WorldWideScience

Sample records for unburned mixture composition

  1. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  2. Temperature and air-fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Kaymaz, I.

    2005-01-01

    The most important thermodynamic property used in heat release calculations for engines is the specific heat ratio. The functions proposed in the literature for the specific heat ratio are temperature dependent and apply at or near stoichiometric air-fuel ratios. However, the specific heat ratio is also influenced by the gas composition in the engine cylinder and especially becomes important for lean combustion engines. In this study, temperature and air-fuel ratio dependent specific heat ratio functions were derived to minimize the error by using an equilibrium combustion model for burned and unburned mixtures separately. After the error analysis between the equilibrium combustion model and the derived functions is presented, the results of the global specific heat ratio function, as varying with mass fraction burned, were compared with the proposed functions in the literature. The results of the study showed that the derived functions are more feasible at lean operating conditions of a spark ignition engine

  3. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  4. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  5. Unburned carbon in combustion residues from mainly solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem H; Lind B; Lagerkvist A

    2012-02-15

    Unburned carbon in 21 combustion residues from solid biofuels is investigated using several methods of analysis (a.o. LOI and TOC), as well as micro-Raman spectroscopy. The results are used to discuss the distribution of unburned carbon in the residues from the different combustion plants and its nature (organic or elemental). The consequences of the elemental nature of carbon for environmental properties of the residue are noted

  6. Differential Diptera succession patterns onto partially burned and unburned pig carrion in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    J Oliveira-Costa

    Full Text Available In the present contribution we compared the entomological succession pattern of a burned carcass with that of an unburned one. For that, we used domestic pig carcasses and focused on Calliphoridae, Muscidae and Sarcophagidae flies, because they are the ones most commonly used in Postmortem Interval estimates. Adult and immature flies were collected daily. A total of 27 species and 2,498 specimens were collected, 1,295 specimens of 26 species from the partially burned carcass and 1,203 specimens of 22 species from the control carcass (unburned. The species composition in the two samples differed, and the results of the similarity measures were 0.875 by Sorensen and 0.756 by Bray-Curtis index. The results obtained for both carcasses also differ with respect to the decomposition process, indicating that the post mortem interval would be underestimated if the entomological succession pattern observed for a carcass under normal conditions was applied to a carbonized carcass.

  7. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    Science.gov (United States)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  8. Removal of unburned carbon in fly ash produced in coal combustion process

    International Nuclear Information System (INIS)

    Velasquez V, Leonardo F; De La Cruz M, Javier F; Sanchez M, Jhon F

    2007-01-01

    The coal unburned in flying ashes obtained in the processes of coal combustion is the main disadvantage for its use in the industry of the construction. This material normally has a size of particle greater than the mineral material, therefore it is possible to be separated in a considerable percentage, obtaining double benefit: the reusability of unburned like fuel or precursor for the activated charcoal production and the use of the mineral material in the industry of the construction since the organic matter has retired him that disables its use. In this work it is experienced with a sifted technique of separation by for three obtained flying ash samples with different technology (travelling Grill, pneumatic injection and overturning grill), were made grain sized analyses with meshes of a diameter of particle greater to 0,589 mm, the short analyses were made to them next to the retained material in each mesh and the unburned percentage of removal was determined of. The technique was compared with other developing.

  9. Planar LIF observation of unburned fuel escaping the upper ring-land crevice in an SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.M.; Cloutman, L.D.

    1997-01-01

    PLIF has been used to observe the in-cylinder transport of unburned fuel that, while trapped in the ring-land and ring-groove crevices, survives combustion in the propagating flame. Away from the top-ring gap, we detect a wall-jet comprised of unburned charge exiting the top ring-land crevice opening. At the location of the top-ring gap, we observed unburned fuel lying in the cool boundary layer along the cylinder wall during the later stages of the expansion stroke. This layer is scraped into the roll-up vortex during the exhaust stroke. These data lead us to conclude that away from the end gap, unburned, high pressure charge, trapped between the two compression rings escapes as a wall jet after ring-reversal near the bottom center. Conversely, at the ring gap, when the cylinder pressure drops below the pressure between the compression rings, the trapped charge escapes through the gap and forms a thin layer on the cylinder wall.

  10. What is unburned carbon?; Vad aer ofoerbraent?

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden); Suer, Pascal [Swedish Geotechnical Inst., Linkoeping (Sweden)

    2006-01-15

    Different methods to determine unburned carbon in an ash yield different results, which raises the question of what actually is unburned. Using knowledge on the chemistry of ashes, one can identify which processes that contribute to the results from a method of analysis, but it is not possible to quantify these contributions. The project that is reported here aimed at clarifying what the results from the different methods mean using practical examples. Approximately twenty ash samples have been collected and their content of unburned carbon determined using loss on ignition at different temperatures, instrumental analysis of TOC and wet oxidation (the so-called colorimetric method). In order to identify the processes contributing to the results the samples have been investigated using a thermobalance instrumented with DTA and mass spectrometry for the species released when the samples are heated in air. The results can be grouped according to the type of ash: bottom ash, ESP ashes or baghouse filter ashes. They each have their specific fingerprints. Although the same processes contribute to the LOI, the proportions differ. In the case of bottom ashes, LOI and TOC yield results close to each other. A large part of the LOI is TOC, but not all. TOC is dominated by charred fuel (elementar carbon) and organic is a minor part. In the case of fly ashes, LOI and TOC yield results that differ from each other. As for bottom ashes, a large part of the LOI at 550 deg C is TOC, dominated by char or elemental carbon. The LOI at higher temperatures is often at least double and includes much more. Igniting ESP and baghouse filter ash samples at ca 1000 deg C leads to losses of volatile salts, e g chlorides. The colorimetric method takes some of the TOC, not only organic matter. The TOC methods should be preferred to it. The LOI methods yield values that are generally too high. As they are easy to implement their use will be continued. We recommend that: Ash is not ignited at

  11. Experimental and theoretical investigation on unburned coal char burnout in a pilot-scale rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Federico Cangialosi; Francesco Di Canio; Gianluca Intini; Michele Notarnicola; Lorenzo Liberti; Giulio Belz; Pompilio Caramuscio [Technical University of Bari, Taranto (Italy). Department of Environmental Engineering and Sustainable Development

    2006-11-15

    Oxidation reactivity studies are imperative for improving carbon re-burn technologies and valuing the heat content of unburned carbon within coal combustion ashes. Non-isothermal, thermal gravimetric analysis (TGA) was used to examine the oxidation kinetics of unburned carbon in coal combustion fly ashes having different particle size distributions; TGA results were related to combustion efficiencies as measured in a bench-scale rotary kiln. The activation energy and pre-exponential factor were determined for the chemically-controlled reaction regime; the transition temperatures between chemically-controlled and partially diffusion-controlled combustion regimes were obtained for unburned carbon particles of different sizes. After the oxidation reaction rates were evaluated, the residence time distribution (RTD) of fly ashes in the rotary kiln were experimentally measured and the mean residence times related to process parameters, including the rotating velocity and kiln inclination. By comparing these results with an advective-dispersive model, the axial dispersion coefficient of fly ashes was determined. The reaction rates obtained by thermal analyses and the RTDs were used to predict combustion efficiencies within the kiln and oxidation conditions of unburned carbon using various processing options. 21 refs., 6 figs., 4 tabs.

  12. Real-time composition determination of gas mixtures

    NARCIS (Netherlands)

    Lötters, Joost Conrad; van der Wouden, E.J.; Groenesteijn, Jarno; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2014-01-01

    We have designed and implemented an analytical calculation model with which we can real-time determine the composition of gas mixtures. The model is based upon a multi-parameter flow measurement system, consisting of a Coriolis and thermal flow sensor, a density meter and a pressure sensor. The

  13. The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas

    Directory of Open Access Journals (Sweden)

    Zajemska Monika

    2017-01-01

    The calculations showed that the most important influence on the composition of the flue gas from the co-firing process of coal with sunflower husk has a composition of biomass. It should be emphasized that the results of computer simulations obtained by the authors have an useful aspect and can be applied in practice, especially to the analysis of the mechanism of chloride corrosion which is possible to occur due to the chlorine content in the biomass. They may also be useful for evaluating the unburned hydrocarbons produced by combustion of rich mixtures (λ < 1.0.

  14. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  15. Composition measurements of binary mixture droplets by rainbow refractometry.

    Science.gov (United States)

    Wilms, J; Weigand, B

    2007-04-10

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.

  16. Composition measurements of binary mixture droplets by rainbow refractometry

    International Nuclear Information System (INIS)

    Wilms, J.; Weigand, B.

    2007-01-01

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model

  17. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  18. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    Directory of Open Access Journals (Sweden)

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  19. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; González, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s –1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10 –3 to 10 –2 M ☉ . The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon.

  20. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken' ichi [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, Maximilian [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm (Sweden); Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Mazzali, Paolo [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Boldt, Luis [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53111 Bonn (Germany); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Salgado, Francisco [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Suntzeff, Nicholas B., E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  1. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  2. Methods and compositions for removing carbon dioxide from a gaseous mixture

    Science.gov (United States)

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  3. Composite Preparation of Wood Dust-Polyester-Coconut Choir Fiber Mixture for Particle Board

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono; Padmono; Betty, Angesti

    2002-01-01

    Experiment on the use of γ-ray of Co 60 radiation has been used for curing of composite which made of wood dust, unsaturated polyester resin and coconut coir mixture. Composite was prepared by mixing of wood dust, polyester and coconut coir at a various mixture composition. Concentration of polyesters were 50, 55 and 60 % by weight based on saw dust and polyester mixture. Irradiation was conducted using 27,6 kCi acti vity Co 60 at a dose rate of 5 kGy/hrs and dose of 8, 10 and 12 kGy. Composite was also prepared conventionally by using peroxide catalyst. Parameters observed were density, pencil hardness and compression strength Experimental results showed that optimum condition wus achieved at irradiation dose of 12 kGy, polyester concentration of 60 % and coconut coir fiber of 4 %. In this condition, the density, hardness and compression strength were 1,115 g/cm 3, 5 Hand 6,815 kN/cm2 respectively. Density, hardness of composite prepared by radiation were almost the same whereas the compression strength was higher than that of composite prepared by conventional method

  4. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  5. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  6. Composition inversion in mixtures of binary colloids and polymer

    Science.gov (United States)

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  7. Influence of the composition of radionuclide mixtures on the maximum permissible concentration

    International Nuclear Information System (INIS)

    Schillinger, K.; Schuricht, V.

    1975-08-01

    By dividing radionuclides according to their formation mechanisms it is possible to assess the influence of separate partial mixtures on the maximum permissible concentration (MPC) of the total mixture without knowing exactly their contribution to the total activity. Calculations showed that the MPC of a total mixture of unsoluble radionuclides, which may occur in all fields of peaceful uses of nuclear energy, depends on the gastrointestinal tract as the critical organ and on the composition of the fission product mixture. The influence of fractionation on the MPC can be reglected in such a case, whereas in case of soluble radionuclides this is not possible

  8. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  9. Effect of compositional heterogeneity on dissolution of non-ideal LNAPL mixtures

    Science.gov (United States)

    Vasudevan, M.; Johnston, C. D.; Bastow, T. P.; Lekmine, G.; Rayner, J. L.; Nambi, I. M.; Suresh Kumar, G.; Ravi Krishna, R.; Davis, G. B.

    2016-11-01

    The extent of dissolution of petroleum hydrocarbon fuels into groundwater depends greatly on fuel composition. Petroleum fuels can consist of thousands of compounds creating different interactions within the non-aqueous phase liquid (NAPL), thereby affecting the relative dissolution of the components and hence a groundwater plume's composition over long periods. Laboratory experiments were conducted to study the variability in the effective solubilities and activity coefficients for common constituents of gasoline fuels (benzene, toluene, p-xylene and 1,2,4-trimethylbenzene) (BTX) in matrices with an extreme range of molar volumes and chemical affinities. Four synthetic mixtures were investigated comprising BTX with the bulk of the NAPL mixtures made up of either, ethylbenzene (an aromatic like BTX with similar molar volume); 1,3,5-trimethylbenzene (an aromatic with a greater molar volume); n-hexane (an aliphatic with a low molar volume); and n-decane (an aliphatic with a high molar volume). Equilibrium solubility values for the constituents were under-predicted by Raoult's law by up to 30% (higher experimental concentrations) for the mixture with n-hexane as a filler and over-predicted by up to 12% (lower experimental concentrations) for the aromatic mixtures with ethylbenzene and 1,3,5-trimethylbenzene as fillers. Application of PP-LFER (poly-parameter linear free energy relationship) model for non-ideal mixtures also resulted in poor correlation between experimentally measured and predicted concentrations, indicating that differences in chemical affinities can be the major cause of deviation from ideal behavior. Synthetic mixtures were compared with the dissolution behavior of fresh and naturally weathered unleaded gasoline. The presence of lighter aliphatic components in the gasoline had a profound effect on estimating effective solubility due to chemical affinity differences (estimated at 0.0055 per percentage increase in the molar proportion of aliphatic) as

  10. Systematic study of RPC performances in polluted or varying gas mixtures compositions: an online monitor system for the RPC gas mixture at LHC

    CERN Document Server

    Capeans, M; Mandelli, B

    2012-01-01

    The importance of the correct gas mixture for the Resistive Plate Chamber (RPC) detector systems is fundamental for their correct and safe operation. A small change in the percentages of the gas mixture components can alter the RPC performance and this will rebound on the data quality in the ALICE, ATLAS and CMS experiments at CERN. A constant monitoring of the gas mixture injected in the RPCs would avoid such kind of problems. A systematic study has been performed to understand RPC performances with several gas mixture compositions and in the presence of common gas impurities. The systematic analysis of several RPC performance parameters in different gas mixtures allows the rapid identification of any variation in the RPC gas mixture. A set-up for the online monitoring of the RPC gas mixture in the LHC gas systems is also proposed.

  11. IDENTIFICATION OF PHASE COMPOSITION OF BINDERS FROM ALKALI-ACTIVATED MIXTURES OF GRANULATED BLAST FURNACE SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    JOZEF VLČEK

    2014-03-01

    Full Text Available The prepared alkali-activated binders (AAB and composites using suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. This paper deals with ways how to influence the functional parameters of AAB by setting up mixtures of granulated blast furnace slag (GBFS and fly ash with selected chemical compositions. In this way the course of hydration process is modified and the phase composition of products of alkali activation is changed as well as their final properties. The amorphous character of the hydration products makes evaluation of the phase composition of hardened AAB difficult and significantly limits the number of experimental techniques suitable to characterise their phase composition. It was observed that measuring the pH of water extracts obtained from the alkali-activated mixtures can give supplementary information about the process of hardening of alkali-activated mixtures of GBFS and fly ash.

  12. Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method.

    Science.gov (United States)

    Selvaraju, R; Raja, A; Thiruppathi, G

    2013-10-01

    In the present study the human urinary stones were observed in their different chemical compositions of calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, cystine, oxammite (ammonium oxalate monohydrate), natroxalate (sodium oxalate), glushinkite (magnesium oxalate dihydrate) and moolooite (copper oxalate) were analyzed using Fourier Transform-Raman (FT-Raman) spectroscopy. For the quantitative analysis, various human urinary stone samples are used for ratios calculation of binary mixtures compositions such as COM/COD, HAP/COD, HAP/COD, Uric acid/COM, uric acid/COD and uric acid/HAP. The calibration curve is used for further analysis of binary mixture of human urinary stones. For the binary mixture calculation the various intensities bands at 1462 cm(-1) (I(COM)), 1473 cm(-1) (I(COD)), 961 cm(-1) (I(HAP)) and 1282 cm(-1) (I(UA)) were used. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  14. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  15. A general mixture theory. I. Mixtures of spherical molecules

    Science.gov (United States)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  16. Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing

    Energy Technology Data Exchange (ETDEWEB)

    Rojo-Nieto, E., E-mail: elisa.rojo@uca.es [Andalusian Centre of Marine Science and Technology (CACYTMAR), Department of Environmental Technologies, University of Cadiz, 11510 Puerto Real (Spain); Smith, K.E.C. [Department of Environmental Science, Aarhus University, DK-4000 Roskilde (Denmark); Perales, J.A. [Andalusian Centre of Marine Science and Technology (CACYTMAR), Department of Environmental Technologies, University of Cadiz, 11510 Puerto Real (Spain); Mayer, P. [Department of Environmental Science, Aarhus University, DK-4000 Roskilde (Denmark)

    2012-09-15

    The toxicity testing of hydrophobic organic compounds (HOCs) in aquatic media is generally challenging, and this is even more problematic for mixtures. The hydrophobic properties of these compounds make them difficult to dissolve, and subsequently to maintain constant exposure concentrations. Evaporative and sorptive losses are highly compound-specific, which can alter not only total concentrations, but also the proportions between the compounds in the mixture. Therefore, the general aim of this study was to explore the potential of passive dosing for testing the toxicity of a PAH mixture that recreates the mixture composition found in seawater from a coastal area of Spain, the Bay of Algeciras. First, solvent spiking and passive dosing were compared for their suitability to determine the acute toxicity to Artemia franciscana nauplii of several PAHs at their respective solubility limits. Second, passive dosing was applied to recreate the seawater mixture composition of PAHs measured in a Spanish monitoring program, to test the toxicity of this mixture at different levels. HPLC analysis was used to confirm the reproducibility of the dissolved exposure concentrations for the individual PAHs and mixtures. This study shows that passive dosing has some important benefits in comparison with solvent spiking for testing HOCs in aquatic media. These include maintaining constant exposure concentrations, leading to higher reproducibility and a relative increase in toxicity. Passive dosing is also able to faithfully reproduce real mixtures of HOCs such as PAHs, in toxicity tests, reproducing both the levels and proportions of the different compounds. This provides a useful approach for studying the toxicity of environmental mixtures of HOCs, both with a view to investigating their toxicity but also for determining safety factors before such mixtures result in detrimental effects.

  17. Burning test on a storage drum filled with a mixture of sodiumnitrate and bitumen

    International Nuclear Information System (INIS)

    Knotik, K.; Leichter, P.; Spalek, K.

    1979-01-01

    A burning test on a common storage drum filled with a mixture of sodiumnitrate and bitumen was carried out to show the incinerability of said mixture. A 50 l mild steel drum was filled with 80,7 kg sodiumnitrate/bitumen-mixture. The drum was packed in a 200 l mild steel drum, the remaining space was filled with enough sand to cover the top of the inner drum with 15 cm of sand. The sand packing was then soaked with 70 l of light distillate fuel and ignited. The fuel burned until self-extinguishing occurred. 30 % (22,2 l) of the fuel was burned. 0,7 % of the energy potential was absorbed in the sand layer. The highest measured temperature was 34 0 C at the top of the test drum. It can be concluded, that even under severe external actions the ignition temperature of 400 0 C for bitumen/waste mixtures cannot be reached, providing correct technical storage conditions, which means that the void space in the cavities is filled with unburnable absorbing material like sand or salt. (author)

  18. Analysis of unburned carbon in industrial ashes from biomass combustion by thermogravimetric method using Boudouard reaction

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Náhunková, Jana; Žaloudková, Margit

    2014-01-01

    Roč. 575, JAN (2014), s. 188-194 ISSN 0040-6031 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : unburned carbon * biomass * ash * thermogravimetry Subject RIV: GD - Fertilization, Irrigation, Soil Processing Impact factor: 2.184, year: 2014 http://www.sciencedirect.com/science/article/pii/S0040603113005455

  19. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    Science.gov (United States)

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  20. Experimental research on the influence of system parameters on the composition shift for zeotropic mixture (isobutane/pentane) in a system occurring phase change

    International Nuclear Information System (INIS)

    Bao, Junjiang; Zhao, Li

    2016-01-01

    Highlights: • The influence of system parameters on the composition shift for zeotropic mixture is studied. • Zeotropic mixture isobutane/pentane is selected as the working fluids. • Circulating composition and charge have the inverse proportion relationship. • The relationship between circulating composition and charge composition is linear. - Abstract: Zeotropic mixture can improve the performance of the thermodynamic cycle ascribed to the better temperature match during the heat transfer process with the characteristics of temperature glide during evaporation and condensing processes. Another characteristic of zeotropic mixture is composition shift. Composition shift means that the circulating composition and charge composition is different and is mainly caused by the two-phase hold-up and different solubility in lubricating oil. The existence of composition shift will affect the design and operation of thermodynamic system. The previous study gave little information about the influence of system parameters on the composition shift in a system occurring phase change. This paper mainly discuss the influence of system parameters on the composition shift for zeotropic mixture in a system occurring phase change as well as the validation of the linear relationship between the circulating composition and the charge composition and the inverse proportion relationship between the circulating composition and the charge mass found based on our previous theory study (Zhao and Bao, 2014). With isobutane and pentane as the research object, the impact of the key system parameters (hot water temperature, mass flow rate of hot water, feed pump frequency, cold water temperature and evaporator length) on composition shift are experimentally carried out. The results show that when the hot water temperature, mass flow rate of hot water and evaporator length increase and cold water temperature decreases, circulating composition will increase. For feed pump frequency, when

  1. Laser induced breakdown in gas mixtures. Experimental and statistical investigation on n-decane ignition: Pressure, mixture composition and equivalence ratio effects.

    Science.gov (United States)

    Mokrani, Nabil; Gillard, Philippe

    2018-03-26

    This paper presents a physical and statistical approach to laser-induced breakdown in n-decane/N 2  + O 2 mixtures as a function of incident or absorbed energy. A parametric study, with pressure, fuel purity and equivalence ratio, was conducted to determine the incident and absorbed energies involved in producing breakdown, followed or not by ignition. The experiments were performed using a Q-switched Nd-YAG laser (1064 nm) inside a cylindrical 1-l combustion chamber in the range of 1-100 mJ of incident energy. A stochastic study of breakdown and ignition probabilities showed that the mixture composition had a significant effect on ignition with large variation of incident or absorbed energy required to obtain 50% of breakdown. It was observed that the combustion products absorb more energy coming from the laser. The effect of pressure on the ignition probabilities of lean and near stoichiometric mixtures was also investigated. It was found that a high ignition energy E50% is required for lean mixtures at high pressures (3 bar). The present study provides new data obtained on an original experimental setup and the results, close to laboratory-produced laser ignition phenomena, will enhance the understanding of initial conditions on the breakdown or ignition probabilities for different mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The influence of wildfire severity on soil char composition and nitrogen dynamics

    Science.gov (United States)

    Rhoades, Charles; Fegel, Timothy; Chow, Alex; Tsai, Kuo-Pei; Norman, John, III; Kelly, Eugene

    2017-04-01

    Forest fires cause lasting ecological changes and alter the biogeochemical processes that control stream water quality. Decreased plant nutrient uptake is the mechanism often held responsible for lasting post-fire shifts in nutrient supply and demand, though other upland and in-stream factors also likely contribute to elevated stream nutrient losses. Soil heating, for example, creates pyrogenic carbon (C) and char layers that influence C and nitrogen (N) cycling. Char layer composition and persistence vary across burned landscapes and are influenced first by fire behavior through the temperature and duration of combustion and then by post-fire erosion. To evaluate the link between soil char and stream C and N export we studied areas burned by the 2002 Hayman Fire, the largest wildfire in Colorado, USA history. We compared soil C and N pools and processes across ecotones that included 1) unburned forests, 2) areas with moderate and 3) high wildfire severity. We analyzed 1-2 cm thick charred organic layers that remain visible 15 years after the fire, underlying mineral soils, and soluble leachate from both layers. Unburned soils released more dissolved organic C and N (DOC and DON) from organic and mineral soil layers than burned soils. The composition of DOC leachate characterized by UV-fluorescence, emission-excitation matrices (EEMs) and Fluorescence Regional Integration (FRI) found similarity between burned and unburned soils, underscoring a common organic matter source. Humic and fulvic acid-like fractions, contained in regions V and III of the FRI model, comprised the majority of the fluorescing DOM in both unburned and char layers. Similarity between two EEMs indices (Fluorescence and Freshness), further denote that unburned soils and char layers originate from the same source and are consistent with visual evidence char layers contain significant amounts of unaltered OM. However, the EEMs humification index (HIX) and compositional analysis with pyrolysis GCMS

  3. Mechanical Property Of Zeolite-PVA Composite Mixture Irradiated By Gamma Ray Of Co-60

    International Nuclear Information System (INIS)

    Darsono; Danu, Sugiarto; Las, Tamzil

    2000-01-01

    Experiment on preparation of zeolite-polyvinyl alcohol composite for absorbance materials have been done by curring using Gamma γ-ray of Co-60. Zeolite with the particles size of 60 mesh was mixed with polyvinyl alcohol (PVA) at the concentration of the mixture were 6,9, and 12% by weight, than they were poured into glass tube (length = 100 mm; diameter = 10 mm) and irradiated at the doses of 10, 20, 30 dan 40 kGy with the dose rate of 7,5 kGy/ hr. Parameters observed were density, compressive strength, and hardness. Experimental results showed that polyvinyl alcohol in the mixture was significant effect to density and compressive strength, where as the irradiation dose was highly significant effect to compressive strength. The effect interaction between dose and polyvinyl alcohol concentration factors had significant effect to density or compressive strength. Almost all samples have pencil hardness of 4 - 5 H, for composite containing 6 % PVA, has pencil hardness of 2 - 3 H

  4. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  5. Improvement of composition of core sand and molding sand mixtures for power machine building castings

    International Nuclear Information System (INIS)

    Velikanov, G.F.; Primak, I.N.; Brechko, A.A.

    1982-01-01

    Considered is a problem of development and improvement of mixtures, as well as of antisticking coatings with the given parameters providing production of castings of the necessary quality. Requirements to properties of mixtures and antisticking coatings are formulated proceeding from the conditions of guaranteed production of qualitative steel castings with mass from 0.5 up to 20t and wall thickness from 60 up to 200 mm. Formation of film structure of binding compositions is studied, their marginal contact angle and surface tension are determined. In the result of work carried out on improvement of core sand and molding sand mixtures the labour productivity during the production of core and moldings has been increased in 20-25% in average, the quality has also been improved [ru

  6. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  7. The discussion of composition shift in organic Rankine cycle using zeotropic mixtures

    International Nuclear Information System (INIS)

    Zhou, Yaodong; Zhang, Fengyuan; Yu, Lijun

    2017-01-01

    Highlights: • The forming reasons of composition shift are well illuminated. • The influences of composition shift on ORC system are presented. • The influence factors of composition shift are well discussed. • The inner relation between temperature glide and composition shift is revealed. - Abstract: Zeotropic mixtures have been important candidates for working fluids in the organic Rankine cycle (ORC) because of the temperature glide characteristic. “Composition shift” is a widespread phenomenon for zeotropic mixtures’ application in thermodynamic systems and certainly needs to be considered in ORC. In this paper, the evaporator, condenser, expander and pump models are respectively developed and then the circulating composition is calculated. Based on that, the forming reasons of “composition shift” are well illuminated. The influences of composition shift on the system net power output and heat transfer process are presented and analysed. The influence factors including pressure, two-phase zone area, total charge mass and velocity difference between liquid and vapor phase are also carefully discussed. Besides, the inner relation between temperature glide and composition shift is also revealed at last. The results showed that the optimal charge concentration of the low boiling point component in practice should be a bit lower than the optimal concentration without considering composition shift. Besides, the local composition shift characteristic will affect the heat transfer process by altering the temperature along the heat exchanger. Reducing the two-phase zone area, increasing the total charge mass, increasing the evaporation pressure and reducing the slip ratio can mitigate the effect of composition shift. The simulation also reveals that the magnitudes of temperature glide and composition shift show a good linear relation by just altering the charge composition.

  8. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  9. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  10. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  11. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    International Nuclear Information System (INIS)

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  12. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: julinwang@126.com [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2014-12-01

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  13. Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix

    Science.gov (United States)

    Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd

    2017-01-01

    The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.

  14. Calcium phosphate composite cements based on simple mixture of brushite and apatite phases

    Science.gov (United States)

    Egorov, A. A.; Fedotov, A. Yu; Pereloma, I. S.; Teterina, A. Yu; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Nesterova, A. V.; Reshetov, I. V.; Barinov, S. M.; Komlev, V. S.

    2018-04-01

    The composite cements based on simple mixtures brishite and apatite with ratio 70/30, 50/50, 30/70 were developed. The processes of phase formation, microstructure and mechanical properties were studied. The kinetics of degradation in simulated body fluid depending on the microstructure and the materials phase composition was carried out. The biological test in vitro were performed using the MTT-test on the human fibroblast immortalized (hFB) cell line and the human osteosarcoma cell line MG-63. The materials didn’t have acute cytoxicity and possessed surface matrix properties. It was determined that the both line of cells actively proliferated, with viable cells values higher 20-60 % then control at all observation periods.

  15. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition

    NARCIS (Netherlands)

    Ni, R.; Smallenburg, F.; Filion, L.C.; Dijkstra, M.

    2011-01-01

    We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to

  16. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid: A Mixture Design study

    Directory of Open Access Journals (Sweden)

    M. K. Fehri

    2016-04-01

    Full Text Available Blends consisting of commercial poly(lactic acid (PLA, poly(lactic acid oligomer (OLA8 as plasticizer and a sulfonic salt of a phthalic ester and poly(D-lactic acid as nucleating agents were prepared by melt extrusion, following a Mixture Design approach, in order to systematically study mechanical and thermal properties as a function of composition. The full investigation was carried out by differential scanning calorimetry (DSC, dynamic mechanical thermal analysis (DMTA and tensile tests. The crystallization half-time was also studied at 105 °C as a function of the blends composition. A range of compositions in which the plasticizer and the nucleation agent minimized the crystallization half-time in a synergistic way was clearly identified thanks to the application of the Mixture Design approach. The results allowed also the identification of a composition range to maximize the crystallinity developed during the rapid cooling below glass transition temperature in injection moulding, thus allowing an easier processing of PLA based materials. Moreover the mechanical properties were discussed by correlating them to the chemical structural features and thermal behaviour of blends.

  17. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures

    Directory of Open Access Journals (Sweden)

    Rosa Maria da Rocha

    2005-06-01

    Full Text Available Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.

  18. Structural comparison of sintering products made of "TiC + Ti" composite powders and "Ti + C" powder mixtures

    Science.gov (United States)

    Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.

    2017-12-01

    In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.

  19. The Determination of the Optimal Material Proportion in Natural Fiber-Cement Composites Using Design of Mixture Experiments

    OpenAIRE

    Aramphongphun Chuckaphun; Ungtawondee Kampanart; Chaysuwan Duangrudee

    2016-01-01

    This research aims to determine the optimal material proportion in a natural fiber-cement composite as an alternative to an asbestos fibercement composite while the materials cost is minimized and the properties still comply with Thai Industrial Standard (TIS) for applications of profile sheet roof tiles. Two experimental sets were studied in this research. First, a three-component mixture of (i) virgin natural fiber, (ii) synthetic fiber and (iii) cement was studied while the proportion of c...

  20. Chemical mixtures in untreated water from public-supply wells in the U.S.--occurrence, composition, and potential toxicity.

    Science.gov (United States)

    Toccalino, Patricia L; Norman, Julia E; Scott, Jonathon C

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. Published by Elsevier B.V.

  1. Unburned Carbon from Samlaung Coal as Environmental Friendly Sorbent Material

    International Nuclear Information System (INIS)

    Zaw Naing; Tin Tin Aye; Nyunt Wynn; Kyaw Myo Naing

    2005-09-01

    The increasing role of coal as a source of energy in the 21st century will demand enviromental and cost-effective strategies for the use of carbonaceous waste products from coal combustion. The carbonaceous in fly ash, unburned carbon (UC), is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatization process while in the combustion, and therefore, only requires to be activated. This paper demonstrates the potential for converting UC from Samlaung coal to activated carbons. After heat activation at 970C, the UC sample was generated to activated carbons having microporous structure. This study concerns with adsorption behavior (decolourization and metal uptake) of UC from Samlaung coal. Batch tests and column tests were carried out. Adsorption isotherms has been obtained from these tests. Results show that the UC have equal or better adsorption capacity comparing with other activated carbons. It was found that heat treatment of Samlaung coal in the presence of air at 970C enhanced the adsorption capacity

  2. Sintering by infiltration of loose mixture of powders, a method for metal matrix composite elaboration

    International Nuclear Information System (INIS)

    Constantinescu, V.; Orban, R.; Colan, H.

    1993-01-01

    Starting from the observation that Sintering by Infiltration of Loose Mixture of Powders confers large possibilities for both complex shaped and of large dimensions Particulate Reinforced Metal Matrix Composite components elaboration, its mechanism comparative with those of the classical melt infiltration was investigated. Appropriate measures in order to prevent an excessive hydrostatic flow of the melt and, consequently, reinforcement particle dispersion, as well as to promote wetting in both infiltration and liquid phase sintering stages of the process were established as necessary. Some experimental results in the method application to the fusion tungsten carbide and diamond reinforced metal matrix composite elaboration are, also, presented. (orig.)

  3. Productivity, botanical composition, and nutritive value of commercial pasture mixtures

    Science.gov (United States)

    Pastures in the northeastern USA often are planted to mixtures of grasses and legumes. There is limited public sector information on the performance of commercial forage mixtures. We evaluated a range of commercial pasture mixtures to determine if the number of species in a mixture affected yield an...

  4. Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves

    Science.gov (United States)

    Wang, Qiang; Ma, Shuxian; Yue, Dong

    2018-04-01

    Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.

  5. Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides

    Directory of Open Access Journals (Sweden)

    Ana S.P. Moreira

    2017-08-01

    Full Text Available The data presented here are related to the research paper entitled “Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction” (Moreira et al., 2017 [1]. Methanolysis was applied in coffee fractions to quantify glycosidically-linked phenolics in melanoidins. Moreover, model mixtures mimicking coffee beans composition were roasted and analyzed using mass spectrometry-based approaches to disclose the regulatory role of proteins in transglycosylation reactions extension. This article reports the detailed chemical composition of coffee beans and derived fractions. In addition, it provides gas chromatography–mass spectrometry (GC–MS chromatograms and respective GC–MS spectra of silylated methanolysis products obtained from phenolic compounds standards, as well as the detailed identification of all compounds observed by electrospray mass spectrometry (ESI-MS analysis of roasted model mixtures, paving the way for the identification of the same type of compounds in other samples.

  6. Effect of composition of chlorophyll and ruthenium dyes mixture (hybrid) on the dye-sensitized solar cell performance

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2018-03-01

    The fabrication of dye-sensitized solar cell (DSSC) has been conducted by varying the composition of natural dye from moss chlorophyll (Bryophyte) and synthesis dye from ruthenium complex N719. The sandwich structure of DSSC consists of the working electrode using TiO2, dye, electrolyte, and counter electrode using carbon. The composition of chlorophyll and synthesis dyes mixture were 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80%. The UV-Vis absorption spectra of moss chlorophyll showed the first peak in the wavelength range of 450-500 nm and the second peak at wavelength of 650-700 nm. The peak value of absorbance at wavelengths of 450-500 nm was 6.1004 and at wavelengths of 650-700 nm was 3.5835. The IPCE characteristic curves showed the absorption peak of photon for DSSCs occurred at wavelength of 550-650 nm. It considered that photon in this wavelength can contribute dominantly to produce the optimum electrons. The I-V characteristics of DSSCs with composition of chlorophyll and synthesis dyes mixture of 100% and 0%, 80% and 20%, 60% and 40%, 40% and 60%, and 20% and 80% resulted the efficiency of 0.0022; 0.0194; 0.0239; 0.0342; and 0.0414, respectively. It suggested that the addition of a little composition of the ruthenium complex dye into moss chlorophyll dye can increase the efficiency significantly.

  7. Chemical mixtures in untreated water from public-supply wells in the U.S. - Occurrence, composition, and potential toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toccalino, Patricia L., E-mail: ptocca@usgs.gov [U.S. Geological Survey (USGS), 6000 J Street, Placer Hall, Sacramento, California 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [USGS, 2130 SW 5th Avenue, Portland, Oregon 97201 (United States); Scott, Jonathon C., E-mail: jon@usgs.gov [USGS, 202 NW 66th Street, Oklahoma City, Oklahoma 73116 (United States)

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: Black-Right-Pointing-Pointer We assessed mixtures in untreated groundwater samples from public

  8. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    International Nuclear Information System (INIS)

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: ► We assessed mixtures in untreated groundwater samples from public-supply wells. ► A screening

  9. Thermal signature measurements for ammonium nitrate/fuel mixtures by laser heating

    International Nuclear Information System (INIS)

    Nazarian, Ashot; Presser, Cary

    2016-01-01

    Highlights: • LDTR is a useful diagnostic for characterizing AN/fuel mixture thermochemical behavior. • Each AN/fuel mixture thermal signature was different. • AN/fuel mixture signature features were defined by the individual constituents. • Baseline signatures changed after an experiment. - Abstract: Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal

  10. Optimization of the composition of the powdered cereal sprouts mixtures

    Directory of Open Access Journals (Sweden)

    Tumbas-Šaponjac Vesna T.

    2016-01-01

    Full Text Available Sprouts of cereals have received significant attention as functional food due to their nutritional and functional value. Consumption of sprouts has become increasingly popular among people interested in improving and maintaining their health status by changing dietary habits. Cereal grains contain several classes of phytochemicals, i.e. phenolics, chlorophylls, and carotenoids. However, their nutritional and chemical profile is altered and improved during germination. The purpose of this study was to find the best ratio of the powdered wheat (WS, oat (OS and barley (BS sprouts for designing the cereal sprout mixture (CSM with the highest total phenolic content (TPh and antioxidant capacity (AC, using Simplex-Centroid experimental design and response surface methodology (RSM. Single- and multi-response optimizations showed that OS did not contribute to TPh or AC values of CSM and, therefore, was not included in any of the compositions of the optimized CSM. Single-response optimizations showed that the highest TPh was found for CSM containing 82% BS and 18% WS, while the best AC was found for pure BS. The predicted ratio of cereal sprout powders in CSM obtained by multi-response optimization was: 96% BS and 4% WS. This mixture possessed the highest predicted TPh and AC (372.32 mg GAE/100 g, 549.99 μmol TE/100 g, respectively, which was confirmed to be in accordance with the experimental values. Based on the results obtained in this study, a designed CSM is proposed as a convenient ingredient of functional food products, dietary supplements and nutraceuticals.

  11. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating.

    Science.gov (United States)

    Nazarian, Ashot; Presser, Cary

    2016-01-10

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.

  12. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    Science.gov (United States)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  13. Evaluation of the phase composition of (NH4)2SO4 + (NH4)H2PO4 mixtures by X-ray diffractometry

    International Nuclear Information System (INIS)

    Ortiz, Angel L.; Cumbrera, Francisco L.; Perez, Jose; Vas, Beatriz del; Perez, Eduardo

    2009-01-01

    The phase composition of standard (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures was investigated by X-ray diffractometry (XRD) using the internal-standard, reference-intensity-ratio, and Rietveld methods. It was found that the Rietveld method yields the most accurate phase-composition measurements, with an average error of ∼2 wt.%. It was also found that the internal-standard method is only effective in determining the phase composition if the calibration curve for (NH 4 )H 2 PO 4 is used, giving an average error of ∼6.5 wt.%. On the contrary, the internal-standard method with the calibration curve of the (NH 4 ) 2 SO 4 phase and the reference-intensity-ratio method are not valid. The inappropriateness of these two methods was attributed to graininess in the (NH 4 ) 2 SO 4 phase, with the attendant deviation of its diffracted intensities from the theoretical values. Direct scanning electron microscopy observations of the morphology of the powder particles in the mixtures showed clear evidence of the large agglomerates formed because the individual powder particles are partially sintered together during milling, thus corroborating the graininess determined by the XRD analyses. Finally, the implications of the present study for the quantitative phase-composition analysis of (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures, which are of great technological importance for the fire prevention industry, are discussed.

  14. Spontaneous Evolution of Nanostructure in Composite Films Consisting of Mixtures of Two Different Block Copolymer Micelles

    Science.gov (United States)

    Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok

    2010-03-01

    Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.

  15. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Science.gov (United States)

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  16. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  17. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    International Nuclear Information System (INIS)

    Teuschler, Linda K.

    2007-01-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures

  18. Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods.

    Science.gov (United States)

    Li, Liang; Liu, Na; Xu, Ziqi; Chen, Qi; Wang, Xindong; Zhou, Huanping

    2017-09-26

    Mixed anion/cation perovskites absorber has been recently implemented to construct highly efficient single junction solar cells and tandem devices. However, considerable efforts are still required to map the composition-property relationship of the mixed perovskites absorber, which is essential to facilitate device design. Here we report the intensive exploration of mixed-cation perovskites in their compositional space with the assistance of a rational mixture design (MD) methods. Different from the previous linear search of the cation ratios, it is found that by employing the MD methods, the ternary composition can be tuned simultaneously following simplex lattice designs or simplex-centroid designs, which enable significantly reduced experiment/sampling size to unveil the composition-property relationship for mixed perovskite materials and to boost the resultant device efficiency. We illustrated the composition-property relationship of the mixed perovskites in multidimension and achieved an optimized power conversion efficiency of 20.99% in the corresponding device. Moreover, the method is demonstrated to be feasible to help adjust the bandgap through rational materials design, which can be further extended to other materials systems, not limited in polycrystalline perovskites films for photovoltaic applications only.

  19. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  20. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  1. Compositional dependence of absorption coefficient and band-gap for Nb2O5-SiO2 mixture thin films

    International Nuclear Information System (INIS)

    Sancho-Parramon, Jordi; Janicki, Vesna; Zorc, Hrvoje

    2008-01-01

    The absorption coefficient of composite films consisting of niobia (Nb 2 O 5 ) and silica (SiO 2 ) mixtures is studied for photon energies around the band gap. The films were deposited by co-evaporation and their composition was varied by changing the ratio of deposition rates of the two materials. Both, as-deposited and thermally annealed films were characterized by different techniques: the absorption coefficient was determined by spectrophotometric measurements and the structural properties were investigated using infrared spectroscopy, transmission electron microscopy and X-ray diffraction. The correlation between the variations of absorption properties and film composition and structure is established. The absorption coefficients determined experimentally are compared with the results derived from effective medium theories in order to evaluate the suitability of these theories for the studied composites

  2. Structural transition of a homopolymer in solvents mixture

    International Nuclear Information System (INIS)

    Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh

    2008-01-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture

  3. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  4. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    Science.gov (United States)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  5. Mixtures and interactions

    NARCIS (Netherlands)

    Groten, J.P.

    2000-01-01

    Drinking water can be considered as a complex mixture that consists of tens, hundreds or thousands of chemicals of which the composition is qualitatively and quantitatively not fully known. From a public health point of view it is most relevant to answer the question of whether chemicals in drinking

  6. Structural transition of a homopolymer in solvents mixture

    Energy Technology Data Exchange (ETDEWEB)

    Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)

    2008-07-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.

  7. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  8. Composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  9. Robust high temperature composite and CO sensor made from such composite

    Science.gov (United States)

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  10. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau; Yu, Gwang Hyeon; Lu, Tianfeng; Chung, Suk-Ho; Yoo, Chun Sang

    2015-01-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species

  11. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  12. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  13. Modeling unburned hydrocarbon formation due to absorption/desorption processes into the wall oil film

    International Nuclear Information System (INIS)

    Shih, L.K.; Assanis, D.N.

    1992-01-01

    This paper reports that as a result of continuing air pollution problems, very stringent regulations are being enforced to control emissions of unburned hydrocarbons (HC) from premixed-charge, spark-ignition engines. A number of attempts have been reported on modeling sources of HC emissions using various analytical tools. Over the past decade, the development of multi-dimensional reacting flow codes has advanced considerably. Perhaps the most widely used multi-dimensional engine simulation code is KIVA-II, which was developed at Lost Alamos National Laboratory. The ability to deal with moving boundary conditions caused by the piston movement is built in this code. This code also includes models for turbulent fluid flow, turbulent interaction between spray drops and gas, heat transfer, chemical reaction, and fuel spray. A standard k-ε turbulence model is used for gas flow. The fuel spray model is based on the stochastic particle technique, and includes sub-models for droplet injection, breakup, collision and coalescence, and evaporation

  14. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  15. Mixture Design and Its Application in Cement Solidification for Spent Resin

    International Nuclear Information System (INIS)

    Gan, Xueying; Lin, Meiqing; Chen, Hui

    1994-01-01

    The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots

  16. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  17. Isotope mixtures of hydrogen in vanadium

    International Nuclear Information System (INIS)

    Mecking-Schloetensack, P.

    1982-03-01

    The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)

  18. Adsorption of Naphthol Green B on unburned carbon: 2- and 3- parameter linear and non-linear equilibrium modelling

    Czech Academy of Sciences Publication Activity Database

    Bartoňová, L.; Ruppenthalová, Lucie; Ritz, M.

    2017-01-01

    Roč. 25, č. 1 (2017), s. 37-44 ISSN 1004-9541 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : adsorption * unburned carbon * Naphthol Green B * isotherms * Redlich–Peterson model Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.174, year: 2016 http://ac.els-cdn.com/S100495411630218X/1-s2.0-S100495411630218X-main.pdf?_tid=cac3f0e4-9a87-11e6-a1c5-00000aacb360&acdnat=1477382049_e99a7a8e381310d60cafbb816571cdd5

  19. Desensitization of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  20. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)

    2010-01-10

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  1. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    International Nuclear Information System (INIS)

    Lazerges, Mathieu; Rietveld, Ivo B.; Corvis, Yohann; Ceolin, Rene; Espeau, Philippe

    2010-01-01

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 ± 0.007 lidocaine mole-fraction, melts at 18.2 ± 0.5 o C with an enthalpy of 17.3 ± 0.5 kJ mol -1 . This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  2. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei.

    Science.gov (United States)

    Diepens, Noël J; Buffan-Dubau, Evelyne; Budzinski, Hélène; Kallerhoff, Jean; Merlina, Georges; Silvestre, Jérome; Auby, Isabelle; Nathalie Tapie; Elger, Arnaud

    2017-03-01

    Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 μg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC 10 ) (2 μg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide. Copyright © 2016

  3. Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea

    Science.gov (United States)

    Jung, Chang Hoon; Lee, Ji Yi; Um, Junshik; Lee, Seung Soo; Kim, Yong Pyo

    2018-02-01

    This study investigated the optical properties of aerosols involved in different meteorological events, including smog and Asian dust days. Carbonaceous components and inorganic species were measured in Seoul, Korea between 25 and 31 March 2012. Based on the measurements, the optical properties of aerosols were calculated by considering composition, size distribution, and mixing state of aerosols. To represent polydisperse size distributions of aerosols, a lognormal size distribution with a wide range of geometric mean diameters and geometric standard deviations was used. For the optical property calculations, the Mie theory was used to compute single-scattering properties of aerosol particles with varying size and composition. Analysis of the sampled data showed that the water-soluble components of organic matter increased on smog days, whereas crustal elements increased on dust days. The water content significantly influenced the optical properties of aerosols during the smog days as a result of high relative humidity and an increase in the water-soluble component. The absorption coefficients depended on the aerosol mixture type and the aerosol size distributions. Therefore, to improve our knowledge on radiative impacts of aerosols, especially the regional impacts of aerosols in East Asia, accurate measurements of aerosols, such as size distribution, composition, and mixture type, under different meteorological conditions are required.

  4. Determination of the composition of a mixture of polar substances by NMR; Determinacao da composicao de uma mistura de substancias polares por espectrometria de ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Antonio C.F.; Silva, Antonio J.R. da [Universidade Federal, Rio de Janeiro (Brazil). Nucleo de Pesquisas de Produtos Naturais

    1994-12-31

    This work describes the process of analysis of a mixture of polar compounds obtained from the extract of Phyllanthus tennellus, a plant known in Brazil as `quebra-pedra`, which is extensively used in Brazilian popular medicine. The methodology, which includes the use of chromatography and NMR, is described. The proposed composition of the mixture is presented. A discussion is presented concerning one component which could not be identified

  5. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  6. A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

    International Nuclear Information System (INIS)

    Collings, Peter; Yu, Zhibin; Wang, Enhua

    2016-01-01

    Highlights: • A dynamic ORC using a zeotropic mixture with composition tuning is proposed. • The working principle is verified theoretically, based on a thermodynamic model. • Improvements in the resultant power plant’s annual power production are analysed. • The economic benefits have been demonstrated by an economic analysis. - Abstract: Air-cooled condensers are widely used for Organic Rankine Cycle (ORC) power plants where cooling water is unavailable or too costly, but they are then vulnerable to changing ambient air temperatures especially in continental climates, where the air temperature difference between winter and summer can be over 40 °C. A conventional ORC system using a single component working fluid has to be designed according to the maximum air temperature in summer and thus operates far from optimal design conditions for most of the year, leading to low annual average efficiencies. This research proposes a novel dynamic ORC that uses a binary zeotropic mixture as the working fluid, with mechanisms in place to adjust the mixture composition dynamically during operation in response to changing heat sink conditions, significantly improving the overall efficiency of the plant. The working principle of the dynamic ORC concept is analysed. The case study results show that the annual average thermal efficiency can be improved by up to 23% over a conventional ORC when the heat source is 100 °C, while the evaluated increase of the capital cost is less than 7%. The dynamic ORC power plants are particularly attractive for low temperature applications, delivering shorter payback periods compared to conventional ORC systems.

  7. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design.

    Science.gov (United States)

    Djuris, Jelena; Ioannis, Nikolakakis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2014-02-01

    This study investigates the application of hot-melt extrusion for the formulation of carbamazepine (CBZ) solid dispersions, using polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus, BASF, Germany) and polyoxyethylene-polyoxypropylene block copolymer (Poloxamer 407). In agreement with the current Quality by Design principle, formulations of solid dispersions were prepared according to a D-optimal mixture experimental design, and the influence of formulation composition on the properties of the dispersions (CBZ heat of fusion and release rate) was estimated. Prepared solid dispersions were characterized using differential scanning calorimetry, attenuated total reflectance infrared spectroscopy and hot stage microscopy, as well as by determination of the dissolution rate of CBZ from the hot-melt extrudates. Solid dispersions of CBZ can be successfully prepared using the novel copolymer Soluplus. Inclusion of Poloxamer 407 as a plasticizer facilitated the processing and decreased the hardness of hot-melt extrudates. Regardless of their composition, all hot-melt extrudates displayed an improvement in the release rate compared to the pure CBZ, with formulations having the ratio of CBZ : Poloxamer 407 = 1 : 1 showing the highest increase in CBZ release rate. Interactions between the mixture components (CBZ and polymers), or quadratic effects of the components, play a significant role in overall influence on the CBZ release rate. © 2013 Royal Pharmaceutical Society.

  8. Ethane-xenon mixtures under shock conditions

    Science.gov (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  9. Chemical kinetics of detonation in some liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)

    2005-09-01

    The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Influence of H2O2 on LPG fuel performance evaluation

    International Nuclear Information System (INIS)

    Khan, Muhammad Saad; Ahmed, Iqbal; Mutalib, Mohammad Ibrahim bin Abdul; Nadeem, Saad; Ali, Shahid

    2014-01-01

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H 2 O 2 ) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO x , CO x and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H 2 O 2 mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H 2 O 2 can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous

  11. Composition of some botanical mixtures as potential feed additives for laying hens

    Directory of Open Access Journals (Sweden)

    Varzaru Iulia

    2015-01-01

    Full Text Available The aim of this study was to assess the nutritional quality of four botanical mixtures (AFC: AFC 1 (containing red corn, pumpkin pulp and marigold, AFC 2 (containing alfalfa meal, pumpkin pulp and marigold, AFC 3 (containing kale, alfalfa meal, marigold and spinach leaves, AFC 4 (containing buckthorn, red corn, pumpkin pulp and marigold, in terms of proximate analysis (crude protein, crude fat, crude fiber, ash, amino acid (AA profile, vitamin E concentration and lutein and zeaxanthin content, in order to determine the potential of AFCs as feed additives in laying hens nutrition. The crude protein content for the analysed botanical mixtures ranged between 9.07-18.18% DM, and crude fiber between 10.41-30.83% DM. The amino acid profile of the mixture AFC 4 revealed a content of limiting essential amino acids required for laying hens: lysine 5.719% CP, methionine 1.058% CP and threonine 4.415% CP. The highest content of lutein and zeaxanthin was found in the mixture AFC 4 (66.659 mg/100 g, which also had the highest amount of vitamin E (640.93 mg/kg. With regard to safety of the botanical mixtures, lead and cadmium concentrations were determined. Concentration of lead ranged from 0.28-0.75 µg/g DM and 0.06-0.09 µg/g DM for concentration of cadmium, which was within the legislation of maximal limits of EU regulations. It can be concluded that the botanical mixture AFC 4 had the highest concentration of lutein, zeaxanthin and vitamin E, with an adequate content of essential amino acids. Furthermore, all four botanical mixtures had high amounts of xantophylls and should be tested in laying hens trials in order to establish their effects on lutein and zeaxanthin concentration in egg yolk.

  12. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  13. Composition dependent non-ideality in aqueous binary mixtures as ...

    Indian Academy of Sciences (India)

    understanding in the molecular level. The origin of the .... analysis of inherent structures (IS) of binary mixture in ... liminary molecular dynamics simulation to equilibrate the system at ..... the clusters gradually increase as the concentration of.

  14. Influence of parameters of mixing of the mortar mixtures on the performance of ornamental composites for facade coating

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniay

    2017-01-01

    Full Text Available Studies have shown that the main physical-mechanical properties of decorative coatings based on colloidal cement systems greatly depend on the homogeneity of the structure of hardened stone, therefore, in the preparation of mortar mixtures were set the task of achieving this target. It is shown that vibrational mix of materials helps to ensure the preparation of mortar mixes with cement-based colloidal systems with a more homogeneous distribution of the components. The efficiency of vibrational mixing was determined by comparing the strength of the mortar mixes based on colloidal cement glue, cooked in vibromaster when the vibration acceleration with the strength of samples prepared in a standard mortar mixer of forced action without vibration. The results of the research confirmed some influence of the mineralogical composition of clinker the cement component of the colloidal material on the effect of vibration treatment solutions. Parameters preparation of the mortar mixtures based on cement colloidal material in a vibratory mixer. Optimum resonant operating frequency of the vibrations, at which is achieved the positive effect of mixing of the mixture is ensured with amplitude 5mm while accelerating 214,8 m/S2 and duration of mixing 60-90s. It is established that vibropressure contributes to the intensification hydration processes to temperature is minus 5 0С

  15. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  16. Study of the refractive index of gasoline+alcohol pseudo-binary mixtures

    Directory of Open Access Journals (Sweden)

    Nita Irina

    2017-02-01

    Full Text Available The properties of gasoline change as a result of blending with a bioalcohol, affecting the behavior of the pseudo-binary system. The aim of this paper is to present experimental data of the refractive index for pseudobinary mixtures of a reformate gasoline with ethanol, isopropanol and n-butanol over the entire composition range and for temperature ranging from 293.15 K to 313.15 K. The accuracy of different equations to predict the refractive index of the mixtures was tested. The best prediction accuracy (the lower AAD corresponded to Eykman and Lorentz-Lorenz mixing rules. A logarithmic equation proposed to correlate the refractive index with composition and temperature of gasoline+alcohol mixtures showed a good accuracy (the absolute average deviation AAD < 0.052%. The deviations in refractive index for investigated systems are negative over the entire composition range and at all investigated temperatures.

  17. Thermal analysis of pyrotechnic mixture-fireworks, atom-bomb

    International Nuclear Information System (INIS)

    Rajendran, Jeya; Thanulingam, T.L.

    2008-01-01

    Sound level produced from two varieties of sound producing fireworks of atom-bomb, cake bomb and thunder bomb were measured. The pyrotechnic mixture, KNO 3 /S/Al(H 3 BO 3 ) of compositions 57.5/19.9/22.1(0.5)% very much similar to commercial atom-bomb were taken and five cake bomb and seven thunder bomb with different net weight of chemicals were manufactured specifically for analysis. Cake bomb with 1g pyrotechnic mixture and thunder bomb with 2g pyrotechnic mixture produce -3 . Ignition temperature of the mixture is above the melting point of the metallic fuel, Al (660 deg C) and self propagating decomposition occurred at high temperature. The pyrotechnic mixture, KNO 3 /S/Al(H 3 BO 3 ) is a safe mixture from accidental factor, static electricity. DSC studies indicate slight formation of potassium nitrite with evolution of NO above 400 deg C. (author)

  18. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  19. Using mixture experiments to develop cementitious waste forms

    International Nuclear Information System (INIS)

    Spence, R.D.; Anderson, C.M.; Piepel, G.F.

    1993-01-01

    Mixture experiments are presented as a means to develop cementitious waste forms. The steps of a mixture experiment are (1) identifying the waste form ingredients; (2) determining the compositional constraints of these ingredients; (3) determining the extreme vertices, edge midpoints, and face centroids of the constrained multidimensional volume (these points along with some interior points represent the set of possible compositions for testing); (4) picking a subset of these points for the experimental design; (5) measuring the properties of the selected subset; and (6) generating the response surface models. The models provide a means for predicting the properties within the constrained region. This article presents an example of this process for one property: unconfined compressive strength

  20. Ultrasonic study of molecular interaction in binary liquid mixtures at ...

    Indian Academy of Sciences (India)

    The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between unlike molecules in the mixtures. Further, theoretical values of ultrasonic speed were evaluated using theories and empirical relations. The relative merits of these theories and relations ...

  1. Graphene/TiO_2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    International Nuclear Information System (INIS)

    Hu, Xin-Yan; Zhou, Kefu; Chen, Bor-Yann; Chang, Chang-Tang

    2016-01-01

    Graphical abstract: The mechanism of OTC degradation can be described as follows. At first, the OTC molecule was adsorbed onto the surface of GTZ material. The conduction band electron (e"−) and valence band holes (h"+) are generated when aqueous GTZ suspension is irradiated with visible light. The generation of (e"−/h+) pair leading to the formation of reactive oxygen species. The ·OH radical and ·O_2"− can oxidize OTC molecular, resulting in the degradation and mineralization of the organics. - Highlights: • Determine optimal composites of graphene, TiO_2, and zeolite for maximal photodegradation efficiency via triangular mixture design. • Unravel most promising composites for high stability and absorptive capabilities for photocatalytic degradation. • Disclose time-series profiles of toxicity of advanced oxidation processes (AOPs) treatment of wastewater. • Propose plausible routes of mechanism of photocatalytical degradation of OTC. - Abstract: This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO_2 loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO_2), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV–vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min photocatalytic treatment, OTC solution treated

  2. Change of hydrogen bonding structure in ionic liquid mixtures by anion type

    Science.gov (United States)

    Cha, Seoncheol; Kim, Doseok

    2018-05-01

    Ionic liquid mixtures have gained attention as a way of tuning material properties continuously with composition changes. For some mixture systems, physicochemical properties such as excess molar volume have been found to be significantly different from the value expected by linear interpolation, but the origin of this deviation is not well understood yet. The microstructure of the mixture, which can range from an ideal mixture of two initial consisting ionic liquids to a different structure from those of pure materials, has been suggested as the origin of the observed deviation. The structures of several different ionic liquid mixtures are studied by IR spectroscopy to confirm this suggestion, as a particular IR absorption band (νC(2)-D) for the moiety participating in the hydrogen bonding changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-D changes proportionally with the composition, and a relatively small excess molar volume is observed for the mixtures containing an electronegative halide anion. By contrast, the absorbance changes nonlinearly, and the excess molar volumes are larger for the mixtures of which one of the anions has multiple interaction sites.

  3. Graphene/TiO2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    Science.gov (United States)

    Hu, Xin-Yan; Zhou, Kefu; Chen, Bor-Yann; Chang, Chang-Tang

    2016-01-01

    This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO2 loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO2), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV-vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min photocatalytic treatment, OTC solution treated by GTZ (1:8:1) showed insignificant biotoxicity to receptor DH5α cells. Furthermore, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process.

  4. Desensitization and recovery of metastable intermolecular composites

    Science.gov (United States)

    Busse, James R [South Fork, CO; Dye, Robert C [Los Alamos, NM; Foley, Timothy J [Los Alamos, NM; Higa, Kelvin T [Ridgecrest, CA; Jorgensen, Betty S [Jemez Springs, NM; Sanders, Victor E [White Rock, NM; Son, Steven F [Los Alamos, NM

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  5. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method

    International Nuclear Information System (INIS)

    Fan, Yongsheng; Cai, Yixi; Li, Xiaohua; Jiao, Lihua; Xia, Jisheng; Deng, Xiuli

    2017-01-01

    Highlights: • Simplex Lattice Mixture Design was firstly applied to study biomass pyrolysis process. • Interactions between the constituents had effects on the biomass pyrolysis behavior. • Biomass pyrolysis behavior can be predicted based on the ratios of three constituents. • Bio-oil composition was affected by the constituents and their pyrolysis products. - Abstract: In order to clarify the relationships between biomass pyrolysis mechanism and its main constituents. The effects of main constituents on biomass pyrolysis characteristics were firstly determined by thermo-gravimetric analysis based on the Simplex Lattice Mixture Design to investigate that whether the prediction of the pyrolysis behavior of a certain lignocellulosic biomass is possible when its main constituent contents are known. The results showed that there are constituent interactions in the pyrolysis process, which can be intuitively reflected through the change laws of kinetics parameters. The mathematical models for calculating kinetics values were established, and the models were proved to be valid for predicting lignocellulosic biomass pyrolysis behavior. In addition, the effects of biomass constituents on bio-oil compositions were explored by subsequent vacuum pyrolysis experiments. The xylan pyrolysis had a certain inhibitory effect on the pyrolysis of cellulose, and the pyrolysis products of lignin might promote the further decomposition of sugars from cellulose pyrolysis, while the interaction between xylan and lignin had a little effect on the bio-oil composition.

  6. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  7. Optimization and characterization of liposome formulation by mixture design.

    Science.gov (United States)

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  8. Partial least squares analysis and mixture design for the study of the influence of composition variables on lipidic nanoparticle characteristics.

    Science.gov (United States)

    Malzert-Fréon, A; Hennequin, D; Rault, S

    2010-11-01

    Lipidic nanoparticles (NP), formulated from a phase inversion temperature process, have been studied with chemometric techniques to emphasize the influence of the four major components (Solutol®, Labrasol®, Labrafac®, water) on their average diameter and their distribution in size. Typically, these NP present a monodisperse size lower than 200 nm, as determined by dynamic light scattering measurements. From the application of the partial least squares (PLS) regression technique to the experimental data collected during definition of the feasibility zone, it was established that NP present a core-shell structure where Labrasol® is well encapsulated and contributes to the structuring of the NP. Even if this solubility enhancer is regarded as a pure surfactant in the literature, it appears that the oil moieties of this macrogolglyceride mixture significantly influence its properties. Furthermore, results have shown that PLS technique can be also used for predictions of sizes for given relative proportions of components and it was established that from a mixture design, the quantitative mixture composition to use in order to reach a targeted size and a targeted polydispersity index (PDI) can be easily predicted. Hence, statistical models can be a useful tool to control and optimize the characteristics in size of NP. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Study of a non-ideal liquid mixture in the hydrodynamic regime. Rayleigh-Brillouin spectra, sound propagation and damping in the CH3CN-CCl4 system at the azeotropic composition

    International Nuclear Information System (INIS)

    Sassi, Paola; D'Elia, Valerio; Cataliotti, Rosario Sergio

    2003-01-01

    The hydrodynamic behaviour in the GHz frequency region has been analzsed for the non-ideal CH 3 CN-CCl 4 liquid mixture around the azeotropic composition. Rayleigh-Brillouin spectra have been measured as a function of temperature and composition, at fixed value of transferred wave vector in the 90 deg. scattering geometry, and also at different scattering angles to study dispersion with frequency of the spectral observables. These measurements have been complemented by those of refractive index, density and viscosity at the same temperatures and mole fraction values. Very interesting behaviour of the classic Brillouin spectral observables, such as the hypersonic propagation speeds and the acoustic absorption coefficients, has been revealed near the azeotropic composition of the mixture at the investigated temperatures, namely 15 deg. C, 25 deg. C, 40 deg. C and 60 deg. C. These effects have been interpreted at the light of the Mountain and Deutch theory of binary solutions and the forecast behaviour of the intermolecular forces around the azeotropic point composition of these very different molecular liquids

  10. Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqi Li; Feng Ren; Zhichao Chen; Zhao Chen; Jingjie Wang [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2010-02-15

    Industrial experiments were performed with a 300-MWe full-scale down-fired boiler. New data is reported for (i) gas temperature distributions within the primary air and coal mixture flows, (ii) gas compositions, such as O{sub 2}, CO, CO{sub 2} and NOx, and (iii) gas temperatures within the near-wall region. The data complements previously-obtained data from the same utility boiler before being modified by declination of the F-tier secondary air. By directing secondary air under the arches, the region where the primary air and pulverized coal mixture is ignited is brought forward within the boiler. Gas temperatures rose in the fuel-burning zone and fell in the fuel-burnout zone. As a result the quantity of unburned carbon in fly ash and the gas temperature at the furnace outlet were both lowered. 20 refs., 7 figs., 2 tabs.

  11. Characterization of bioactive mixtures oligogalacturonidos

    International Nuclear Information System (INIS)

    Mederos Torres, Yuliem; Hormaza Montenegro, Josefa; Reynaldo Escobar, Ines; Montesino Sequi, Raquel

    2011-01-01

    Oligogalacturonides are pectic oligosaccharides composed of lineal chains of D-galacturonic acid, linked by α (1-4) glycosidic linkage. Oligogalacturonides' mixtures are obtained by enzymatic hydrolysis of pectins of diverse vegetal species. These oligosaccharides unchain a diverse biological activity in plants, which depends mainly on their polymerization degrees. The National Institute of Agricultural Science has a patent technology at national scale that lets to obtain a mixture of oligogalacturonides with different polymerization degree. In this work is presented the characterization of oligogalacturonides by spectrophotometric analysis attending to their uronic acids, reductor sugars, and neutral sugars content. Also the chromatographic profile of samples in study is obtained, using the derivatization with 2-aminobenzamide label and the separation by high pH anion exchange chromatography. It is achieved the separation of at least eight galacturonic acid oligomers with a variable degree of polymerization. On the other hand, the analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that mixtures were composed by galacturonic acid salts. Results indicated that starting from two pectic acids with different characteristics, mixtures of oligogalacturonides of similar chemical composition could be obtained, but they differ in the proportion that they are presented

  12. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mischa Theis; Bengt-Johan Skrifvars; Maria Zevenhoven; Mikko Hupa; Honghi Tranb [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry

    2006-10-15

    Mixtures of peat with bark and peat with straw were burned in a lab-scale entrained flow reactor under controlled conditions, and deposits were collected on an air-cooled probe at a temperature of 550 {sup o}C. The fuel and deposit compositions were compared using chemical fractionation analysis and SEM/EDX. Chemical fractionation analysis was capable of explaining the relative fouling tendency of peat, bark, and straw. The composition of deposits obtained from firing peat, bark, and straw individually resembled the composition of their ashes. When firing peat-bark and peat-straw mixtures, it was found that the deposition rate only started to increase when the Cl/S molar ratio in the feed ash exceeded 0.15. The composition of the ensuing deposits resembled the deposits obtained from burning either bark or straw individually. For peat-bark mixtures it was concluded that the presence of S in the feed suppresses deposition by sulfating chloride compounds, leading to deposits that contain less Cl and have less molten phase. For peat-straw mixtures it was concluded that the deposition behaviour is governed by other mechanisms than the interaction of Cl and S. 27 refs., 7 figs., 1 tab.

  13. Graphene/TiO{sub 2}/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xin-Yan; Zhou, Kefu [College of the Environment and Ecology, Xiamen University, Xiamen (China); Chen, Bor-Yann, E-mail: boryannchen@yahoo.com.tw [Department of Chemical and Materials Engineering, National I-Lan University, Ilan, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang73222@gmail.com [Department of Environmental Engineering, National I-Lan University, Ilan, Taiwan (China)

    2016-01-30

    Graphical abstract: The mechanism of OTC degradation can be described as follows. At first, the OTC molecule was adsorbed onto the surface of GTZ material. The conduction band electron (e{sup −}) and valence band holes (h{sup +}) are generated when aqueous GTZ suspension is irradiated with visible light. The generation of (e{sup −}/h+) pair leading to the formation of reactive oxygen species. The ·OH radical and ·O{sub 2}{sup −} can oxidize OTC molecular, resulting in the degradation and mineralization of the organics. - Highlights: • Determine optimal composites of graphene, TiO{sub 2}, and zeolite for maximal photodegradation efficiency via triangular mixture design. • Unravel most promising composites for high stability and absorptive capabilities for photocatalytic degradation. • Disclose time-series profiles of toxicity of advanced oxidation processes (AOPs) treatment of wastewater. • Propose plausible routes of mechanism of photocatalytical degradation of OTC. - Abstract: This first-attempt study revealed mixture design of experiments to obtain the most promising composites of TiO{sub 2} loaded on zeolite and graphene for maximal photocatalytic degradation of oxytetracycline (OTC). The optimal weight ratio of graphene, titanium dioxide (TiO{sub 2}), and zeolite was 1:8:1 determined via experimental design of simplex lattice mixture. The composite material was characterized by XRD, UV–vis, TEM and EDS analysis. The findings showed the composite material had a higher stability and a stronger absorption of the visible light. In addition, it was uniformly dispersed with promising adsorption characteristics. OTC was used as model toxicant to evaluate the photodegradation efficiency of the GTZ (1:8:1). At optimal operating conditions (i.e., pH 7 and 25 °C), complete degradation (ca. 100%) was achieved in 180 min. The biotoxicity of the degraded intermediates of OTC on cell growth of Escherichia coli DH5α were also assayed. After 180 min

  14. Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture

    International Nuclear Information System (INIS)

    Yang, Xingyang; Zhao, Li; Li, Hailong; Yu, Zhixin

    2015-01-01

    Highlights: • A combined power and refrigeration cycle using zeotropic mixture is analyzed. • The cycle performances with different mixture compositions are compared. • Both exergy and parametric analysis of the combined cycle are conducted. - Abstract: A theoretical study on a combined power and ejector refrigeration cycle using zeotropic mixture isobutane/pentane is carried out. The performances of different mixture compositions are compared. An exergy analysis is conducted for the cycle. The result reveals that most exergy destruction happens in the ejector, where more than 40% exergy is lost. The heat exchange in generator causes the second largest exergy loss, larger than 28%. As the mass fraction of isobutane changes ranges from 100% to 0%, the relative exergy destruction of each component is also changing. And mixture isobutane/pentane (50/50) has the maximum exergy efficiency of 7.83%. The parametric analysis of generator temperature, condenser temperature and evaporator temperature for all the mixtures shows that, all these three thermodynamic parameters have a strong effect on the cycle performance.

  15. Successive composition of two laser channels upon excitation of He-Ar-Xe (2.03 μm) and Ar-Xe (1.73 μm) mixtures by uranium fission fragments

    International Nuclear Information System (INIS)

    Pikulev, A A; Tsvetkov, V M; Sosnin, P V; Sinyanskii, A A

    2009-01-01

    The operation efficiency of the scheme with successive composition of two laser channels upon excitation of the active medium by uranium-235 fission fragments is studied experimentally and numerically. For the He:Ar:Xe = 380:380:1 mixture (at a pressure of 1 atm and the lasing wavelength λ = 2.03 μm) the maximum lasing power of a double channel (1 kW) is almost twice that of a single channel (540 W). Calculations show that in the case of ideal composition (without losses on mirrors) the lasing power of the double channel can be increased to 1.2 kW. For the Ar:Xe = 380:1 mixture (the pressure is 0.5 atm, λ = 1.73 μm) the maximum lasing power of the double channel (620 W) is slightly above that of the single channel (520 W), which is caused by the losses on aluminum mirrors employed for channel doubling and by a negative effect of optical inhomogeneities. In the case of ideal composition, the lasing power can be increased to 830 W. (lasers)

  16. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  17. Influence of H{sub 2}O{sub 2} on LPG fuel performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saad, E-mail: iqbalmouj@gmail.com; Ahmed, Iqbal, E-mail: iqbalmouj@gmail.com; Mutalib, Mohammad Ibrahim bin Abdul, E-mail: iqbalmouj@gmail.com; Nadeem, Saad, E-mail: iqbalmouj@gmail.com; Ali, Shahid, E-mail: iqbalmouj@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H{sub 2}O{sub 2}) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO{sub x}, CO{sub x} and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H{sub 2}O{sub 2} mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H{sub 2}O{sub 2} can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  18. Concrete mixture characterization. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Protiere, Yannick [SIMCO Technologies, Inc., Quebec (Canada)

    2014-12-01

    This report summarizes the characterization study performed on two concrete mixtures used for radioactive waste storage. Both mixtures were prepared with approximately 425 kg of binder. The testing protocol mostly focused on determining the transport properties of the mixtures; volume of permeable voids (porosity), diffusion coefficients, and water permeability were evaluated. Tests were performed after different curing durations. In order to obtain data on the statistical distribution of transport properties, the measurements after 2 years of curing were performed on 10+ samples. Overall, both mixtures exhibited very low tortuosities and permeabilities, a direct consequence of their low water-to-binder ratio and the use of supplementary cementitious materials. The data generated on 2-year old samples showed that porosity, tortuosity and permeability follow a normal distribution. Chloride ponding tests were also performed on test samples. They showed limited chloride ingress, in line with measured transport properties. These test results also showed that both materials react differently with chloride, a consequence of the differences in the binder chemical compositions.

  19. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: insights from molecular dynamics simulations.

    Science.gov (United States)

    Hooper, Justin B; Smith, Grant D; Bedrov, Dmitry

    2013-09-14

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3(-)] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P(®) potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3(-)] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  20. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion

    Directory of Open Access Journals (Sweden)

    Chunlin Wang

    2017-01-01

    Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

  1. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer

    International Nuclear Information System (INIS)

    Chenouard, J.; Gueron, J.; Roth, E.

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  2. Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures

    DEFF Research Database (Denmark)

    Berezkin, Anatoly V.; Jung, Florian; Posselt, Dorthe

    2017-01-01

    Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric bloc...

  3. Solvation of hydrocarbons in aqueous-organic mixtures

    International Nuclear Information System (INIS)

    Sedov, I.A.; Magsumov, T.I.; Solomonov, B.N.

    2016-01-01

    Highlights: • Thermodynamic functions of solvation in mixtures of water with acetone and acetonitrile are measured at T = 298.15 K. • Solvation of n-octane and toluene in aqueous-organic mixtures is studied. • When increasing water content, Gibbs free energies grow up steadily, while enthalpies have a maximum. • Hydrocarbons are preferentially solvated with organic cosolvent even in mixtures with rather high water content. • Acetonitrile suppresses the hydrophobic effect less than acetone. - Abstract: We study the solvation of two hydrocarbons, n-octane and toluene, in binary mixtures of water with organic cosolvents. Two polar aprotic cosolvents that are miscible with water in any proportions, acetonitrile and acetone, were considered. We determine the magnitudes of thermodynamic functions of dissolution and solvation at T = 298.15 K in the mixtures with various compositions. Solution calorimetry was used to measure the enthalpies of solution, and GC headspace analysis was applied to obtain limiting activity coefficients of solutes in the studied systems. For the first time, the enthalpies of solution of alkane in the mixtures with high water content were measured directly. We observed well-pronounced maxima of the dependencies of enthalpies of solvation from the composition of solvent and no maxima for the Gibbs free energies of solvation. Two factors are concluded to be important to explain the observed tendencies: high energy cost of reorganization of binary solvent upon insertion of solute molecules and preferential surrounding of hydrocarbons with the molecules of organic cosolvent. Enthalpy-entropy compensation leads to a steady growth of the Gibbs free energies with increasing water content. On the other hand, consideration of the plots of the Gibbs free energy against enthalpy of solvation clearly shows that the solvation properties are changed dramatically after addition of a rather small amount of organic cosolvents. It is shown that they

  4. Electron scattering in dense He-Ar gas mixtures: A pressure shift study

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; McGlynn, S.P.

    1989-01-01

    The dependence of the energies of high-n Rydberg states of CH 3 I on the molar composition of helium-argon mixtures (in the number density range 1.3x10 20 --5.6x10 20 cm -3 ) is reported. The energy shifts, when normalized to a given density value, are found to vary linearly with the mole fraction of either component of the binary, rare-gas mixture. The observed change in sign of the energy shift is attributable to the different signs of the electron scattering lengths for the two rare-gas components. As a result, there exists a mixture composition, at a mole ratio [He]/[Ar]=2.0, at which the shift is null. The experimental results for the gas mixture agree with the Fermi formula, as modified to include the Alekseev-Sobel'man polarization term. Effective electron scattering lengths and cross sections, polarizabilities, and thermal velocities are used to characterize the effects of the binary gas perturber system

  5. Insights into Glycol Ether-Alkanol Mixtures from a Combined Experimental and Theoretical Approach.

    Science.gov (United States)

    Alcalde, Rafael; Gutiérrez, Alberto; Atilhan, Mert; Trenzado, José Luis; Aparicio, Santiago

    2017-06-08

    The binary liquid mixtures of glycol ethers (glymes) + 1-alkanol were characterized from the microscopic and macroscopic viewpoints through a combined experimental and theoretical study. Structuring, dynamics, and intermolecular forces were determined using density functional theory and classical molecular dynamics methods. The macroscopic behavior was studied though the measurement of relevant physicochemical properties and Raman IR studies. The changes in intermolecular forces with mixture composition, temperature, and the effects from the types of glymes as well as 1-alkanols were considered. Hydrogen bonding in the mixed fluids, its changes upon mixing, and mixture composition showed a large effect on fluids' structure and determined most of the fluids' properties together with the presence of hydrophobic domains from long 1-alkanols.

  6. Effects of buffering mineral mixtures on milk yield, milk composition, rumen pH and some blood biochemical parameters in heat stressed dairy cows

    Directory of Open Access Journals (Sweden)

    Adamović Milan

    2014-01-01

    Full Text Available The objective of the work was to investigate the influence of partial substitution of magnesium oxide with natural bentonite in feed mixtures used in feeding of cows during their exposure to heat stress. The investigation lasted 30 days and was carried out during last ten days of may and first twenty days of June when average air temperature in stables was 36.6±2.5oC. In the experiment there were included 30 cows of Holstein breed in first phase of lactation, which were divided into two groups of 15 cows: control (C and experimental (E. Group C was fed with experimental mineral mixture that contained 60% of magnesium oxide during the whole investigation period. Group E was fed with experimental mineral mixture that contained 40% of magnesium oxide as well as 20% of natural bentonite. Remaining ingredients in both control and experimental mineral mixtures were the same and also contained 20% of sodium bicarbonate and 20% of zeolite in the same quantities. The control and experimental mineral mixtures were mixed into complete feed mixture (18% UP in the amount of 1%. At tne end of the investigation period, on the 30th day, there were taken samples of rumens contents for determining pH, and after that blood samples, in which, after the separation of blood serum, were determined glucose concentration, total proteins, albumin, globulin, urea, HDL cholesterol, LDL cholesterol, total bilirubin, calcium and phosphorus, as well as the activity of ALT and AST. By computation there was calculated the ratio between albumin and globulin, ALT and AST, and the ratio between calcium and phosphorus. Daily allowance and milk chemical composition ( percentage of fat, proteins and dry substance were determined at the end of the investigation period, that is on the 30th day of lactation, for each cow individually. Partial substitution of magnesium oxide with bentonite influenced milk production increase, but it was statistically insignificant. Besides that, in E

  7. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  8. Concrete mixtures with high-workability for ballastless slab tracks

    OpenAIRE

    Olga Smirnova

    2017-01-01

    The concrete track-supporting layer and the monolithic concrete slab of ballastless track systems are made in-situ. For this reason the concrete mixtures of high workability should be used. Influence of the sand kind, the quartz microfiller fineness and quantity as well as quantity of superplasticizer on workability of fresh concrete and durability of hardened concrete is shown. The compositions of the high-workability concrete mixtures with lower consumption of superplasticizer are developed...

  9. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    International Nuclear Information System (INIS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-01-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation

  10. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min; Zhang, Xuming; Chung, Suk-Ho

    2015-01-01

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a

  11. Fatty acid composition of ruminal digesta and longissimus muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy.

    Science.gov (United States)

    Campidonico, L; Toral, P G; Priolo, A; Luciano, G; Valenti, B; Hervás, G; Frutos, P; Copani, G; Ginane, C; Niderkorn, V

    2016-04-01

    This work investigated the effects of feeding silage mixtures of a plant containing polyphenol oxidase (PPO; red clover [; RC]), a plant containing tannins (sainfoin [; SF]), and a grass species not containing these compounds (timothy [; T]) on ruminal and intramuscular (i.m.) fatty acids of lambs. Forty 4-mo-old castrated male Romane lambs, divided into 5 groups, received 1 of the following silages: 1) T (100%), 2) a binary mixture of timothy and tannin-containing sainfoin ( cv. Perly; 50:50 [T-SF]), 3) a binary mixture of timothy and PPO-containing red clover ( cv. Mervius; 50:50 [T-RC]), 4) a ternary mixture of timothy, sainfoin, and red clover containing both tannins and PPO (50:25:25, respectively [T-SF-RC]), and 5) a binary mixture of tannin-containing sainfoin and PPO-containing red clover (50:50 [SF-RC]). In the rumen digesta, the partial or total replacement of T with forage legumes was associated with greater concentrations of PUFA ( forage legumes in the silage favored the accumulation of 18:3 -3 ( Forage legumes decreased the -11 18:1 to 30% of T in rumen digesta ( Forage legumes decreased the total concentration of branched-chain fatty acids in the rumen digesta (on average, -28%; comparison with T. The dietary treatment tended to affect the proportion of MUFA ( = 0.081) and of PUFA ( = 0.079) in the i.m. fat of the LM, respectively, at the highest and lowest numerical value in the T group. The sum of -3 fatty acids was less in the T and T-SF groups compared with the mixture of legumes without T (SF-RC; comparison with lambs given T-RC, T-SF-RC, and SF-RC. Rumenic acid (-9 -11 CLA) was detected at a greater percentage in the LM from the animals fed the T silage compared with animals fed the T-SF-RC treatment ( = 0.004). Contrarily, -9 -12 -15 18:3 was found at a greater concentration in the muscle from lambs in the SF-RC treatment compared with lambs in the other treatments ( forage for growing lambs in terms of i.m. fatty acid composition.

  12. 3.4. Durability of soil-cement mixtures influenced by hostile environment

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is determined that soil-cement mixture is one of most perspective materials, that can substitute concrete. Experiments on revelation of magnesium sulphate influence on soil-cement mixtures were carried out. Data on granulometric composition and physical parameters of loess soils is presented in this article. Portland cement M 400 was used as binder. According to the results it is concluded that stability of soil-cement mixtures from loess soils in solutions of magnesium sulphate depends on concentration of solution.

  13. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  14. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  15. The impact of donor characteristics on the immune cell composition of mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests.

    Science.gov (United States)

    Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p donor weight with CD3+ T cells (p blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.

  16. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin

    2012-01-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  17. Self-compacting concrete mixtures for road BUILDING

    Directory of Open Access Journals (Sweden)

    Tran Tuan My

    2012-10-01

    Therefore, effective concrete road pavements require self-compacting though non-segregating concrete mixtures to comply with the pre-set values of their properties, namely, bending and compressive strength, corrosion resistance, freeze resistance, etc. Acting in cooperation with Department of Technology of Binders and Concretes of MSUCE, NIIMosstroy developed and examined a self-compacting cast concrete mixture designated for durable monolithic road pavements. The composition in question was generated by adding a multi-component modifier into the mix. The modifier was composed of a hyperplasticiser, active (structureless fine and crystalline silica, and a concrete hardening control agent.

  18. Chemometrics as a tool to analyse complex chemical mixtures

    DEFF Research Database (Denmark)

    Christensen, J. H.

    Chemical characterisation of contaminant mixtures is important for environmental forensics and risk assessment. The great challenge in future research lies in develop- ing suitable, rapid, reliable and objective methods for analysis of the composition of complex chemical mixtures. This thesis...... describes the development of such methods for assessing the identity (chemical fingerprinting) and fate (e.g. biodegradation) of petroleum hydrocarbon mixtures. The methods comply with the general concept that suitable methods must be rapid and inexpensive, objective with limited human in- tervention...... and at the same time must consider a substantial fraction of compounds in the complex mixture. A combination of a) limited sample preparation, b) rapid chemical screening analysis, c) fast and semi-automatic pre-processing, d) compre- hensive multivariate statistical data analysis and e) objective data evaluation...

  19. Enthalpies of potassium iodide dissolution in dimethyl acetamide mixtures with water

    International Nuclear Information System (INIS)

    Privalova, N.M.; Gritsenko, S.I.; Vorob'ev, A.F.

    1986-01-01

    Enthalpies of potassium iodide dissolution in mixed dimethyl acetamide - water solvent at 298.15 K in the whole range of dimethyl acetamide compositions are measured by the calorimetric method. From the plots of KI dissolution enthalpy dependence and dependence of experimental ΔH p∞ 0 value deviations from calculational ones on solvent composition, as well as from the results of calculation of solvate shell composition of potassium iodide ions in the mixed solvent, it is obvious that in the region of 0-15 mol% concentrations of dimethyl acetamide insufficient enrichment of solvate ion shells by dimethyl acetamide (DMAA) occurs, in the region of 15-40 mol% DMAA compositions enrichment of solvate shells of ions by water occurs, in the region of 40-100 mol% DMAA enrichment of solvate ion shells by the organic component in comparison with mixture compostion occurs. Maximum enrichment of solvate ion shells by mixture components in three above mentioned regions of the mixed solvent occurs at 10, 30 and 80 mol% DMAA concentrations

  20. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  1. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  2. Hypolipidaemic effect of vegetable and cereal dietary mixtures from Egyptian sources

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, M. M.; Shallan, M.; Mohamed, D. A.; Fouda, K.; Hanna, L. M.

    2010-07-01

    Hyperlipidaemia is a predominant risk factor for atherosclerosis and associated cardiovascular diseases (CVD). The international guidelines issued by the World Health Organization recommend a reduction in dietary saturated fat and cholesterol intake as a means to prevent hypercholesterolemia and CVD; however, only limited data are available on the benefits of vegetable consumption on CVD risk factors. The aim of this study was to prepare two powder mixtures containing vegetables and cereals and to evaluate their effect in hyperlipidaemic rats. The first mixture was prepared from whole wheat, cabbage, parsley and pepper, while the second mixture was prepared from whole wheat, red beet root, parsley and pepper. Whole wheat was used as a source of dietary fiber, while cabbage and beetroot were used as sources of glucosinolates (GLS) and betalains respectively as well as dietary fiber. The chemical compositions of these mixtures were determined. The safety of these mixtures was also evaluated by examining liver and kidney functions. The chemical compositions of the powder mixtures revealed that mixtures (1) and (2) contain 19.1% and 13.3% protein, 2.1% and 2.5 % fat, 69.6% and 77.5% carbohydrates, 1.8% and 1.2% crude fibers, 7.4% and 5.5% ash and 18.3% and 16.8% dietary fibers respectively. Vitamin E was 7.4 and 4.5 mg/100g in mixtures (1) and (2) respectively. {beta}-carotene was 830 and 786{mu}g/100g in mixtures (1) and (2) respectively. Total phenolic compounds were 1910 and 1710 mg as gallic acid equivalents/100g in mixtures (1) and (2) respectively. The results of the animal experiment showed a non-significant reduction in final body weight and body weight gain in rats fed the control diet containing mixture (1) or (2) when compared with different groups. Rats fed the control diet containing mixture (1) or (2) showed a significant reduction in plasma total lipids, T-Ch, LDL-Ch, TG and the ratio of T-Ch /HDLCh in different degrees, while HDL-Ch increased

  3. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture

    OpenAIRE

    Chao Yang; Jun Xie; Xiaojun Zhou; Quantao Liu; Ling Pang

    2018-01-01

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diato...

  4. Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis

    Science.gov (United States)

    Shaw, H.R.

    1963-01-01

    Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.

  5. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon

    Science.gov (United States)

    Hollenbeck, Jeff P.; Saab, Victoria A.; Frenzel, Richard W.

    2011-01-01

    We evaluated habitat suitability and nest survival of breeding white-headed woodpeckers (Picoides albolarvatus) in unburned forests of central Oregon, USA. Daily nest-survival rate was positively related to maximum daily temperature during the nest interval and to density of large-diameter trees surrounding the nest tree. We developed a niche-based habitat suitability model (partitioned Mahalanobis distance) for nesting white-headed woodpeckers using remotely sensed data. Along with low elevation, high density of large trees, and low slope, our habitat suitability model suggested that interspersion–juxtaposition of low- and high-canopy cover ponderosa pine (Pinus ponderosa) patches was important for nest-site suitability. Cross-validation suggested the model performed adequately for management planning at a scale >1 ha. Evaluation of mapped habitat suitability index (HSI) suggested that the maximum predictive gain (HSI = 0.36), where the number of nest locations are maximized in the smallest proportion of the modeled landscape, provided an objective initial threshold for identification of suitable habitat. However, managers can choose the threshold HSI most appropriate for their purposes (e.g., locating regions of low–moderate suitability that have potential for habitat restoration). Consequently, our habitat suitability model may be useful for managing dry coniferous forests for white-headed woodpeckers in central Oregon; however, model validation is necessary before our model could be applied to other locations.

  6. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    Science.gov (United States)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  7. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  8. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  9. Effect of monomer composition on the properties of high temperature polymer concretes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.; Kukacka, L.E.; Carciello, N.

    1980-01-01

    The effects of organic monomer composition on the thermomechanical properties of polymer concrete (PC) containing sand-cement mixtures as an agregate filler were investigated. The effects of various monomer mixtures on compressive strength and hydrolytic stability are discussed. Composites were fabricated in the same way as ordinary concrete, with monomer solutions of various compositions and concentrations used to bind the sand-cement mixture. The compressive strengths of th composites before and after exposure to air and to brine solutions at 240/sup 0/C are discussed.

  10. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures

    International Nuclear Information System (INIS)

    Delgado, Daniel R.; Almanza, Ovidio A.; Martínez, Fleming; Peña, María A.; Jouyban, Abolghasem; Acree, William E.

    2016-01-01

    Highlights: • Solubility of sulfamethazine (SMT) was measured in (methanol + water) mixtures. • SMT solubility was correlated with Jouyban–Acree model. • Gibbs energy, enthalpy, and entropy of dissolution of SMT were calculated. • Non-linear enthalpy–entropy relationship was observed for SMT. • Preferential solvation of SMT by methanol was analyzed by using the IKBI method. - Abstract: The solubility of sulfamethazine (SMT) in {methanol (1) + water (2)} co-solvent mixtures was determined at five different temperatures from (293.15 to 313.15) K. The sulfonamide exhibited its highest mole fraction solubility in pure methanol (δ 1 = 29.6 MPa 1/2 ) and its lowest mole fraction solubility in water (δ 2 = 47.8 MPa 1/2 ) at each of the five temperatures studied. The Jouyban–Acree model was used to correlate/predict the solubility values. The respective apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from the solubility data through the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated for this drug using values of the ideal solubility reported in the literature. A non-linear enthalpy–entropy relationship was noted for SMT in plots of both the enthalpy vs. Gibbs energy of mixing and the enthalpy vs. entropy of mixing. These plots suggest two different trends according to the slopes obtained when the composition of the mixtures changes. Accordingly, the mechanism for SMT transfer processes in water-rich mixtures from water to the mixture with 0.70 in mass fraction of methanol is entropy driven. Conversely, the mechanism is enthalpy driven in mixtures whenever the methanol composition exceeds 0.70 mol fraction. An inverse Kirkwood–Buff integral analysis of the preferential solvation of SMT indicated that the drug is preferentially solvated by water in water-rich mixtures but is preferentially solvated by methanol in methanol-rich mixtures.

  11. Thermodiffusion in multicomponent n-alkane mixtures.

    Science.gov (United States)

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  12. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Vlasenko, K.K.; Belov, A.A.; Vorob'ev, A.F.

    1986-01-01

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K + and I - ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  13. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  14. Synergistic enhancement of micro-bubble formation in ultrasound irradiated H2O-CH3OH mixtures probed by dynamic light scattering

    International Nuclear Information System (INIS)

    Pai, M.R.; Hassan, P.A.; Bharadwaj, S.R.; Kulshreshtha, S.K.

    2008-01-01

    This report investigates the formation of micro-bubbles in water-methanol mixtures upon ultrasound irradiation and its correlation with the yield of H 2 obtained as a result of sono-chemical splitting of water. The yield of hydrogen produced by sono-chemical reaction is monitored at different compositions of water-methanol mixtures. The evidence for the formation of micro-bubbles upon ultrasound irradiation is obtained by the dynamic light scattering technique. Micro-bubble formation during ultrasound irradiation of water-methanol mixtures, their stability and size distribution, has been quantitatively estimated. The effect of composition of the water-methanol mixture and duration of irradiation on the extent of bubble formation has been inferred from the changes in the light scattering intensity and its time correlation function. Exceptional stability of micro-bubbles without any additives is observed at a certain composition of the water-methanol mixture (4:3, v/v). The extent of micro-bubbles formed in the mixture correlates well with the yield of hydrogen detected. (authors)

  15. Inclusion of caraway in the ryegrass-red clover mixture modifies soil microbial community composition

    DEFF Research Database (Denmark)

    Cong, Wenfeng; Jing, Jingying; Søegaard, Karen

    -containing grass-clover mixtures may potentially affect soil microbial community structure, biomass and associated ecosystem functions, but it is yet to be elucidated. We hypothesized that inclusion of plantain in the grass-clover mixture would enhance soil microbial biomas and functions through its high biomass...

  16. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    Science.gov (United States)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  17. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  18. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    Science.gov (United States)

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  19. Small mammals of a bitterbrush-cheatgrass community

    International Nuclear Information System (INIS)

    Gano, K.A.; Rickard, W.H.

    1982-01-01

    Small mammals were live-trapped in burned and unburned segments of a bitterbrush-cheatgrass community during the years 1974-1979. Results indicate that the shrub-dominated unburned area supports about three times as many small mammals as the cheatgrass-dominated burned area. Species composition was similar in both areas with the exception of one ground squirrel (Spermophilus townsendii) captured on the unburned area. Other species caught were the Great Basin pocket mouse (Perognathus parvus), deer mouse (Peromyscus maniculatus), northern grasshopper mouse (Onychomys leucogaster), and the western harvest mouse (Reithrodontomys megalotis)

  20. Comparative conductimetric studies of salicylic acid in methanol–water mixtures at 25 °C

    Directory of Open Access Journals (Sweden)

    Zahra Chaaraoui

    2017-05-01

    Full Text Available Conductivity data of salicylic acid in methanol–water mixtures were measured at 25 °C. The data were analyzed in two methods, the Hsia–Fuoss’s and Fuoss 78’s conductance equations and a comparison was made. The two methods concern the derivation of thermodynamic association constants and limiting molar conductivities for all solvent compositions. The limiting equivalent conductance decreases with the increase of methanol content in the binary mixtures over the whole range of the solvent composition, but the variation does not give a constant value of Walden product. The electrolytes were found to be practically completely associated in all studied solvent mixtures. The association constant of acid decreases with the increase in relative permittivity of the mixtures. The values of ionic coefficients of self diffusion and the ionic conductance at infinite solutions were estimated.

  1. POTENTIAL MODIFICATION OF HYDRATION OF ALKALI ACTIVATED MIXTURES FROM GRANULATED BLAST FURNACE SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    VÁCLAVA TOMKOVÁ

    2012-07-01

    Full Text Available Alkali activated binders (AAB and composites from suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. The paper deals with possibilities to influence functional parameters of AAB by setting the mixtures of GBFS and fly ash to the selected chemical composition or by fly ash reactivity change effected by milling. In this way course of hydration process is modified, the alkali activation products phase composition is changed as well as their final characteristic. The amorphous character of the hydration products limits the evaluation of the composition during the massing phase. Part of the study is the search for possibilities of identifying the differences in composition and properties of specially drafted mixtures of original raw materials after their alkali activation.

  2. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  3. BROILER´S ROSS 308 MEAT CHEMICAL COMPOSITION AFTER ADDITION OF BEE POLLEN AS A SUPPLEMENT IN THEIR FEED MIXTURES

    Directory of Open Access Journals (Sweden)

    Peter Haščík

    2014-02-01

    Full Text Available The goal of this study was to evaluate the meat chemical composition of broiler chicken Ross 308. In the experiment, totally 200 one-day-old chicks were divided into 4 groups (n=50 for 42 days. Bee pollen was added to feed mixtures in doses 0; 2,500; 3,500 and 4,500 mg.kg-1. The findings found the moisture content of breast and thigh muscles were higher in the experimental groups compared to the control except E3 in thigh muscle, but in protein content were higher in the control group. On the other hand the fat content and energy value in the control group were higher comparison to experimental groups except E1. There are no significant differences (P ≥ 0.05 among the experimental groups. From the current study they conclude the bee pollen has a positive effect on the broiler Ross 308 chemical composition because the increase of moisture content and decrease the fat content which may be acceptable for several special human diets.

  4. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery

    International Nuclear Information System (INIS)

    Li, You-Rong; Du, Mei-Tang; Wu, Chun-Mei; Wu, Shuang-Ying; Liu, Chao

    2014-01-01

    The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance. - Highlights: • Organic Rankine cycle system with the mixture working fluids for recovering waste heat is analyzed. • The performance of the mixture-fluid ORC is related to temperature glide in phase change of mixture working fluids. • The relative merit of the mixture working fluids depends on the restrictive operation conditions of the ORC. • The ORC with mixture working fluid presents a poor economical performance compared with the pure working fluid case

  5. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  6. Stability studies of colloidal silica dispersions in binary solvent mixtures

    International Nuclear Information System (INIS)

    Bean, Keith Howard

    1997-01-01

    A series of monodispersed colloidal silica dispersions, of varying radii, has been prepared. These particles are hydrophilic in nature due to the presence of surface silanol groups. Some of the particles have been rendered hydrophobic by terminally grafting n-alkyl (C 18 ) chains to the surface. The stability of dispersions of these various particles has been studied in binary mixtures of liquids, namely (i) ethanol and cyclohexane, and (ii) benzene and n-heptane. The ethanol - cyclohexane systems have been studied using a variety of techniques. Adsorption excess isotherms have been established and electrophoretic mobility measurements have been made. The predicted stability of the dispersions from D.V.L.O. calculations is compared to the observed stability. The hydrophilic silica particles behave as predicted by the calculations, with the zeta potential decreasing and the van der Waals attraction increasing with increasing cyclohexane concentration. The hydrophobic particles behave differently than expected, and the stability as a function of solvent mixture composition does not show a uniform trend. The effect of varying the coverage of C 18 chains on the surface and the effect of trace water in the systems has also been investigated. Organophilic silica dispersions in benzene - n-heptane solvent mixtures show weak aggregation and phase separation into a diffuse 'gas-like' phase and a more concentrated 'liquid-like' phase, analogous to molecular condensation processes. Calculations of the van der Waals potential as a function of solvent mixture composition show good agreement with the observed stability. Determination of the number of particles in each phase at equilibrium allows the energy of flocculation to be determined using a simple thermodynamic relationship. Finally, the addition of an AB block copolymer to organophilic silica particles in benzene n-heptane solvent mixtures has been shown to have a marked effect on the dispersion stability. This stability

  7. Co-pyrolysis of wood biomass and synthetic polymers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N.; Baryshnikov, S.V. [Institute of Chemistry and Chemical Technology SB RAS, K. Marx Str., Krasnoyarsk 660049 (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Zaragoza (Spain); Weber, J.V.; Collura, S.; Finqueneisel, G.; Zimny, T. [Laboratoire de Chimie et Applications, Universite de Metz, IUT, rue V. Demange, 57500 Saint Avold (France)

    2006-06-01

    The pyrolysis in a hydrogen atmosphere of pine wood and synthetic polymers (polyethylene and polypropylene) mixtures was studied in a rotating autoclave. The effects of reaction temperature, wood/polymers mixture composition and catalysts, on the mixtures conversion into liquids and gases were established and discussed. The used catalysts were pyrrhotite and haematite materials activated by mechanochemical treatment. In the co-liquefaction processes the interaction between fragments of wood and polymers thermal decomposition took place. This results in non-additive increase of the wood/polymers conversion degree by 10-15wt.% and of the yield of distillate fractions by 14-19wt.%. Iron ore materials were found catalytically active in the process of hydropyrolysis of wood/polymers mixtures. By using these catalysts a significant increase of the distillable liquids amounts (by 14-21wt.%) and a sharp decrease of olefins and cycloparaffins content (by approximately two to three times) were observed. (author)

  8. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  9. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture.

    Science.gov (United States)

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-04-27

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO₂ content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  10. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-04-01

    Full Text Available Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO2 content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  11. Skin barrier composition

    International Nuclear Information System (INIS)

    Osburn, F.G.

    1985-01-01

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices. (author)

  12. Skin barrier composition

    Energy Technology Data Exchange (ETDEWEB)

    Osburn, F G

    1985-06-12

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices.

  13. Thermodynamic and morphological analysis of eutectic formation of CBZ-L-Asp and L-PheOMe.HCl mixtures

    International Nuclear Information System (INIS)

    Kim, Hyun Jung; Kim, Jong Hoon; Youn, Sung Hun; Shin, Chul Soo

    2006-01-01

    The eutectic melting of a CBZ-L-Asp/L-PheOMe.HCl model mixture was investigated in kinetic, thermal, thermodynamic, rheological, and morphological aspects. From TX-phase diagrams, the eutectic composition was determined to be 0.55 M fraction of CBZ-L-Asp. The highest melting rate and the lowest apparent viscosity in the range of 55-75 deg. C were obtained at the eutectic composition. Using Arrhenius plots of melting rates and apparent viscosities, minimum activation energies in the range of 60-80 deg. C were obtained at the eutectic composition, whereas maximum values were attained below 60 deg. C. At the eutectic composition, the maximum heat of fusion, the lowest excess free energy, and the highest excess entropy values were observed by differential scanning calorimetry (DSC). A highly homogeneous morphology due to rearrangement of molecules was observed in the eutectic mixture via scanning electron microscopy and X-ray diffraction analysis. IR spectra revealed that hydrogen bonding in the mixture increases during eutectic melting

  14. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper

    2003-01-01

    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... reactants from crevices and hot burned bulk gas and to describe the oxidation of the unburned fuel. The post oxidation was described by a single step chemical reaction mechanism instead of detailed chemical kinetics in order to reduce the calculation time. However, the exploited Arrhenius expressions used...... to describe the chemical reactions were deduced from a detailed reaction mechanism. Different detailed reaction mechanisms were compared with results from combustion reactor experiments. Experiments and simulations were compared at different pressures and excesses of air similar to the conditions present...

  15. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    Science.gov (United States)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  16. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  17. Concrete mixtures with high-workability for ballastless slab tracks

    Directory of Open Access Journals (Sweden)

    Olga Smirnova

    2017-10-01

    Full Text Available The concrete track-supporting layer and the monolithic concrete slab of ballastless track systems are made in-situ. For this reason the concrete mixtures of high workability should be used. Influence of the sand kind, the quartz microfiller fineness and quantity as well as quantity of superplasticizer on workability of fresh concrete and durability of hardened concrete is shown. The compositions of the high-workability concrete mixtures with lower consumption of superplasticizer are developed. The results of the research can be recommended for high performance concrete of ballastless slab track.

  18. Curing kinetics of alkyd/melamine resin mixtures

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2009-01-01

    Full Text Available Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor oil with melamine resin, has been studied by DSC method with programmed heating and in isothermal mode. The results determined from dynamic DSC curves were mathematically transformed using the Ozawa isoconversional method for obtaining the isothermal data. These results, degree of curing versus time, are in good agreement with those determined by the isothermal DSC experiments. By applying the Ozawa method it is possible to calculate the isothermal kinetic parameters for the alkyd/melamine resin mixtures curing using only calorimetric data obtained by dynamic DSC runs. Depending on the alkyd resin type and ratio in mixtures the values of activation energies of curing process of resin mixtures are from 51.3 to 114 kJ mol-1. The rate constant of curing increases with increasing the content of melamine resin in the mixture and with curing temperature. The reaction order varies from 1.12 to 1.37 for alkyd based on dehydrated castor oil/melamine resin mixtures and from 1.74 to 2.03 for mixtures with alkyd based on castor oil. Based on the results obtained, we propose that dehydrated castor oil alkyd/melamine resin mixtures can be used in practice (curing temperatures from 120 to 160°C.

  19. Application of dry separative methods for decreasing content the residues unburned coal and separation Fe from black coal flies ash

    Directory of Open Access Journals (Sweden)

    František Kaľavský

    2008-06-01

    Full Text Available Main obstacle using of fly ashes in building, that is its main consumer, is the residue of unburned coal; it is expressed of loss onignition - LOI. In present, the valid STN and EU standard limits the content of LOI to 3 – 5 %, in national conditions maximum 7 %.Application of processing technologies also has to assure utilization of fly ash that provides a possibility of complex utilizationof individual products obtained by modification.By means of corona separation, based on different conductivity of individual fly ash elements, it is possible to separate unburnedcoal particles. The fly ash sample from black coal burning in melting boiler that was deposited on fly ash deposit, content of LOIof dielectric particle 6,45 % at 61 % weight yield was achieved. In the samples taken from dry taking of fly ash the non-conductingproduct contained 7,72 % of LOI at 73 % of weight yield.

  20. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huiyang, E-mail: hl209@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Zhang, Deliang, E-mail: zhangdeliang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Gabbitas, Brian, E-mail: briang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Yang, Fei, E-mail: fyang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Matthews, Steven, E-mail: S.Matthews@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Auckland (New Zealand)

    2014-09-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study.

  1. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    International Nuclear Information System (INIS)

    Lu, Huiyang; Zhang, Deliang; Gabbitas, Brian; Yang, Fei; Matthews, Steven

    2014-01-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study

  2. Study of decolorisation of binary dye mixture by response surface methodology.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  4. Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO2 in Nanopores: An Experimental Study on the Effects of Composition and Equilibrium.

    Science.gov (United States)

    Barsotti, Elizabeth; Saraji, Soheil; Tan, Sugata P; Piri, Mohammad

    2018-02-06

    Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids. To this end, a novel gravimetric apparatus is introduced and validated. Unlike apparatuses that have been previously used to study the confinement-induced phase behavior of fluids, this apparatus employs a gravimetric technique capable of discerning phase transitions in a wide variety of nanoporous media under both static and dynamic conditions. The apparatus was successfully validated against data in the literature for pure carbon dioxide and n-pentane. Then, isotherms were generated for binary mixtures of carbon dioxide and n-pentane using static and flow-through methods. Finally, two ternary mixtures of carbon dioxide, n-pentane, and isopentane were measured using the static method. While the equilibrium time was found important for determination of confined phase transitions, flow rate in the dynamic method was not found to affect the confined phase behavior. For all measurements, the results indicate qualitative transferability of the bulk phase behavior to the confined fluid.

  5. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    International Nuclear Information System (INIS)

    Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia; Fent, Karl

    2012-01-01

    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC 10 , EC 25 and EC 50 in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC 10 mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC 25 mixture of DBP + BPA. A ternary mixture revealed synergism at the EC 50 , and weak antagonistic activity at the EC 25 level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.

  6. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Crettaz, Pierre; Oberli-Schrämmli, Aurelia [Swiss Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: karl.fent@bluewin.ch [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Sciences, 8092 Zürich (Switzerland)

    2012-03-01

    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.

  7. Chemical behaviors of tritium formed in a LiF-BeF2 mixture and its removal from a molten mixture

    International Nuclear Information System (INIS)

    Oishi, J.; Moriyama, H.; Maeda, S.; Ohmura, T.; Moritani, K.

    1987-01-01

    Chemical behaviors of tritium formed in a LiF-BeF 2 mixture were studied using a radiometric method. Most of tritium was found to be present in the T + and T - states under no thermal treatment. The distribution of tritium in chemical states was explained by considering hot atom reactions and radiation chemical reactions. Tritium behaviors in a molten LiF-BeF 2 mixture were also studied at 873 K. In the presence of hydrogen, the isotopic exchange reaction which is TF + H 2 → HT + HF was observed to occur probably in the salt phase. The removal of tritium in a molten LiF-BeF 2 mixture was tried by sparging a gas in a melt for tritium purge, and the effects of the composition of purge gas and of the construction material of crucibles containing the melt on the removal rate were observed. (author)

  8. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    Science.gov (United States)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  9. Structural properties of dendrimer-colloid mixtures

    International Nuclear Information System (INIS)

    Lenz, Dominic A; Blaak, Ronald; Likos, Christos N

    2012-01-01

    We consider binary mixtures of colloidal particles and amphiphilic dendrimers of the second generation by means of Monte Carlo simulations. By using the effective interactions between monomer-resolved dendrimers and colloids, we compare the results of simulations of mixtures stemming from a full monomer-resolved description with the effective two-component description at different densities, composition ratios, colloid diameters and interaction strengths. Additionally, we map the two-component system onto an effective one-component model for the colloids in the presence of the dendrimers. Simulations based on the resulting depletion potentials allow us to extend the comparison to yet another level of coarse graining and to examine under which conditions this two-step approach is valid. In addition, a preliminary outlook into the phase behavior of this system is given. (paper)

  10. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  11. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  12. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities

    KAUST Repository

    Luong, Minhbau

    2013-10-01

    The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI

  13. The composition of interstellar grain mantles

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.

    1984-01-01

    The molecular composition of interstellar grain mantles employing gas phase as well as grain surface reactions has been calculated. The calculated mixtures consist mainly of the molecules H 2 O H 2 CO, N 2 , CO, O 2 , CO 2 , H 2 O 2 , NH 3 , and their deuterated counterparts in varying ratios. The exact compositions depend strongly on the physical conditions in the gas phase. The calculated mixtures are compared to the observations by using laboratory spectra of grain mantle analogs. (author)

  14. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  15. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage

    International Nuclear Information System (INIS)

    Zhang, Nan; Yuan, Yanping; Du, Yanxia; Cao, Xiaoling; Yuan, Yaguang

    2014-01-01

    A novel composite PCM (phase change material) with PA-SA (palmitic-stearic acid) eutectic mixture as PCM and EG (expanded graphite) as supporting material was prepared. The optimum absorption ratio of PA-SA/EG (Palmitic-stearic acid/expanded graphite) composite PCM was determined as PA-SA:EG = 13:1 (by mass). Scanning electron microscope and Fourier transformation infrared spectroscopy results show that PA-SA was uniformly distributed in the porous network structure of EG due to the physical action. Thermal property and thermal stability of the PA-SA/EG composite PCM were characterized by DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). DSC results indicated that the melting and freezing temperatures and latent heats of PA-SA/EG were measured as 53.89 °C and 54.37 °C, and 166.27 J/g and 166.13 J/g. TGA test results revealed that PA-SA/EG had a good thermal stability in working temperature range. Thermal cycling test results showed PA-SA/EG had a good thermal reliability after 720 thermal cycles. Thermal conductivity of the composite PCM was measured as 2.51 W/m K, much higher than that of PA-SA. The thermal energy storage and release rates of PA-SA/EG were also increased due to the high thermal conductivity of EG. In conclusion, the prepared PA-SA/EG composite PCM can be acted as a potential material for thermal energy storage due to the acceptable thermal properties, good thermal reliability and stability, high thermal conductivity. - Highlights: • PA-SA/EG (Palmitic-stearic acid/expanded graphite) composite PCM was prepared. • Optimum absorption ratio of PA-SA in EG was obtained as 13:1 (by mass). • Thermal conductivity and performance of PA-SA/EG have been significate improved. • PA-SA/EG has a good thermal reliability and thermal stability

  16. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    International Nuclear Information System (INIS)

    Pandey, Puneet Kumar; Pandey, Vrijesh Kumar; Awasthi, Anjali; Nain, Anil Kumar; Awasthi, Aashees

    2014-01-01

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, V m E and excess isentropic compressibilities, κ s E have been calculated. The excess partial molar volumes, V ¯ m,1 E and V ¯ m,2 E and excess partial molar isentropic compressions, K ¯ s,m,1 E and K ¯ s,m,2 E over the whole composition range; and partial molar volumes, V ¯ m,1 ° and V ¯ m,2 ° , partial molar isentropic compressions, K ¯ s,m,1 ° and K ¯ s,m,2 ° , excess partial molar volumes, V ¯ m,1 °E and V ¯ m,2 °E , and excess partial molar isentropic compressions, K ¯ s,m,1 °E and K ¯ s,m,2 °E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are

  17. Hofmeister effect of salt mixtures on thermo-responsive poly(propylene oxide)

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2015-01-01

    of aqueous solutions of poly(propylene oxide) is affected by mixtures of ions with different location in the Hofmeister series. Our results show that the Hofmeister effects of pure salt species are not always linearly additive and that the relative effect of some ions can be reversed depending...... on the composition of the salt mixture as well as by the absolute and relative concentration of the different species. We suggest that these results can lead to a better understanding of the potential role of the Hofmeister effect in regulation of biological processes, which does always take place in salt mixtures...... rather than solutions containing just single salt species....

  18. Experimental measurements and prediction of liquid densities for n-alkane mixtures

    International Nuclear Information System (INIS)

    Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.

    2006-01-01

    We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements

  19. Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter

    Directory of Open Access Journals (Sweden)

    Xiaoxi Yan

    2014-01-01

    Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.

  20. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min Suk

    2015-09-03

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a high dielectric constant and a material having a low dielectric constant (e.g., a composition of a liquid having a high dielectric constant and a liquid having a low dielectric constant, a composition of a solid having a high dielectric constant and a liquid having a low dielectric constant, and similar compositions), and further systems and methods configured to produce materials, such as through material modification and/or material synthesis, in part, resulting from producing electrical discharges in compositions.

  1. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  2. Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K

    International Nuclear Information System (INIS)

    Rafiee, Hamid Reza; Ranjbar, Shahram; Poursalman, Fariborz

    2012-01-01

    Graphical abstract: For binary and ternary mixtures of the following liquids the densities and viscosities have been determined at several temperatures and over the entire range of composition. Also the Δη and excess molar volumes for binary mixtures determined and have been fitted to the Redlich–Kister equation. The interaction parameters, G 12 in the Grunberg–Nissan equation have been found to be negative for all binary mixtures which indicates decreasing the interaction between unlike molecules. Highlights: ► Experimental data for viscosity and density of binary and ternary mixtures reported. ► The considered solvents are Cyclohexanone, 1,4-Dioxane and Isooctane. ► Temperature ranges from 288.15 to 313.15 K and entire range of composition is considered. ► G 12 , in Grunberg–Nissan equation was negative in all binary mixtures at all temperatures. ► V E and Δη for binary mixtures have been fitted to Redlich–Kister equation. - Abstract: Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane have been measured at temperatures from 288.15 K to 313.15 K and over the entire composition range, under atmospheric pressure. From these binary data, the excess molar volumes have been determined and then fitted to Redlich–Kister equation to determine the appropriate coefficients. This work also provides a test of the Grunberg and Nissan equation for correlation the dynamic viscosities of binary mixtures with mole fractions. The interaction parameters for this equation, G 12 were negative for all binary mixtures at different temperatures over entire range of composition which attributed to decreasing the strength of interaction between unlike molecules in mixture.

  3. Production of refractory chamotte particle-reinforced geopolymer composite

    Science.gov (United States)

    Kovářík, T.; Kullová, L.; Rieger, D.

    2016-04-01

    Geopolymer resins are obtained by alkaline activation of aluminosilicate sources where raw calcined clays are one of the suitable potentialities. Besides the fact that chemical composition has an essential effect on final properties of the geopolymer binder, the type of filler strongly affected resulting properties of such granular composite. However, very few comparative studies have been done on detail description of composite systems: binder - granular filler, in relation to aggregate gradation design and rheology properties of the mixture. The aim of this work is to develop and describe granular composite concerning workability of the mixture and kinetics of geopolymerization/polycondensation through flow behaviour. The rheological measurements indicated that initial viscosities of the mixtures and their evolution are different for various proportions of the filler. Moreover, it was demonstrated that increase in complex viscosity responds to the creation of chemical bonds and the formation of structural network. Finally, a correlation of the mechanism of geopolymer formation was carried out by differential scanning calorimetry (DSC).

  4. Weed infestation of a cereal-legume mixture depending on its concentration and position in a crop rotation

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2012-10-01

    Full Text Available A field study was carried out in the period 2000-2006 at the Experimental Station in Tomaszkowo belonging to the University of Warmia and Mazury in Olsztyn. Its aim was to compare weed infestation of a mixture of spring barley and field pea grown in a four crop rotation with different crop selection and sequence. Each year during tillering of spring barley and before the harvest of the mixture, weed species composition and density were evaluated, while additionally weed biomass was also estimated before the harvest. These results were used to determine species constancy, Simpson’s dominance index, the Shannon-Wiener diversity and evenness indices as well as the community similarity index based on floristic richness, numbers and biomass of particular weed species. The cropping frequency and the position of the mixture in the crop rotation did not differentiate the species composition and total biomass of weed communities in the cereal-legume mixture crops. The crop rotation in which the mixture constituted 50% and was grown after itself had a reducing effect on weed numbers. Growing field pea in the 4-year crop rotation promoted weed infestation of the mixture and the dominance of weed communities. Capsella bursa-pastoris, Chenopodium album, Echinochloa crus-galli, Elymus repens, Polygonum convolvulus, and Sonchus arvensis were constant components of the agrophytocenoses. The weed communities were more similar in terms of their floristic composition than in terms of weed density and air-dry weight of weeds.

  5. Solidification of radioactive waste in a cement/lime mixture

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1984-01-01

    The suitability of a cement/lime mixture for use as a solidification agent for different types of wastes was investigated. This work includes studies directed towards determining the wasted/binder compositional field over which successful solidification occurs with various wastes and the measurement of some of the waste from properties relevant to evaluating the potential for the release of radionuclides to the environment. In this study, four types of low-level radioactive wastes were simulated for incorporation into a cement/lime mixture. These were boric acid waste, sodium sulfate wastes, aion exchange resins and incinerator ash. 7 references, 3 figures, 2 tables

  6. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  7. Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NO sub x using dielectric barrier discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas, and dielectric barrier discharges (DBDs) in particular, are being investigated for their use in the remediation of nitrogen oxides (NO sub x) from automotive exhausts. In their normal mode of operation, DBDs consist of a large density of short-lived filamentary microdischarges. Localized energy deposition results in spatially nonuniform gas temperatures and species densities which initiate advective and diffusive transport. Diesel exhausts, one of the major sources of NO sub x , typically contain unburned hydrocarbons (UHCs) which significantly influence the NO sub x chemistry during plasma remediation. In this paper, we discuss results from a computational investigation of the consequences of UHC chemistry on radial transport dynamics and remediation of NO sub x. In the presence of UHCs, radicals such as O and OH are dominantly consumed in the microstreamer region and their transport to larger radii is reduced. As a result, the conversion of NO to NO sub 2 is mainly restricted t...

  8. Some contributions to the examination of composites from power plant wastes

    Directory of Open Access Journals (Sweden)

    Trifunović Prvoslav

    2015-01-01

    Full Text Available This paper describes an investigation into the possibilities of the use of all three types of solid power plant wastes: fly ash (FA, flue gas desulphurization gypsum (FGD gypsum and bottom ash (BA as components of composites for road construction. Two mixtures were made: 1. power plant wastes - Portland cement (PC and 2. power plant wastes - sand (S - Portland cement (PC. The mass ratio of components in these mixtures was: 1. FA - FGD gypsum - BA - PC = 2 : 1.5 : 5 : 1.5 and 2. FA- FGD gypsum-BA - S - PC= 2 : 1.5 : 4 : 1 : 1.5. For both mixtures, the compressive strength, the mineralogical composition, the water absorption and the resistance to freeze-thaw treatment were determined 7 and 28 days after preparation of samples (mixing with water. The obtained results showed that both mixtures could have potential to be used for sub-base layers in road construction and the second mixture (with natural aggregate-sand has advantage over the first mixture in terms of compressive strength, mineralogical composition, and resistance to freeze-thaw treatment.

  9. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    Science.gov (United States)

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  10. Method and composition for removing iodine from gases

    International Nuclear Information System (INIS)

    French, J.A.; O'Hara, D.K.; Pasha, M.

    1980-01-01

    A method and composition for removing iodine and organic iodides from an iodine-containing off-gas stream is provided. The composition for the removal is a ceramic material impregnated with a mixture of a metallic salt with a water-soluble secondary amine. The method for removing the iodine and iodide is accomplished by passing the off-gas stream over the ceramic impregnated with the metallic salt-amine mixture

  11. Investigating the Effect of the Binary Mixtures Composition of Noble Gases on Their Thermodynamic and Transport Properties

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2015-01-01

    Full Text Available The paper presents possible application fields of the binary noble gas mixtures with low Prandtl numbers. It shows that it is expedient to select these mixtures as the working fluids for closed Brayton cycle gas-turbine installations, thermo-acoustic engines and for the gas dynamic energy separation device (Leontiev tube. As follows from the analysis, He-Ar, He-Kr, and HeXe mixtures have proven to be the most attractive choice. The paper has analyzed the calculation results for coefficient of dynamic viscosity, coefficient of thermal conductivity, and for heat capacity at constant pressure for the given mixtures in terms of mixture molecular weights at pressures of 2MPa and 7MPa and temperatures of 400 and 1200°K. According to data of experiments and calculations available in public sources published by another authors, the results are verified. It was found that at constant pressure within the examined range of parameters (i.e. pressure, temperature, mixture molecular weight the obtained heat capacity values are in good agreement with the values of the verification data. In calculating dynamic viscosity coefficient for any pressure and temperature the utilized technique provides results for He-Ar and He-Kr mixtures within the entire range of the molecular weights, which are, essentially, as good as shown by international verification techniques. However, at high pressures and low temperatures for He-Xe mixture with molecular weights close to the pure Xe the divergence was found to be as high as 25 % while for other parameter intervals under consideration and with the same mixture the difference does not exceed 10 %. A good agreement with the verification data is observed for the values of a thermal conductivity coefficient of He-Ar and He-Kr mixtures for any value of parameters, while for He-Xe mixture with molecular weights close to 60 g/mole independently of pressure the divergence can reach 30 % for 1200°K and 20 % for 400°K. It is shown

  12. Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures.

    Science.gov (United States)

    Demuth, Dominik; Haase, Nils; Malzacher, Daniel; Vogel, Michael

    2015-08-01

    We use (13)C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of the protein backbone require a minimum glycerol concentration of ~0.6 g/g at ambient temperature, while smaller-scale fluctuations are activated at lower solvation levels of ~0.2 g/g. Immersing elastin in various glycerol-water mixtures, we observe at room temperature that the protein mobility is higher for lower glycerol fractions in the solvent and, thus, lower solvent viscosity. When decreasing the temperature, the elastin spectra approach the line shape for the rigid protein at 245 K for all studied samples, indicating that the protein ceases to be mobile on the experimental time scale of ~10(-5) s. Our findings yield evidence for a strong coupling between elastin fluctuations and solvent dynamics and, hence, such interaction is not restricted to the case of protein-water mixtures. Spectral resolution of different carbon species reveals that the protein-solvent couplings can, however, be different for side chain and backbone units. We discuss these results against the background of the slaving model for protein dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Construction of a 21-Component Layered Mixture Experiment Design Using a New Mixture Coordinate-Exchange Algorithm

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2005-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions, and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all of them require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed and illustrated in the paper

  14. Saturated steams pressure of HfCl4-KCl molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smirnov, M.V.; Kudyakov, V.Ya.

    1980-01-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl 4 -KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl 4 ). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride

  15. Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2013-01-01

    Highlights: ► The refractive indices in binary and ternary mixtures of hydrocarbons were measured. ► The error of the theoretical prediction of the refractive indices does not exceed 0.13%. ► The error of the prediction of concentration derivatives is unsatisfactory large. ► Feasibility of application of optical methods to measuring mass transport coefficients is studied. -- Abstract: Refractive indices of binary and ternary mixtures formed by tetralin (1,2,3,4-tetrahydronaphthalene), isobutylbenzene (2-methyl-1-propyl benzene) and n-dodecane are presented over a wide range of compositions. All measurements of the refractive index have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The concentration derivatives of the refractive index have been determined. The mixture compositions, where these two wavelengths are applicable for the measurements of mass transport coefficients by interferometry, are estimated and discussed

  16. Thermodynamics of liquid mixtures of methane and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J C.G.; Soares, V A.M.

    1977-08-01

    Experiments conducted by Portugal's Instituto Superior Tecnico provide liquid and vapor equilibrium compositions and pressures for the methane-ethene system at 103.94 and -115.77 K as well as the molar volumes of the mixtures at the lower temperature. From the results, researchers estimated the excess Gibbs energies at these tempertures and the molar enthalpy of mixing.

  17. High resolution conductometry for isotopic assay of deuterium in mixtures of heavy water and light water

    International Nuclear Information System (INIS)

    Ananthanarayanan, R.; Sahoo, P.; Murali, N.

    2014-01-01

    A PC based high resolution conductivity monitoring technique has been deployed for determination of isotopic purity of heavy water in samples containing heavy water and light water mixtures using pulsating sensor based conductivity monitoring instrument. The technique involves accurate determination of conductivities of a series of specially treated heavy water and light water mixtures of various compositions at a constant solution temperature. The shift in conductivity (Δκ), which is the difference between conductivities of composite mixture after and before the formation of a typical complex compound (boric acid–mannitol complex in this case), shows a smooth and reproducible decreasing trend with increase in percentage composition of heavy water. This relation, which is obtained by appropriate calibration, is used in the software program for direct display of isotopic purity of heavy water. The technique is examined for determination of percentage composition of heavy water in the entire range of concentration (0-100 %) with reasonable precision (relative standard deviation, RSD ≤1.5 %). About 1 mL of sample is required for each analysis and analysis is completed within a couple of minutes after pretreatment of sample. The accuracy in measurement is ≤1.75 %. (author)

  18. Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion

    International Nuclear Information System (INIS)

    Oliveira, M.B.; Domínguez-Pérez, M.; Cabeza, O.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.

    2013-01-01

    Highlights: • Novel data for the surface tensions of mixtures [C 4 mim][NTf 2 ] + [C 4 C 1 mim]/[C 3 mpy]/[C 3 mpyr]/[C 3 mpip][NTf 2 ] are presented. • γ were determined at a fixed temperature, 298.2 K, and at atmospheric pressure, for the whole composition range. • Surface tension deviations showed the near ideal behavior of the selected mixtures. • Gibbs adsorption isotherms showed the surface preferential adsorption of one ionic liquid over the other. -- Abstract: While values for thermophysical properties of ionic liquids are becoming widely available, data for ionic liquid mixtures are still scarce. In an effort to overcome this limitation and understand the behavior of ionic liquid mixtures, novel data for the surface tension of mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 4 mim][NTf 2 ], with other ionic liquids with a common anion, namely 1-butyl-2,3-dimethylimidazolium, [C 4 C 1 mim] + , 3-methyl-1-propylpyridinium, [C 3 mpy] + , 1-methyl-1-propylpyrrolidinium, [C 3 mpyr] + , and 1-methyl-1-propylpiperidinium, [C 3 mpip] + , were measured at T = 298.2 K and atmospheric pressure over the entire composition range. From the surface tension deviations derived from the experimental results, it was possible to infer that the cation alkyl chain length of the second ionic liquid constituting the mixture has a stronger influence in the ideal mixture behavior than the type of family the ionic liquid cation belongs to. The Gibbs adsorption isotherms, estimated from the experimental values, show that the composition of the vapor–liquid interface is not the same as that of the bulk and that the interface is richer in the ionic liquid with the lowest surface tension, [C 4 mim][NTf 2

  19. Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives

    Directory of Open Access Journals (Sweden)

    Shaowen Du

    2015-01-01

    Full Text Available Three types of chemical additives were used to modify asphalt emulsion recycled mixture. These chemical additives include composite Portland cement (CPC, hydrated lime (HL, and a combination of hydrated lime and ground-granulated blast-furnace slag (GGBF. The influence of different additives on the recycled mixture performance was investigated by volumetric and strength tests, moisture susceptibility test, rutting resistance test, and low temperature bending test. To better understand its performance characteristic, the microstructure images of the recycled mixture were observed by environmental scanning electron microscope (ESEM. Test results demonstrate that the performance improvement of the emulsion recycled mixture depends on the types and content of chemical additives. Several recommendations are presented for the selection of chemical materials. Based on ESEM image analysis, the interface bonding mechanism is proposed to explain the performance characteristic of the recycled mixture with asphalt emulsion and cementitious materials.

  20. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  1. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  2. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  3. Separation of unburned carbon from coal fly ash through froth flotation; Sekitanbai no shisshiki datsutanso gijutsu kaihatsu shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Murakami, T [The Coal Mining Research Center, Japan, Tokyo (Japan)

    1996-09-01

    Coal ash tends to become containing more unburned carbon and porous substances depending on conditions of combustion, whose adverse effects to products due to water adsorbability, absorbability and color tones create obstacles in its utilization. Therefore, research and development works have been progressed on wet type carbon removing technology which is characterized in that coal is pulverized to preferable degrees and subjected to flotation. This paper reports the results obtained during fiscal 1995. The results may be summarized as follows: as a result of the comparison test on a column flotation machine and an FW type flotation machine of machine stirring type, the former machine showed better flotation efficiency; several methods were investigated on crushing as a treatment prior to flotation, whereas a mixer with greater circumferential speed and a homo mixer showed the highest efficiency; strength of the impact to the flotation efficiency was found to decrease in the order of pulp concentration > pretreatment time > collector addition ratio; and as a result of the evaluation on refined ash as a cement admixture and carbons as fuel, possibilities were found in them for practical application. 16 figs., 2 tabs.

  4. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    Science.gov (United States)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  5. Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures

    Science.gov (United States)

    Hernández Carrillo, C. G.; Gómez-Cuaspud, J. A.; E Martínez Suarez, C.

    2017-12-01

    The Nopal (opuntia ficus indica) from remote times has contributed like food and additive product in prehispanic constructions; although it grows in all the Colombian territory is very little used and its contribution in mixtures of Colombian cement is unknown. In order to evaluate the hydration characteristics of Nopal, several Thermogravimetric Analysis (TGA) were performed to evaluate the optimal temperature of dehydration. Initially, the results show that around 175°C the weight loss is approximately 95%, this mass loss corresponds to the process of physical removal, suggesting that at least a remaining amount of 5% (w/w) has the ability to retain large amounts of water which is stored in the micro-structural deposits of Nopal. The evaluation by means Scanning Electron Microscopy (SEM), confirm that the whole cactus structure enables the water storage at cellular level. The results of infrared spectroscopy (FT-IR) and Energy Dispersive X-ray (EDX) analysis allowed the qualitative and semi-quantitative evaluation of the presence of functional groups and elemental chemical composition of Nopal respectively, mainly related with polysaccharide functional groups, which corresponds to 85% of the total composition. Other functional groups, are related with protein and mineral components. This found characteristics are relevant for the water retention in process that require the decrease of water consumption and the reinforcing of mechanical properties and durability, due to ability of Nopal mucilage to restore its hydration characteristics.

  6. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  7. Thermodynamics of liquid mixtures of methane and ethene

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Soares, V.A.M.

    1977-08-01

    Experiments conducted by Portugal's Instituto Superior Tecnico provide liquid and vapor equilibrium compositions and pressures for the methane-ethene system at 103.94 and -115.77 K as well as the molar volumes of the mixtures at the lower temperature. From the results, researchers estimated the excess Gibbs energies at these tempertures and the molar enthalpy of mixing.

  8. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  9. Aerosols released from solvent fire accidents in reprocessing plants

    International Nuclear Information System (INIS)

    Jordan, S.; Lindner, W.

    1985-01-01

    Thermodynamic, aerosol characterizing and radiological data of solvent fires in reprocessing plants have been established in experiments. These are the main results: Depending on the ventilation in the containment, kerosene-TBP mixtures burn at a rate up to 120 kg/m 2 h. The aqueous phase of inorganic-organic mixtures might be released during the fire. The gaseous reaction products contain unburnable acidic compounds. Solvents with TBP-nitrate complex shows higher (up to 25%) burning rates than pure solvents (kerosene-TBP). The nitrate complex decomposes violently at about 130 0 C with a release of acid and unburnable gases. Up to 20% of the burned kerosene-TBP solvents are released during the fire in the form of soot particles, phosphoric acid and TBP decomposition products. The particles have an aerodynamic mass median diameter of about 0.5 μm and up to 1.5% of the uranium fixed in the TBP-nitrate complex is released during solvent fires. (orig.)

  10. Qualitative criteria and thresholds for low noise asphalt mixture design

    Science.gov (United States)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  11. Performance of Carbon Nanotube/Polysulfone (CNT/Psf Composite Membranes during Oil–Water Mixture Separation: Effect of CNT Dispersion Method

    Directory of Open Access Journals (Sweden)

    Michael Olawale Daramola

    2017-03-01

    Full Text Available Effect of the dispersion method employed during the synthesis of carbon nanotube (CNT/polysulfone-infused composite membranes on the quality and separation performance of the membranes during oil–water mixture separation is demonstrated. Carbon nanotube/polysulfone composite membranes containing 5% CNT and pure polysulfone membrane (with 0% CNT were synthesized using phase inversion. Three CNT dispersion methods referred to as Method 1 (M1, Method 2 (M2, and Method 3 (M3 were used to disperse the CNTs. Morphology and surface property of the synthesized membranes were checked with scanning electron microscopy (SEM and Fourier-transform infrared (FTIR spectroscopy, respectively. Separation performance of the membranes was evaluated by applying the membrane to the separation of oil–water emulsion using a cross-flow filtration setup. The functional groups obtained from the FTIR spectra for the membranes and the CNTs included carboxylic acid groups (O–H and carbonyl group (C=O which are responsible for the hydrophilic properties of the membranes. The contact angles for the membranes obtained from Method 1, Method 2, and Method 3 were 76.6° ± 5.0°, 77.9° ± 1.3°, and 77.3° ± 4.5°, respectively, and 88.1° ± 2.1° was obtained for the pure polysulfone membrane. The oil rejection (OR for the synthesized composite membranes from Method 1, Method 2, and Method 3 were 48.71%, 65.86%, and 99.88%, respectively, indicating that Method 3 resulted in membrane of the best quality and separation performance.

  12. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment.

    Science.gov (United States)

    de Zwart, Dick; Adams, William; Galay Burgos, Malyka; Hollender, Juliane; Junghans, Marion; Merrington, Graham; Muir, Derek; Parkerton, Thomas; De Schamphelaere, Karel A C; Whale, Graham; Williams, Richard

    2018-03-01

    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes, from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent, or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the event mean concentration concept, with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modeling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed of the role of nonchemical stressors in such highly modified urban water bodies. Environ Toxicol Chem 2018;37:703-714. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  13. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    Science.gov (United States)

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  14. Thermophysical properties of binary mixtures of N,N-dimethylformamide with three cyclic ethers

    Directory of Open Access Journals (Sweden)

    Sinha Biswajit

    2013-01-01

    Full Text Available Densities and viscosities of the binary mixtures consisting of tetrahydrofuran (THF, 1,3-dioxolane (1,3-DO and 1,4-dioxane (1,4-DO with N,N-dimethylformamide (DMF over the entire range of composition were measured at temperatures 298.15, 308.15 and 318.15 K and at atmospheric pressure. Ultrasonic speeds of sound of these binary mixtures were measured at ambient temperature and atmospheric pressure (T = 298.15 K and P = 1.01×105 Pa. The various experimental data were utilized to derive excess molar volumes (VmE, excess viscosities (ηE, and excess isentropic compressibilities (κsE. Using the excess molar volumes (VmE, excess partial molar volumes (and and excess partial molar volumes at infinite dilution (and of each liquid component in the mixtures were derived and discussed. Excess molar volumes (VmE as a function of composition at ambient temperature and atmospheric pressure were used further to test the applicability of the Prigogine-Flory-Patterson (PFP theory to the experimental binaries. The excess properties were found to be either negative or positive depending on the nature of molecular interactions and structural effects of liquid mixtures. Em,1V Em,2VE0,m,1VE0,m,2V.

  15. Local composition shift of mixed working fluid in gas–liquid flow with phase transition

    International Nuclear Information System (INIS)

    Xu Xiongwen; Liu Jinping; Cao Le; Li Zeyu

    2012-01-01

    Local composition shift is an important characteristic of gas-liquid mixture flow with phase transition. It affects the heat transfer process, stream sonic velocity and the mixture distribution in the thermodynamic cycle. Presently, it is mainly calculated through the empirical models of the void fraction from pure fluid experiments. In this paper, we made efforts to obtain it and its rules basing on conservation equations derivation. The result calculated with propane/i-butane binary mixture was verified by the experiment in the evaporator of a refrigerator. As an extending, it was applied to a ternary mixture with components of methane, propane and butane and more information was presented and analyzed. The calculation approach presented in this paper can be applied any multicomponent mixture, and the rules will be helpful to improve the composition shift theory. - Highlights: ► Local composition shift of mixed working fluid in gas–liquid flow was modelled. ► A solution method for local composition of gas–liquid flow was proposed. ► The solution method was verified by the experimental result. ► Local composition shift mechanism of gas–liquid flow was studied

  16. Saturated steams pressure of HfCl/sub 4/-KCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smirnov, M V; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-02-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl/sub 4/-KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl/sub 4/). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride.

  17. Volatility of components of saturated vapours of UCl4-CsCl and UCl4-LiCl molten mixtures

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Salyulev, A.B.; Komarov, V.E.; Posokhin, Yu.V.; Afonichkin, V.K.

    1979-01-01

    The flow method has been used for measuring the volatility of the components from UCl 4 -CsCl and UCl 4 -LiCl melted mixtures containing 2.0, 5.0, 12.0, 25.0, 33.0, 50.0, 67.0, and 83.0 mol.% of UCl 4 within the temperature ranges of 903-1188 K and 740-1200 K, respectively. The chemical composition of saturated vapours above the melted salts has been determined. The melted mixtures in question exhibit negative deviation from ideal behaviour. Made was the conclusion about the presence in a vapour phase, along with monomeric UCl 4 , LiCl, CsCl and Li 2 Cl 2 , Cs 2 Cl 2 dimers of double compounds of the MeUCl 5 most probable composition. Their absolute contribution into a total pressure above the UCl 4 -CsCl melted mixtures is considerably smaller than above the UCl 4 -LiCl mixtures

  18. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  19. Protein-peptide interactions in mixtures of whey peptides and whey proteins

    NARCIS (Netherlands)

    Creusot, N.; Gruppen, H.

    2007-01-01

    The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were

  20. The effect of heat exchanger parameters on performance predictions for nonazeotropic refrigerant mixtures in liquid-liquid heat pumps

    International Nuclear Information System (INIS)

    Stanger, S.; Den Braven, K.R.; Owre, T.A.S.

    1990-01-01

    The effects of constant heat exchanger area on the coefficient of performance (COP) for liquid-liquid heat pumps were analyzed for systems which use nonazeotropic mixtures as the working fluid. For this analysis, two different computer models were compared. In the first, the log mean temperature differences (LMTDs) through the heat exchangers were specified, and were held constant for all refrigerant compositions. The second method was constructed so that the heat exchanger UA product was held constant, thus approximating constant heat exchanger area over a range of refrigerant compositions. Results from these models show only a one percent difference in COP prediction between holding LMTD constant and holding UA constant over the range of mixture composition. This paper reports the models compared using mixtures of R-22/R-11 and R-22/R-114. It is also shown that changes in glide and lift temperatures have little influence on the differences between the two models

  1. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  2. Excess Molar Volume,Viscosity and Heat Capacity for the Mixture of 1,2—Propanediol—Water at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 唐多强; 靳凤民

    2003-01-01

    Experimental densities,viscosities and heat capacities at different emperatures were presented over the entire mole fraction range for the binary mixture of 1,2-propanediol and water,Density values were used in the determination of excess molar volumes,VE,At the same time,the excess viscosity was in vestigated,The values of VE and ηE were fitted to the Redlich-kister equation.Good agreement was observed,The excess volumes are negative over the entire range of composition.They show an U-shaped-concentration dependence and decrease in abolute values with increase of temperature,Values of ηE are negative over the entire range of the composition,and has a trend very similar to that of VE ,The analysis shows that at any temperature the specific heat of mixture is a linear function of the composition as x1>20%,All the extended lines intersect at one point.An empirical equation is obtained to calculate the specific heat to mixture at any composition and temperature in the experimental range.

  3. Densities and volumetric properties of (acetonitrile+an amide) binary mixtures at temperatures between 293.15K and 318.15K

    International Nuclear Information System (INIS)

    Nain, Anil Kumar

    2006-01-01

    The densities of binary mixtures of acetonitrile (ACN) with formamide (FA), N,N-dimethylformamide (DMF), N-methylacetamide (NMA), and N,N-dimethylacetamide (DMA), including those of pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E , and partial molar volumes, V-bar m,1 and V-bar m,2 , were calculated over whole composition range. The variation of these parameters with composition and temperature of the mixtures has been discussed in terms of molecular interaction in these mixtures. The V m E values were found negative for all the mixtures and at each temperature studied, indicating the presence of specific interactions between ACN and amide molecules. The extent of negative deviations in V m E values follows the order: FA>NMA>DMA>DMF. It is observed that the V m E values depend upon the positions of methyl groups in these amide molecules

  4. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  5. Production of radiation crosslinked polymeric compositions using diacetylenes

    International Nuclear Information System (INIS)

    Patel, G.N.

    1979-01-01

    Crosslinked polymeric compositions, useful as electrical insulators, heat shrinkable packaging, and lightweight foam plastics, are described. The crosslinked polymeric compositions are produced by admixing a diacetylene monomer, oligomer, polymer or mixture thereof, wherein the monomer has the formula, RNHCO-O-CH 2 -C==C-C==C-CH- 2 -O-OCNHR' in which R and R' are the same or different and are alkyl containing 1 to 20 carbon atoms, with a thermoplastic crosslinkable polymer and then subjecting the resulting mixture to actinic radiation

  6. An approach for assessing human exposures to chemical mixtures in the environment

    International Nuclear Information System (INIS)

    Rice, Glenn; MacDonell, Margaret; Hertzberg, Richard C.; Teuschler, Linda; Picel, Kurt; Butler, Jim; Chang, Young-Soo; Hartmann, Heidi

    2008-01-01

    Humans are exposed daily to multiple chemicals, including incidental exposures to complex chemical mixtures released into the environment and to combinations of chemicals that already co-exist in the environment because of previous releases from various sources. Exposures to chemical mixtures can occur through multiple pathways and across multiple routes. In this paper, we propose an iterative approach for assessing exposures to environmental chemical mixtures; it is similar to single-chemical approaches. Our approach encompasses two elements of the Risk Assessment Paradigm: Problem Formulation and Exposure Assessment. Multiple phases of the assessment occur in each element of the paradigm. During Problem Formulation, analysts identify and characterize the source(s) of the chemical mixture, ensure that dose-response and exposure assessment measures are concordant, and develop a preliminary evaluation of the mixture's fate. During Exposure Assessment, analysts evaluate the fate of the chemicals comprising the mixture using appropriate models and measurement data, characterize the exposure scenario, and estimate human exposure to the mixture. We also describe the utility of grouping the chemicals to be analyzed based on both physical-chemical properties and an understanding of environmental fate. In the article, we also highlight the need for understanding of changes in the mixture composition in the environment due to differential transport, differential degradation, and differential partitioning to other media. The section describes the application of the method to various chemical mixtures, highlighting issues associated with assessing exposures to chemical mixtures in the environment

  7. A combined experimental and computational investigation of excess molar enthalpies of (nitrobenzene + alkanol) mixtures

    International Nuclear Information System (INIS)

    Neyband, Razieh Sadat; Zarei, Hosseinali

    2015-01-01

    Highlights: • Excess molar enthalpies for the binary mixtures of nitrobenzene + alkanols mixtures were measured. • The infinite dilution excess partial molar enthalpies were calculated using the ab initio methods. • The PCM calculations were performed. • The computed excess partial molar enthalpies at infinite dilution were compared to experimental results. - Abstract: Excess molar enthalpies (H m E ) for the binary mixtures of {(nitrobenzene + ethanol), 1-propanol, 2-propanol, 1-butanol and 2-butanol} have been measured over the entire composition range at ambient pressure (81.5 kPa) and temperature 298 K using a Parr 1455 solution calorimeter. From the experimental results, the excess partial molar enthalpies (H i E ) and excess partial molar enthalpies at infinite dilution (H i E,∞ ) were calculated. The excess molar enthalpies (H m E ) are positive for all {nitrobenzene (1) + alkanol (2)} mixtures over the entire composition range. A state-of-the-art computational strategy for the evaluation of excess partial molar enthalpies at infinite dilution was followed at the M05-2X/6-311++G ∗∗ level of theory with the PCM model. The experimental excess partial molar enthalpies at infinite dilution have been compared to the computational data of the ab initio in liquid phase. Integrated experimental and computational results help to clarify the nature of the intermolecular interactions in {nitrobenzene (1) + alkanol (2)} mixtures. The experimental and computational work which was done in this study complements and extends the general research on the computation of excess partial molar enthalpy at infinite dilution of binary mixtures

  8. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems

    International Nuclear Information System (INIS)

    Rajapaksha, Leelananda

    2007-01-01

    The use of zeotropic refrigerant mixtures introduces a number of novel issues that affect the established design and operational practices of vapour compression systems used in refrigeration, air conditioning and heat pump applications. Two attributes; composition shift and temperature glide, associated with the phase changing process of zeotropic mixtures are the primary phenomena that bring in these issues. However, relevant researches are uncovering ways how careful system designs and selection of operational parameters allow improving the energy efficiency and the capacity of vapour compression refrigeration systems. Most of these concepts exploit the presence of composition shift and temperature glide. This paper qualitatively discusses how the mixture attributes influence the established heat exchanger design practices, performance and operation of conventional vapour compression systems. How the temperature glide and composition shift can be incorporated to improve the system performance and the efficiency are also discussed

  9. Optimal mixture experiments

    CERN Document Server

    Sinha, B K; Pal, Manisha; Das, P

    2014-01-01

    The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model.  Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...

  10. Ion mobilities in Xe/Ne and other rare-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, D; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT), UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse (France); Phelps, A V [JILA, University of Colorado and National Institute of Technology, Boulder, Colorado (United States); Urquijo, J de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Post Office Box 48-3, 62251, 80309-0440 Cuernavaca, Moreno (Mexico); Basurto, E [Departmento de Ciencias Basicas, Universidad Autonoma Metropolitana, 02200 Mexico Distrito Federal (Mexico)

    2003-10-01

    The ion mobility or drift velocity data important for modeling glow discharges in rare gas mixtures are not generally available, nor are the ion-neutral scattering cross sections needed to calculate these data. In this paper we propose a set of cross sections for Xe{sup +} and Ne{sup +} collisions with Xe and Ne atoms. Ion mobilities at 300 K calculated using this cross section set in a Monte Carlo simulation are reported for reduced field strengths, E/N, up to 1500x10{sup -21} V m{sup 2}, in pure gases and in Xe/Ne mixtures containing 5% and 20% Xe/Ne, which are mixtures of interest for plasma display panels (PDPs). The calculated Xe{sup +} mobilities depend strongly on the mixture composition, but the Ne{sup +} mobility varies only slightly with increasing Xe in the mixture over the range studied here. The mobilities in pure gases compare well with available experimental values, and mobilities in gas mixtures at low E/N compare well with our recent measurements which will be published separately. Results from these calculations of ion mobilities are used to evaluate the predictions of Blanc's law and of the mixture rule proposed by Mason and Hahn [Phys. Rev. A 5, 438 (1972)] for determining the ion mobilities in mixtures from a knowledge of the mobilities in each of the pure gases. The mixture rule of Mason and Hahn is accurate to better than 10% at high field strengths over a wide range of conditions of interest for modeling PDPs. We conclude that a good estimate of ion mobilities at high E/N in Xe/Ne and other binary rare gas mixtures can be obtained using this mixture rule combined with known values of mobilities in parent gases and with the Langevin form for mobility of rare gas ions ion in other gases. This conclusion is supported by results in Ar/Ne mixtures which are also presented here.

  11. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    Science.gov (United States)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  12. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  13. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu Li; Travis, Larry D.; Lacis, Andrew A.

    2004-01-01

    The superposition T-matrix method is used to compute the scattering of unpolarized light by semi-external aerosol mixtures in the form of polydisperse, randomly oriented two-particle clusters with touching components. The results are compared with those for composition-equivalent external aerosol mixtures, in which the components are widely separated and scatter light in isolation from each other. It is concluded that aggregation is likely to have a relatively weak effect on scattering and radiative properties of two-component tropospheric aerosols and can be replaced by the much simpler external-mixture model in remote sensing studies and atmospheric radiation balance computations

  14. Evaluation of an unsteady flamelet progress variable model for autoignition and flame development in compositionally stratified mixtures

    Science.gov (United States)

    Mukhopadhyay, Saumyadip; Abraham, John

    2012-07-01

    The unsteady flamelet progress variable (UFPV) model has been proposed by Pitsch and Ihme ["An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion," AIAA Paper No. 2005-557, 2005] for modeling the averaged/filtered chemistry source terms in Reynolds averaged simulations and large eddy simulations of reacting non-premixed combustion. In the UFPV model, a look-up table of source terms is generated as a function of mixture fraction Z, scalar dissipation rate χ, and progress variable C by solving the unsteady flamelet equations. The assumption is that the unsteady flamelet represents the evolution of the reacting mixing layer in the non-premixed flame. We assess the accuracy of the model in predicting autoignition and flame development in compositionally stratified n-heptane/air mixtures using direct numerical simulations (DNS). The focus in this work is primarily on the assessment of accuracy of the probability density functions (PDFs) employed for obtaining averaged source terms. The performance of commonly employed presumed functions, such as the dirac-delta distribution function, the β distribution function, and statistically most likely distribution (SMLD) approach in approximating the shapes of the PDFs of the reactive and the conserved scalars is evaluated. For unimodal distributions, it is observed that functions that need two-moment information, e.g., the β distribution function and the SMLD approach with two-moment closure, are able to reasonably approximate the actual PDF. As the distribution becomes multimodal, higher moment information is required. Differences are observed between the ignition trends obtained from DNS and those predicted by the look-up table, especially for smaller gradients where the flamelet assumption becomes less applicable. The formulation assumes that the shape of the χ(Z) profile can be modeled by an error function which remains unchanged in the presence of heat release. We show that this

  15. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    Science.gov (United States)

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  16. Dip-in Indicators for Visual Differentiation of Fuel Mixtures Based on Wettability of Fluoroalkylchlorosilane-Coated Inverse Opal Films.

    Science.gov (United States)

    Sedighi, Abootaleb; Qiu, Shuang; Wong, Michael C K; Li, Paul C H

    2015-12-30

    We have developed the dip-in indicator based on the inverse opal film (IOF) for visual differentiation of organic liquid mixtures, such as oil/gasoline or ethanol/gasoline fuel mixtures. The IOF consists of a three-dimensional porous structure with a highly ordered periodic arrangement of nanopores. The specularly reflected light at the interface of the nanopores and silica walls contributes to the structural color of the IOF film. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica. The disappearance of the structural color provides a means to differentiate various liquid fuel mixtures based on their wettability of the nanopores in the IOF-based indicators. For differentiation of various liquid mixtures, we tune the wettability threshold of the indicator in such a way that it is wetted (color disappears) by one liquid but is not wetted by the other (color remains). Although colorimetric differentiation of liquids based on IOF wettability has been reported, differentiation of highly similar liquid mixtures require complicated readout approaches. It is known that the IOF wettability is controlled by multiple surface properties (e.g., oleophobicity) and structural properties (e.g., neck angle and film thickness) of the nanostructure. Therefore, we aim to exploit the combined tuning of these properties for differentiation of fuel mixtures with close compositions. In this study, we have demonstrated that, for the first time, the IOF-based dip-in indicator is able to detect a slight difference in the fuel mixture composition (i.e., 0.4% of oil content). Moreover, the color/no-color differentiation platform is simple, powerful, and easy-to-read. This platform makes the dip-in indicator a promising tool for authentication and determination of fuel composition at the point-of-purchase or point-of-use.

  17. Combustion of stratified hydrogen-air mixtures in the 10.7 m3 Combustion Test Facility cylinder

    International Nuclear Information System (INIS)

    Whitehouse, D.R.; Greig, D.R.; Koroll, G.W.

    1996-01-01

    This paper presents preliminary results from hydrogen concentration gradient combustion experiments in a 10.7 m 3 cylinder. These gradients, also referred to as stratified mixtures, were formed from dry mixtures of hydrogen and air at atmospheric temperature. Combustion pressures, burn fractions and flame speeds in concentration gradients were compared with combustion of well-mixed gases containing equivalent amounts of hydrogen. The studied variables included the quantity of hydrogen in the vessel, the steepness of the concentration gradient, the igniter location, and the initial concentration of hydrogen at the bottom of the vessel. Gradients of hydrogen and air with average concentrations of hydrogen below the downward propagation limit produced significantly greater combustion pressures when ignited at the top of the vessel than well-mixed gases with the same quantity of hydrogen. This was the result of considerably higher burn fractions in the gradients than in the well-mixed gas tests. Above the downward propagation limit, gradients of hydrogen ignited at the top of the vessel produced nearly the same combustion pressures as under well-mixed conditions; both gradients and well-mixed gases had high burn fractions. Much higher flame speeds were observed in the gradients than the well-mixed gases. Gradients and well-mixed gases containing up to 14% hydrogen ignited at the bottom of the vessel produced nearly the same combustion pressures. Above 14% hydrogen, gradients produced lower combustion pressures than well-mixed gases having the same quantity of hydrogen. This can be attributed to lower burn fractions of fuel from the gradients compared with well-mixed gases with similar quantities of hydrogen. When ignited at the bottom of the vessel, 90% of a gradient's gases remained unburned until several seconds after ignition. The remaining gases were then consumed at a very fast rate. (orig.)

  18. The (water + acetonitrile) mixture revisited: A new approach for calculating partial molar volumes

    International Nuclear Information System (INIS)

    Carmen Grande, Maria del; Julia, Jorge Alvarez; Barrero, Carmen R.; Marschoff, Carlos M.; Bianchi, Hugo L.

    2006-01-01

    Density and viscosity of (water + acetonitrile) mixtures were measured over the whole composition range at the temperatures: (298.15, 303.15, 308.15, 313.15, and 318.15) K. A new mathematical approach was developed which allows the calculation of the derivatives of density with respect to composition avoiding the appearance of local discontinuities. Thus, reliable partial molar volumes and thermal expansion coefficients were obtained

  19. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 2

    International Nuclear Information System (INIS)

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-01-01

    Part 1 (Cooley and Piepel, 2003a) describes the first stage of a two-stage experimental design to support property-composition modeling for high-level waste (HLW) glass to be produced at the Hanford Site in Washington state. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. However, the design variables and constraints defining the layers of the experimental glass composition region (EGCR) were defined differently for the second stage than for the first. The first-stage initial design involved 15 components, all treated as mixture variables. The second-stage augmentation design involved 19 components, with 14 treated as mixture variables and 5 treated as non-mixture variables. For each second-stage layer, vertices were generated and optimal design software was used to select alternative subsets of vertices for the design and calculate design optimality measures. A model containing 29 partial quadratic mixture terms plus 5 linear terms for the non-mixture variables was the basis for the optimal design calculations. Predicted property values were plotted for the alternative subsets of second-stage vertices and the first-stage design points. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer of the second-stage to augment the first-stage design

  20. A role of low dose chemical mixtures in adipose tissue in carcinogenesis.

    Science.gov (United States)

    Lee, Duk-Hee; Jacobs, David R; Park, Ho Yong; Carpenter, David O

    2017-11-01

    The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characteristic of bioplastic’s physical and mechanical (Study on Tapioca Concentration and Composition Mixture of Plasticizer

    Directory of Open Access Journals (Sweden)

    Bambang Admadi Harsojuwono

    2016-03-01

    Full Text Available This study aims to (1 the effect of the concentration of starch and  ratio mixture of plasticizer to the physical and mechanical characteristics of bioplastics (2 determine the concentration of starch and plasticizer RATIO mixture  that results in physical and mechanical characteristics of bio plastics best. The experiment was conducted using a factorial randomized block design. The first factor is the concentration of tapioca consisting of 3 levels 4%, 5% and 6% (w / w. The second factor is the   mixture plasticizer ratio  of glycerol and sorbitol   consisting of 5 levels ie (100: 0%, (95: 5%, (90:10%, (85:15%, (80:20% b / b. Each combination of treatments classified into 2 time  processing bio plastics, so there are 30 experimental units. Variables observed water content, elongation at break, tensile strength and Young's modulus . The data obtained were analyzed of variant and  test of Duncan's. The results showed that the concentration of tapioca and  mixture plasticizer had no effect on water content but significant effect on the elongation at break, tensile strength and Young's modulus. The concentration of starch 6% with a ratio of mixture of plasticizers glycerol: sorbitol ( 100: 0 produces the best characteristics of bioplastics with water content of 3.98%, elongation at break of 18.75%, the tensile strength of 930 MPa and a Young's modulus of 50 MPa.

  2. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Experimental and calculated partial molar volumes (V ¯ m,1 ) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V m E , isobaric thermal expansivity α p , partial molar volumes V ¯ m,i and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures

  3. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  4. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper

    2003-01-01

    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... during in-cylinder post oxidation. The Arrhenius parameters were determined using the reaction mechanism, which gave the prediction of the results from the combustion reactor experiments. The investigation showed that addition of producer gas to natural gas promotes the in-cylinder post oxidation...... significantly. Furthermore it was found that the cyclic variation in the post oxidation is reduced by addition of producer gas to natural gas....

  5. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  6. Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2018-01-01

    Full Text Available The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC, ceramic powder up to 25% by mass (by 5% as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.

  7. Peak quantification in surface-enhanced laser desorption/ionization by using mixture models

    NARCIS (Netherlands)

    Dijkstra, Martijn; Roelofsen, Han; Vonk, Roel J.; Jansen, Ritsert C.

    2006-01-01

    Surface-enhanced laser desorption/ionization (SELDI) time of flight (TOF) is a mass spectrometry technology for measuring the composition of a sampled protein mixture. A mass spectrum contains peaks corresponding to proteins in the sample. The peak areas are proportional to the measured

  8. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  9. PURIFICATION AND ENRICHMENT OF BIOGAS IN ASH-WATER MIXTURE

    Directory of Open Access Journals (Sweden)

    Andrzej Brudniak

    2014-10-01

    Full Text Available Biogas, produced in an aerobic digestion process, is a mixture of gases, and that is why its inexpensive and effective valorisation is essential. Research on this process is necessary in order to use biogas as a renewable energy source. The aim of this thesis is to present methods of biogas purification and enrichment in the fly ash - water mixture, that is generated on the base of fly ash produced during burning coal in power industry. Experience presented that the fly ash absorbs CO2 and H2S, even in conventional conditions. The absorption efficiency depends not only on the chemical composition of the ash but also on its physical properties. There was also a strong neutralization of alkaline waste combustion.

  10. Chemistry and technology of radiation processed composite materials

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting, e.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene. (author)

  11. Transesterification of camelina sativa oil with supercritical alcohol mixtures

    International Nuclear Information System (INIS)

    Sun, Yingqiang; Ponnusamy, Sundaravadivelnathan; Muppaneni, Tapaswy; Reddy, Harvind K.; Wang, Jun; Zeng, Zheling; Deng, Shuguang

    2015-01-01

    Highlights: • Transesterification of camelina oil under supercritical methanol/ethanol and 1-butanol mixture conditions. • Chemical composition of fatty acid methyl esters, ethyl esters and butyl esters. • Effect of different alcohol molar ratio on biodiesel yields. • Effect of different alcohol molar ratio on physical properties of biodiesel products. - Abstract: The transesterification of camelina sativa oil with methanol–1-butanol, and ethanol–1-butanol alcohol mixtures under supercritical conditions have been studied in order to maximize biodiesel yield and improve biodiesel quality. The influence of the variation of the molar ratio of methanol–1-butanol and ethanol–1-butanol from 1:0, 3:1, 2:1, 1:1, 1:2, to 0:1 on the yield of free fatty methyl esters/free fatty ethanol esters–free fatty acid butyl esters, the composition of the biodiesel blend mixtures, and the physical properties of the biodiesel have been investigated at the reaction temperature of 290 °C, reaction time of 30 min, and the initial reaction pressure of 500 psi. A maximum yield of 86.14 wt% for free fatty acid methyl esters–free fatty acid butyl esters with the optimum cold property can be obtained at the molar ratio of methanol–1-butanol of 0.5–0.9. Also, a maximum yield of 85.60 wt% for free fatty ethyl esters–free fatty butyl esters with the lowest pour point can be achieved at the molar ratio of ethanol–1-butanol in the range of 0.5–0.7

  12. Composition dependent non-ideality in aqueous binary mixtures as ...

    Indian Academy of Sciences (India)

    SBBM) where two constituents dislike each other, yet remain macroscopically homogeneous at intermediate to high temperatures. Interestingly, we find that the origin of strong composition dependent non-ideal behaviour lies in its phase ...

  13. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  14. Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.

    Directory of Open Access Journals (Sweden)

    Alrun Siebenkäs

    Full Text Available Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs and two growth statures (small, tall, and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1 and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass. Both trait-independent complementarity effects (TICE: +21% and dominance effects (DE: +12% positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%. Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that

  15. Quality improvement of melt extruded laminar systems using mixture design.

    Science.gov (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. NON-EQUILIBRIUM MOLECULAR DYNAMICS USED TO OBTAIN SORET COEFFICIENTS OF BINARY HYDROCARBON MIXTURES

    Directory of Open Access Journals (Sweden)

    F. A. Furtado

    2015-09-01

    Full Text Available AbstractThe Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD method is employed to evaluate Soret coefficients of binary mixtures. Using a n-decane/n-pentane mixture at 298 K, we study several parameters and conditions of the simulation procedure such as system size, time step size, frequency of perturbation, and the undesired warming up of the system during the simulation. The Soret coefficients obtained here deviated around 20% when comparing with experimental data and with simulated results from the literature. We showed that fluctuations in composition gradients and the consequent deviations of the Soret coefficient may be due to characteristic fluctuations of the composition gradient. Best results were obtained with the smallest time steps and without using a thermostat, which shows that there is room for improvement and/or development of new BD-NEMD algorithms.

  17. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  18. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  19. P, ρ, and T measurements of the (limonene + β-pinene) mixtures

    International Nuclear Information System (INIS)

    Langa, Elisa; Palavra, Antonio M.F.; Nieto de Castro, Carlos A.; Mainar, Ana M.

    2012-01-01

    Highlights: ► Density as a function of P, T and composition was measured for pinene mixtures. ► Isothermal compressibility and coefficients of cubic expansion were also calculated. ► Usual behaviour of these three properties was found. ► SAFT and PC-SAFT were used as predictive models, showing PC-SAFT the best predictions. - Abstract: The density, ρ, and two derived properties, isothermal compressibility, κ T , and the coefficient of cubic expansion, α P , were obtained for the mixtures of 1-methyl-4-(1-methylethenyl)-cyclohexene, known as limonene, and (1S,5S)-6,6-dimethyl-2-methylenebibyclo[3.1.1]heptane, known as β-pinene, for nine different compositions and the pure components at five pressures from 20 MPa to 40 MPa and six temperatures from 283.15 K to 358.15 K. The experimental uncertainty for ρ, κ T , and α P were respectively ±0.5 kg · m −3 , ±14 TPa −1 , and ±0.005k K −1 , with k = 2 for all of them. Density behaviour with temperature and pressure was as expected. The values of α P and κ T increase with temperature and decrease with increasing pressure. Two different equations of state, conventional SAFT and PC-SAFT, were applied to predict the densities of the mixture. The best predictions were achieved with PC-SAFT.

  20. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  1. Thermogravimetric analysis of the polymer acrylate-vinyl ether mixture cured by radiation

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    1998-01-01

    An experiment on thermal stability of the polymer acrylate-vinyl ether mixture cured by radiation have been done using thermogravimetric analysis. Three kinds of acrylic oligomers i.e., epoxy acrylate, urethane acrylate, and polypropylene glycol diacrylate, and vinyl ether monomers i.e., triethylene glycol divinyl ether (DVE-3), 1,4-cyclohexane dimethanol divinyl ether (CHVE), and butanediol monovinyl ether (HBVE) were used in the experiment. Reaction was taken via radical and cationic polymerisation. In case of cationic polymerisation, diphenyliodonium hexafluorophosphate fotoinisiator was used in the formulation. Thermogravimetric analysis was conducted in a nitrogen atmosphere at a flow rate of 40 ml/minute with a constant heating rate 10 o C and evaluation range were done from 25 to 500 o C. The results of thermogravimetric analysis showed that acrylate and DVE-3 mixture produced the polymer films with higher thermal stability than the mixture of acrylate with CHVE or HBVE. The composition of acrylate-vinyl ether mixture and degree of unsaturation of vinyl ether monomers influenced the thermal stability of polymer. The mixture of epoxy acrylate-vinyl ether and polypropylene glycol diacrylate-vinyl ether have 1 initial decomposition temperature whereas the urethane acrylate-vinyl ether mixture has 2 initial decomposition temperatures. (authors)

  2. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N,N-dimethylacetamide at 308.15 K

    International Nuclear Information System (INIS)

    Sreekanth, K.; Sravana Kumar, D.; Kondaiah, M.; Krishna Rao, D.

    2011-01-01

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N,N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb's free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties. -- Research highlights: → Volumetric and viscometric studies of liquid mixtures are useful in pharmacy field. → Molecular interactions in ethanol and N,N-dimethylacetamide with alcohols are studied. → Weak interactions observed due to rupture of hydrogen bond between alcohol molecules. → Measured viscosity values compared with theoretical values obtained by polynomials.

  3. Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.

    2017-09-01

    The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.

  4. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  5. comparative proximate composition and antioxidant vitamins

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Comparative, proximate composition, antioxidant vitamins, honey. INTRODUCTION ... solution of inverted sugars and complex mixture of other saccharides ... enzymatic browning in apple slices and grape juice. (Khan, 1985).

  6. Purification of iodine-containing mixtures and compositions useful therefor

    International Nuclear Information System (INIS)

    Cobb, R.L.

    1987-01-01

    This patent describes a process for the preparation by distillation of essentially colorless hydrocarbon product substantially free of color-forming impurities, which process comprises: (a) adding 0.02 to 0.10 wt% of a metal, M, to a solution comprising: (i) a hydrocarbon product having 8-30 carbon atoms, and (ii) at least one color-forming impurity selected from the group consisting of: I/sub 2/, and R-I, wherein R is H or an organic radical having 1-30 carbon atoms, inclusive. The color-forming impurity and the metal interact under distillation conditions form a complex, MI/sub n/, where n is equal to the valence of the metal M, and the complex MI/sub n/ is non-volatile and essentially non-decomposable under distillation conditions; (b) subjecting the resulting mixture to distillation conditions; and (c) recovering essentially colorless hydrocarbon product as the overhead fraction from the distillation

  7. Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + propylene carbonate binary mixtures

    International Nuclear Information System (INIS)

    Vraneš, Milan; Zec, Nebojša; Tot, Aleksandar; Papović, Snežana; Dožić, Sanja; Gadžurić, Slobodan

    2014-01-01

    Highlights: • Densities of [bmim][NTf 2 ] mixtures with propylene carbonate were measured. • Excess properties were calculated. • Formation of hydrogen bonds between IL and PC was discussed. • Electrical conductivity and viscosity were also measured. • Influence of temperature and composition on mixture properties were studied. -- Abstract: Densities of binary liquid mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][NTf 2 ], with propylene carbonate (PC) were measured at temperatures from (293.15 to 323.15) K and at atmospheric pressure over the whole composition range. The electrical conductivity was measured in the range from (293.15 to 328.15) K. Also, viscosity of [bmim][NTf 2 ] + PC binary mixtures was measured from (298.15 to 333.15) K. Excess molar volumes, V E , have been obtained from the experimental densities and were fitted to Redlich–Kister polynomial equation. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes and partial molar volumes at infinite dilution have been also calculated, in order to obtain information about interactions between PC and selected ionic liquid. Results are discussed in order to understand the hydrogen bonds formation between components of the mixture

  8. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  9. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  10. Evaluation of thermodynamic properties of fluid mixtures by PC-SAFT model

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Mohammad, E-mail: m.almasi@khouzestan.srbiau.ac.ir

    2014-09-10

    Experimental and calculated partial molar volumes (V{sup ¯}{sub m,1}) of MIK with (♦) 2-PrOH, (♢) 2-BuOH, (●) 2-PenOH at T = 298.15 K. (—) PC-SAFT model. - Highlights: • Densities and viscosities of the mixtures (MIK + 2-alkanols) were measured. • PC-SAFT model was applied to correlate the volumetric properties of binary mixtures. • Agreement between experimental data and calculated values by PC-SAFT model is good. - Abstract: Densities and viscosities of binary mixtures of methyl isobutyl ketone (MIK) with polar solvents namely, 2-propanol, 2-butanol and 2-pentanol, were measured at 7 temperatures (293.15–323.15 K) over the entire range of composition. Using the experimental data, excess molar volumes V{sub m}{sup E}, isobaric thermal expansivity α{sub p}, partial molar volumes V{sup ¯}{sub m,i} and viscosity deviations Δη, have been calculated due to their importance in the study of specific molecular interactions. The observed negative and positive values of deviation/excess parameters were explained on the basis of the intermolecular interactions occur in these mixtures. The Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) has been used to correlate the volumetric behavior of the mixtures.

  11. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  12. Method for preparing ceramic composite

    Science.gov (United States)

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  13. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  14. Plant composition, pharmacological properties and mutagenic evaluation of a commercial Zulu herbal mixture: Imbiza ephuzwato.

    Science.gov (United States)

    Ndhlala, A R; Finnie, J F; Van Staden, J

    2011-01-27

    Imbiza ephuzwato is a traditional herbal tonic made from a mixture of extracts of roots, bulbs, rhizomes and leaves of 21 medicinal plants and is used in traditional medicine as a multipurpose remedy. To compile and investigate the bioactivity and mutagenic effects of extracts of the 21 plant species used in the preparation of Imbiza ephuzwato herbal tonic. The 21 plant species used to make Imbiza ephuzwato herbal mixture were each investigated for their pharmacological properties. Petroleum ether (PE), dichloromethane (DCM), 80% ethanol (EtOH) and water extracts of the 21 plants were evaluated against two gram-positive, two gram-negative bacteria and a fungus Candida albicans. The extracts were also evaluated for their inhibitory effects against cyclooxygenase (COX-1 and -2) and acetylcholinesterase AChE enzymes. Mutagenic effects of the water extracts were evaluated using the Ames test. Gunnera perpensa and Rubia cordifolia were the only plant species used to manufacture Imbiza ephuzwato that had water extracts which showed good antibacterial activity. The extracts of G. perpensa (EtOH), Hypericum aethiopicum (DCM) and Urginea physodes (EtOH) showed the best antifungal activity. The water extracts of H. aethiopicum, G. perpensa, Drimia robusta, Vitellariopsis marginata, Scadoxus puniceus and Momordica balsamina showed percentage inhibition of COX-1 that was over 70%. For COX-2 enzyme, the water extracts of G. perpensa, Cyrtanthus obliquus, M. balsamina and Tetradenia riparia exhibited inhibitory activity above 70%. Water extracts of G. perpensa, C. obliquus, V. marginata, Asclepias fruticosa and Watsonia densiflora showed good AChE inhibitory activity (>80%). The Ames test results revealed that all the water extracts of the 21 plant species used to make Imbiza ephuzwato were non-mutagenic towards the Salmonella typhimurium TA98 strain for the assay with and without S9 metabolic activation. In contrast, Imbiza ephuzwato showed mutagenic effects after exposure to S

  15. Viscosity and density study for characterization of oil mixtures; Estudo da viscosidade e densidade para caracterizacao das misturas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michelle I.; Azevedo, Vildomar S.; Jacinto, Tulio Wagner B. [Aurizonia Petroleo S.A, Natal, RN (Brazil); Vieira, Mariane; Vidal, Rosangela Regia Lima; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The oil can be defined as a mixture of hydrocarbons and sulphur, nitrogen and oxygenated organic derivatives at lower amount. There is a practical difficulty of analytical determination of the oil composition, mainly due to the large quantity of medium and heavy oil fractions. For heavier fractions, it is necessary to infer the composition of the cut from properties that can be readily obtained in the laboratory, such as refraction index, density and viscosity. The analysis of oil composition and its fractions is important information on various aspects (IOB et al., 1996): determining the operating conditions of refining, selection of suitable catalysts and mixing operations ('blending'), the economic evaluation of mixtures and analysis of environmental impact due to emissions. The first study on characterization of fractions of the oil was reported by Hill and Coats (1928), who set an empirical relationship between the density and Saybolt viscosity named viscosity-density constant (VGC). The statement was obtained from the analysis of the density with the oil viscosity changes. Physical properties such as density, boiling point and viscosity can be used to classify the oil. The aim of this work was to classify oil fractions based on viscosity-density constant, using mixtures of oils with different APIs. The results showed that there is an optimum composition for each mixture, and the addition of more oil of medium classification does not lead to potential commercial oil. (author)

  16. Volatility of components of saturated vapours of UCl/sub 4/-CsCl and UCl/sub 4/-LiCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Salyulev, A B; Komarov, V E; Posokhin, Yu V; Afonichkin, V K

    1979-01-01

    The flow method has been used for measuring the volatility of the components from UCl/sub 4/-CsCl and UCl/sub 4/-LiCl melted mixtures containing 2.0, 5.0, 12.0, 25.0, 33.0, 50.0, 67.0, and 83.0 mol.% of UCl/sub 4/ within the temperature ranges of 903-1188 K and 740-1200 K, respectively. The chemical composition of saturated vapours above the melted salts has been determined. The melted mixtures in question exhibit negative deviation from ideal behaviour. Made was the conclusion about the presence in a vapour phase, along with monomeric UCl/sub 4/, LiCl, CsCl and Li/sub 2/Cl/sub 2/, Cs/sub 2/Cl/sub 2/ dimers of double compounds of the MeUCl/sub 5/ most probable composition. Their absolute contribution into a total pressure above the UCl/sub 4/-CsCl melted mixtures is considerably smaller than above the UCl/sub 4/ -LiCl mixtures.

  17. Gas-particle partitioning of semivolatile organic compounds (SOCs) on mixtures of aerosols in a smog chamber.

    Science.gov (United States)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M

    2003-09-15

    The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of

  18. Inclusion probability for DNA mixtures is a subjective one-sided match statistic unrelated to identification information.

    Science.gov (United States)

    Perlin, Mark William

    2015-01-01

    DNA mixtures of two or more people are a common type of forensic crime scene evidence. A match statistic that connects the evidence to a criminal defendant is usually needed for court. Jurors rely on this strength of match to help decide guilt or innocence. However, the reliability of unsophisticated match statistics for DNA mixtures has been questioned. The most prevalent match statistic for DNA mixtures is the combined probability of inclusion (CPI), used by crime labs for over 15 years. When testing 13 short tandem repeat (STR) genetic loci, the CPI(-1) value is typically around a million, regardless of DNA mixture composition. However, actual identification information, as measured by a likelihood ratio (LR), spans a much broader range. This study examined probability of inclusion (PI) mixture statistics for 517 locus experiments drawn from 16 reported cases and compared them with LR locus information calculated independently on the same data. The log(PI(-1)) values were examined and compared with corresponding log(LR) values. The LR and CPI methods were compared in case examples of false inclusion, false exclusion, a homicide, and criminal justice outcomes. Statistical analysis of crime laboratory STR data shows that inclusion match statistics exhibit a truncated normal distribution having zero center, with little correlation to actual identification information. By the law of large numbers (LLN), CPI(-1) increases with the number of tested genetic loci, regardless of DNA mixture composition or match information. These statistical findings explain why CPI is relatively constant, with implications for DNA policy, criminal justice, cost of crime, and crime prevention. Forensic crime laboratories have generated CPI statistics on hundreds of thousands of DNA mixture evidence items. However, this commonly used match statistic behaves like a random generator of inclusionary values, following the LLN rather than measuring identification information. A quantitative

  19. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  20. Characterization of composite biofilms of wheat gluten and cellulose acetate phthalate

    Directory of Open Access Journals (Sweden)

    F. M. Fakhouri

    2004-06-01

    Full Text Available The objective of this research was to develop and characterize composite biofilms produced using wheat gluten and cellulose acetate phthalate. Biofilms act as barriers to moisture and oxygen diffusion through the film. The films were prepared with different thicknesses and component concentrations and were analyzed for water vapor and oxygen permeabilities, water and acid solubilities and mechanical properties. Results showed that the mixture improved film characteristics more than each of the individual components alone. The 1:1 mixture had properties of better permeability to water and oxygen. The composite films were completely soluble in water and acid, with the exception of the film with the highest gluten concentration, which was 50% soluble in water and acid. An increase in gluten concentration in the composite films resulted in a decrease in tensile strength. There was no significant difference in elongation at break between the composite films. No difference in thickness was detected either. Results showed that the mixture improved the characteristics more than of the individual components alone.

  1. Investigations of an excimer laser working with a four-component gaseous mixture He-Kr:Xe-HCl

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.

    1991-08-01

    The paper presnts working conditions of an XCI excimer laser untypical gas mixture based on KrzXe instead of pure Xe. Such a choice was influenced by the necessity of Findin9 the way to replace imported and expensive Xe by gaseous components accesible in Poland. Determining the range of changes of laser extrnal parameters which enables its proper work with the new gas mixture was the aim of same investigations results of which are presented in this paper. The laser pulse output energy and the pulse duration as a Function of supply voltage and the mixture composition are presented. The range of proper conditions for the laser working with the new mixture He-Kr:Xe--HC1 was determined. The analysis of experimental results showed that using the new mixture ensures value of energy and pulse duration comparable with the ones obtained for the mixture He-''Xe--HCl. Spectral investigations showed the lack of influence of Kr presence in the mixture on the generation spectrum of the laser. L.

  2. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  3. Volumetric properties of (1-propoxypropan-2-ol + water) mixtures between (283 and 303) K: The effect of branching on alkoxyalcohols

    International Nuclear Information System (INIS)

    Santos, Angela F.S.; Moita, Maria Luisa C.J.; Lampreia, Isabel M.S.

    2009-01-01

    Accurate density values are reported for aqueous binary mixtures of 1-propoxypropan-2-ol (1-PP-2-ol) over the whole composition range and temperatures between (283 and 303) K at intervals of 5 K. Excess molar volumes of the mixture, V m E , apparent molar volumes of 1-PP-2-ol, V φ,2 , as well as excess partial molar volumes, V i E , of both components were obtained over the entire composition and temperature ranges. Thermal expansibility effects on this (amphiphile + water) mixture are analysed in terms of excess molar isobaric expansions, E P,m E , of the mixture and from the temperature dependence of limiting excess partial molar isobaric expansions, E P,i E,∞ , for both chemical substances in the mixture. An analytical method based on Redlich-Kister fitting equations for V m E as a function of the mole fraction has been used to obtain limiting excess partial molar volumes, V i E,∞ . The excess properties are referred to a thermodynamically defined ideal liquid mixture. Interesting insights into the mixing process are gained from the visual impact of plots showing the composition and temperature dependence of different excess molar thermodynamic properties. The choice of 1-PP-2-ol was specially meant to highlight the role of branching in the alcohol versus alkoxy moieties. The present thermodynamic data are compared with that for isomeric 2-butoxyethanols, which are structural isomers of 1-PP-2-ol, and for 2-isopropoxyethanol. From this comparison an extended insight is gained into the role of branching and chain length on the mixing process and particularly in changes of local H-bond patterns of hydration water.

  4. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  5. Secondary organic aerosol from VOC mixtures in an oxidation flow reactor

    Science.gov (United States)

    Ahlberg, Erik; Falk, John; Eriksson, Axel; Holst, Thomas; Brune, William H.; Kristensson, Adam; Roldin, Pontus; Svenningsson, Birgitta

    2017-07-01

    The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (α-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor.

  6. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    Science.gov (United States)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  7. CONCEPTUAL DESIGN OF NON-IDEAL MIXTURE SEPARATION WITH LIGHT ENTRAINERS

    Directory of Open Access Journals (Sweden)

    W. Shen

    Full Text Available Abstract A method is proposed to study the separation of minimum-, maximum-boiling azeotropic, and low volatility mixtures with a light entrainer, to investigate feasible regions of the key operating parameters reboil ratio (S and entrainer - feed flowrate ratio (FE/F for continuous processes. The thermodynamic topological predictions are carried out for 1.0-2, 1.0-1a, and 0.0-1 Serafimov's class diagrams. It relies upon the knowledge of residue curve maps, along with the univolatility line, and it enables the prediction of possible products at the bottom of the column and limiting values of FE/F. The profiles of the stripping, extractive, and rectifying sections are calculated by equations considering S and FE/F, and they bring information about the location of singular points and possible composition profile separatrices that could impair process feasibility. Providing specified product composition and recovery, the approximate calculations are compared with rigorous simulations of extractive distillation processes. Separating non-ideal mixtures using a light entrainer provides more opportunities for the case when it is not easy to find an appropriate heavy or intermediate entrainer.

  8. Methods and compositions for treating low temperature subterranean well formations

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, J.

    1979-08-21

    An aqueous composition is described for treating subterranean formations having temperatures of up to 120 F. The aqueous composition consists of water, a water-soluble organic gelling agent, an oxidizing agent to supply free radicals, and a reducing agent to accelerate the generation of free radicals. Reducing agents are water-soluble metal salts of the halides, sulfates, nitrates or mixtures thereof. Oxidizing agents are water-soluble peroxides, persulfates or mixtures thereof. Gelling agents may be sodium polyacrylate, polyacrylic acid, polysodium-2-acrylamide-3-propylsulfonate polyacrylamides or polymetharylamides that have been hydrolyzed from 0 to 70% and neturalized with ammonium or alkali metal hydroxides; or gums such as guar, locust bean, taaga tragacanth, hydroxyethyl guar, hydroxy-propyl guar, carboxymethyl guar or mixtures thereof. 22 claims.

  9. Experimental study of co-pyrolysis of polyethylene/sawdust mixtures

    Directory of Open Access Journals (Sweden)

    Berrueco Cesar

    2004-01-01

    Full Text Available A study of the behavior of the thermal decomposition of mixtures of biomass and thermoplastics, such as polyethylene, is of interest for processes for the thermal recovery of industrial and urban wastes such as pyrolysis or gasification. No solid residue is formed during the thermal degradation of pure polyethylene. However, the addition of biomass, which generates char can vary the product distribution and increase the heating value of the gas obtained. A study of the thermal degradation of pine sawdust, polyethylene and mixtures of polyethylene and pine sawdust has been carried out in a fluidized bed reactor. Experiments were carried out at five different temperatures: 640, 685, 730, 780, and 850 ºC. The yields and composition of the derived oil, wax, and gas were determined. The addition of polyethylene increases the gas production and decreases the production of waxes and liquids for the different temperatures tested. The main gases produced from the co-pyrolysis process were, at low temperatures, carbon monoxide ethylene, carbon dioxide, propylene, butadiene, methane and pentadiene while at high temperatures the gas composition changed drastically, the main components being carbon monoxide (more than 33 wt.%, ethylene, methane benzene and hydrogen. The analysis of the liquid fraction shows a decrease of the concentration of oxygenated and aliphatic compounds.

  10. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation

  11. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  12. Excess Volumes and Excess Isentropic Compressibilities of Binary Liquid Mixtures of Trichloroethylene with Esters at 303.15 K

    Science.gov (United States)

    Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.

    2015-11-01

    Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.

  13. Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C

    2007-07-12

    Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines) as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread "mixture synergism", we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group of more than 50 formulations, the compositions with maximum delivery activity resided unambiguously in the solid-liquid crystalline two-phase region at physiological temperature. Thus, the transfection efficacy of formulations exhibiting solid-liquid crystalline phase coexistence is more than 5 times higher than that of formulations in the gel (solid) phase and over twice that of liquid crystalline formulations; phase coexistence occurring at physiological temperature thus appears to contribute significantly to mixture synergism. This relationship between delivery activity and physical property can be rationalized on the basis of the known consequences of lipid-phase transitions, namely, the accumulation of defects and increased disorder at solid-liquid crystalline phase boundaries. Packing defects at the borders of coexisting solid and liquid crystalline domains, as well as large local density fluctuations, could be responsible for the enhanced fusogenicity of mixtures. This study leads to the important conclusion that manipulating the composition of the lipid carriers so that their phase transition takes place at physiological temperature can enhance their delivery efficacy.

  14. Experimental and predicted refractive index properties in ternary mixtures of associated liquids

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2011-01-01

    Highlights: → Measurements of refractive indices of 200 different aqueous ternary mixtures have been performed for two wave lengths. → Refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9. → Difference between experimental and calculated derivatives of refractive index with concentration is unsatisfactory large. - Abstract: Refractive indices of ternary mixtures formed by (water + ethanol + k-ethylene glycol) (when k is mono, di or tri) and (water + t-butanol + dimethyl sulfoxide) are presented over a wide range of mixture compositions. All measurements have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The performance of several mixing rules that are commonly used in modeling optical constants are examined. We demonstrate that the refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9% by using the thermodynamical properties of the pure components. The concentration derivatives of the refractive index are an important parameter, as they are required for different experimental techniques. These derivatives have been determined from the experimental data on refractive indices. However, applying mixing rules for calculation of the derivatives of the refractive indices with respect to concentrations does not provide satisfactory results in the case of ternary mixtures of associated liquids.

  15. Studies on the formation of aluminides in heated Nb–Al powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Iyengar, S.

    2015-04-15

    Highlights: • Combustion initiates with NbAl{sub 3} formation above the melting point of aluminum. • Nb + 3Al samples yield almost 100% NbAl{sub 3} after combustion. • Nb-rich samples yield multi-phase products after heating to 1000 °C. • Reacted Nb-rich samples yield stable phases on reheating. • For NbAl{sub 3}, calculations show ΔH{sub formation} = −153 ± 15, E{sub activation} = 255 ± 26 kJ mol{sup −1}. - Abstract: The formation of aluminides during the heating of Nb–Al powder mixtures with different initial compositions (25, 33.3 and 75 at.% Al) has been studied using a differential scanning calorimeter. The effect of parameters like particle size, compaction and heating rate on the onset temperature of reaction has been determined. The results show that an increase in heating rate leads to an increase in onset temperature for compacted as well as loose powder samples in the particle size range considered. For Al-rich mixtures, compaction increases the onset temperature irrespective of particle size. For all samples, finer aluminum particles and slower heating rates resulted in a decrease in onset temperature while higher aluminum contents in the mixture led to a higher reaction temperature. In Nb-rich samples, compaction led to a decrease in the onset temperatures. NbAl{sub 3} was the first compound to form in all the mixtures, irrespective of the initial composition. After heating to 1000 °C, EDS and XRD analyses confirmed the formation of only NbAl{sub 3} in Al-rich samples and a mixture of NbAl{sub 3} and Nb{sub 2}Al along with unreacted niobium particles in Nb-rich samples. A subsequent heat treatment was necessary to obtain a single aluminide corresponding to the initial composition. These observations can be explained on the basis of niobium dissolution in molten aluminum and subsequent precipitation of NbAl{sub 3} in Al-rich samples and solid state diffusion through Nb{sub 3}Al and Nb{sub 2}Al phases in Nb-rich samples. For Nb

  16. Performances of legume-grass mixtures under different cutting managements in mediterranean environments

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-02-01

    Full Text Available Annual forage crops have great importance for sustaining animal production in southern Italy. Knowledge of the performance of legume-grass associations under management similar to systems encountered in farm practice is essential for their effective exploitation of the available environmental resources. The purpose of this investigation was to estimate the effects of five cutting managements on the productivity and botanical composition of ten annual fodder crop mixtures in two Mediterranean environments. Ten ternary combinations of one grass (Avena sativa L., oat and Lolium multiflorum Lam., Italian ryegrass, one clover (Trifolium alexandrinum L., berseem; Trifolium incarnatum L., crimson and Trifolium squarrosum L., squarrosum or burr medic (Medicago polymorpha L. and common vetch (Vicia sativa L. were compared in a field trial (split-plot design, 3 replicates in two locations (Cagliari and Foggia, Italy during the 2000-2001 growing season. The cutting treatments included a winter grazing simulation (G, a cutting only regime at early (EF or late flowering (F of legumes and a combination of treatments (GEF and GF. Plant density (no. m-2 prior to cutting, dry matter yield (g m-2 and botanical composition (% were evaluated. Considerable differences were observed in the harvestable dry matter yields of mixtures among cutting treatments in both localities, with treatment F showing the higher values (787.1 and 415.7 g m-2 for Cagliari and Foggia, respectively. The forage species were able to compete and establish good growth during their initial phase in both localities. However, the botanical composition between the two sites differed considerably after the winter period. Particularly, at Foggia, grass dominance was a permanent feature of all treatments, and all the mixtures contained about 84% of grass. Italian ryegrass was the most representative species under all treatments in both sites. Mixtures with Italian ryegrass, crimson or berseem

  17. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  18. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  19. Electrochemical study of chemical properties in ethanolamine and its mixtures with water

    International Nuclear Information System (INIS)

    Grall, M.

    1964-12-01

    This work is concerned with the study of acid-base reactions and of complex formation in ethanolamine and its mixtures with water. The ionic product of the solvent has been determined by an electro-chemical study of the H + /H 2 system. The reduction curves for ethanolamine-water mixtures, for different acidities, have made it possible to follow the variations in the size of the pH domain as a function of the composition of the solvent. The form of this variation has been explained on the basis of the dielectric constant and the solvation of the proton by the ethanolamine. In the second part, the electrochemical systems of mercury have been studied by anodic polarography. In order to establish a parallel between the acid-base reactions and complex formation reactions, we have studied the stability of Hg (CN) 2 in water-ethanolamine mixtures. It has been possible to deduce the law for the variation of pK c with solvent composition. The representative graph of this function passes through a minimum for a proportion of about 50 per cent of ethanolamine as in the case of acids. This variation has been explained by the predominating influence of ε for ethanolamine propositions of over 50 per cent and by that of the solvation of Hg 2+ for proportions of under 50 per cent. (author) [fr

  20. Chemical and microbiological assessments of the multi mixture treated by gamma radiation

    International Nuclear Information System (INIS)

    Goncalves, Cinthia Graciele

    2008-01-01

    In Brazil, the multi mixture have being used since the eighties as an alternative against severe infantile malnutrition of the poorest population. However, its use is still reason of controversies mainly due to: the presence of anti nutritional factors, the microbiological quality and the nutritional value. Considering the routine use of multi mixture in the region, this work aimed to evaluate samples of multi mixture were collected in the metropolitan area of the City of Belo Horizonte/MG for determining the anti nutritional factors (phytic and oxalic acids), the microbiological quality, the centesimal and mineral composition, and still the induced effect in these factors of the gamma radiation. For the analyses, the samples passed by the process of gamma irradiation at doses of: 2, 4, 6, 8 and 10 kGy and then were evaluated anti nutritional factors (phytic acid and oxalic), the microbiological quality (yeasts and molds, Salmonella, Coagulase positive Staphylococcus, Bacillus cereus, coliform to 45 deg C) to full percentage (moisture, ash, proteins, carbohydrates and lipids) and the efficiency of the method of Paramagnetic Electronic Resonance (EPR) in the detection of irradiated samples. The mineral composition of the samples was carried out by the irradiation by Neutronic Activation. The methods used were searched in literature. The obtained results suggest that the concentration of the phytic and oxalic acids can not be appropriated for the children with severe nutritional deficit and that it would be necessary additional control in their daily ingestion due to the absorption of essential minerals. In general the samples had presented acceptable microbiological quality for consumption, except by one of it. The data of the centesimal and mineral composition, in the usually recommended portions, showed lower concentration than recommended for children. Any significant alteration in phytic and oxalic acids as well as in the centesimal composition were detected

  1. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  2. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-09-01

    Full Text Available The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to characterize the structure and morphology of the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material, and the results indicate that lauric–palmitic–stearic acid ternary eutectic mixture was well confined into the layer porous structure of vermiculite by physical reaction. The melting and freezing temperatures and latent heats were measured by differential scanning calorimeter as 31.4°C and 30.3°C, and 75.8 and 73.2 J/g, respectively. Thermal cycling test showed that there was no significant change in the thermal properties of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material after 1000 thermal cycles. Moreover, 2 wt% expanded graphite was added to improve the thermal conductivity of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material. All results indicated that the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material had suitable thermal properties and good thermal reliability for the application of thermal energy storage in building energy efficiency.

  3. NMR study of thallium(I) ions in molten binary mixtures of nitrates and chlorides

    International Nuclear Information System (INIS)

    Nakamura, Yoshio; Kitazawa, Yukiharu; Shimoji, Mitsuo; Shimokawa, Shigezo.

    1983-01-01

    The chemical shifts of 205 Tl NMR in molten binary mixtures of nitrates and those of chlorides have been measured as a function of composition and temperature. The shifts increase in the diamagnetic direction with decreasing the size of foreign cations and increase in the paramagnetic direction with increasing temperature. These results are interpreted by changes in the overlap of orbitals of the Tl + ion and the anion, which depend upon composition and temperature. (author)

  4. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau

    2015-12-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species reduced mechanism. Two-dimensional DNSs are performed by varying several key parameters: initial mean temperature, T0, and the variance of temperature and equivalence ratio (T\\' and φ\\') with different T-φcorrelations. It is found that for cases with φ\\' only, the overall combustion occurs more quickly and the mean heat release rate (HRR) increases more slowly with increasing φ\\' regardless of T0. For cases with T\\' only, however, the overall combustion is retarded/advanced in time with increasing T\\' for low/high T0 relative to the negative-temperature coefficient (NTC) regime resulting from a longer/shorter overall ignition delay of the mixture. For cases with uncorrelated T-φfields, the mean HRR is more distributed over time compared to the corresponding cases with T\\' or φ\\' only. For negatively-correlated cases, however, the temporal evolution of the overall combustion exhibits quite non-monotonic behavior with increasing T\\' and φ\\' depending on T0. All of these characteristics are found to be primarily related to the 0-D ignition delays of initial mixtures, the relative timescales between 0-D ignition delay and turbulence, and the dominance of the deflagration mode during the ignition. These results suggest that an appropriate combination of T\\' and φ\\' together with a well-prepared T-φdistribution can alleviate an excessive pressure-rise rate (PRR) and control ignition-timing in homogeneous charge compression-ignition (HCCI) combustion. In addition, critical species and reactions for the ignition of n-heptane/air mixture through the whole ignition process are estimated by comparing the temporal evolution of the mean mass fractions of important species with the overall reaction pathways of n

  5. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    Science.gov (United States)

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a

  6. Effect of seed mixture composition and management on competitiveness of herbs in temporary grasslands

    DEFF Research Database (Denmark)

    Mortensen, Tine Bloch; Søegaard, Karen; Eriksen, Jørgen

    2012-01-01

    of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens), 2) cutting frequency, and 3) slurry application. The experiment was carried out over three years. The herb mixture contained salad burnet (Sanguisorba minor), fenugreek (Trigonella foenum-graecum), chicory (Cichcorium intybus), caraway...

  7. I-optimal mixture designs

    OpenAIRE

    GOOS, Peter; JONES, Bradley; SYAFITRI, Utami

    2013-01-01

    In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...

  8. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  9. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  10. Deflagration of thermite - ammonium nitrate based propellant mixture

    Science.gov (United States)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose

    2001-06-01

    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  11. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    Science.gov (United States)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  12. An Efficient Composition for Bengal Lights.

    Science.gov (United States)

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Reports the discovery of an efficient base composition for making bengal lights that is obtained with potassium chlorate and thiourea. Combining this mixture with appropriate flame coloring can produce several impressive bengal lights. (DDR)

  13. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  14. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Science.gov (United States)

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  15. Simultaneous influence of gas mixture composition and process temperature on Fe2O3->FeO reduction kinetics: neural network modeling

    Directory of Open Access Journals (Sweden)

    K. Piotrowski

    2005-09-01

    Full Text Available The kinetics of Fe2O3->FeO reaction was investigated. The thermogravimetric (TGA data covered the reduction of hematite both by pure species (nitrogen diluted CO or H2 and by their mixture. The conventional analysis has indicated that initially the reduction of hematite is a complex, surface controlled process, however once a thin layer of lower oxidation state iron oxides (magnetite, wüstite is formed on the surface, it changes to diffusion control. Artificial Neural Network (ANN has proved to be a convenient tool for modeling of this complex, heterogeneous reaction runs within the both (kinetic and diffusion regions, correctly considering influence of temperature and gas composition effects and their complex interactions. ANN's model shows the capability to mimic some extreme (minimum of the reaction rate within the determined temperature window, while the Arrhenius dependency is of limited use.

  16. Composite Material from By-products and Its Properties

    Science.gov (United States)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  17. Low-activation W–Si–C composites for fusion application

    International Nuclear Information System (INIS)

    Iveković, A.; Galatanu, A.; Novak, S.

    2015-01-01

    Graphical abstract: - Highlights: • Effect of W fraction on pressureless densification of W–Si–C composites. • Full densification of high-W composite in a single PIP cycle. • High-W composite exhibits increase in thermal conductivity with temperature. • Low-W composites densified with six PIP cycles. • Low-W composites exhibit high mechanical and thermal properties. - Abstract: W–Si–C composites were fabricated by active filler controlled pyrolysis of W powder (high tungsten content) and W–SiC powder mixtures (low tungsten content), infiltrated by a preceramic polymer and heat treated at temperatures from 1600 to 2000 °C. Material with high volume fraction of W in initial powder–polymer mixture, formed a composite material composed of W, W_2C and W_5Si_3 with closed porosity in a single polymer infiltration and pyrolysis (PIP) cycle. After heat treatment at 1700 °C the material exhibited flexural strength above 350 MPa, hardness of 7.8 GPa and indentation modulus of 250 GPa. Room temperature thermal conductivity of the composite was rather low, 23 W m"−"1 K"−"1, however, thermal conductivity increased with increasing temperature achieving 35 W m"−"1 K"−"1 at 1000 °C. The effect of W as active filler in W–SiC powder mixtures with low volume fraction of tungsten was negligible. Therefore, six polymer infiltration and pyrolysis cycles were used to achieve significant densification with 15% porosity. The material fabricated at 1800 °C was composed of SiC, WC and WSi_2 and exhibited flexural strength of ∼400 MPa and room temperature thermal conductivity of 100 W m"−"1 K"−"1, which decreased to 32 W m"−"1 K"−"1 at 1000 °C.

  18. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  19. Experimental validation of GASDECOM for High Heating Value Processed Gas mixtures (58 MJ/m3) by specialized shock tube

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Carlson, L.; Reed, M.

    2013-01-01

    One of the fundamental requirements of the design of pipelines is the control of propagating ductile fracture, in which the Battelle two-curve method still forms the basis of the analytical framework used throughout the industry. The GASDECOM (GAS DECOMpression) tool is typically used for calculating decompression wave speed, which is one of these two curves. It uses the BWRS (Benedict–Webb–Rubin–Starling) equation of state to idealize the decompression process as isentropic and one-dimensional. While this equation of state was developed and validated against a quite restricted range of gas compositions, GASDECOM continues to perform relatively well for compositions slightly outside the original range of BWRS. The present research was focused on examining the performance of GASDECOM for mixture compositions up to a High (gross) Heating Value (HHV) of 58 MJ/m 3 . Four tests were conducted using a specialized high pressure shock tube (42 m long, I.D. = 38.1 mm) to experimentally determine the decompression wave speeds and compare them to the predictions by GASDECOM. Two tests were conducted on a gas mixture of HHV = 52 MJ/m 3 and the other two on even richer gas mixture of HHV = 58 MJ/m 3 , all were from nominal initial pressures of 15 MPa and initial temperatures of 40 °C. The results from these tests show that decompression wave speeds are consistent with predictions of GASDECOM for gases of HHV typical of the previously validated range of BWRS. Predictions of the saturation pressure represented by the plateau pressure in the decompression wave speed curve were also in good agreement with measurements despite the fact that they occurred close to the critical point of the respective mixture compositions. -- Highlights: • Performance of GASDECOM for mixture up to HHV of 58 MJ/m3 was examined. • Experiments were conducted using a specialized high pressure shock. • Results show that decompression speeds are consistent with predictions of GASDECOM.

  20. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    Science.gov (United States)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  1. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    Science.gov (United States)

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  2. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  3. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  4. Inclusion probability for DNA mixtures is a subjective one-sided match statistic unrelated to identification information

    Directory of Open Access Journals (Sweden)

    Mark William Perlin

    2015-01-01

    Full Text Available Background: DNA mixtures of two or more people are a common type of forensic crime scene evidence. A match statistic that connects the evidence to a criminal defendant is usually needed for court. Jurors rely on this strength of match to help decide guilt or innocence. However, the reliability of unsophisticated match statistics for DNA mixtures has been questioned. Materials and Methods: The most prevalent match statistic for DNA mixtures is the combined probability of inclusion (CPI, used by crime labs for over 15 years. When testing 13 short tandem repeat (STR genetic loci, the CPI -1 value is typically around a million, regardless of DNA mixture composition. However, actual identification information, as measured by a likelihood ratio (LR, spans a much broader range. This study examined probability of inclusion (PI mixture statistics for 517 locus experiments drawn from 16 reported cases and compared them with LR locus information calculated independently on the same data. The log(PI -1 values were examined and compared with corresponding log(LR values. Results: The LR and CPI methods were compared in case examples of false inclusion, false exclusion, a homicide, and criminal justice outcomes. Statistical analysis of crime laboratory STR data shows that inclusion match statistics exhibit a truncated normal distribution having zero center, with little correlation to actual identification information. By the law of large numbers (LLN, CPI -1 increases with the number of tested genetic loci, regardless of DNA mixture composition or match information. These statistical findings explain why CPI is relatively constant, with implications for DNA policy, criminal justice, cost of crime, and crime prevention. Conclusions: Forensic crime laboratories have generated CPI statistics on hundreds of thousands of DNA mixture evidence items. However, this commonly used match statistic behaves like a random generator of inclusionary values, following the LLN

  5. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    eutectic salt mixture consisting of Li- Na- and K- carbonates has the potential as gasification catalyst. To verify the literature reported, melting points for various compositions consisting of these three salts and the temperature range over which the mixture remained molten were determined in the lab. For mixtures with different concentrations of the three salts, the temperatures at which the mixtures were found to be in complete molten state were recorded. By increasing the amount of Li2CO3, the melting temperature range was reduced significantly. In the literature, the eutectic mixtures of Li- Na- and K-carbonates are claimed to have a lower activation energy than that of K2CO3 alone and they remain molten at a lower temperature than pure K2CO3. The slow increase in the gasification rates with eutectics reported in the literature is believed to be due to a gradual penetration of the coals and coal char particles by the molten and viscous catalyst phase. The even spreading of the salt phase seems to increase the overall carbon conversion rate. In the next reporting period, a number of eutectic salts and methods of their application on the coal will be identified and tested.

  6. High temperature concrete composites containing organosiloxane crosslinked copolymers

    Science.gov (United States)

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  7. Challenges in modelling the random structure correctly in growth mixture models and the impact this has on model mixtures.

    Science.gov (United States)

    Gilthorpe, M S; Dahly, D L; Tu, Y K; Kubzansky, L D; Goodman, E

    2014-06-01

    Lifecourse trajectories of clinical or anthropological attributes are useful for identifying how our early-life experiences influence later-life morbidity and mortality. Researchers often use growth mixture models (GMMs) to estimate such phenomena. It is common to place constrains on the random part of the GMM to improve parsimony or to aid convergence, but this can lead to an autoregressive structure that distorts the nature of the mixtures and subsequent model interpretation. This is especially true if changes in the outcome within individuals are gradual compared with the magnitude of differences between individuals. This is not widely appreciated, nor is its impact well understood. Using repeat measures of body mass index (BMI) for 1528 US adolescents, we estimated GMMs that required variance-covariance constraints to attain convergence. We contrasted constrained models with and without an autocorrelation structure to assess the impact this had on the ideal number of latent classes, their size and composition. We also contrasted model options using simulations. When the GMM variance-covariance structure was constrained, a within-class autocorrelation structure emerged. When not modelled explicitly, this led to poorer model fit and models that differed substantially in the ideal number of latent classes, as well as class size and composition. Failure to carefully consider the random structure of data within a GMM framework may lead to erroneous model inferences, especially for outcomes with greater within-person than between-person homogeneity, such as BMI. It is crucial to reflect on the underlying data generation processes when building such models.

  8. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  9. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  10. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters

    International Nuclear Information System (INIS)

    Yi Min; Shen Zhigang; Zhang Xiaojing; Ma Shulin

    2013-01-01

    Although exfoliating graphite to give graphene paves a new way for graphene preparation, a general strategy of low-boiling-point solvents and high graphene concentration is still highly required. In this study, using the strategy of tailoring Hansen solubility parameters (HSP), a method based on exfoliation of graphite in water/acetone mixtures is demonstrated to achieve concentrated graphene dispersions. It is found that in the scope of blending two mediocre solvents, tailoring the HSP of water/acetone mixtures to approach the HSP of graphene could yield graphene dispersions at a high concentration of up to 0.21 mg ml -1 . The experimentally determined optimum composition of the mixtures occurs at an acetone mass fraction of ∼75%. The trend of concentration varying with mixture compositions could be well predicated by the model, which relates the concentration to the mixing enthalpy within the scope of HSP theory. The resultant dispersion is highly stabilized. Atomic force microscopic statistical analysis shows that up to ∼50% of the prepared nanosheets are less than 1 nm thick after 4 h sonication and 114g centrifugation. Analyses based on diverse characterizations indicate the graphene sheets to be largely free of basal plane defects and oxidation. The filtered films are also investigated in terms of their electrical and optical properties to show reasonable conductivity and transparency. The strategy of tailoring HSP, which can be easily extended to various solvent systems, and water/acetone mixtures here, extends the scope for large-scale production of graphene in low-boiling-point solutions.

  11. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  12. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    Science.gov (United States)

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  13. Construction of a 21-Component Layered Mixture Experiment Design

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2004-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP(R) was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed in the paper

  14. Increased accuracy of starch granule type quantification using mixture distributions.

    Science.gov (United States)

    Tanaka, Emi; Ral, Jean-Phillippe F; Li, Sean; Gaire, Raj; Cavanagh, Colin R; Cullis, Brian R; Whan, Alex

    2017-01-01

    The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority of the studies that have considered granule types analyse them based on a size threshold rather than chemical composition. This is understandable due to the expense of separating starch into different types. While the use of a size threshold to classify granule type is a low-cost measure, this results in misclassification. We present an alternative, statistical method to quantify the proportion of granule types by a fit of the mixture distribution, along with an R package, a web based app and a video tutorial for how to use the web app to enable its straightforward application. Our results show that the reliability of the genotypic effects increase approximately 60% using the proportions of the A-type and B-type granule estimated by the mixture distribution over the standard size-threshold measure. Although there was a marginal drop in reliability for C-type granules. The latter is likely due to the low observed genetic variance for C-type granules. The determination of the proportion of granule types from size-distribution is better achieved by using the mixing probabilities from the fit of the mixture distribution rather than using a size-threshold.

  15. Influence of irradiation on electrical properties of cermet composition

    International Nuclear Information System (INIS)

    Iskhakov, V.M.; Avanesyan, R.R.; Daukeev, D.K.; Nedorezov, V.G.; Chormonov, N.T.; Chormonov, T.Kh.; Shevelev, G.A.

    1986-01-01

    Cermet composition radiation stability and also possibility of directed change of the composition properties during radiation treatment were studied. Investigations were carried out using cermet composition containing 40 mass % of conducting phase (RuO 2 +Nb 2 O 5 additions) and 60 mass % of alumoborosilicate glass. Composition and organic binder mixture was applied to a dielectric substrate with land by stenciling, then was calcinated in the travelling furnace at 850 deg C for 15 min

  16. Study of influence of gas mixture composition on the multistep avalanche chambers characteristics

    International Nuclear Information System (INIS)

    Abdushukurov, D.A.; Zanevskij, Yu.V.; Peshekhonov, V.D.

    1987-01-01

    The influence of the concentration of organic quenchers on the operation of multistep avalanche chambers /MSAC/ has been studied. An empirical dependence of the gas amplification factor of MSAC on the quencher concentration has been derived. Measures are considered to increase the stability of the MSAC operation. To improve the MSAC operation argon + n-heptane, neon + methane and neon + argon + methane mixtures are suggested

  17. Ultrasonic and viscosimetric studies of samarium laurate in benzene-dimethylsulfoxide mixtures

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Anis, M.

    1995-01-01

    Ultrasonic and viscosity measurements of samarium laurate in benzene-DMSO mixtures of different compositions (7:3 and 1:1 V/V) have been used to determine the critical micelle concentration (CMC), soap-solvent interaction, and various acoustic parameters of the system. The values of critical micelle concentration increase with increasing amount of DMSO in the solvent mixtures. The viscosity results have been explained on the basis of equations proposed by Einstein, Vand. Moulik, and Jones-Dole. The values of CMC for samarium laurate obtained from the viscosity measurements are in agreement with the results obtained from ultrasonic measurements. The results show that the soap molecules do not aggregate appreciably below CMC there is a marked change in the aggregation behaviour at CMC. (author)

  18. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1-C4) and dimethyl carbonate

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Fukano, Makoto; Kikkawa, Shinichiro; Constantinescu, Dana; Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji; Gmehling, Juergen

    2012-01-01

    Highlights: → The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. → VLE data for ternary and binary mixtures containing alcohol and DMC were measured. → Several activity coefficient models were used for data reduction or prediction. → Valley line, i.e., distillation boundary, was observed for the ternary mixture. → Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C 3 or C 4 ) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  19. Radiolysis of triphenylarsine in a mixture of benzene and cyclohexane. [. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, S B; Rai, R S [Birla Inst. of Tech. and Science, Pilani (India). Dept. of Chemistry

    1975-06-01

    A number of degassed samples of triphenylarsine were irradiated by gamma radiation in a mixture of benzene and cyclohexane. The condensable products formed were pentane, hexane, benzene and cyclohexane in cyclohexane solution containing triphenylarsine and cyclohexane in benzene in presence of triphenylarsine. When the composition of the solvent was varried by stepwise addition of benzene from 5 to 50%, the main condensable radiolytic products observed by vapour phase chromatography were hexane, : hexane and cyclohexene. No pentane was observed when benzene was present in the mixture upto 15%. However, it was detected in the presence of 20-30% benzene mixture. When the amount of benzene was 35-50% in the mixture, two isomers of hexane and hexene were also detected. A mechanism has been worked out for the formation of these compounds and protection and sensitization mechanisms have been invoked to explain the yields per 100 ev. From the kinetic analysis, it has been found out that the rate of formation of cyclohexene is much faster than rates of different products formed during gamma radiolysis and from the analysis of experimental data, sponge type protection has been postulated in this radiolytic system.

  20. Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture.

    Science.gov (United States)

    Martins, Viviana; Teixeira, António; Bassil, Elias; Blumwald, Eduardo; Gerós, Hernâni

    2014-09-01

    Since the development of Bordeaux mixture in the late 1800's, copper-based fungicides have been widely used against grapevine (Vitis vinifera L.) diseases, mainly in organic but also in conventional viticulture; however their intensive use has raised phytotoxicity concerns. In this study, the composition of grape berries and leaves upon Bordeaux mixture treatment was investigated during the fructification season by a metabolomic approach. Four applications of Bordeaux mixture till 3 weeks before harvest were performed following the regular management practices of organic viticulture. Results showed that the copper-based treatment affected the content in sugars, organic acids, lipids and flavan-3-ols of grapes and leaves at specific developmental stages. Nonetheless, the levels of sucrose, glucose and fructose, and of tartaric and malic acids were not significantly affected in mature grapes. In contrast, a sharp decrease in free natural amino acids was observed, together with a reduction in protein content and in mineral nitrogen forms. The treatment with Bordeaux mixture increased by 7-fold the copper levels in tissue extracts from surface-washed mature berries. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Acrylic composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Meda, Yutaka.

    1969-01-01

    An acrylic composition and a process for the production of an easily hardenable coating material by irradiating with active energy, particularly electron beams and ultraviolet light, are provided using a mixture of 10%-100% by weight of an unsaturated compound and 90%-0% of a vinyl monomer. The composition has a high degree of polymerization, low volatility, low viscosity and other properties similar to thermosetting acrylic or amino alkyd resins. The aforesaid unsaturated compound is produced by primarily reacting saturated cyclocarboxylic anhydride and/or alpha-, beta-ethylene unsaturated carboxylic anhydride and by secondarily reacting an epoxy radical-containing vinyl monomer by addition reaction with polyhydric alcohols. Each reaction is conducted in the presence of a tertiary amino radical-containing vinyl monomer as a catalyst. The cross-linking is effected generally with an electron beam accelerator of 0.1-2.0 MeV or with a light beam in the 2,000-8,000A range in the presence of a photosensitive agent. In one example, 62 parts of ethylene glycol and 196 parts of maleic anhydride were dissolved in a mixture consisting of 100 parts of n-butyl methacrylate and 30 parts of styrene. To the mixture were added 5 parts of 2-methyl 5 vinyl piridine and 0.005 part of hydroquinone monomethyl ether. After the reaction at 90 0 C for 3 hours, a compound HOC:O-CH=CHC:OCH 2 CH 2 C:OOH was produced. To this solution were added 285 parts of glycidyl methacrylate. After the reaction at 90 0 C for 6 hours, 95% of the carboxylic acids reacted with epoxy radicals. Fourteen examples are given. (Iwakiri, K.)

  2. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  3. Structure-property relationship in dielectric mixtures: application of the spectral density theory

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    This paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites. The influence of structural differences and intrinsic electrical properties of constituents on the composite's overall electrical properties is investigated. The structural differences are resolved by fitting the dielectric data with an empirical formula and by the spectral density representation approach. At low concentrations of inclusions (concentrations lower than the percolation threshold), the spectral density functions are delta-sequences, which corresponds to the predictions of the general Maxwell-Garnett (MG) mixture formula. At high concentrations of inclusions (close to the percolation threshold) systems exhibit non-Debye-type dielectric dispersions, and the spectral density functions differ from each other and that predicted by the MG expression. The analysis of the dielectric dispersions with an empirical formula also brings out the structural differences between the considered geometries, however, the information is not qualitative. The empirical formula can only be used to compare structures. The spectral representation method on the other hand is a concrete way of characterizing the structures of the dielectric mixtures. Therefore, as in other spectroscopic techniques, a look-up table might be useful to classify/characterize structures of composite materials. This can be achieved by generating dielectric data for known structures by using ab initio calculations, as presented and emphasized in this study. The numerical technique presented here is not based on any a priori assumption methods

  4. Dependence of enthalpies of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2011-01-01

    Highlights: · Enthalpies of dissolution of β-alanyl-β-alanine are measured in aqueous methanol, ethanol, 1-propanol and 2-propanol by calorimetry. · Standard values of dissolution and transfer enthalpies of β-alanyl-β-alanine and enthalpy coefficients of pair-wise interactions are calculated. · Dependences of the thermodynamic characteristics of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures are determined. - Abstract: The dissolution enthalpies of β-alanyl-β-alanine in aqueous methanol, ethanol, 1-propanol and 2-propanol solutions with an alcohol content up to 0.4 mole fractions have been measured calorimetrically at T = 298.15 K. The standard enthalpies of dissolution, Δ sol H o and transfer, Δ tr H o , of β-alanyl-β-alanine from water into mixed solvents and the enthalpy coefficients of pair-wise interactions, h xy , of β-alanyl-β-alanine with alcohol solvent molecules have been calculated. The results are discussed in terms of solute-solute and solute-solvent interactions.

  5. Iron availability in the presence of β-carotene in different mixtures

    Directory of Open Access Journals (Sweden)

    Romilda Maria de Arruda Germano

    2011-06-01

    Full Text Available Iron availability in the diet is very important because iron deficiency affects a large population in the world. The matrix where iron is present has an influence in its availability. The presence of β-carotene is a factor that alters the availability of iron. This research aims to estimate the iron availability in the presence of β-carotene in food mixtures: M1 = egg and pumpkin; M2 = spinach and pumpkin; M3 = spinach and cabbage; M4 = egg and cabbage; M5 = spinach and carrot; M6 = egg and carrot; M7 = bean and carrot; M8 = bean and pumpkin and M9 = bean and cabbage. After cooking, the following figures were determined: proximate composition, oxalic acid, phytic acid, tannin, iron, iron availability in vitro and β-carotene. The data were analyzed by Tukey test (5%. There were no significant statistical differences for oxalic acid. Tannin presented greater results in mixtures with spinach (M2 and M5; phytic acid was greater in bean samples (M7, M8 and M9 and with spinach (M2. Mixtures M5 e M7, with carrot, presented more β-carotene than the others. The best result for iron availability appeared in mixture (M6. A positive correlation was verified between protein and iron dialysis, and between lipids and iron dialysis. Dietetic fiber was an inhibitor to iron availability. Mixtures with egg showed greater iron availability

  6. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  7. A turbulence model in mixtures. First part: Statistical description of mixture

    International Nuclear Information System (INIS)

    Besnard, D.

    1987-03-01

    Classical theory of mixtures gives a model for molecular mixtures. This kind of model is based on a small gradient approximation for concentration, temperature, and pression. We present here a mixture model, allowing for large gradients in the flow. We also show that, with a local balance assumption between material diffusion and flow gradients evolution, we obtain a model similar to those mentioned above [fr

  8. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  9. Aligned flax fibre/polylactate composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...... of the composite were measured. For composites with a fibre content of 37 % by volume, stiffness is about 20 GPa and failure stress is about 180 MPa. The tensile properties of the composites are analysed with a modified rule of mixtures model, which includes the effect of porosity. The experimental results...

  10. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  11. Modelling of associating mixtures for applications in the oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2007-01-01

    Thermodynamic properties and phase equilibria of associating mixtures cannot often be satisfactorily modelled using conventional models such as cubic equations of state. CPA (cubic-plus-association) is an equation of state (EoS), which combines the SRK EoS with the association term of SAFT. For non......-alcohol (glycol)-alkanes and certain acid and amine-containing mixtures. Recent results include glycol-aromatic hydrocarbons including multiphase, multicomponent equilibria and gas hydrate calculations in combination with the van der Waals-Platteeuw model. This article will outline some new applications...... thermodynamic models especially those combining cubic EoS with local composition activity coefficient models are included. (C) 2007 Elsevier B.V. All rights reserved....

  12. Optimization of glibenclamide tablet composition through the combined use of differential scanning calorimetry and D-optimal mixture experimental design.

    Science.gov (United States)

    Mura, P; Furlanetto, S; Cirri, M; Maestrelli, F; Marras, A M; Pinzauti, S

    2005-02-07

    A systematic analysis of the influence of different proportions of excipients on the stability of a solid dosage form was carried out. In particular, a d-optimal mixture experimental design was applied for the evaluation of glibenclamide compatibility in tablet formulations, consisting of four classic excipients (natrosol as binding agent, stearic acid as lubricant, sorbitol as diluent and cross-linked polyvinylpyrrolidone as disintegrant). The goal was to find the mixture component proportions which correspond to the optimal drug melting parameters, i.e. its maximum stability, using differential scanning calorimetry (DSC) to quickly obtain information about possible interactions among the formulation components. The absolute value of the difference between the melting peak temperature of pure drug endotherm and that in each analysed mixture and the absolute value of the difference between the enthalpy of the pure glibenclamide melting peak and that of its melting peak in the different analyzed mixtures, were chosen as indexes of the drug-excipient interaction degree.

  13. Molar excess volumes of liquid hydrogen and neon mixtures from path integral simulation

    International Nuclear Information System (INIS)

    Challa, S.R.; Johnson, J.K.

    1999-01-01

    Volumetric properties of liquid mixtures of neon and hydrogen have been calculated using path integral hybrid Monte Carlo simulations. Realistic potentials have been used for the three interactions involved. Molar volumes and excess volumes of these mixtures have been evaluated for various compositions at 29 and 31.14 K, and 30 atm. Significant quantum effects are observed in molar volumes. Quantum simulations agree well with experimental molar volumes. Calculated excess volumes agree qualitatively with experimental values. However, contrary to the existing understanding that large positive deviations from ideal mixtures are caused due to quantum effects in Ne - H 2 mixtures, both classical as well as quantum simulations predict the large positive deviations from ideal mixtures. Further investigations using two other Ne - H 2 potentials of Lennard - Jones (LJ) type show that excess volumes are very sensitive to the cross-interaction potential. We conclude that the cross-interaction potential employed in our simulations is accurate for volumetric properties. This potential is more repulsive compared to the two LJ potentials tested, which have been obtained by two different combining rules. This repulsion and a comparatively lower potential well depth can explain the positive deviations from ideal mixing. copyright 1999 American Institute of Physics

  14. Physical and mechanical properties of unidirectional plant fibre composites

    DEFF Research Database (Denmark)

    Madsen, B.; Lilholt, H.

    2003-01-01

    Unidirectional composites were made from filament wound non-treated flax yarns and polypropylene foils. With increasing composite fibre weight fractions from 0.56 to 0.72, porosity fractions increased from 0.04 to 0.08; a theoretical model was fitted to the data in order to describe the composite...... version of the "rule-of-mixtures", supplemented with parameters of composite porosity content and anisotropy of fibre properties, were developed to improve the prediction of composite tensile properties. (C) 2003 Elsevier Science Ltd. All rights reserved....

  15. Fire effects on the composition of a bird community in an amazonian Savanna (Brazil

    Directory of Open Access Journals (Sweden)

    R. Cintra

    Full Text Available The effects of fire on the composition of a bird community were investigated in an Amazonian savanna near Alter-do-Chão, Pará (Brazil. Mist-net captures and visual counts were used to assess species richness and bird abundance pre- and post-fire in an approximately 20 ha area. Visual counts along transects were used to survey birds in an approximately 2000 ha area in a nearby area. Results using the same method of ordination analysis (multidimensional scaling showed significant effects of fire in the 20 ha and 2000 ha areas and strongly suggest direct effects on bird community composition. However, the effects were different at different spatial scales and/or in different years, indicating that the effects of fire vary spatially and/or temporally. Bird community composition pre-fire was significantly different from that found post-fire. Using multiple regression analysis it was found that the numbers of burned and unburned trees were not significantly related to either bird species richness or bird abundance. Two months after the fire, neither bird species richness nor bird abundance was significantly related to the number of flowering trees (Lafoensia pacari or fruiting trees (Byrsonima crassifolia. Since fire is an annual event in Alter-do-Chão and is becoming frequent in the entire Amazon, bird community composition in affected areas could be constantly changing in time and space.

  16. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  17. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  18. Analysis of Knock Phenomenon Induced in a Constant Volume Chamber by Local Gas Temperature Measurement and Visualization

    Science.gov (United States)

    Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru

    Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.

  19. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  20. Effect of diet composition and mixture of selected food additives on the erythrocytic system and iron metabolism in peripheral blood of male rats.

    Science.gov (United States)

    Sadowska, Joanna; Kuchlewska, Magdalena

    2011-01-01

    Metabolic processes of food additives which are "exogenous xenobiotics" are catalysed, primarily, by enzymes located in microsomes of hepatocytes affiliated to P-450 cytochrome superfamily, containing iron. The aim of the study was to investigate the effect of diet composition and selected food additives on the erythrocyte system and iron metabolism in peripheral blood of male rats. The experiment was carried out on 30 male rats sorted into three equinumerous groups. For drinking animals received pure, settled tap water, animals from group III were receiving additionally an aqueous solution of sodium (nitrate), potassium nitrite, benzoic acid, sorbic acid and monosodium glutamate. Ascertained a significant effect of changes in diet composition on the increase in hematocrit marker value and the count of red blood cells in blood of animals examined. Used food additives diminished hemoglobin concentration, hematocrit value and red blood cell count, diminishing also iron concentration in serum, the total iron binding capacity and transferrin saturation with iron. Analysis of the results allowed ascertain adverse changes in values of the erythrocytic system markers, occurring under the influence of the applied mixture of food additives. Used food additives change the iron metabolism, most likely from the necessity of applied xenobiotics biotransformation by heme-containing monoxygenases of P-450 cytochrome.

  1. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changqing; Gao, Liying; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2017-03-01

    Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 μg/kg/day, 200 and 500 mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13 months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9 months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice. - Highlights: • Prenatal exposure to a phthalate mixture disrupts F1 estrous cyclicity. • Prenatal exposure to a phthalate mixture induces F1 ovarian cysts. • Prenatal exposure to a phthalate mixture decreases F1 female fertility-related indices. • Prenatal exposure to a phthalate mixture induces F1 breeding complications.

  2. Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, S.; Nishii, M.; Sugiura, T.

    1984-01-01

    The radiation chemical reaction of CO-H 2 mixture has been studied in the pressure range from 10 4 to 1.3 x 10 5 Pa using 7 l. reaction vessel made of stainless steel. Various hydrocarbons and oxygen containing compounds such as methane, formaldehyde, acetaldehyde, and methanol have been obtained as radiolytic products. The amounts and the G values of these products depended upon the irradiation conditions such as composition of reactant, total pressure, reaction temperature, and dose. It was found that the irradiation at low dose produced small amounts of trioxane and tetraoxane, which have not yet been reported in literature. The yields of these cyclic ethers increased at high pressure and at low temperature. An experiment was also made on CO-H 2 mixture containing ammonia as a cation scavenger to investigate the precursor of these products. (author)

  3. Dissolution and biodegradation of a mixture of immiscible liquids

    International Nuclear Information System (INIS)

    Gandhi, P.; Erickson, L.E.; Fan, L.T.

    1994-01-01

    Subsurface contaminants are frequently encountered as mixtures of nonaqueous phase liquids (NAPLs) at sites contaminated by gasoline or coal tar comprising organic mixtures. The leaching of these organic mixtures from the aquifer has been examined with and without biodegradation. The results obtained have been compared with the limiting case of a single component NAPL. Various physical processes involved have been quantified based on the assumptions that liquid-liquid and sorption equilibria are established at the beginning of each flushing; oxygen required for biochemical oxidation is completely consumed by the end of each flushing; and the rate of biochemical oxidation obeys the Monod kinetics for a multi-substrate system, characterized by an oxygen utilization factor. This has given rise to an equilibrium model expressing the mass fraction of any component remaining in the aquifer, its aqueous concentration, and the composition of the NAPL as functions of the number of flushings. The results of the simulation with the model demonstrate that bioremediation can significantly reduce the time necessary for removing the components of intermediate solubility such as xylene. Highly soluble components of the NAPL are mainly removed by the pump-and-treat mechanism while the components of extremely low solubility are unavailable to the microbes as substrates in a multi-component system

  4. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  5. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    International Nuclear Information System (INIS)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John; Clark, David Lewis

    2016-01-01

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  6. Study of thermodynamic and transport properties of binary liquid mixture of diesel with biodiesel at 298.15K

    Science.gov (United States)

    Suthar, Shyam Sunder; Purohit, Suresh

    2018-05-01

    Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.

  7. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  8. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  9. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  10. Iron aluminide composites

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1999-01-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB 2 , and ZrB 2 . In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin (<1 microm) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites

  11. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  12. Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends

    Energy Technology Data Exchange (ETDEWEB)

    R.I. Backreedy; J.M. Jones; L. Ma; M. Pourkashanian; A. Williams; A. Arenillas; B. Arias; J.J. Pis; F. Rubiera [University of Leeds, Leeds (United Kingdom). Energy and Resources Research Institute

    2005-12-01

    Two approaches can be employed for prediction of NOx and unburned carbon. The first approach uses global models such as the 'slice' model which requires the combustor reaction conditions as an input but which has a detailed coal combustion mechanism. The second involves a computational fluid dynamic model that in principle can give detailed information about all aspects of combustion, but usually is restricted in the detail of the combustion model because of the heavy computational demands. The slice model approach can be seen to be complimentary to the CFD approach since the NOx and carbon burnout is computed using the slice model as a post-processor to the CFD model computation. The slice model that has been used previously by our group is applied to a commercial tangentially fired combustor operated in Spain and using a range of Spanish coals and imported coals, some of which are fired as blends. The computed results are compared with experimental measurements, and the accuracy of the approach assessed. The CFD model applied to this case is one of the commercial codes modified to use a number of coal combustion sub-models developed by our group. In particular it can use two independent streams of coal and as such it can be used for the combustion of coal blends. The results show that both model approaches can give good predictions of the NOx and carbon in ash despite the fact that certain parts of the coal combustion models are not exactly the same. However, if a detailed insight into the combustor behaviour is required then the CFD model must be used. 28 refs., 4 figs., 6 tabs.

  13. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  14. Dielectric relaxation studies of some primary alcohols and their mixture with water

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Yaqub, M.

    2003-01-01

    The complex dielectric constant of ethyl alcohol, methyl alcohol and 1- propanol and their mixtures with water of different concentration, (0 to 100% by weight) at the temperature of 303K has been evaluated, within the frequency range of (100KHz- 100 MHz). Moreover, the viscosity mu of each alcohol and its mixture with water have been measured at this temperature. The dielectric properties have been evaluated by Hartshorn and Ward apparatus. The purpose of this work is to study the influence of aliphatic group, size and shape on the extent of hydrogen bonding and also to obtain the thermodynamic data on hydrogen bond formation in the pure liquid state and its mixture. The width of the semicircle plot determines the distribution of average relaxation time. Dielectric relaxation time in pure alcohols and their water mixture has been calculated from the respected Cole-Cole plot and dielectric data. A single relaxation time of 117.16ps has been obtained for the molecules of pure methanol, whereas, the dielectric data of prophyl alcohol which indicates the viscosity water have been measured at the temperature 303 K. The dielectric properties in distribution of relaxation time, which is in good agreement with the Davidson-cole representation. The molecules in liquid mixture within frequency range, the mixture has more than one relaxation item, leading to the shortening of main relaxation time as compared with the pure alcohol and broadening of the complex permitivity spectra. The dependence of the dielectric relaxation on composition shows a remarkable behavior. Results are discussed in the light of H-bonded molecules. (author)

  15. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  16. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures.

    Science.gov (United States)

    Lim, Hyun Gyu; Lim, Jae Hyung; Jung, Gyoo Yeol

    2015-01-01

    Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our

  17. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  18. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  19. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  20. Composition variability and equivalence of Shonka TE plastic

    International Nuclear Information System (INIS)

    Spokas, J.J.

    1973-01-01

    A number of conducting plastic mixtures had been developed by Francis R. Shonka, and collaborators, in the Physical Sciences Laboratory of Illinois Benedictine College (formerly St. Procopius College). Several of these mixtures have been used widely in radiation research. In particular, a tissue-equivalent (muscle) formulation designated A-150 has been used extensively in the dosimetry, research and measurements of gamma, neutron and pion beams. Certain confusion has arisen concerning the composition of A-150. The definition of A-150 is reviewed and what is known of the composition is summarized. The equivalence of A-150 and ICRU ''muscle'' with respect to photons is discussed as a function of photon energy using the latest data on extra-nuclear photon cross sections. (U.S.)

  1. Tricolore. A flexible color scale for ternary compositions

    DEFF Research Database (Denmark)

    2018-01-01

    tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...

  2. Volumetric properties of binary mixtures of N-ethylformamide with tetrahydrofuran, 2-butanone, and ethylacetate from T = (293.15 to 313.15) K

    International Nuclear Information System (INIS)

    Gadžurić, Slobodan; Nikolić, Aleksandar; Vraneš, Milan; Jović, Branislav; Damjanović, Marko; Dožić, Sanja

    2012-01-01

    Highlights: ► Densities of N-ethylformamide mixtures with ketones and esters were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► Increase of the temperature has influence on N-ethylformamide self-association. ► Complex formation between the components was not observed. - Abstract: Densities of binary liquid mixtures of N-ethylformamide (NEF) with tetrahydrofuran (THF), 2-butanone (B), and ethylacetate (EA) were measured at temperatures from (293.15 to 313.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes, V E , have been obtained from values of the experimental density and were fitted to the Redlich–Kister polynomial equation. The V E values for all three mixtures are negative over the entire composition and temperature ranges. The V E values become more negative as the temperature increases for all binary mixtures studied. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes, partial molar excess volumes and excess thermal expansions have been calculated.

  3. Systematic Investigation of the Role of Surfactant Composition and Choice of oil

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Neustrup, Malene Aaby; Harloff-Helleberg, Stine

    2017-01-01

    humoral and CMI responses. METHODS: The influence of emulsion composition was analyzed using a systematic approach. Three factors were varied: i) saturation of the oil phase, ii) type and saturation of the applied surfactant mixture, and iii) surfactant mixture net charge. RESULTS: The emulsions were...... colloidally stable with a droplet diameter of 150-250 nm, and the zeta-potential correlated closely with the net charge of the surfactant mixture. Only cationic emulsions containing the unsaturated surfactant mixture induced concomitant humoral and CMI responses upon immunization of mice with a Ct antigen...

  4. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  5. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    Campo, Antonio; Papari, Mohammad M.; Abu-Nada, Eiyad

    2011-01-01

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N 2 ), oxygen (O 2 ), xenon (Xe), carbon dioxide (CO 2 ), methane (CH 4 ), tetrafluoromethane or carbon tetrafluoride (CF 4 ) and sulfur hexafluoride (SF 6 ). The three thermophysical properties forming the Prandtl number of binary gas mixtures Pr mix are heat capacity at constant pressure C p,mix (thermodynamic property), viscosity η mix (transport property) and thermal conductivity λ mix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio C p,mix , η mix , and λ mix are gathered from various dependable sources. When the set of computed Pr mix values for the seven binary gas mixtures He + N 2 , He + O 2 , He + Xe, He + CO 2 , He + CH 4 , He + CF 4 , He + SF 6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Pr mix (w) curves exhibited distinctive concave shapes. In the curves format, all Pr mix (w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Pr mix (w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Pr mix,min = 0.12 at the optimal molar gas composition w opt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic

  6. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  7. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  8. Synthesis of Hβ (core)/SAPO-11 (shell) Composite Molecular Sieve and its Catalytic Performances in the Methylation of Naphthalene with Methanol

    International Nuclear Information System (INIS)

    Wang, Xiaoxiao; Zhao, Liangfu; Guo, Shaoqing

    2013-01-01

    Hβ (core)/SAPO-11 (shell) composite molecular sieve was synthesized by the hydrothermal method in order to combine the advantages of Hβ and SAPO-11 for the methylation of naphthalene with methanol. For comparison, the mechanical mixture was prepared through the blending of Hβ and SAPO-11. The physicochemical properties of Hβ, SAPO-11, the composite and the mechanical mixture were characterized by various characterization methods. The characterization results indicated that Hβ/SAPO-11 composite molecular sieve exhibited a core-shell structure, with the Hβ phase as the core and the SAPO-11 phase as the shell. The pore diameter of the composite was between that of Hβ and SAPO-11. The composite had fewer acid sites than Hβ and mechanical mixture while more acid sites than SAPO-11. The experimental results indicated that the composite exhibited high catalytic performances for the methylation of naphthalene with methanol

  9. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  10. Study of hydrocarbon emission in small direct injection engines; Kogata DI diesel kikan ni okeru teifukaji HC haishutsu ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tsurushima, T; Zhang, L; Ueda, T; Fujino, R; Yokota, K [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    The cause of unburned hydrocarbon emission in small DI diesel engines at light load was studied. An optically accessible engine which was enabled to visualize the squish area was used to investigate the behavior of spray, mixture distribution and so on. Based on these observations and engine tests, the factors such as the direct impingement of liquid phase fuel spray to the combustion chamber wall the unevenness of fuel spray among holes and spreading of the fuel droplets, mixture and flame to the squish area were supposed to be the cause of forming HC emission. 18 refs., 10 figs., 2 tabs.

  11. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  12. Nutritional, microbiological and sensorial characteristics of alfajor prepared with dehydrated mixture of salmon and tilapia

    Directory of Open Access Journals (Sweden)

    Kátia Setsuko Kimura

    2017-02-01

    Full Text Available Current assay deals with the preparation of alfajores with different levels (0 to 15% of dehydrated fish mixture of salmon (10% and tilapia (90% to assess the sensorial characteristics and their centesimal composition and microbiological. Fish inclusion in alfajores did not affect the aroma, taste, texture, color and physical aspect, with scores ranging between 6.70 and 7.96 of a hedonic scale of 9 score. An average score of 4 in a 5-score purchasing intention scale was obtained, or rather, tasters would probably buy the product. In the case of centesimal composition, inclusion affected (p 0.05 in lipids and calorie rates in the alfajores. Results show that the inclusion of up to 15% of a dehydrated mixture of salmon (10% and tilapia (90% in alfajores was greatly accepted and improved their nutrition values. Further, the product was also within the microbiological standards required by Brazilian sanitary laws.

  13. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  14. Heat of Absorption of CO2 in Aqueous Solutions of DEEA, MAPA and their Mixture

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj

    2013-01-01

    A reaction calorimeter was used to measure the differential heat of absorption of CO2 in phase change solvents as a function of temperature, CO2 loading and solvent composition. The measurements were taken for aqueous solutions of 2-(diethylamino)ethanol (DEEA), 3-(methylamino)propylamine (MAPA......) and their mixture. The tested compositions were 5M DEEA, 2M MAPA and their mixture, 5M DEEA + 2M MAPA which gives two liquid phases on reacting with CO2. Experimental measurements were also carried out for 30% MEA used as a base case. The measurements were taken isothermally at three different temperatures 40, 80...... and 120°C at a CO2 feed pressure of 600kPa. In single aqueous amine solutions, heat of absorption increases with increase in temperature and depends on thetype of amine used. DEEA, a tertiary amine, has lower heat of absorption compared to MAPA being a diamine with primary and secondary amine functional...

  15. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  16. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    Science.gov (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  17. Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C{sub 1}-C{sub 4}) and dimethyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroyuki, E-mail: matsuda@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Fukano, Makoto; Kikkawa, Shinichiro [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Constantinescu, Dana [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany); Kurihara, Kiyofumi; Tochigi, Katsumi; Ochi, Kenji [Department of Materials and Applied Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Gmehling, Juergen [Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, D-26111 Oldenburg (Germany)

    2012-01-15

    Highlights: > The VLE behavior of systems containing dimethyl carbonate (DMC) was investigated. > VLE data for ternary and binary mixtures containing alcohol and DMC were measured. > Several activity coefficient models were used for data reduction or prediction. > Valley line, i.e., distillation boundary, was observed for the ternary mixture. > Residue curves were calculated to investigate composition profile for distillation. - Abstract: (Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {l_brace}methanol + propan-1-ol + dimethyl carbonate (DMC){r_brace}, and four binary mixtures, namely an {l_brace}alcohol (C{sub 3} or C{sub 4}) + DMC{r_brace}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich-Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor-liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.

  18. Viscosities of binary mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    VASILE DUMITRESCU

    2005-11-01

    Full Text Available The viscosities of binary liquid mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol have been determined at 298.15, 303.15, 308.15, 313.15 and 318.15 K over the whole concentration range. The Hind, Grunberg–Nissan, Wijk, Auslander and McAllister models were used to calculate the viscosity coefficients and these were compared with the experimental data for the mixtures. Excess viscosities were also calculated and fitted to the Redlich–Kister equation. Various thermodynamic properties of viscous flow activation were determined and their variations with composition are discussed.

  19. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  20. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  1. Experimental study and ERAS modeling of the excess molar enthalpy of (acetonitrile + 1-heptanol or 1-octanol) mixtures at (298.15, 313.15, and 323.15) K and atmospheric pressure

    International Nuclear Information System (INIS)

    Figueiredo Checoni, Ricardo; D'Agostini, Luciane; Zaghini Francesconi, Artur

    2008-01-01

    As a continuation of our studies on excess functions of binary systems, experimental data of excess molar enthalpy (H m E ) of (acetonitrile + 1-heptanol or 1-octanol) mixtures have been determined as a function of composition at (298.15, 313.15, and 323.15) K at atmospheric pressure using a modified 1455 PARR mixture calorimeter. The H m E is positive for both systems over the whole composition range. The applicability of the ERAS-Model to correlate H m E of the mixtures studied was tested. The agreement between experimental and calculated values is satisfactory

  2. Thermodynamic simulations of hydrate formation from gas mixtures in batch operations

    International Nuclear Information System (INIS)

    Kobayashi, Takehito; Mori, Yasuhiko H.

    2007-01-01

    This paper deals with the hydrate formation from mixed hydrate-forming gases such as natural gas to be converted to hydrates for the purpose of its storage and biogases from which carbon dioxide is to be separated by hydrate formation. When a batch operation is selected for processing such a gas mixture in a closed reactor, we need to predict the evolution of the thermodynamic and compositional states inside the reactor during the operation. We have contrived a simulation scheme that allows us to estimate the simultaneous changes in the composition of the residual gas, the structure of the hydrate formed and the guest composition in the hydrate, in addition to the change in the system pressure, with the progress of hydrate formation during each operation. This scheme assumes the transient hydrate forming process in a reactor during each operation to be a series of numerous equilibrium states, each slightly deviating from the preceding state. That is, a thermodynamic system composed of the contents of the reactor is assumed to be subjected to a quasi-static, irreversible change in state, instantaneously keeping itself in thermodynamic equilibrium. The paper demonstrates a simulation of a process of hydrate formation from a methane + propane mixture and compares its results to relevant experimental results reported by Uchida et al. [Uchida T, Morikawa M, Takeya S, Ikeda IY, Ohmura R, Nagao J, et al. Two-step formation of methane-propane mixed gas hydrates in a batch-type reactor. AIChE J 2004;50(2):518-23

  3. How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, v(3) and 2v(2)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2002-01-01

    . Surprisingly it is observed that the ratio at a fixed pressure is independent of the composition and thereby of the surroundings in which the methane molecule is vibrating. A model function to predict the pressure is given. From a practical point of view, the present results could be useful for determining...... directly the total pressure in methane mixtures the composition of which is not known.......Raman spectra of a pure CH4 sample, two CH4-C2H6 mixtures and a CH4-N2 mixture were obtained as a function of pressure at pressures up to 39.6 MPaA (MPa absolute). These spectra are presented in the region 3120-2980 cm-1. A clear pressure dependence of the area ratio between two weak methane bands...

  4. Phase equilibria for mixtures containing very many components. development and application of continuous thermodynamics for chemical process design

    International Nuclear Information System (INIS)

    Cotterman, R.L.; Bender, R.; Prausnitz, J.M.

    1984-01-01

    For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time

  5. Thermodynamic properties of binary mixtures of tetrahydropyran with pyridine and isomeric picolines: Excess molar volumes, excess molar enthalpies and excess isentropic compressibilities

    International Nuclear Information System (INIS)

    Saini, Neeti; Jangra, Sunil K.; Yadav, J.S.; Sharma, Dimple; Sharma, V.K.

    2011-01-01

    Research highlights: → Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ-picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition. → The observed densities and speeds of sound values have been employed to determine excess molar volumes, V E and excess isentropic compressibilities, κ S E . → Topology of the constituents of mixtures has been utilized (Graph theory) successfully to predict V E , H E and κ S E data of the investigated mixtures. → Thermodynamic data of the various mixtures have also been analyzed in terms of Prigogine-Flory-Patterson (PFP) theory. - Abstract: Densities, ρ and speeds of sound, u of tetrahydropyran (i) + pyridine or α-, β- or γ- picoline (j) binary mixtures at 298.15, 303.15 and 308.15 K and excess molar enthalpies, H E of the same set of mixtures at 308.15 K have been measured as a function of composition using an anton Parr vibrating-tube digital density and sound analyzer (model DSA 5000) and 2-drop micro-calorimeter, respectively. The resulting density and speed of sound data of the investigated mixtures have been utilized to predict excess molar volumes, V E and excess isentropic compressibilities, κ S E . The observed data have been analyzed in terms of (i) Graph theory; (ii) Prigogine-Flory-Patterson theory. It has been observed that V E , H E and κ S E data predicted by Graph theory compare well with their experimental values.

  6. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  7. The potential of three different PCR-related approaches for the authentication of mixtures of herbal substances and finished herbal medicinal products.

    Science.gov (United States)

    Doganay-Knapp, Kirsten; Orland, Annika; König, Gabriele M; Knöss, Werner

    2018-04-01

    Herbal substances and preparations thereof play an important role in healthcare systems worldwide. Due to the variety of these products regarding origin, composition and processing procedures, appropriate methodologies for quality assessment need to be considered. A majority of herbal substances is administered as multicomponent mixtures, especially in the field of Traditional Chinese Medicine and ayurvedic medicine, but also in finished medicinal products. Quality assessment of complex mixtures of herbal substances with conventional methods is challenging. Thus, emphasis of the present work was directed on the development of complementary methods to elucidate the composition of mixtures of herbal substances and finished herbal medicinal products. An indispensable prerequisite for the safe and effective use of herbal medicines is the unequivocal authentication of the medicinal plants used therein. In this context, we investigated the potential of three different PCR-related methods in the characterization and authentication of herbal substances. A multiplex PCR assay and a quantitative PCR (qPCR) assay were established to analyze defined mixtures of the herbal substances Quercus cortex, Juglandis folium, Aristolochiae herba, Matricariae flos and Salviae miltiorrhizae radix et rhizoma and a finished herbal medicinal product. Furthermore, a standard cloning approach using universal primers targeting the ITS region was established in order to allow the investigation of herbal mixtures with unknown content. The cloning approach had some limitations regarding the detection/recovery of the components in defined mixtures of herbal substances, but the complementary use of two sets of universal primer pairs increased the detection of components out of the mixture. While the multiplex PCR did not retrace all components in the defined mixtures of herbal substances, the established qPCR resulted in simultaneous and specific detection of the five target sequences in all defined

  8. Prospective environmental risk assessment of mixtures in wastewater treatment plant effluents - Theoretical considerations and experimental verification.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Sacher, Frank; Polleichtner, Christian; Hassold, Enken; Gildemeister, Daniela; Kühnen, Ute

    2018-04-14

    identity of substances composing environmental mixtures such as WWTP effluents is typically unknown. Therefore, a mixture assessment factor is discussed as an option for a prospective ERA of mixtures of unknown composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Component effects in mixture experiments

    International Nuclear Information System (INIS)

    Piepel, G.F.

    1980-01-01

    In a mixture experiment, the response to a mixture of q components is a function of the proportions x 1 , x 2 , ..., x/sub q/ of components in the mixture. Experimental regions for mixture experiments are often defined by constraints on the proportions of the components forming the mixture. The usual (orthogonal direction) definition of a factor effect does not apply because of the dependence imposed by the mixture restriction, /sup q/Σ/sub i=1/ x/sub i/ = 1. A direction within the experimental region in which to compute a mixture component effect is presented and compared to previously suggested directions. This new direction has none of the inadequacies or errors of previous suggestions while having a more meaningful interpretation. The distinction between partial and total effects is made. The uses of partial and total effects (computed using the new direction) in modification and interpretation of mixture response prediction equations are considered. The suggestions of the paper are illustrated in an example from a glass development study in a waste vitrification program. 5 figures, 3 tables

  10. Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.

    Science.gov (United States)

    Böhning, Dankmar; Kuhnert, Ronny

    2006-12-01

    This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.

  11. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  12. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O2/N2 ternary mixture

    International Nuclear Information System (INIS)

    Kylian, O; Rossi, F

    2009-01-01

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O 2 /N 2 mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O 2 /N 2 plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O 2 discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  13. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 3. Influence of probe surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mischa Theis; Bengt-Johan Skrifvars; Maria Zevenhoven; Mikko Hupa; Honghi Tran [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry

    2006-10-15

    Mixtures of peat with bark and peat with straw were burned in a large lab-scale entrained flow reactor under controlled conditions, and deposits were collected on an air-cooled probe controlled at four to six different probe surface temperatures between 475 and 625{sup o}C. The results show that the probe surface temperature has no effect on the deposition rate when peat is burned. When burning bark, either alone or in mixtures with peat, the deposition rate decreases with increasing probe surface temperature. When burning straw, either alone or in mixtures with peat, the deposition rate increases with increasing probe surface temperature up to 550{sup o}C and remains constant at higher temperatures. The Cl content in the deposits decreases with increasing probe surface temperature, regardless of the mixture composition. In deposits obtained from burning peat-bark mixtures, K appears as K{sub 2}SO{sub 4} when the deposition rate is low and as KCl when the deposition rate is high. In deposits obtained from burning peat-straw mixtures, no clear relationship is found between the deposition rate and the contents of Cl, S and K in the deposits. 21 refs., 6 figs., 2 tabs.

  14. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  15. Experiments with Mixtures Designs, Models, and the Analysis of Mixture Data

    CERN Document Server

    Cornell, John A

    2011-01-01

    The most comprehensive, single-volume guide to conducting experiments with mixtures"If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work."-Short Book Reviews (Publication of the International Statistical Institute)"The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments."-Journal of the Royal S

  16. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite

    Indian Academy of Sciences (India)

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements ...

  17. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measure-.

  18. Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ruckenstein, E.; Sun, F. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-10-01

    Pervaporation is becoming recognized as an energy-efficient alternative to distillation and other separation methods of liquid mixtures, especially in cases in which the traditional separation techniques are not efficient, such as the separation of azeotropic mixtures, close-boiling-point components, isomeric components, and recovery or removal of trace organic substances from aqueous solutions. Novel composite polymeric membranes have been prepared, using concentrated emulsions as precursors, and employed in the pervaporation of various liquid mixtures. In order to improve the stability of the concentrated emulsion, the hydrophilicity and/or the hydrophobicity of the phases involved must be increased by replacing them with their solutions in water and/or in a hydrocarbon, respectively. Another possibility of improving the stability is to increase the viscosity of the phases, by partial polymerization of one or both phases before preparing the concentrated emulsion. The emulsion gel was subsequently transformed into a polymer composite by polymerizing both phases. The dispersed phase should be selected to yield a hydrophobic (hydrophilic) polymer which is compatible with the components selected for separation and incompatible with the other components, while the continuous phase should be selected to yield a hydrophilic (hydrophobic) polymer which is incompatible with all of the components of the mixture, and thus it can ensure the integrity of the membrane. As examples, several composite polymeric membranes were designed, prepared, and employed in the separation by pervaporation of water-ethanol,aromatics-paraffinics, and aromatics-alcohol mixtures.

  19. Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams

    Science.gov (United States)

    Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.

    2015-01-01

    Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.

  20. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran, E-mail: jadran.vrabec@uni-paderborn.de [Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn (Germany)

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  1. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    Science.gov (United States)

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Perception of trigeminal mixtures.

    Science.gov (United States)

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  4. Optimization of composite flour biscuits by mixture response surface methodology.

    Science.gov (United States)

    Okpala, Laura C; Okoli, Eric C

    2013-08-01

    Biscuits were produced from blends of pigeon pea, sorghum and cocoyam flours. The study was carried out using mixture response surface methodology as the optimization technique. Using the simplex centroid design, 10 formulations were obtained. Protein and sensory quality of the biscuits were analyzed. The sensory attributes studied were appearance, taste, texture, crispness and general acceptability, while the protein quality indices were biological value and net protein utilization. The results showed that while the addition of pigeon pea improved the protein quality, its addition resulted in reduced sensory ratings for all the sensory attributes with the exception of appearance. Some of the biscuits had sensory ratings, which were not significantly different (p > 0.05) from biscuits made with wheat. Rat feeding experiments indicated that the biological value and net protein utilization values obtained for most of the biscuits were above minimum recommended values. Optimization suggested biscuits containing 75.30% sorghum, 0% pigeon pea and 24.70% cocoyam flours as the best proportion of these components. This sample received good scores for the sensory attributes.

  5. Augmenting Scheffe Linear Mixture Models With Squared and/or Crossproduct Terms

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Szychowski, Jeffrey M.; Loeppky, Jason L.

    2001-01-01

    A glass composition variation study (CVS) for high-level waste (HLW) stored at the Idaho National Engineering and Environmental Laboratory (INEEL) is being statistically designed and performed in phases over several years. The purpose of the CVS is to investigate and model how HLW-glass properties depend on glass composition within a glass composition region compatible with the expected range of INEEL HLW. The resulting glass property-composition models will be used to develop desirable glass formulations and other purposes. Phases 1 and 2 of the CVS have been completed so far, and are briefly described. The main focus of this paper is the CVS Phase 3 experimental design (test matrix). The Phase 3 experimental design was chosen to augment the Phase 1 and 2 data with additional data points, as well as to account for additional glass components of interest not studied in Phases 1 and/or 2. The paper describes how these Phase 3 experimental design augmentation challenges were addressed using the previous data, preliminary property-composition models, and statistical mixture experiment and optimal experimental design methods and software. The resulting Phase 3 experimental design of 30 simulated HAW glasses is presented and discussed

  6. Raising, Sustaining Productivity and Quality in Mixtures Imperata Cylindrica-Stylosanthes Guyanensis Pastures with Phosphorus Fertilization and Defoliation Management

    OpenAIRE

    Nohong, Budiman

    2016-01-01

    Phosphorus fertilization on crop mixtures Cogongrass-Stylo's very important for the development of root nodules, nitrogen fixation and improve the botanical composition Stylo to confront an aggressive Cogon grass. This study aims to improve the productivity and quality of crops mixtures Cogon grass-Stylo through fertilization and defoliation frequency. The study consisted of two factors . The first factor is the phosphorus fertilizer with a dose of 0 (P0 ) and 100 kg P2O/ha (P1 ). The second ...

  7. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    Science.gov (United States)

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning levels of biological organization and life stages when assessing contaminant interactions.

  8. rice-husk ash-carbide-waste stabilization of reclaimed asphalt

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... passing sieve 2.36 mm aperture, of the composite ... is the indication of the amount of unburned carbon in ..... protective coating on the surface of unhydrated grains .... Materials”, Journal of the European Ceramic Society,. Vol.

  9. Inflammable gax mixtures in biogas facilities; Entzuendbare Gasgemische in Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Volkmar; Pahl, Robert [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich 2.1 ' Gase, Gasanlagen'

    2013-09-15

    The number of the biogas facilities in Germany has strongly increased with the extension of regenerative energy. In the facilities by decomposition of organic matter inflammable biogas is obtained, which strongly fluctuates in its composition. The main components of biogas are methane and carbon dioxide, but also depending on the process-level water vapor, nitrogen,oxygen, and impurities, which may partly be toxic. In addition it is begun to work up biogas in larger facilities in order to feed it directly in the natural-gas network. In the development are currently also coupled biogas and electrolysis facilities. By means of the electrolysis of water also surpluses of electrical energy from wind and solar facilities can be processed to hydrogen (power-to-gas technology). In order to make reliable data for the explosion protection in the handling with the gas mixtures present in the facilities available, the BAM has in the last years measured explosion ranges of mixtures of methane, hydrogen, carbon dioxide, water vapor, air, and oxygen in accordance with the standard EN 1839 and made available as key data. By means of these data the explosion ability of the gas mixtures in biogas facilities can be reliably estimated. On this base corresponding explosion-protection actions can be taken.

  10. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer; Analyse des melanges hydrogene-deuterium et des melanges d'eau lourde et d'eau legere au moyen du spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Gueron, J; Roth, E

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  11. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  12. Theory study of global density influence and soils chemical composition at neutron probes response

    International Nuclear Information System (INIS)

    Crispino, M.L.

    1980-06-01

    Three energy group diffusion theory is applied to calculate the thermal neutron flux through a soil-water mixture at the neutron source. The soils studies are taken from two horizons of different composition, of a representative soil of the Litoral-Mata Zone of Pernambuco State. The thermal flux is obtained taking into consideration increasing values of the water volume percent, H, and the bulk density of the soil. The cross-sections of the mixture are calculated from the chemical composition of the soils. (author)

  13. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Martin-Pastor, Manuel; Aznar, Martin; Iglesias, Miguel

    2011-01-01

    Research highlights: → This paper reports the density and speed of sound data of binary mixtures {2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol)} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. → The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. → The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol)} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  14. Grouting mixture

    Energy Technology Data Exchange (ETDEWEB)

    Klyusov, A A; Bakshutov, V S; Kulyavtsev, V A

    1980-10-23

    A grouting mixture is proposed for low-temperature boreholes. The mixture contains cement, beta gypsum polyhydrate, and calcium chloride, so as to increase the water resistance and strength properties of expanding brick at conditions from 20 to -5/sup 0/ C, the components are in the following ratios: (by wt.-%): cement, 77.45-88.06; beta gypsum polyhydrate, 9.79-19.36; calcium chloride, 2.15-3.19. Grouting mortar for cold boreholes serves as the cement.

  15. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  16. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  17. Global phase equilibrium calculations: Critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for calculation of the different parts involved. A Newton procedure using composition, temperature and Volume as independent variables is used for calculation...

  18. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    Directory of Open Access Journals (Sweden)

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Full Text Available Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscopy, microhardness test, X-ray diffraction and GDOES. The results showed that there are significant microstructural and morphological differences on the formed layers depending on the quantity of nitrogen and methane added to the plasma nitriding atmosphere. Thicknesses of 10, 5 and 2.5 µm were obtained when the nitrogen content of the gas mixtures were varied. The possibility to obtain a compound layer formed mainly by γ'-Fe4N nitrides was also shown. For all studied plasma nitriding conditions, the presence of a compound layer was recognized as being the responsible to hinder the decarburization on the steel surface. The highest value of surface hardness - 1277HV - were measured in the sample which were nitrided with 3vol.% of CH4.

  19. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  20. NO{sub x} emissions from combustion of hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Roertveit, Geir Johan

    2002-07-01

    to 1800 K the importance of the prompt NO{sub x} mechanism is verified for the porous burners that are burning hydrocarbon fuels. A catalytical burner system has been designed and tested. The system uses Labview for improved mass flow control and the logging of all measurements. Commercial catalysts with Pt and Pt/Pd are used and were found to completely oxidise lean mixtures of H{sub 2} in air. Due to the low temperatures no NO{sub x} emissions were recorded. The initial temperature requirements for igniting CH{sub 4} and C{sub 3}H{sub 8} in these catalytic burners was met by preheating, CO, or H{sub 2} oxidation. C{sub 3}H{sub 8} was found to be far easier to ignite than CH{sub 4}. After the ignition of either hydrocarbon fuel at above 1170 K, it was possible to switch over to either of the pure hydrocarbon fuels. Complete combustion at temperatures of up to 1270 K gave emissions for NO{sub x}, CO and unburned hydrocarbons of less than 3 ppm corrected to 3 % O{sub 2} in the flue gases. The limitation of these catalytic burners is the durability of the catalytic materials and when a temperature of about 1320 K is exceeded for periods of time, there was a permanent loss of activity. An 8 hour long term test indicated a loss of activity by a factor of about 4. This led to the development of a catalytically supported porous burner, where the temperature at the catalyst could be kept low. However, this burner did not further lower the emissions values compared to a regular porous burner. (Author)

  1. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  2. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    Full Text Available In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ = (εe − εm(εi − εm−1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell

  3. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  4. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics

    Directory of Open Access Journals (Sweden)

    R. Tuffi

    2018-01-01

    Full Text Available The thermal behavior and pyrolytic kinetic analysis of main waste polymers (polypropylene (PP, polyethylene film (PE, poly(ethylene terephthalate (PET, polystyrene (PS and three synthetic mixtures representing commingled postconsumer plastics wastes (CPCPWs output from material recovery facilities were studied. Thermogravimetry (TG pyrolysis experiments revealed that the thermal degradation of single polymers and the synthetic mixture enriched in PP occurred in one single step. The other two mixtures underwent a two-consecutive, partially overlapping degradation steps, whose peaks related to the first-order derivative of TG were deconvoluted into two distinct processes. Further TG experiments carried out on binary mixtures (PS/PP, PET/PP, PET/PEfilm and PP/PEfilm showed a thermal degradation reliance on composition, structure and temperatures of single polymer components. A kinetic analysis was made for each step using the Kissinger-Akahira-Sunose (KAS method, thus determining almost constant activation energy (Ea for pyrolysis of PS, PET, PP and PE film in the range 0.25<α<0.85, unlike for pyrolysis of CPCPWs, with particular reference to CPCPW1 and the second step of CPCPW2 and CPCPW3, both ascribable to degradation of PP and PE film. To account for the reliability of these values the integral isoconversional modified method developed by Vyazovkin was also applied.

  5. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  6. Designing of Synergistic Waste Mixtures for Multiphase Reactive Smelting

    Directory of Open Access Journals (Sweden)

    Vaso Manojlović

    2016-06-01

    Full Text Available Electric arc furnace (EAF dust, together with a mill scale and coke were smelted in a laboratory electric arc furnace. These metallurgical wastes consist of a many different phases and elements, making the reaction process complex. Thermo-chemical analysis of the reactions in metal, slag, and gas phases was done, and used for modeling of the mixture composition and energy consumption required for smelting. Modelling was performed with the software named RikiAlC. The crude ZnO, slag, and metal phase were analyzed using the atomic absorption spectrometry (AAS, the optical emission spectrometry with inductively coupled plasma (ICP-OES, the X-ray diffraction (XRD, the scanning electron microscopy (SEM equipped with energy dispersive spectrometry (EDS, and reflected and transmitted light microscopy. Also, in order to follow the behavior of this process the exhausted gases were monitored. The synergetic effects of the designed mixture may be recognized in minimizing energy consumption for the smelting process, improving the product yield efficiency, and reducing the negative environmental effects.

  7. Excess Molar Volume of Binary Mixtures of Methylheptenone+Alkanols at 298.15 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Excess molar volume(VE) data on binary liquid mixtures of methylheptenone (MHO) with methanol, ethanol, n-propanol or n-butanol have been determined from the density measurements at 298.15 K and atmospheric pressure. The values of VE in all the systems over the entire composition range are quantified by the Redlich-Kister equation. The effects of the chain length of alkanols on VE are discussed.

  8. Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO_2-C Powder Mixtures

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Lee, Jung-Moo; Cho, Young-Hee; Kim, Jong-Jin; Kim, Su-Hyeon; Lee, Jae-Chul

    2012-01-01

    A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of Al-TiO_2-C pellet was directly added into an Al melt at 800-920°C to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in 1-2 um at the melt temperature above 850°C. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, Al_3Ti. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

  9. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  10. Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters

    Science.gov (United States)

    Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.

    2017-09-01

    To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.

  11. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    Science.gov (United States)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  12. Nonparametric e-Mixture Estimation.

    Science.gov (United States)

    Takano, Ken; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2016-12-01

    This study considers the common situation in data analysis when there are few observations of the distribution of interest or the target distribution, while abundant observations are available from auxiliary distributions. In this situation, it is natural to compensate for the lack of data from the target distribution by using data sets from these auxiliary distributions-in other words, approximating the target distribution in a subspace spanned by a set of auxiliary distributions. Mixture modeling is one of the simplest ways to integrate information from the target and auxiliary distributions in order to express the target distribution as accurately as possible. There are two typical mixtures in the context of information geometry: the [Formula: see text]- and [Formula: see text]-mixtures. The [Formula: see text]-mixture is applied in a variety of research fields because of the presence of the well-known expectation-maximazation algorithm for parameter estimation, whereas the [Formula: see text]-mixture is rarely used because of its difficulty of estimation, particularly for nonparametric models. The [Formula: see text]-mixture, however, is a well-tempered distribution that satisfies the principle of maximum entropy. To model a target distribution with scarce observations accurately, this letter proposes a novel framework for a nonparametric modeling of the [Formula: see text]-mixture and a geometrically inspired estimation algorithm. As numerical examples of the proposed framework, a transfer learning setup is considered. The experimental results show that this framework works well for three types of synthetic data sets, as well as an EEG real-world data set.

  13. Separating Underdetermined Convolutive Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan

    2006-01-01

    a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...

  14. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2012-01-01

    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar t...

  15. Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures

    International Nuclear Information System (INIS)

    Lee, M.W.; Neufeld, P.; Bigeleisen, J.

    1977-01-01

    An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory

  16. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  17. Potentiometric investigations of (acid+base) equilibria in (n-butylamine+acetic acid) systems in binary (acetone+cyclohexane) solvent mixtures

    International Nuclear Information System (INIS)

    Czaja, MaIgorzata; Kozak, Anna; Makowski, Mariusz; Chmurzynski, Lech

    2005-01-01

    By using the potentiometric titration method, standard equilibrium constants have been determined of acid dissociation of molecular acid, K a (HA), cationic acid, K a (BH + ), of anionic and cationic homoconjugation, K AHA - andK BHB + , respectively, and of molecular heteroconjugation, K AHB (K BHA ), in (acid+base) systems without proton transfer consisting of n-butylamine and acetic acid in binary (acetone+cyclohexane) solvent mixtures. The results have shown that both the pK a (HA) and pK a (BH + ), as well as lgK AHA - values change non-linearly as a function of composition of the solvent mixture. On the other hand, standard molecular heteroconjugation constants without proton transfer do not depend on the cyclohexane content in the mixture, i.e. on solvent polarity

  18. Densities and viscosities of the mixtures (formamide + 2-alkanol): Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Almasi, Mohammad

    2014-01-01

    Graphical abstract: Viscosity deviations △η vs. mole fraction of FA, for binary mixtures of FA with (□) 2-PrOH, (●) 2-BuOH, (■) 2-PenOH, (◀) 2-HexOH, (◊) 2-HepOH at T = 298.15 K. The solid curves were calculated from Redlich–Kister type equation. -- Highlights: • Densities and viscosities of the mixtures (formamide + 2-alkanols) were measured. • Experiments were performed over the entire mole fraction at four temperatures. • SAFT and PC-SAFT were applied to predict the volumetric behavior of mixtures. • PRSV equation of state (EOS) has been used to predict the binary viscosities. -- Abstract: Densities and viscosities of binary liquid mixtures of formamide (FA) with polar solvents namely, 2-PrOH, 2-BuOH, 2-PenOH, 2-HexOH, and 2-HepOH, have been measured as a function of composition range at temperatures (298.15, 303.15, 308.15, 313.15) K and ambient pressure. From experimental data, excess molar volumes, V m E and viscosity deviations Δη, were calculated and correlated by Redlich–Kister type function. The effect of temperature and chain-length of the 2-alkanols on the excess molar volumes and viscosity deviations are discussed in terms of molecular interaction between unlike molecules. The statistical associating fluid theory (SAFT), and perturbed chain statistical associating fluid theory (PC-SAFT) were applied to correlate and predict the volumetric behavior of the mixtures. The best predictions were achieved with the PC-SAFT equation of state. Also the Peng–Robinson–Stryjek–Vera equation of state has been used to predict the viscosity of binary mixtures

  19. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    DEFF Research Database (Denmark)

    Mishra, Jaya; Rades, Thomas; Löbmann, Korbinian

    2018-01-01

    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated....... Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios...... that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced...

  20. Investigation of complexing in solutions of salt mixture In(NO3)3-NaVO3

    International Nuclear Information System (INIS)

    Nakhodnova, A.N.; Listratenko, I.V.

    1987-01-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO 3 ) 3 -NaVO 3 salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios [In 3+ ]:[V 5+ ] being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO 3 ) 3 and NaVO 3 salt mixture solutions and the medium acidity. Compounds of Na 2 OxIn 2 O 3 x2.5V 2 O 5 x8.5H 2 O and Cs 2 OxIn 2 O 3 x6V 2 O 5 x6.5H 2 O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented