager. We will look at those areas of Homeland Defense that are most likely to benefit from the application of uncooled microbolometer thermal imaging sensor technology. These include: a) search & rescue camera systems, b) handheld surveillance systems and c) hands-free camera systems.

  12. 320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging

    Science.gov (United States)

    Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.

    2012-10-01

    Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.

  13. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    Science.gov (United States)

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  14. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  15. Doped Josephson tunneling junction for use in a sensitive IR detector

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Saffren, M.M.

    1975-01-01

    A superconductive tunneling device having a modified tunnel barrier capable of supporting Josephson tunneling current is provided. The tunnel barrier located between a pair of electrodes includes a molecular species which is capable of coupling incident radiation of a spectrum characteristic of the molecular species into the tunnel barrier. The coupled radiation modulates the known Josephson characteristics of the superconducting device. As a result of the present invention, a superconductive tunneling device can be tuned or made sensitive to a particular radiation associated with the dopant molecular species. The present invention is particularly useful in providing an improved infrared detector. The tunnel barrier region can be, for example, an oxide of an electrode or frozen gas. The molecular species can be intermixed with the barrier region such as the frozen gas or deposited as one or more layers of molecules on the barrier region. The deposited molecules of the molecular species are unbonded and capable of responding to a radiation characteristic of the molecules. Semi-conductor material can be utilized as the molecular species to provide an increased selective bandwidth response. Finally, appropriate detector equipment can be utilized to measure the modulation of any of the Josephson characteristics such as critical current, voltage steps, Lambe-Jaklevic peaks and plasma frequency. (auth)

  16. Stability analysis of an uncooled segment of superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seol, S. Y. [Chonnam National University, Gwangju (Korea, Republic of)

    2017-09-15

    If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

  17. Detector de IR de lámina ferroeléctrica de (Pb,CaTiO3

    Directory of Open Access Journals (Sweden)

    González, A.

    2002-02-01

    Full Text Available A sol-gel (Pb0.76Ca0.24TiO3 solution was deposited onto Pt/MgO(100 substrates. Previous thermal treatment of the substrate and the high rate of crystallization heating promote an important preferred orientation along the polar axis, and therefore selfpolarization , very convenient for the use of IR pyroelectric detectors. By depositing circular electrodes, 7.10-3 cm2 of area, an array of small capacitors are developed which are characterized as detectors in standard conditions: radiation from a black-body at 500 K, modulated between 1-20 Hz, a lock-in amplifier and an electronic circuit to sense and treat the electrical response. Three main factors affecting the detector performances are analyzed: a Figures of merit of the pyroelectric material; b assembly of the whole parts of detector (substrate, electrodes, leads, frame, etc and c electronic circuitry to sense and amplify signals. Thermal isolation is concluding as the most important fact to improve responsivity.Se han obtenido depósitos multicapa de titanato de plomo modificado con calcio, (Pb0.76Ca0.24TiO3, mediante un método de sol-gel, sobre substratos de Pt/MgO(100. El tratamiento térmico del substrato y la cristalización de las multicapas mediante tasas de calentamiento rápidas causan el desarrollo de una importante orientación preferente según el eje polar, perpendicular al mismo, lo que supone una autopolarización muy rentable para su empleo en detectores piroeléctricos de radiación infrarroja. Mediante una configuración de electrodos discretos se fabrican minicondensadores de 7.10-3 cm2 de área con los que se caracteriza ópticamente el detector para condiciones estándar: cuerpo negro a 500 K, modulación mecánica de la radiación entre 1-20 Hz, una electrónica de acondicionamiento de la señal de respuesta y un amplificador sintonizado para medir la respuesta en voltaje. Se analiza el efecto de los tres factores que intervienen en la fabricación del detector: a

  18. Study of polymorphous silicon as thermo-sensing film for infrared detectors

    International Nuclear Information System (INIS)

    Moreno, M.; Torres, A.; Ambrosio, R.; Torres, E.; Rosales, P.; Zuñiga, C.; Reyes-Betanzo, C.; Calleja, W.; De la Hidalga, J.; Monfil, K.

    2012-01-01

    In this work we have deposited and characterized pm-Si:H thin films obtained by plasma deposition. Our aim is to use pm-Si:H as thermo-sensing element for infrared (IR) detectors based on un-cooled microbolometers. We have studied the electrical characteristics of pm-Si:H that are figures of merit important for IR detection, as activation energy, thermal coefficient of resistance (TCR), room temperature conductivity (σ RT ) and responsivity under IR radiation. The influence of the substrate temperature (200 °C and 300 °C) on the pm-Si:H characteristics has been also studied. Our results shown that pm-Si:H is an excellent candidate to be used as thermo-sensing film for microbolometers, due to its large activation energy and TCR, with an improved σ RT .

  19. Monolithic Silicon Microbolometer Materials for Uncooled Infrared Detectors

    Science.gov (United States)

    2015-05-21

    2012 11/03/2012 2.00 3.00 Mingliang Zhang, D. Drabold. Comparison of the Kubo formula, the microscopic response method, and the Greenwood formula...structure with four layers.................................................. 37 Figure 2-12. (a) Cartoon and (b) graph of TLM pattern used to calculate ...film before and after annealing. This sample was used to calculate the average grain size and average stress. This film was prepared with 60 SCCM

  20. IR detectors for the Infrared Atmospheric Sounding Interferometer (IASI) instrument payload for the METOP-1 ESA polar platform

    Science.gov (United States)

    Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel

    1994-12-01

    IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The

  1. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    International Nuclear Information System (INIS)

    Moldavskaya, L. D.; Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-01

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 μm at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 x 10 9 cm Hz 1/2 W -1

  2. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  3. Rigorous Electromagnetic Analysis of Uncooled Microbolometer

    National Research Council Canada - National Science Library

    Mirotznik, Mark

    2000-01-01

    .... The optical absorption of the thin-film thermal infrared detector was calculated as a function of wavelength, pixel size, incident angle and area fill factor using the finite-difference-time-domain (FDTD) method...

  4. Experience of using MOSFET detectors for dose verification measurements in an end-to-end 192Ir brachytherapy quality assurance system.

    Science.gov (United States)

    Persson, Maria; Nilsson, Josef; Carlsson Tedgren, Åsa

    Establishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors. A bolus phantom was constructed with two implants, mimicking prostate and head & neck treatments, using steel needles and plastic catheters to guide the 192 Ir source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external 60 Co beam. An initial experimental investigation on beam quality differences between 192 Ir and 60 Co is reported. The standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2-7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement. MOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192 Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  5. Uncooled infrared focal plane array imaging in China

    Science.gov (United States)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  6. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  7. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    Science.gov (United States)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  8. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  9. Implementation of real-time nonuniformity correction with multiple NUC tables using FPGA in an uncooled imaging system

    Science.gov (United States)

    Oh, Gyong Jin; Kim, Lyang-June; Sheen, Sue-Ho; Koo, Gyou-Phyo; Jin, Sang-Hun; Yeo, Bo-Yeon; Lee, Jong-Ho

    2009-05-01

    This paper presents a real time implementation of Non Uniformity Correction (NUC). Two point correction and one point correction with shutter were carried out in an uncooled imaging system which will be applied to a missile application. To design a small, light weight and high speed imaging system for a missile system, SoPC (System On a Programmable Chip) which comprises of FPGA and soft core (Micro-blaze) was used. Real time NUC and generation of control signals are implemented using FPGA. Also, three different NUC tables were made to make the operating time shorter and to reduce the power consumption in a large range of environment temperature. The imaging system consists of optics and four electronics boards which are detector interface board, Analog to Digital converter board, Detector signal generation board and Power supply board. To evaluate the imaging system, NETD was measured. The NETD was less than 160mK in three different environment temperatures.

  10. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  11. High-speed uncooled MWIR hostile fire indication sensor

    Science.gov (United States)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  12. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    Science.gov (United States)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  13. WE-DE-201-10: Pitfalls When Using Ruby as An Inorganic Scintillator Detector for Ir-192 Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, G; Beddar, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety of experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.

  14. Use of COTS uncooled microbolometers for the observation of solar eruptions in far infrared

    Science.gov (United States)

    Le Ruyet, B.; Bernardi, P.; Sémery, A.

    2017-11-01

    The Small Explorer for Solar Eruptions (SMESE) mission is a French-Chinese satellite dedicated to the combined study of coronal mass ejections and flares. It should operate by the beginning of 2013. The spacecraft is based on a generic MYRIADE platform developed by CNES. Its payload consists of a Lyman α imager and a Lyman α chronograph (LYOT), a far infrared telescope (DESIR) and a hard X and γ ray spectrometer (HEBS). Its Sun-synchronous orbit will allow for continuous observations. LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, in Paris-Meudon Observatory) is in charge of DESIR instrument. DESIR (Detection of Eruptive Solar InfraRed emission) is an imaging photometer observing the sun in two bandwidths: [25; 45μm] and [80; 130μm]. The detector is a commercially available, uncooled microbolometer focal plane array (UL 02 05 1, from ULIS) designed for thermographic imaging in the 8-14 μm wavelength range. The 160x120 pixels are based on amorphous silicon, with dimensions 35x35 μm2. The performances in terms of noise and dynamics given by the manufacturer associated with simulations of a perfect quarter-wave cavity to predict the microbolometer absorption, make possible the use of such a detector to fulfil the DESIR detection specifications in the two FIR bandwidths. During the A Phase, tests have been carried out in our laboratory to validate the feasibility of the project. In this work, we present the first results obtained on the microbolometer performances in the FIR domain.

  15. New solutions and technologies for uncooled infrared imaging

    Science.gov (United States)

    Rollin, Joël.; Diaz, Frédéric; Fontaine, Christophe; Loiseaux, Brigitte; Lee, Mane-Si Laure; Clienti, Christophe; Lemonnier, Fabrice; Zhang, Xianghua; Calvez, Laurent

    2013-06-01

    The military uncooled infrared market is driven by the continued cost reduction of the focal plane arrays whilst maintaining high standards of sensitivity and steering towards smaller pixel sizes. As a consequence, new optical solutions are called for. Two approaches can come into play: the bottom up option consists in allocating improvements to each contributor and the top down process rather relies on an overall optimization of the complete image channel. The University of Rennes I with Thales Angénieux alongside has been working over the past decade through French MOD funding's, on low cost alternatives of infrared materials based upon chalcogenide glasses. A special care has been laid on the enhancement of their mechanical properties and their ability to be moulded according to complex shapes. New manufacturing means developments capable of better yields for the raw materials will be addressed, too. Beyond the mere lenses budget cuts, a wave front coding process can ease a global optimization. This technic gives a way of relaxing optical constraints or upgrading thermal device performances through an increase of the focus depths and desensitization against temperature drifts: it combines image processing and the use of smart optical components. Thales achievements in such topics will be enlightened and the trade-off between image quality correction levels and low consumption/ real time processing, as might be required in hand-free night vision devices, will be emphasized. It is worth mentioning that both approaches are deeply leaning on each other.

  16. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  17. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  18. Comparison of parameters of modern cooled and uncooled thermal cameras

    Science.gov (United States)

    Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał

    2017-10-01

    During the design of a system employing thermal cameras one always faces a problem of choosing the camera types best suited for the task. In many cases such a choice is far from optimal one, and there are several reasons for that. System designers often favor tried and tested solution they are used to. They do not follow the latest developments in the field of infrared technology and sometimes their choices are based on prejudice and not on facts. The paper presents the results of measurements of basic parameters of MWIR and LWIR thermal cameras, carried out in a specialized testing laboratory. The measured parameters are decisive in terms of image quality generated by thermal cameras. All measurements were conducted according to current procedures and standards. However the camera settings were not optimized for a specific test conditions or parameter measurements. Instead the real settings used in normal camera operations were applied to obtain realistic camera performance figures. For example there were significant differences between measured values of noise parameters and catalogue data provided by manufacturers, due to the application of edge detection filters to increase detection and recognition ranges. The purpose of this paper is to provide help in choosing the optimal thermal camera for particular application, answering the question whether to opt for cheaper microbolometer device or apply slightly better (in terms of specifications) yet more expensive cooled unit. Measurements and analysis were performed by qualified personnel with several dozen years of experience in both designing and testing of thermal camera systems with both cooled and uncooled focal plane arrays. Cameras of similar array sizes and optics were compared, and for each tested group the best performing devices were selected.

  19. The mean photon energy anti E{sub F} at the point of measurement determines the detector-specific radiation quality correction factor k{sub Q,M} in {sup 192}Ir brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chofor, Ndimofor; Harder, Dietrich; Selbach, Hans-Joachim; Poppe, Bjoern [University of Oldenburg and Pius-Hospital Oldenburg (Germany). Medical Radiation Physics Group

    2016-11-01

    The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor k{sub Q,M}, the quotient of the detector responses under calibration conditions at a {sup 60}Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic {sup 192}Ir point source, a model spherical {sup 192}Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30 cm and heights from 20 to 60 cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor k{sub Q,M} is closely correlated with a single variable, the fluence-weighted mean photon energy anti E{sub F} at the point of measurement. The radial profiles of anti E{sub F} obtained with either the commercial {sup 192}Ir source or the two simplified source variants show little variation. The observed correlations between parameters k{sub Q,M} and anti E{sub F} are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor k{sub Q,M} with local mean photon energy anti E{sub F} can be regarded as a simple regularity, facilitating the practical application of correction factor k{sub Q,M} for in-phantom dosimetry around {sup 192}Ir brachytherapy sources. anti E{sub F} values can be assessed by Monte Carlo simulation or

  20. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    Science.gov (United States)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  1. Micro and nanophotonics for semiconductor infrared detectors towards an ultimate uncooled device

    CERN Document Server

    Jakšic, Zoran

    2014-01-01

    The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of

  2. SU-F-T-32: Evaluation of the Performance of a Multiple-Array-Diode Detector for Quality Assurance Tests in High-Dose-Rate Brachytherapy with Ir-192 Source

    Energy Technology Data Exchange (ETDEWEB)

    Harpool, K; De La Fuente Herman, T; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dose verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and

  3. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  4. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  5. Development of new type of silicon detector with internal amplification

    International Nuclear Information System (INIS)

    Schuster, K.F.

    1988-11-01

    The first test version of a new type of silicon detector made of extremely pure material was designed and manufactured. Numerical simulation provided great assistance in selecting the process parameters. The principle of operation aimed at of a radiation deflector consisting of an MOS transistor with more than fully depleted base area was confirmed. The energy resolution of the detectors was determined at 300 0 K and 6 keV (Mn K α ) to be 250 eV half width and is therefore considerably better than the conventional uncooled detectors. The detector principle permits the realisation of a two-dimensional detector matrix which can be addressed, with non-destructive triggering. With a measured signal/noise ratio of the individual detectors of better than 400 for minimum ionised particles, new types of fast triggering processes can be achieved in high energy physics with good local resolution (≅ 50 μm). (orig.) [de

  6. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  7. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  8. Dark Current Reduction of IR Detectors

    Science.gov (United States)

    2017-10-19

    hands-on experience in the lab fabricating semiconductor devices for an important application. We would also like to thank the members of AFRL...InP/InGaAs 1 Surface preparation / particle removal (repeated before every step) 2 Etch InGaAs contact mesas, used for ohmic contact and alignment 3...and dopant film in with HF dip 9 PECVD oxide #3 ~75nm (passivation) 10 Pattern oxide for metal- semiconductor contacts 11 Final metallization using e

  9. Improved linear pyroelectric IR detector arrays

    International Nuclear Information System (INIS)

    Twiney, R.C.; Robinson, M.K.; Porter, S.G.

    1987-01-01

    Good agreement has been found between theoretical models and measured performance for a range of array geometries. A 64-element 80 x 140-micron element array with integral MOSFET IC buffer preamplifiers shows improved source voltage uniformity, a J-FET buffered array, and low-frequency specific detectivity (SD) of 1.7 x 10 to the 8th cm sq rt Hz/W at 40 Hz. The MOSFET array shows reduced degradation of SD at high temperatures, retaining an SD of not less than 1 x 10 to the 8th cm sq rt Hz/W at +70 C across much of the band. A 64-element array has been designed using onboard multiplexers, thus greatly reducing the connections needed to run the array

  10. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture.

    Science.gov (United States)

    Ribeiro-Gomes, Krishna; Hernández-López, David; Ortega, José F; Ballesteros, Rocío; Poblete, Tomás; Moreno, Miguel A

    2017-09-23

    The acquisition, processing, and interpretation of thermal images from unmanned aerial vehicles (UAVs) is becoming a useful source of information for agronomic applications because of the higher temporal and spatial resolution of these products compared with those obtained from satellites. However, due to the low load capacity of the UAV they need to mount light, uncooled thermal cameras, where the microbolometer is not stabilized to a constant temperature. This makes the camera precision low for many applications. Additionally, the low contrast of the thermal images makes the photogrammetry process inaccurate, which result in large errors in the generation of orthoimages. In this research, we propose the use of new calibration algorithms, based on neural networks, which consider the sensor temperature and the digital response of the microbolometer as input data. In addition, we evaluate the use of the Wallis filter for improving the quality of the photogrammetry process using structure from motion software. With the proposed calibration algorithm, the measurement accuracy increased from 3.55 °C with the original camera configuration to 1.37 °C. The implementation of the Wallis filter increases the number of tie-point from 58,000 to 110,000 and decreases the total positing error from 7.1 m to 1.3 m.

  11. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  12. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    Science.gov (United States)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  13. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  14. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  15. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  16. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  17. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  18. Improvenments in environmental trace analysis by GC-IR and LC-IR.

    NARCIS (Netherlands)

    Visser, T.; Vredenbregt, M.J.; Jong, A.P.J.M.; Somsen, G.W.; Hankemeier, T.; Velthorst, N.H.; Gooijer, C.; Brinkman, U.A.T.

    1997-01-01

    Research has been carried out to enlarge the potential of infrared (IR) spectrometry as a detector in gas and liquid chromatography (GC and LC). The study has been directed to applications in environmental analysis. Examples of recently obtained results are presented. The analyte detectability of

  19. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  20. A μ-biomimetic uncooled infrared sensor based on the infrared receptors of Melanophila acuminata

    International Nuclear Information System (INIS)

    Siebke, Georg

    2015-11-01

    The pyrophilous beetle Melanophila acuminata possesses an organ sensitive to IR radiation. It employs a photomechanic detection principle: A liquid filled pressure chamber is heated by absorbing the radiation. The liquid expands and leads to the deflection of a mechanosensitive dendrite. In addition, a sophisticated compensation mechanism prevents the build-up of large pressures. In this work, a biomimetic IR sensor based on the IR receptors of Melanophila acuminata is developed by means of microsystems technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of the chambers leads to the heating and expansion of a liquid. The increasing pressure deflects a membrane which is part of a plate capacitor with a diameter of 500 μm and an electrode distance of 500 nm. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. A theoretical model is developed which is able to predict the modulation frequency dependent response. It allows to calculate the filter properties of the compensation mechanism which is verified by an experimental test. A simplified sensor without the compensation mechanism is manufactured to analyse the influence of several parameters on the sensor's sensitivity. Finally, a solution for the fabrication of the μ-capacitor is presented. The large aspect ratio between electrode diameter and distance prevents to use a standard sacrificial layer process. The obtained capacitors pave the way to fabricate the complete full-featured sensor.

  1. A μ-biomimetic uncooled infrared sensor based on the infrared receptors of Melanophila acuminata

    Energy Technology Data Exchange (ETDEWEB)

    Siebke, Georg

    2015-11-15

    The pyrophilous beetle Melanophila acuminata possesses an organ sensitive to IR radiation. It employs a photomechanic detection principle: A liquid filled pressure chamber is heated by absorbing the radiation. The liquid expands and leads to the deflection of a mechanosensitive dendrite. In addition, a sophisticated compensation mechanism prevents the build-up of large pressures. In this work, a biomimetic IR sensor based on the IR receptors of Melanophila acuminata is developed by means of microsystems technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of the chambers leads to the heating and expansion of a liquid. The increasing pressure deflects a membrane which is part of a plate capacitor with a diameter of 500 μm and an electrode distance of 500 nm. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. A theoretical model is developed which is able to predict the modulation frequency dependent response. It allows to calculate the filter properties of the compensation mechanism which is verified by an experimental test. A simplified sensor without the compensation mechanism is manufactured to analyse the influence of several parameters on the sensor's sensitivity. Finally, a solution for the fabrication of the μ-capacitor is presented. The large aspect ratio between electrode diameter and distance prevents to use a standard sacrificial layer process. The obtained capacitors pave the way to fabricate the complete full-featured sensor.

  2. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  3. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  4. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  5. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  6. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  7. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    Science.gov (United States)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  8. MT3825BA: a 384×288-25µm ROIC for uncooled microbolometer FPAs

    Science.gov (United States)

    Eminoglu, Selim; Gulden, M. Ali; Bayhan, Nusret; Incedere, O. Samet; Soyer, S. Tuncer; Ustundag, Cem M. B.; Isikhan, Murat; Kocak, Serhat; Turan, Ozge; Yalcin, Cem; Akin, Tayfun

    2014-06-01

    This paper reports the development of a new microbolometer Readout Integrated Circuit (ROIC) called MT3825BA. It has a format of 384 × 288 and a pixel pitch of 25μm. MT3825BA is Mikro-Tasarim's second microbolometer ROIC product, which is developed specifically for resistive surface micro-machined microbolometer detector arrays using high-TCR pixel materials, such as VOx and a-Si. MT3825BA has a system-on-chip architecture, where all the timing, biasing, and pixel non-uniformity correction (NUC) operations in the ROIC are applied using on-chip circuitry simplifying the use and system integration of this ROIC. The ROIC is designed to support pixel resistance values ranging from 30 KΩ to 100 KΩ. MT3825BA is operated using conventional row based readout method, where pixels in the array are read out in a row-by-row basis, where the applied bias for each pixel in a given row is updated at the beginning of each line period according to the applied line based NUC data. The NUC data is applied continuously in a row-by-row basis using the serial programming interface, which is also used to program user configurable features of the ROIC, such as readout gain, integration time, and number of analog video outputs. MT3825BA has a total of 4 analog video outputs and 2 analog reference outputs, placed at the top and bottom of the ROIC, which can be programmed to operate in the 1, 2, and 4-output modes, supporting frames rates well above 60 fps at a 3 MHz pixel output rate. The pixels in the array are read out with respect to reference pixels implemented above and below actual array pixels. The bias voltage of the pixels can be programmed over a 1.0 V range to compensate for the changes in the detector resistance values due to the variations coming from the manufacturing process or changes in the operating temperature. The ROIC has an on-chip integrated temperature sensor with a sensitivity of better than 5 mV / K, and the output of the temperature sensor can be read out the

  9. Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers

    International Nuclear Information System (INIS)

    Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

    2000-01-01

    Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design

  10. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe

    Science.gov (United States)

    Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni

    2017-09-01

    We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.

  11. Development of Ir/Au-TES microcalorimeter

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ataka, Manabu; Ohkubo, Masataka; Hirayama, Fuminori

    2004-01-01

    We are developing X-ray microcalorimeters using transition edge sensors (TES) for high resolution x-ray spectroscopy. Microcalorimeters are thermal detectors which measure the energy of an incident x-ray photon using a TES thermometer operated at a sharp transition edge between normal and superconducting states. TES microcalorimeters can achieve faster response than conventional microcalorimeters by keeping the operating point of TES in the transition region through the use of strong negative electrothermal feedback (ETF). We developed a bilayer TES where a normal metal Au was deposited on a superconductor Ir in order to improve the thermal conductivity of the Ir-TES. We investigated resistance-temperature characteristics. As a result, it showed a very sharp transition within 1 mK at the temperature of 110 mK. The energy resolution of 9.4 eV (FWHM) was achieved for a 5899 eV Mn K al line. (author)

  12. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  13. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  14. Infrared Illuminated CdZnTe detectors with improved performance

    International Nuclear Information System (INIS)

    Ivanov, V.; Loutchanski, A.; Dorogov, P.; Khinoverov, S.

    2013-06-01

    It was found that IR illumination of a properly chosen wavelength and intensity can significantly improve spectrometric characteristics of CdZnTe quasi-hemispherical detectors [1]. Improving of the spectrometric characteristics is due to improvement of uniformity of charge collection by the detector volume. For operation at room temperature the optimal wavelength of IR illumination is about 940 nm, but for operation at lower temperature of -20 deg. C the optimal wavelengths of IR illumination is about 1050 nm. Infrared illumination can be performed using conventional low-power IR LEDs. Application of SMD LEDs allows produce miniature detection probes with IR illuminated CdZnTe detectors. We have fabricated and tested a variety of detection probes with CdZnTe quasi-hemispherical detectors from the smallest with volumes of 1-5 mm 3 to larger with volumes of 1.5 cm 3 and 4.0 cm 3 . The use of IR illumination significantly improves spectrometric characteristics of the probes operating at room temperature, especially probes with detectors of large volumes. The probe with the detector of 4 cm 3 without IR illumination had energy resolution of 24.2 keV at 662 keV and of 12.5 keV with IR illumination. (authors)

  15. Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies

    Science.gov (United States)

    Niu, Ying Y.; Wu, Dong; Su, Yu Q.; Zhu, Hai; Wang, Biao; Wang, Ying X.; Zhao, Zi R.; Zheng, Ping; Niu, Jia S.; Zhou, Hui B.; Wei, Jian; Wang, Nan L.

    2018-01-01

    Light probe from Uv to THz is critical in photoelectronics and has great applications ranging from imaging, communication to medicine (Woodward et al 2002 Phys. Med. Biol. 47 3853-63 Pospischil et al 2013 Nat. Photon. 7 892-6 Martyniuk and Rogalski 2003 Prog. Quantum Electron. 27 59-210). However, the room temperature ultrabroadband photodetection across visible down to far-infrared is still challenging. The challenging arises mainly from the lack of suitable photoactive materials. Because that conventional semiconductors, such as silicon, have their photosensitive properties cut off by the bandgap and are transparent to spectrum at long-wavelength infrared side (Ciupa and Rogalski 1997 Opto-Electron. Rev. 5 257-66 Tonouchi 2007 Nat. Photon. 1 97-105 Sizov and Rogalski 2010 Prog. Quantum Electron. 34 278-347 Kinch 2000 J. Electron. Mater. 29 809-17). Comparatively, the dielectrics with very narrow band-gap but maintain the semiconductor-like electrical conduction would have priorities for ultrabroadband photodetection. Here we report on EuSbTe3 is highly sensitive from ultraviolet directly to terahertz (THz) at room temperature. High photoresponsivities 1-8 A W-1 reached in our prototype EuSbTe3 detectors with low noise equivalent power (NEP) recorded, for instances ~150 pW · Hz-1/2 (at λ  =  532 nm) and ~0.6 nW · Hz-1/2 (at λ  =  118.8 µm) respectively. Our results demonstrate a promising system with direct photosensitivity extending well into THz regime at room temperature, shed new light on exploring more sophisticated multi-band photoelectronics.

  16. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  17. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  18. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  19. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  20. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  1. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  2. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  3. Mid-IR Imaging: Upconversion imager improves IR gas sensing

    DEFF Research Database (Denmark)

    Sahlberg, Anna-Lena; Li, Zhongshan; Høgstedt, Lasse

    2014-01-01

    A nonlinear upconversion detector shows near-shot-noise-limited performance and compares favorably—while adding additional imaging information—to conventional cryogenic detectors in the measurement of trace-level gases at atmospheric pressure....

  4. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  5. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  6. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  7. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  8. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  9. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  10. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  11. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  12. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  13. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  14. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  15. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  16. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    Science.gov (United States)

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  17. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  18. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  19. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  20. General review of multispectral cooled IR development at CEA-Leti, France

    Science.gov (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  1. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  2. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  3. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  4. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  6. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  7. Infrared detectors and focal plane arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    The present conference discusses Schottky-barrier IR image sensors, SWIR and MWIR Schottky-barrier imagers, a 640 x 640 PtSi, models of nonlinearities in focal plane arrays, retinal function relative to IRT focal plane arrays, a solid-state pyroelectric imager, and electrolyte electroreflectance spectroscopies for the ion-implanted HgCdTe with thermal annealing. Also discussed are HgCdTe hybrid focal plane arrays for thermoelectrically cooled applications, a novel IR detector plasma-edge detector, and IR detector circuits using monolithic CMOS amps with InSb detectors. (No individual items are abstracted in this volume)

  8. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  9. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  10. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  11. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  12. Detector calibration measurements in CRESST

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany)]. E-mail: westphal@ph.tum.de; Coppi, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Feilitzsch, F. von [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Isaila, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Jagemann, T. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Jochum, J. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Koenig, J. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lachenmaier, T. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lanfranchi, J.-C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Potzel, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Rau, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Stark, M. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Wernicke, D. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, D-85737 Ismaning (Germany)

    2006-04-15

    The CRESST dark matter experiment uses the simultaneous measurement of the scintillation light and the heat signal of a CaWO{sub 4} crystal to discriminate between background electron recoil and nuclear recoil events. At the Technical University of Munich calibration measurements have been performed to characterize the detectors. These measurements include the determination of the light output and scintillation time constants of CaWO{sub 4} at temperatures below 50 mK. The setup used in these measurements consist of a CaWO{sub 4} crystal, which is mounted in a reflective housing together with a silicon light detector carrying an Ir/Au transition edge sensor (TES) evaporated directly onto it.

  13. Large-format 17μm high-end VOx μ-bolometer infrared detector

    Science.gov (United States)

    Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.

    2013-06-01

    Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.

  14. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  15. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    Science.gov (United States)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  16. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  17. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    2015-01-01

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity and direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)

  18. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  19. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    chemical/bio weapon signatures in real time. • IR sources and detectors have a wide ranging applications in public sector from night vision cameras on cars...Jeffrey D. Bude, Andy J. Bayramian, Christopher D. Marshall, Thomas M. Spinka, Constantin L. Haefner, Test station development for laser-induced

  20. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  1. Characterization of DECam focal plane detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  2. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  3. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  4. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  5. New developments on silicon drift detectors

    International Nuclear Information System (INIS)

    Rashevsky, A.

    1996-01-01

    In the frame of the project to develop large-area linear drift detectors few prototypes have been designed and produced. the function of these prototypes is to allow the evaluation of the solutions chosen for the geometry of the on-board electrodes and the production process. On these prototypes it is studied the static characteristics and measured time of-flight and charge collection injecting charges with an IR laser source. It is report the results from one of the prototypes

  6. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  7. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  8. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  9. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  10. Test and evaluation of infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Hoke, Forney M.

    Papers on the testing and evaluation of IR detectors and arrays are presented, covering topics such as a short wavelength IR test system, pulse height analysis, the use of an expert system for IR detector testing, low-background IR focal plane testing, electron beam testing, high performance silicide Schottky photodiodes, the SDI organization focal plane test program, the absorption cross section of arsenic in silicon, and long wavelength IR hybrids. Other topics include low background radiometric detector measurements, an ultralow background dewar for IR detector characterization studies, a computer assisted mosaic array test station, a configurable detector array test station, automated detector material characterization capabilities, and a test system for mercury cadmium telluride photoconductor arrays. Additional topics include ionization dosimetry measurements inside a dewar for linac electron and californium-252 neutron environments, a radiation test facility using a variable-flux electron beam source, automated visual inspection of IR focal plane arrays, a titanium cryostat for low temperature radiation effects studies, a low dose rate gamma test facility, and the test and evaluation of stability in IR staring focal plane arrays after nonuniformity correction.

  11. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  12. High-operating temperature MWIR photon detectors based on type II InAs/GaSb superlattice

    Science.gov (United States)

    Razeghi, Manijeh; Nguyen, Binh-Minh; Delaunay, Pierre-Yves; Abdollahi Pour, Siamak; Huang, Edward Kwei-wei; Manukar, Paritosh; Bogdanov, Simeon; Chen, Guanxi

    2010-01-01

    Recent efforts have been paid to elevate the operating temperature of Type II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300K-background BLIP operation temperature to 166K. At 77K, the ~4.2 μm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ohm.cm2) and a detectivity of 3x1013cm.Hz1/2/W. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10mK at 77K. Uncooled camera is capable to capture hot objects such as soldering iron.

  13. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  14. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  15. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  16. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  17. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    Science.gov (United States)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  18. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  19. WFC3 UVIS Detector Performance

    Science.gov (United States)

    Gunning, Heather C.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; MacKenty, John W.; Anderson, Jay; WFC3 Team

    2015-01-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument installed on the Hubble Space Telescope (HST) during Servicing Mission 4 (SM4) in May 2000. WFC3 has two observational channels, UV/visible (UVIS) and infrared (IR); both have been performing well on-orbit. Since installation, the WFC3 team has been diligent in monitoring the performance of both detectors. The UVIS channel consists of two e2v, backside illuminated, 2Kx4K CCDs arranged in a 2x1 mosaic. We present results from some of the monitoring programs used to check various aspects of the UVIS detector. We discuss the growth trend of hot pixels and the efficacy of regular anneals in controlling the hot pixel population. We detail a pixel population with lowered-sensitivity that evolves during the time between anneals, and is largely reset by each anneal procedure. We discuss the stability of the post-flash LED lamp, used and recommended for CTE mitigation in observations with less than 12 e-/pixel backgrounds. Finally, we summarize long-term photometric trends of the UVIS detector, as well as the absolute gain measurement, used as a proxy for the on-orbit evolution of the UVIS channel.

  20. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  1. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  2. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  3. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  4. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  5. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  6. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  7. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  8. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  9. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: moeen@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)

    2016-08-31

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  10. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    International Nuclear Information System (INIS)

    Moeen, M.; Kolahdouz, M.; Salemi, A.; Abedin, A.; Östling, M.; Radamson, H.H.

    2016-01-01

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10 20 cm −3 and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K 1/f parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K 1/f = 4.7 × 10 −14 was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  11. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  12. HOM [higher order mode] losses at the IR [interaction region] of the B-factory

    International Nuclear Information System (INIS)

    Heifets, S.

    1990-08-01

    Masking at the interaction region (IR) will presumably reduce the synchrotron radiation background in the detector. One possible layout of the IR for B-factory shows a rather complicated system of masks. A bunch passing each mask will generate RF waves. These waves (called usually higher order modes, HOM-s) will be absorbed in the beam pipe wall producing additional heating and, interacting with the beam, kicking particles in the radial and azimuthal directions. This may change the bunch motion and its emittance. These effects are estimated in the present note

  13. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  14. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  15. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  16. Infrared focal plane array producibility and related materials; Proceedings of the Meeting, Orlando, FL, Apr. 20, 21, 1992

    Science.gov (United States)

    Balcerak, Ray; Pellegrini, Paul W.; Scribner, Dean A.

    The present conference discusses the commercial diversification of the U.S. IR detector industry's commercial diversification, HgCdTe focal-plane array (FPAs) manufacture, LPE of (Hg,Cd)Te FPAs, uncooled IR FPA detector producibility, a high performance staring IR camera, and novel technologies for FPA dewars. Also discussed are hybridizing FPAs, cryoprober test development, HgCdTe on Si for monolithic focal plane arrays, popcorn noise in linear InGaAs detector arrays, and the use of narrowband laser speckle for MTF characterization of CCDs. (No individual items are abstracted in this volume)

  17. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  18. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  19. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  20. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  1. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  2. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  3. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  4. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  5. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  6. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  7. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  8. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  9. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  10. A microfabricated, low dark current a-Se detector for measurement of microplasma optical emission in the UV for possible use on-site

    Science.gov (United States)

    Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili

    2013-05-01

    Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.

  11. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  12. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  13. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  14. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  15. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  16. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  17. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  18. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  19. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  20. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  1. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  2. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  3. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  4. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  5. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  6. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  7. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  8. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  9. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  10. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  11. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  12. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  13. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  14. Design issues of a low cost lock-in amplifier readout circuit for an infrared detector

    Science.gov (United States)

    Scheepers, L.; Schoeman, J.

    2014-06-01

    In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout

  15. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  16. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  17. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  18. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  19. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  20. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  1. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  2. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  3. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  4. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.

    1981-01-01

    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  5. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  6. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  7. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  8. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V.

    1998-01-01

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  9. Detecting infrared luminescence and non-chemical signaling of living cells: single cell mid-IR spectroscopy in cryogenic environments

    Science.gov (United States)

    Pereverzev, Sergey

    2017-02-01

    Many life-relevant interaction energies are in IR range, and it is reasonable to believe that some biochemical reactions inside cells can results in emission of IR photons. Cells can use this emission for non-chemical and non-electrical signaling. Detecting weak infrared radiation from live cells is complicated because of strong thermal radiation background and absorption of radiation by tissues. A microfluidic device with live cells inside a vacuum cryogenic environment should suppress this background, and thereby permit observation of live cell auto-luminescence or signaling in the IR regime. One can make IR-transparent windows not emitting in this range, so only the cell and a small amount of liquid around it will emit infrared radiation. Currently mid-IR spectroscopy of single cells requires the use of a synchrotron source to measure absorption or reflection spectra. Decreasing of thermal radiation background will allow absorption and reflection spectroscopy of cells without using synchrotron light. Moreover, cell auto-luminescence can be directly measured. The complete absence of thermal background radiation for cryogenically cooled samples allows the use IR photon-sensitive detectors and obtaining single molecule sensitivity in IR photo-luminescence measurements. Due to low photon energies, photo-luminescence measurements will be non-distractive for pressures samples. The technique described here is based upon US patent 9366574.

  10. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  11. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  12. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  13. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  14. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  15. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  16. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  17. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  18. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  19. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  20. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  1. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  2. AIM cryocooler developments for HOT detectors

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  3. High dose rate 192Ir calibration: Indonesia experiences

    International Nuclear Information System (INIS)

    Nasukha; Tjiptanto, D.; Darmasyah, R.; Kurniawan, B.

    2002-01-01

    Indonesia with a population of more than 200 Million people which spread on about 5000 islands, up to now only has 23 radiotherapy centers and some not active anymore. As mention by Parkin et al that Cervix/Utery and breast cancer are the most estimated numbers of new cases of cancers in women for developing countries, stomach and lung cancers in men. Indonesia as a developing country is likely similar to other developing countries on numbers of new cases of cancers in women. But quite different in men, in Indonesia the most common cancers are nasopharynx and thyroid cancers. The use of lr-192 sources in high dose-rate (HDR) remotely afterloaded brachytherapy treatments have greatly increased in recent years and variety of such sources are commercially available. Nine radiotherapy centers in Indonesia installed Nucletron microSelectron HDR remote afterloader. Based on the data of CiptoMangunkusurno Hospital, Jakarta that the most common cancers are the cervix, breast, nasopharynx and thyroid cancers which of percentage are about 31%, 25 %, 13%, and 6 % respectively. It means that the use of HDR 192 Ir brachytherapy has to be an effective tool in the treatments. Two methods have been studied and applied to calibrate HDR 192 Ir brachytherapy in Indonesia, especially for Nucletron microSelectron HDR 192 lr remote afterloader brachytherapy. Calibration of HDR 192 Ir brachytherapy source has been done by Cavity lonization Chamber and with Well Type lonization Chamber. First, 0.6 cc of NE Farmer type dosimeter that was calibrated to 60 Co and 250 kV of x-rays in air kerma was used in this experiment. Position of measurement (detector and source) at the center of the room and about 1 meter from the floor. Eight variation of distances from 10 cm to 40 cms have been carried out measurement as recommended by IAEA-TECDOC-1079. Correction have been given for scatters, non-uniformity, and attenuation. To solve the problem of scatter correction factor was used Matlab programming

  4. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  5. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  6. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  7. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  8. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  9. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  10. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  11. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  12. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  13. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  14. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  15. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  16. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  17. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  18. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  19. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  20. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  1. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  2. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Energy Technology Data Exchange (ETDEWEB)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Manceron, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Laboratoire MONARIS, CNRS-Université Pierre et Marie Curie, UMR 8233, 4 Place Jussieu, F-75252 Paris Cedex (France)

    2016-06-15

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  3. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  4. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  5. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  6. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  7. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  8. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  9. Kas netilpo tarp politikos ir diplomatijos?

    OpenAIRE

    Streikus, Arūnas

    2008-01-01

    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  10. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña

    2012-05-01

    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  11. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  12. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  13. Infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Apr. 6, 7, 1988

    International Nuclear Information System (INIS)

    Dereniak, E.L.

    1988-01-01

    The papers contained in this volume provide an overview of recent advances in theoretical and experimental research related to IR detector materials and arrays. The major subject areas covered include IR Schottky barrier silicide arrays, HdCdTe developments, SPRITE technology, superlattice or bandgap-engineered devices, extrinsic silicon technology, indium antimonide technology, and pyroelectric arrays. Papers are presented on time division multiplexed time delay integration, spatial noise in staring IR focal plane arrays, pyroelectrics in a harsh environment, and testing of focal plane arrays

  14. Proposal of a postal system for Ir-192 sources calibration used in high dose rate brachytherapy with LiF:Mn:Ti thermoluminescent dosemeters; Proposta de um sistema postal para a calibracao de fontes de {sup 192} Ir, utilizadas em braquiterapia de alta taxa de dose, com dosimetros termoluminescentes de LiF: Mn: Ti

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, W.S.; Borges, J.C.; Almeida, C.E.V. [Instituto de Radioprotecao e Dosimetria. CNEN Caixa Postal 37750, 22780-160, Rio de Janeiro (Brazil)

    1998-12-31

    A proposal in order to improve the brachytherapy quality control and to allow postal intercomparison of Ir-192 sources used in high dose rate brachytherapy has been presented. The LiF: Mn: Ti (TLD 100) detector has been selected for such purpose. The experimental array and the TLDs irradiation and calibration techniques, at the treatment units, have been specified in the light of more recent methodology of Ir-192 calibration sources. (Author)

  15. Fine-scale spatial response of CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Brunett, B.A.; Van Scyoc, J.M.; Hilton, N.R.; Lund, J.C.; James, R.B.; Schlesinger, T.E.

    1998-01-01

    Several studies have suggested that the uniformity of Cadmium Zinc Telluride (CZT) detectors play an important role in their performance when operated as gamma-ray spectrometers. However the detailed gamma response of simple planar detectors as a function of position over the device area is largely unknown. To address this issue the authors have built a system capable of measuring the detector response with a resolution of ∼250 (micro)m. The system consists of a highly collimated (∼200 (micro)m) photon source (<150 kev) scanned over the detector using a computer controlled two-axis translation stage. Fifteen samples configured as planar detectors were examined with the new apparatus. The material grade of the detectors examined varied from counter to select discriminator. Two classes of spatial response variation were observed and are presented here. Infrared (IR) transmission images were also acquired for each sample and correlation between features in the pulse height spectrum and crystalline defects were observed

  16. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  17. Ice contamination on satellite IR sensors: the MIPAS case

    Science.gov (United States)

    Niro, F.; Fehr, T.; Kleinert, A.; Laur, H.; Lecomte, P.; Perron, G.

    2009-04-01

    MIPAS on board the ENVISAT platform is a Michelson Interferometer measuring the atmospheric limb emission in the mid-infrared (IR), from 4.15 µm to 14.5 µm [1]. The calibrated MIPAS measurements are radiance spectra as a function of wavenumber. The radiometric and spectral calibrations of the raw data are part of the Level 1 processing in the Ground Segment [2]. The accuracy of the radiometric calibration is essential in order to ensure precise temperature and trace gas retrieval in the Level 2 processing. This calibration process requires a set of cold space measurements and a series of measurements of a black body source to determine the radiometric gain function and to correct for instrument self-emission. The deep space measurements are repeated every four limb scanning sequences with the purpose of compensating the variation of instrument's temperature along the orbit. The radiometric gain function is updated every week to correct for a degraded transmission at the detector due to ice contamination. The ice contamination leads to a decrease of the signal, mainly due to ice absorption of the incoming IR radiation. This paper presents an analysis of the effect of ice contamination during the MIPAS mission; in particular we will study its impact on the radiometric accuracy and on the Level 2 retrieval precision. We will highlight the importance of the ice monitoring for the MIPAS mission and we will show that this type of monitoring allows improving the stability and the overall performances of the MIPAS instrument. The effect of ice in other ENVISAT instruments will be also mentioned (e.g., AATSR). The lessons learned during the mission about ice contamination are very important, especially for IR sensors that are the most affected by this type of problem. These lessons will be useful in order to improve the in-flight operations of present and future satellite missions. [1] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A

  18. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  19. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  20. Functional Requirements on the Design of the Detectors and the Interaction Region of an e+e- Linear Collider with a Push-Pull Arrangement of Detectors

    International Nuclear Information System (INIS)

    Markiewicz, T.

    2009-01-01

    The Interaction Region of the International Linear Collider is based on two experimental detectors working in a push-pull mode. A time efficient implementation of this model sets specific requirements and challenges for many detector and machine systems, in particular the IR magnets, the cryogenics and the alignment system, the beamline shielding, the detector design and the overall integration. This paper attempts to separate the functional requirements of a push pull interaction region and machine detector interface from any particular conceptual or technical solution that might have been proposed to date by either the ILC Beam Delivery Group or any of the three detector concepts. As such, we hope that it provides a set of ground rules for interpreting and evaluating the MDI parts of the proposed detector concept's Letters of Intent, due March 2009. The authors of the present paper are the leaders of the IR Integration Working Group within Global Design Effort Beam Delivery System and the representatives from each detector concept submitting the Letters Of Intent.

  1. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  2. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  3. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  4. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  5. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  6. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.

    2005-01-01

    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  7. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  8. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  9. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  10. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  11. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  12. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  13. Quantitative analysis of semivolatile organic compounds in selected fractions of air sample extracts by GC/MI-IR spectrometry

    International Nuclear Information System (INIS)

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1990-01-01

    The authors are currently investigating the capabilities of gas chromatography/matrix isolation infrared (GC/MI-IR) spectrometry for the determination of semivolatile organic compounds (SVOCs) in environmental air sample extracts. Their efforts are focused on the determination of SVOCs such as alkylbenzene positional isomers, which are difficult to separate chromatographically and to distinguish by conventional electron-impact ionization GC/mass spectrometry. They have performed a series of systematic experiments to identify sources of error in quantitative GC/MI-IR analyses. These experiments were designed to distinguish between errors due to instrument design or performance and errors that arise from some characteristic inherent to the GC/MI-IR technique, such as matrix effects. They have investigated repeatability as a function of several aspects of GC/MI IR spectrometry, including sample injection, spectral acquisition, cryogenic disk movement, and matrix deposition. The precision, linearity, dynamic range, and detection limits of a commercial GC/MI-IR system for target SVOCs were determined and compared to those obtained with the system's flame ionization detector. The use of deuterated internal standards in the quantitative GC/MI-IR analysis of selected fractions of ambient air sample extracts will be demonstrated. They will also discuss the current limitations of the technique in quantitative analyses and suggest improvements for future consideration

  14. Study of (n,2n reaction on 191,193Ir isotopes and isomeric cross section ratios

    Directory of Open Access Journals (Sweden)

    Vlastou R.

    2017-01-01

    Full Text Available The cross section of 191Ir(n,2n190Irg+m1 and 191Ir(n,2n190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR “Demokritos”, using the activation method. The neutron beams were produced by means of the 3H(d,n4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  15. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  16. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  17. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  18. Pulse and lock-in IR NDT in complex structures

    Science.gov (United States)

    Tarin, Markus

    2011-05-01

    Bicycles, cars, airplanes, prosthetics, solar panels...composites are ubiquitous in the modern world. Three thermographic NDT techniques are currently in use for the detection and measurement of defects in these composites, including defects such as impact damage, delamination, voids, inclusions and stresses. The particular technique for optimum results, pulsed flash, pulsed transient, or lock-in, depends upon the sample material and thickness and shape, and the test environment. Choice of camera type varies widely, from high performance cooled to affordable uncooled, with large format 640 x 480 pixels now available, also. NDT hardware and software now includes models that allow all types of excitation sources and excitation methods with the same equipment.

  19. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  20. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  1. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  2. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  3. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  4. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  5. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  6. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  7. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  8. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  9. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  10. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  11. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  12. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  13. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  14. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  15. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  16. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  17. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  18. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  19. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  20. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  1. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  2. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  3. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  4. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  5. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity measurements in ATLAS. Most changes were motivated by the number of interactions per bunch-crossing and the 25 ns bunch-spacing expected in LHC RUN II (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2

  6. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  7. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  8. Performance of an Uncooled Camera Utilizing an SWIR InGaAs 256x256 FPA for Imaging in the 1.0 micrometer - 1.7 micrometer Spectral Band

    National Research Council Canada - National Science Library

    Barton, J

    1998-01-01

    .... The camera spectral sensitivity is established by the material properties of the detector array which is composed of photovoltaic detectors formed in an epitaxial layer of InGaAs with a composition...

  9. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  10. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  11. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  12. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  13. Development of IR imaging at IRnova

    Science.gov (United States)

    Martijn, Henk; Asplund, Carl; Malm, Hedda; Smuk, Sergiy; Höglund, Linda; Gustafsson, Oscar; Hammar, Mattias; Hellström, Staffan

    2009-05-01

    Historically IRnova has exclusively been a company, focused on manufacturing of QWIP detectors. Nowadays, besides continuous improvements of the performance of QWIP FPAs and development of new formats IRnova is involved in development of QWIP detectors for special applications and has started the development of the next generation infrared detectors, as well. In the light of the development of new formats we validate experimentally theoretical calculations of the response of QWIPs for smaller pixel size. These results allow for the development of high performance megapixel QWIP FPA that exhibit the high uniformity and operability QWIP detectors are known for. QWIP is also being considered for space applications. The requirements on dark current and operating temperature are however much more stringent as compared to the terrestrial applications. We show ways to improve the material quality with as a result a higher detector operating temperature. IRnova is also looking at antimony-based strained superlattice material for the LWIR region together with partners at the IMAGIC centre of excellence. One of the ways to overcome the problem with surface currents is passivating overgrowth. We will report the status and results of overgrowing the detector mesas with AlGa(As)Sb in a MOVPE system. At the same centre of excellence a novel material concept is being developed for LWIR detection. This new material contains a superlattice of vertically aligned and electronically coupled InAs and GaSb quantum dots. Simulations show that it should be possible to have LWIR detection in this material. We will present the current status and report results in this research.

  14. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  15. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  16. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  17. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  18. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  19. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  20. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  1. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  2. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  3. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  4. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  5. Universal single board tester for investigation of the avalanche photo detectors

    Czech Academy of Sciences Publication Activity Database

    Kushpil, Vasilij; Kushpil, Svetlana

    2012-01-01

    Roč. 7, JAN 2012 (2012), C01084/1-C01084/8 ISSN 1748-0221 R&D Projects: GA MŠk LC07048 Institutional support: RVO:61389005 Keywords : control systems * photon detectors for UV * visible and IR photons * solid-state Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011

  6. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  7. Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors

    Science.gov (United States)

    2017-01-03

    TERMS Device, electronic, radiation degradation, radiation effects, semiconductor, theory 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...contrast microscopy (DIC), atomic force microscopy (AFM), steady-state PL, and time-resolved photoluminescence (TRPL) spectra all indicate monotonic...lifetimes observed from higher growth temperatures provides further evidence that this material is of higher crystalline quality. Figure 4. (Color

  8. Inherent Limitations in Mid-Wave and Long-Wave-IR Upconversion Detector

    DEFF Research Database (Denmark)

    Barh, Ajanta; Tseng, Yu-Pei; Pedersen, Christian

    2017-01-01

    Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper.......Inherent limitations in terms of optical losses, selection of nonlinear crystal(s), detection efficiency and pumping conditions in mid-wave (3-5 µm) and long-wave (8-12 µm) infrared frequency upconversion modules are investigated in this paper....

  9. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099

    Data.gov (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  10. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  11. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  12. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  13. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  14. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  15. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  16. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  17. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  18. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  19. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  20. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  1. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  2. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  3. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  4. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  5. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  6. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  7. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  8. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  9. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    Science.gov (United States)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  10. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  11. Detectors for rare events

    International Nuclear Information System (INIS)

    Charpak, G.

    1984-01-01

    This chapter discusses the possibility of combining the advantages of photographic data retrieval with the flexibility of operation of conventional gaseous or liquid detectors operated with electronic data retrieval. Possible applications of the proposed detectors to such problems as nucleon decay, neutrinoelectron interaction, and the search for magnetic monopoles are examined. Topics considered include the photography of ionization patterns, the photography of ionization tracks with the multistep avalanche chambers, and exploiting the stimulated scintillation light. Two processes which give rise to the emission of light when ionizing electrons interact in gases under the influence of an electric field are described

  12. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  13. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  14. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  15. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  16. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  17. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  18. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  19. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  20. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  1. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  2. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity monitoring and measurements in the ATLAS Experiment at CERN. Most changes were motivated by the large (up to 50) number of interactions per bunch-crossing and short (25 ns) bunch-spacing expected in LHC run 2 (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2.

  3. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  4. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  5. Design of mini-multi-gas monitoring system based on IR absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Q.L.; Zhang, W.D.; Xue, C.Y.; Xiong, J.J.; Ma, Y.C.; Wen, F. [Northern University of China, Taiyuan (China)

    2008-07-15

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually all incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use file mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  6. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  7. Life Finder Detectors: An Overview of Detector Technologies for Detecting Life on Other Worlds

    Science.gov (United States)

    Rauscher, Bernard J.; Domagal-Goldman, Shawn; Greenhouse, Matthew A.; Hsieh, Wen-Ting; McElwain, Michael W.; Moseley, Samuel H.; Noroozian, Omid; Norton, Tim; Kutyrev, Alexander; Rinehart, Stephen; stock, Joseph

    2015-01-01

    Future large space telescopes will seek evidence for life on other worlds by searching for spectroscopic biosignatures. Atmospheric biosignature gases include oxygen, ozone, water vapor, and methane. Non-biological gases, including carbon monoxide and carbon dioxide, are important for discriminating false positives. All of these gases imprint spectroscopic features in the UV through mid-IR that are potentially detectable using future space based coronagraphs or star shades for starlight suppression.Direct spectroscopic biosignature detection requires sensors capable of robustly measuring photon arrival rates on the order of 10 per resolution element per hour. Photon counting is required for some wavefront sensing and control approaches to achieve the requisite high contrast ratios. We review life finder detector technologies that either exist today, or are under development, that have the potential to meet these challenging requirements. We specifically highlight areas where more work or development is needed.Life finder detectors will be invaluable for a wide variety of other major science programs. Because of its cross cutting nature; UV, optical, and infrared (UVOIR) detector development features prominently in the 2010 National Research Council Decadal Survey, 'New Worlds, New Horizons in Astronomy and Astrophysics', and the NASA Cosmic Origins Program Technology Roadmap.

  8. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  9. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  10. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  11. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  12. Performance overview of the Euclid infrared focal plane detector subsystems

    Science.gov (United States)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  13. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  14. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke

    2013-01-01

    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...

  15. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  16. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.

    1985-01-01

    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  17. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  18. Atsiskaitymai e. versle: ypatumai ir naujos tendencijos

    OpenAIRE

    Vyšniauskas, Jonas

    2014-01-01

    Alternatyvių atsiskaitymų e. versle sistemos pradeda kelti rimtą grėsmę tradiciniams atsiskaitymams elektronine bankininkyste, mokėjimo kortelėmis ar grynaisiais pinigais. Todėl būtina detaliau išsiaiškinti kokie yra alternatyvių atsiskaitymų ypatumai, kurie veiksniai vartotojams yra svarbiausi ir kokie yra alternatyvūs atsiskaitymo būdai. Tai siekiama padaryti išanalizuojant mokslinę literatūrą, pateikiant pagrindines alternatyvių atsiskaitymų sistemas, atliekant alternatyvių atsiskaitymų pa...

  19. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo

    2001-01-01

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  20. Reprocessing WFC3/IR Exposures Affected by Time-Variable Backgrounds

    Science.gov (United States)

    Brammer, G.

    2016-11-01

    The background seen in WFC3/IR observations frequently shows strong time-dependent behavior above the constant flux expected for zodiacal continuum light. This is often caused by an emission line of helium at 1.083 μm excited in the sun-illuminated upper atmosphere, when seen in the filters (F105W, F110W) and grisms (G102, G141) sensitive to the feature. The default behavior of the calwf3 pipeline assumes constant source-plus-background fluxes when it performs up-the-ramp fitting to identify cosmic rays and determine the average count rate within a MULTIACCUM IR exposure. calwf3 provides undesirable results in the presence of strongly variable backgrounds, primarily in the form of elevated and non-Gaussian noise in the FLT products. Here we describe methods to improve the noise properties of the reduced products. In the first, we simply turn off the calwf3 crcorr step, treating the IR detector as if it were a CCD, i.e., accumulating flux and reading it out at the end of the exposure. Next, we artificially flatten the ramps in the IMA products and then allow calwf3 to proceed as normal fitting the ramp and identifying CRs. Either of these procedures enable recovery of datasets otherwise corrupted beyond repair and have no discernible effects on photometry of sources in deep combined images.

  1. SAT's infrared equipment using second-generation detectors

    Science.gov (United States)

    Siriex, Michel B.

    1995-09-01

    In 1982 SAT proposed for the first time a second generation detector in the design of FLIRs for the TRIGAT program, since then different types of IR equipment have been developed on the basis of this technology: (1) An infra-red seeker for the MICA missile. (2) Three types of IRST: VAMPIR MB for naval applications, SIRENE for the Army and OSF for the Rafale aircraft. (3) Three thermal imagers: Condor 1 for the mast mounted sight equipping the long range anti tank system, Tiger installed on the sight of the medium range antitank system, and Condor 2 for the pilot sight of the TRIGAT French-German helicopter. Infra-red detectors are MCT IR-CCD focal plane arrays developed by SOFRADIR with the objective of the best standardization possible in spite of different configurations and specifications for each program. In this paper, we intend to present the main features of this technology for these programs and the advantages obtained by comparison with the first generation in terms of performance. Industrialization of these products is starting now, and a specific effort has been made to standardize the components, especially the driving and read out electronics. A set of ASICs has been developed to make compact detection modules including a detector in his dewar, a cooling machine, and a proximity electronic.

  2. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  3. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  4. B-factory detectors

    International Nuclear Information System (INIS)

    Marlow, D.R.

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B 0 →J/ΨK S decays and related modes

  5. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  6. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  7. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  8. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  9. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  10. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  11. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  12. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  13. The Borexino Detector

    Science.gov (United States)

    Montanari, David

    2010-04-01

    The Borexino detector is a large volume liquid scintillator detector for low energy neutrino spetroscopy currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. Main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the mono-energetic (862KeV) 7Be electron capture neutrinos, via neutrino-electron scattering in ultra-pure liquid scintillator. We report the description of the detector itself from its construction to the final current configuration. The initial requirements are first presented, then the strategy developed to achieve them: choice of materials and components, purification of the scintillator, cleaning, leak tightness, fluid handling. Every single point is analyzed, particularly the purification plants, that allowed reaching an ultra high pure scintillator and the fluid handling system, a large modular system connecting fluid receiving, purification and fluid delivery processes for every fluid involved. The different phases of the filling follow: from air to water to the final liquid scintillator, mainly focusing on the scintillator filling. The performances of the detector and the results are then presented.

  14. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  15. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  16. The LUCID-2 detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  17. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  18. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  19. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  20. The LDC detector concept

    Indian Academy of Sciences (India)

    foresees a TPC with around 200 points measured along a track, and read out by a system of micro-pattern gas detectors. These novel gas amplification devices promise to provide a stable, reliable readout system, which can be realized with comparatively little material in the endplate compared to a traditional wire readout.

  1. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  2. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  3. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  4. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  5. Smoke Detector Technology.

    Science.gov (United States)

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  6. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  7. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  8. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  9. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  10. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  11. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  12. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  13. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  14. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  15. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  16. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.

    2008-01-01

    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  17. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  18. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  19. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  20. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  1. Black and grey neutron detectors

    International Nuclear Information System (INIS)

    Gabbard, F.

    1977-01-01

    Recent progress in the development and use of ''black'' and ''grey'' detectors is reviewed. Such detectors are widely used for counting neutrons in (p,n) and (α,n) experiments and in neutron cross section measurements. Accuracy of each detector is stressed. 19 figures

  2. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  3. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  4. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  5. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail: asadi.hamed@gmail.com; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: mlee@rcsi.ie [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)

    2016-04-15

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  6. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  7. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  8. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  9. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to 25 mm

  10. Mobility and powering of large detectors. Moving large detectors

    International Nuclear Information System (INIS)

    Thompson, J.

    1977-01-01

    The possibility is considered of moving large lepton detectors at ISABELLE for readying new experiments, detector modifications, and detector repair. A large annex (approximately 25 m x 25 m) would be built adjacent to the Lepton Hall separated from the Lepton Hall by a wall of concrete 11 m high x 12 m wide (for clearance of the detector) and approximately 3 m thick (for radiation shielding). A large pad would support the detector, the door, the cryogenic support system and the counting house. In removing the detector from the beam hall, one would push the pad into the annex, add a dummy beam pipe, bake out the beam pipe, and restack and position the wall on a small pad at the door. The beam could then operate again while experimenters could work on the large detector in the annex. A consideration and rough price estimate of various questions and proposed solutions are given

  11. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  12. Feeding of the 1 1/2- isomers in stable Ir and Au isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fotiadis, Nikolaos [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; Devlin, Matthew [Los Alamos National Laboratory; Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Chadwick, Mark B [Los Alamos National Laboratory; Becker, John A [LLNL; Garrett, Paul E [U GUELPH, CANADA

    2008-01-01

    Excited states were studied and absolute partial {gamma}-ray cross sections were measured using the ({eta}, {eta}'{gamma}) reaction in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. A Compton-suppressed germanium-detector array (GEANIE) for {gamma}-ray spectroscopy and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial {gamma}-ray cross sections were measured up to incident neutron energy of 20 MeV for several transitions feeding directly the 1 1/2- isomers and ground states in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. The feeding of the 1 1/2- isomers, which originate from the odd proton occupying the h{sub 1 1/2} orbital, was found for the three targets to be very similar and increasing relative to the feeding of the corresponding ground state with increasing neutron energy up to E{sub n} {approx} 10 MeV. Above this neutron energy the opening of the (n, 2{sub n}) reaction channel strongly affects the population of the isomers and leads to a decrease of their relative population compared to the population of the ground states. The experimental results are compared with theoretical predictions from the GNASH reaction model calculation implementing a version of the spin distribution for the pre-equilibrium reaction piece with either a compound nucleus spin distribution (CN-GNASH) or a Feshbach-Kerman-Koonin (FKK-GNASH) quantum mechanical spin distribution. The effects of the spin cutoff parameter values on the population of states are examined. Evidence is presented that FKK-GNASH provides a description of the experimental data that mitigates the need for adjustment of the level density parameter to fit the data.

  13. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    Science.gov (United States)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  14. Performance Evaluation of New Generation CdZnTe Detectors for Safeguards Applications

    International Nuclear Information System (INIS)

    Ivanovs, V.; Mintcheva, J.; Berlizov, A.; Lebrun, A.

    2015-01-01

    Cadmium zinc telluride detectors (CdZnTe) have found a wide application in nondestructive assay measurements in the IAEA's verification practice. It is because of their form factor, usability, sensitivity and good spectral characteristics that they are extensively used for fresh and spent fuel attribute test measurements. Until now, the series of CdZnTe detectors utilized in the IAEA have covered the range of 5 mm 3 , 20 mm 3 , 60 mm 3 and 500mm 3 of sensitive volume. Recently, new CdZnTe detectors with improved spectroscopic characteristics and significantly bigger active volume have become available, owing to advances in crystal and detector manufacturing and signal processing technologies. The distinctive feature of this new technological development is the application of a low-intensity monochromatic optical stimulation with infrared (IR) light. The use of IR illumination with a properly chosen wavelength close to the absorption edge of the CdZnTe can significantly improve the performance of the detectors. Recognizing potential benefits of these detectors in safeguards applications, the IAEA has performed an evaluation of their performance characteristics. Under evaluation were several new detectors with sensitive volumes of 500 mm 3 , 1500 mm 3 and 4000 mm 3 , as well as all-in-one 60 mm 3 , 500 mm 3 and 1500 mm 3 integrated micro-spectrometers available from RITEC, Latvia. In addition to the standard performance characteristics, such as energy resolution, peak shape, efficiency, linearity, throughput and temperature stability, the potential use of the detectors for safeguards specific measurements, such as uranium enrichment with infinite thickness method, was of particular interest. The paper will describe the advances in the CdZnTe detector technology and present the results of their performance evaluation. (author)

  15. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    Science.gov (United States)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  17. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  18. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  19. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  20. Television area detectors

    International Nuclear Information System (INIS)

    Arndt, V.W.

    1977-01-01

    This paper discusses the use of standard television camera tubes as X-ray detectors in X-ray diffraction studies. Standard tubes can be modified to detect X rays by depositing an external X-ray phosphor on the fibre optics face plate either of a highly sensitive television camera tube or of an image intensifier coupled to a camera tube. The author considers various X-ray phosphors and concludes that polycrystalline silver activated ZnS is most suitable for crystallographic applications. In the following sections various types of television camera tubes with adequate light sensitivity for use in an X-ray detection system are described, and also three types of image intensifiers. The digitization of the television output signals and their statistical precision are discussed and the electronic circuitry for the detector system is briefly described. (B.D.)

  1. CMS Pixel Detector Upgrade

    CERN Document Server

    INSPIRE-00038772

    2011-01-01

    The present Compact Muon Solenoid silicon pixel tracking system has been designed for a peak luminosity of 1034cm-2s-1 and total dose corresponding to two years of the Large Hadron Collider (LHC) operation. With the steady increase of the luminosity expected at the LHC, a new pixel detector with four barrel layers and three endcap disks is being designed. We will present the key points of the design: the new geometry, which minimizes the material budget and increases the tracking points, and the development of a fast digital readout architecture, which ensures readout efficiency even at high rate. The expected performances for tracking and vertexing of the new pixel detector are also addressed.

  2. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC will perform a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side A–side C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  3. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  4. Ionizing radiation detector

    Science.gov (United States)

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  5. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  6. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  7. Reading handprinted addresses on IRS tax forms

    Science.gov (United States)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  8. Camouflage in thermal IR: spectral design

    Science.gov (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman

    2016-10-01

    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  9. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  10. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  11. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  12. The ALEPH detector

    CERN Multimedia

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  13. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  14. Detector limitations, STAR

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  15. The CLEO RICH detector

    International Nuclear Information System (INIS)

    Artuso, M.; Ayad, R.; Bukin, K.; Efimov, A.; Boulahouache, C.; Dambasuren, E.; Kopp, S.; Li, Ji; Majumder, G.; Menaa, N.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Wang, J.C.; Coan, T.E.; Fadeyev, V.; Maravin, Y.; Volobouev, I.; Ye, J.; Anderson, S.; Kubota, Y.; Smith, A.

    2005-01-01

    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel 'sawtooth'-shaped exit surface. Photons in the wavelength interval 135-165nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent π/K separation is demonstrated

  16. The Upgraded DØ detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš; Šimák, Vladislav

    2006-01-01

    Roč. 565, - (2006), s. 463-537 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA210; GA MŠk 1P05LA257 Institutional research plan: CEZ:AV0Z10100502 Keywords : Fermilab * DZero * DØ * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  17. Thermal detector; Thermsiche verklikker

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wey, A.; Dijkman, R. [KEMA, Arnhem (Netherlands)

    2001-12-01

    How much extra power will go through the different types of connection and cables in houses? Even though the knowledge of network companies with regard to their own cables is decreasing, they are forced to get more out of their own networks or even to squeeze them dry. In this way they can earn a great deal of money. A brief description is given of a thermal telltale (detector) which shows how far they can go.

  18. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  19. STAR detector overview

    Czech Academy of Sciences Publication Activity Database

    Ackermann, K. H.; Adams, N.; Adler, C.; Šumbera, Michal; Zborovský, Imrich

    2003-01-01

    Roč. 499, 2/3 (2003), s. 624-632 ISSN 0168-9002 R&D Projects: GA MŠk ME 475; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : relativistic heavy ions * tracking detectors * electromagnetic calorimeters Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.166, year: 2003

  20. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.