WorldWideScience

Sample records for ultrathin iron layers

  1. Layered Ultrathin Coherent Structures (LUCS)

    International Nuclear Information System (INIS)

    Schuller, I.K.; Falco, C.M.

    1979-01-01

    A new class of superconducting materials, Layered Ultrathin Coherent Structures (LUCS) are described. These materials are produced by sequentially depositing ultrathin layers of materials using high rate magnetron sputtering or thermal evaporation. Strong evidence is presented that layers as thin as 10 A can be prepared in this fashion. Resistivity data indicates that the mean free path is layer thickness limited. A strong disagreement is found between the experimentally measured transition temperatures T/sub c/ and the T/sub c/'s calculated using the Cooper limit approximation. This is interpreted as a change in the band structure or the phonon structure of the material due to layering or to surfaces

  2. The Thickness Dependence of Optical Constants of Ultrathin Iron Films

    International Nuclear Information System (INIS)

    Gao Shang; Lian Jie; Wang Xiao; Li Ping; Sun Xiao-Fen; Li Qing-Hao

    2013-01-01

    Ultrathin iron films with different thicknesses from 7.1 to 51.7 nm are deposited by magnetron sputtering and covered by tantalum layers protecting them from being oxidized. These ultrathin iron films are studied by spectroscopic ellipsometry and transmittance measurement. An extra tantalum film is deposited under the same sputtering conditions and its optical constants and film thickness are obtained by a combination of ellipsometry and transmission measurement. After introducing these obtained optical constants and film thickness into the tantalum-iron film, the optical constants and film thicknesses of ultrathin iron films with different thicknesses are obtained. The results show that combining ellipsometry and transmission measurement improves the uniqueness of the obtained film thickness. The optical constants of ultrathin iron films depend strongly on film thicknesses. There is a broad absorption peak at about 370 nm and it shifts to 410 nm with film thickness decreasing

  3. Impedance analysis on organic ultrathin layers

    Energy Technology Data Exchange (ETDEWEB)

    Bom, Sidhant; Wagner, Veit [Jacobs University Bremen, School of Engineering and Science, Campus Ring 8, 28759 Bremen (Germany)

    2008-07-01

    Impedance spectroscopy is a standard technique for thin film analysis to obtain important information as thicknesses, diffusion properties of mobile ions and leakage currents. The measured electrical impedance of a sample is modeled by a physical equivalent circuit of resistors and capacitors. In the present work this information is obtained as a function of frequency also for ultrathin organic layers in the monolayer regime. A series of semiconducting and insulating polymers (regioregular poly-3-hexylthiophene (rr-P3HT), polymethylmethacrylate (PMMA)) and self assembled monolayers (octadecyltrichlorosilane (OTS), hexamethyldisilazane (HMDS), thiolated phospholipids) were deposited either on highly n-doped silicon wafers or on gold surfaces. E.g. ultrathin layers were obtained by dip coating a silicon wafer in rr-P3HT solution in chloroform. The thickness of 2 nm determined for this system by impedance measurement agrees well with the atomic force microscopy analysis and corresponds to a single layer of polymer chains. The leakage current is seen as an ohmic contribution at low frequencies and allows a systematic optimization of process parameters. In summary, impedance spectroscopy allows very fast and convenient analysis of thin organic layers even down to the monolayer regime.

  4. Dual-layer ultrathin film optics: I. Theory and analysis

    International Nuclear Information System (INIS)

    Wang, Qian; Lim, Kim Peng

    2015-01-01

    This paper revisits dual-layer ultrathin film optics, which can be used for functional graded refractive index thin film stack. We present the detailed derivation including s-polarized and p-polarized light under arbitrary incidence angle showing the equivalence between the dual-layer ultrathin films and a negative birefringent thin film and also the approximations made during the derivation. Analysis of the approximations shows the influence of thickness of dual-layer thin films, the incidence angle and desired refractive index of the birefringent film. Numerical comparison between the titanium dioxide/aluminum oxide based dual-layer ultrathin film stack and the equivalent birefringent film verifies the theoretical analysis. The detailed theoretical study and numerical comparison provide a physical insight and design guidelines for dual-layer ultrathin film based optical devices. (paper)

  5. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric

    2013-01-01

    Ultrathin bismuth iron garnet Bi 3 Fe 5 O 12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi 3 Fe 5 O 12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi 3 Fe 5 O 12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi 3 Fe 5 O 12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  6. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  7. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  8. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding. The opt......This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...

  9. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  10. Ultra-thin Metal and Dielectric Layers for Nanophotonic Applications

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Leandro, Lorenzo; Malureanu, Radu

    2015-01-01

    In our talk we first give an overview of the various thin films used in the field of nanophotonics. Then we describe our own activity in fabrication and characterization of ultra-thin films of high quality. We particularly focus on uniform gold layers having thicknesses down to 6 nm fabricated by......-beam deposition on dielectric substrates and Al-oxides/Ti-oxides multilayers prepared by atomic layer deposition in high aspect ratio trenches. In the latter case we show more than 1:20 aspect ratio structures can be achieved....

  11. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  12. Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films

    International Nuclear Information System (INIS)

    Chen Dan; Huang Shu; Zhang Chao; Wang Weizhi; Liu Tianxi

    2010-01-01

    The layer-by-layer (LBL) self-assembly has been extensively used as a simple and effective method for the preparation of polyelectrolyte multilayer films. In this work, we utilized this unique method to prepare polyimide precursor/layered double hydroxide (LDH) ultrathin films. Well-crystallized Co-Al-CO 3 LDH and subsequent anion exchanged Co-Al-NO 3 LDH were prepared and characterized by scanning electron microscopy and X-ray diffraction (XRD). By vigorous shaking of the as-prepared Co-Al-NO 3 LDH, positively charged and exfoliated LDH nanosheets were obtained. Atomic force microscopy and XRD investigations indicated the delamination of LDH nanosheets. The precursor of polyimide, poly(amic acid) tertiary amine salt (PAS) was prepared by the polycondensation of dianhydride and diamine, and subsequent amine salt formation. By using the LBL method, heterogeneous ultrathin films of PAS and LDH were prepared. The formation of the ordered nanostructured assemblies was confirmed by the progressive enhancement of UV absorbance and the XRD results.

  13. A new layered iron fluorophosphate

    Indian Academy of Sciences (India)

    PO4]·2H2O, I has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO 4 − anions are present in the interlayer space along with the protonated amine and water molecules.

  14. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    Science.gov (United States)

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  15. The structure of ultrathin iron films on tungsten single-crystal surfaces

    International Nuclear Information System (INIS)

    Gardiner, T.M.

    1983-01-01

    Ultrathin iron films vapour deposited onto the surface of a cylindrical tungsten single crystal are discussed. Results from work function change, Auger electron spectroscopic and low energy electron diffraction techniques are combined for a comparison of the initial stages of film growth on four low index planes. Advantage is taken of the opportunity to evaporate onto and simultaneously to make measurements on all surface orientations of the zone. (Auth.)

  16. Thickness and composition of ultrathin SiO2 layers on Si

    NARCIS (Netherlands)

    van der Marel, C; Verheijen, M.A.; Tamminga, Y; Pijnenburg, RHW; Tombros, N; Cubaynes, F

    2004-01-01

    Ultrathin SiO2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it

  17. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  18. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt

    International Nuclear Information System (INIS)

    Li Xinyang; Fan Pengwei; Tuo Xinlin; He Yaning; Wang Xiaogong

    2009-01-01

    In this work, a hyperbranched diazonium salt (HB-DAS), prepared through azo-coupling reaction of an AB 2 monomer (N, N-bis[2-(4-aminobenzoyloxy)ethyl]aniline), was used to prepare self-assembled multilayers and ultrathin films. Multilayer films were fabricated by dipping substrates in HB-DAS and other polyelectrolyte solutions alternately in a layer-by-layer (LBL) manner. It was somewhat surprising to observe that HB-DAS forms multilayer films with either a polyanion (poly(styrenesulfonate sodium salt), PSS) or a polycation (poly(diallyldimethylammonium chloride), PDAC) through alternate deposition in the solutions. Ultrathin films were formed in a sequential growth manner by dipping the substrates in the HB-DAS solution, washing with deionized water and drying repeatedly. In all the processes, the absorbance and thickness of the thin films linearly increase as the number of the dipping cycle increases. HB-DAS/PSS multilayer possesses an obviously larger bilayer thickness and lower density compared with the other two counterparts. The drying step after each deposition is necessary for the HB-DAS ultrathin film growth through the repeated dip-coating of HB-DAS. The multilayer and ultrathin films prepared by the above methods all show high resistance to erosion by organic solvents. The multilayers and ultrathin films exhibit photoinduced dichroism upon the irradiation of a polarized Ar + laser beam

  19. Photoresponsive layer-by-layer ultrathin films prepared from a hyperbranched azobenzene-containing polymeric diazonium salt

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinyang; Fan Pengwei; Tuo Xinlin; He Yaning [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing, 100084 (China); Wang Xiaogong [Department of Chemical Engineering, Laboratory for Advanced Materials, Tsinghua University, Beijing, 100084 (China)], E-mail: wxg-dce@mail.tsinghua.edu.cn

    2009-01-30

    In this work, a hyperbranched diazonium salt (HB-DAS), prepared through azo-coupling reaction of an AB{sub 2} monomer (N, N-bis[2-(4-aminobenzoyloxy)ethyl]aniline), was used to prepare self-assembled multilayers and ultrathin films. Multilayer films were fabricated by dipping substrates in HB-DAS and other polyelectrolyte solutions alternately in a layer-by-layer (LBL) manner. It was somewhat surprising to observe that HB-DAS forms multilayer films with either a polyanion (poly(styrenesulfonate sodium salt), PSS) or a polycation (poly(diallyldimethylammonium chloride), PDAC) through alternate deposition in the solutions. Ultrathin films were formed in a sequential growth manner by dipping the substrates in the HB-DAS solution, washing with deionized water and drying repeatedly. In all the processes, the absorbance and thickness of the thin films linearly increase as the number of the dipping cycle increases. HB-DAS/PSS multilayer possesses an obviously larger bilayer thickness and lower density compared with the other two counterparts. The drying step after each deposition is necessary for the HB-DAS ultrathin film growth through the repeated dip-coating of HB-DAS. The multilayer and ultrathin films prepared by the above methods all show high resistance to erosion by organic solvents. The multilayers and ultrathin films exhibit photoinduced dichroism upon the irradiation of a polarized Ar{sup +} laser beam.

  20. Electrical properties of single crystal Yttrium Iron Garnet ultra-thin films at high temperatures

    OpenAIRE

    Thiery, Nicolas; Naletov, Vladimir V.; Vila, Laurent; Marty, Alain; Brenac, Ariel; Jacquot, Jean-François; de Loubens, Grégoire; Viret, Michel; Anane, Abdelmadjid; Cros, Vincent; Youssef, Jamal Ben; Demidov, Vladislav E.; Demokritov, Sergej O.; Klein, Olivier

    2017-01-01

    We report a study on the electrical properties of 19 nm thick Yttrium Iron Garnet (YIG) films grown by liquid phase epitaxy. The electrical conductivity and Hall coefficient are measured in the high temperature range [300,400]~K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band-gap of $E_g\\approx 2$ eV, indicating that epitaxial YIG ultra-thin film...

  1. High-Quality Ultrathin Gold Layers For Use In Plasmonic And Metamaterials Applications

    DEFF Research Database (Denmark)

    Sukham, Johneph; Takayama, Osamu; Lavrinenko, Andrei

    2018-01-01

    The propagation of electromagnetic waves can be manipulated at the nanoscale by surface plasmons supported by ultra thin metal layers. An adhesion layer, with thickness in the order of few nanometerss is used for depositing ultra thin metal gold layers. Cr and Ti are the most popular metallic...... adhesion layers. Apart from them, a non metallic silane based wetting layer like (3-Aminopropyl)trimethoxysilane (APTMS) can be used. The behaviour of the propagating surface plasmons due to the influence of these adhesion layers has not been thoroughly investigated. To study the influence of the adhesion...... layers on propagating plasmons for use in plasmonic and metamaterial applications,we experimentally compared the performances of the ultra-thin gold layers using Cr and APTMS adhesion layers and without any adhesion layer. We show that the gold layers using APTMS adhesion exhibit short range surface...

  2. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  3. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  4. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    International Nuclear Information System (INIS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  5. Role of an ultrathin platinum seed layer in antiferromagnet-based perpendicular exchange coupling and its electrical manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y., E-mail: wangyy@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China); Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Song, C., E-mail: songcheng@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, J.Y. [Department of Physics, Beihang University, Beijing 100191 (China); Pan, F. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-04-15

    The requirement for low-power consumption advances the development of antiferromagnetic (AFM) spintronics manipulated by electric fields. Here we report an electrical manipulation of metallic AFM moments within IrMn/[Co/Pt] by interface engineering, where ultrathin non-magnetic metals are highlighted between IrMn and ferroelectric substrates. Ultrathin Pt seed layers are proved to be vital in elevating the blocking temperature and enhancing the perpendicular exchange coupling through modulating the domain structures of as-prepared IrMn AFM. Further electrical manipulations of perpendicular magnetic anisotropy crucially verify the indispensable role of pre-deposited ultrathin Pt layers in modulating IrMn antiferromagnetic moments, which is confirmed by the intimate correlation between the electrically manipulating AFM and improving its blocking temperature. Instead of immediate contact between IrMn AFM and ferroelectric substrates in a conventional way, interface engineering by adopting ultrathin seed layers here adds a new twist to the electrical modulation of AFM metals. This would provide scientific basis on how to manipulate AFM moments and optimize the design of practical AFM spintronics. - Highlights: • An alternative for manipulating antiferromagnet by interface engineering is provided. • Ultrathin Pt seed layers are vital in elevating the blocking temperature of IrMn. • Perpendicular exchange coupling in IrMn/[Co/Pt] can be modulated by seed layers. • Ultrathin Pt seed layers enable electrical control of perpendicular exchange coupling.

  6. Role of an ultrathin platinum seed layer in antiferromagnet-based perpendicular exchange coupling and its electrical manipulation

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    The requirement for low-power consumption advances the development of antiferromagnetic (AFM) spintronics manipulated by electric fields. Here we report an electrical manipulation of metallic AFM moments within IrMn/[Co/Pt] by interface engineering, where ultrathin non-magnetic metals are highlighted between IrMn and ferroelectric substrates. Ultrathin Pt seed layers are proved to be vital in elevating the blocking temperature and enhancing the perpendicular exchange coupling through modulating the domain structures of as-prepared IrMn AFM. Further electrical manipulations of perpendicular magnetic anisotropy crucially verify the indispensable role of pre-deposited ultrathin Pt layers in modulating IrMn antiferromagnetic moments, which is confirmed by the intimate correlation between the electrically manipulating AFM and improving its blocking temperature. Instead of immediate contact between IrMn AFM and ferroelectric substrates in a conventional way, interface engineering by adopting ultrathin seed layers here adds a new twist to the electrical modulation of AFM metals. This would provide scientific basis on how to manipulate AFM moments and optimize the design of practical AFM spintronics. - Highlights: • An alternative for manipulating antiferromagnet by interface engineering is provided. • Ultrathin Pt seed layers are vital in elevating the blocking temperature of IrMn. • Perpendicular exchange coupling in IrMn/[Co/Pt] can be modulated by seed layers. • Ultrathin Pt seed layers enable electrical control of perpendicular exchange coupling.

  7. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    Science.gov (United States)

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  8. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  9. Trap effect of an ultrathin DCJTB layer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Yang Shengyi [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)

    2005-08-15

    An improved performance of organic light-emitting diodes has been obtained by using 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4Hpyran (DCJTB) as an ultrathin emitting layer. When 0.1 nm DCJTB was inserted between the hole-transporting layer and electron-transporting layer, for an unoptimized device indium-tin oxide (ITO)/naphtylphenyliphenyl diamine (NPB)/DCJTB (0.1 nm)/8-hydroxyquinoline aluminum (Alq{sub 3})/Al, the maximum brightness was 1531 cd m{sup -2} at 15 V. Compared with doped devices ITO/NPB/Alq{sub 3}:DCJTB (1%)/Alq{sub 3}/LiF/Al, a higher efficiency has been achieved. Compared with the conventional device ITO/NPB/Alq{sub 3}/Al, the inserted device has a slightly higher current efficiency and lower turn-on voltage. We suggest the ultrathin DCJTB layer acts as trap for carriers, and the accumulated holes at the hole-transport layer/electron-transport layer interface have enhanced the electric field in the electron-transport layer and improved the electron injection at the cathode.

  10. Influence of the number of layers on ultrathin CsSnI3 perovskite: from electronic structure to carrier mobility

    Science.gov (United States)

    Liu, Biao; Long, Mengqiu; Cai, Meng-Qiu; Yang, Junliang

    2018-03-01

    Inorganic halide perovskites have attracted great attention in recent years as promising materials for optoelectronic devices, with ultrathin inorganic halide perovskites showing excellent properties and great potential applications. Herein, the intrinsic electronic and optical properties of ultrathin cesium tin tri-iodide (CsSnI3) perovskite with a varying number of layers are explored using first-principles calculations. The results reveal that ultrathin CsSnI3 is a direct band gap semiconductor, and the band gap continues to increase to 1.83 eV from 1.28 eV as the number of layers is reduced to one layer from the bulk. By decreasing the number of layers, the effective mass of ultrathin CsSnI3 increases, and the optical absorption intensity along the x and y directions shows that the linear dichroism becomes stronger and stronger. Furthermore, the carrier mobilities (µ) can be predicted, and they show obvious in-plane anisotropy. The µ of the electrons is higher than that of the holes, and the electron mobility along the y direction is higher than that along the x direction. The layer thickness does not distinctly influence the µ. The difference in the atomic orbital distribution has the nature of obvious anisotropy in ultrathin CsSnI3. This work suggests that ultrathin inorganic perovskite could be a potential candidate for future nano-optoelectronic devices.

  11. Role of ultrathin metal fluoride layer in organic photovoltaic cells: mechanism of efficiency and lifetime enhancement.

    Science.gov (United States)

    Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo

    2014-04-01

    Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (≈3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  13. High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices

    DEFF Research Database (Denmark)

    Sukham, Johneph; Takayama, Osamu; Lavrinenko, Andrei

    2017-01-01

    , in particular, when the Au layer is not much thicker than the adhesion layers. We experimentally compared the performances of the ultrathin gold films to show the pivotal influence of adhesion layers on highly confined propagating plasmonic modes, using Cr and 3-aminopropyl trimethoxysilane (APTMS) adhesion...

  14. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  15. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    International Nuclear Information System (INIS)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong

    2009-01-01

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W -1 at 5.5 V and a maximum luminance of 16 690 cd m -2 at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  16. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn

    2009-01-07

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W{sup -1} at 5.5 V and a maximum luminance of 16 690 cd m{sup -2} at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  17. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.

  18. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  19. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Wang, Tao [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Jiang, Yadong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jiangyd@uestc.edu.cn; Wei, Bangxiong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-03-15

    Conventional fluorescent dyes, i.e., 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 5,12-dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene), were used to investigate the performance of organic light-emitting diodes (OLEDs) based on indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3})/MgAg. The dyes were either inserted into devices as an ultra-thin film at the NPB/Alq{sub 3} interface by sequential evaporation, or doped into the Alq{sub 3} emission layer by co-evaporation with the doping ratio about 2%. Electroluminescence (EL) spectra of devices indicated that concentration quenching effect (CQE) of the dye-dopant was slightly bigger in the former than in the latter, while the degrees of CQE for three dopants are in the order of DMQA > DCJTB > Rubrene suggested by the difference in EL spectra and performances of devices. In addition, EL process of device with an ultra-thin layer of dopant is dominated by direct carrier trapping (DCT) process due to almost no holes recombine with electrons in Alq{sub 3}-host layer.

  20. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  1. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    Science.gov (United States)

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui; Han, Mangui, E-mail: han-mangui@yahoo.com; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Zheng, Peng; Qin, Huibin [Institute of Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  3. Thickness and composition of ultrathin SiO2 layers on Si

    International Nuclear Information System (INIS)

    Marel, C. van der; Verheijen, M.A.; Tamminga, Y.; Pijnenburg, R.H.W.; Tombros, N.; Cubaynes, F.

    2004-01-01

    Ultrathin SiO 2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it is not trivial to characterize this type of layer by means of XPS in a reliable way. We have investigated a series of ultrathin layers of SiO 2 on Si (in the range from 0.3 to 3 nm) using XPS. The samples were also analyzed by means of transmission electron microscopy (TEM), Rutherford backscattering (RBS), and ellipsometry. The thickness of the SiO 2 layers (d) was determined from the XPS results using three different approaches: the 'standard' equation (Seah and Spencer) for d, an overlayer-substrate model calculation, and the QUASES-Tougaard [Surf. Interface Anal. 26, 249 (1998), QUASES-Tougaard: Software package for Quantitative Analysis of Surfaces by Electron Spectroscopy, version 4.4 (2000); http://www.quases.com] method. Good agreement was obtained between the results of XPS analyses using the 'standard' equation, the overlayer-substrate model calculation, and RBS results. The QUASES-Tougaard results were approximately 62% above the other XPS results. The optical values for the thickness were always slightly higher than the thickness according to XPS or RBS. Using the model calculation, these (relatively small) deviations from the optical results could be explained as being a consequence of surface contaminations with hydrocarbons. For a thickness above 2.5 nm, the TEM results were in good agreement with the results obtained from the other techniques (apart from QUASES-Tougaard). Below 2.5 nm, significant deviations were found between RBS, XPS, and optical data on the one hand and TEM results on the other hand; the deviations became larger as the thickness of the SiO 2 decreased. This effect may be related to interface states of oxygen, which have been

  4. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  5. White organic light-emitting diodes based on doped and ultrathin Rubrene layer

    Science.gov (United States)

    Li, Yi; Jiang, Yadong; Wen, Wen; Yu, Junsheng

    2010-10-01

    Based on a yellow fluorescent dye of 5, 6, 11, 12-tetraphenylnaphthacene (Rubrene), WOLEDs were fabricated, with doping structure and ultrathin layer structure utilized in the devices. By doping Rubrene into blue-emitting N,N'-bis-(1- naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB), the device with a structure of indium-tin-oxide (ITO)/NPB (40 nm)/NPB:Rubrene (0.25 wt%, 7 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (30 nm)/Mg:Ag exhibited a warm white light with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.38, 0.41) at 12 V. The electroluminescent spectrum of the OLED consisted of blue and yellow fluorescent emissions, the intensity of blue emission increased gradually relative to the orange emission with increasing voltage. This is mainly due to the recombination zone shifted towards the anode side as the transmission rate of electrons grows faster than that of holes under higher bias voltage. A maximum luminance of 7300 cd/m2 and a maximum power efficiency of 0.57 lm/W were achieved. Comparatively, by utilizing ultrathin dopant layer, the device with a structure of ITO/NPB (40 nm)/Rubrene (0.3 nm)/NPB (7 nm)/BCP (30 nm)/Mg:Ag achieved a low turn-on voltage of 3 V and a more stable white light. The peaks of EL spectra located at 430 and 560 nm corresponding to the CIE coordinates of (0.32, 0.32) under bias voltage ranging from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W were achieved. The balanced spectra were attributed to the stable confining of charge carriers and exciton by the thin emitting layers. Hence, with simple device structure and fabricating process, the device with ultrathin layer achieved low turn-on voltage, stable white light emitting and higher power efficiency.

  6. Substrate-induced antiferromagnetism of ultrathin iron overlayers on the iridium and rhodium (001) surfaces

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Turek, Ilja; Bengone, O.; Redinger, J.

    2009-01-01

    Roč. 11, - (2009), s. 38-40 ISSN 1642-6037 R&D Projects: GA ČR GA202/07/0456; GA MŠk OC09028 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20410507 Keywords : iridium * rhodium * iron * magnetismus in thin layers * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    Science.gov (United States)

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    Science.gov (United States)

    Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.

    2014-12-01

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.

  9. Adjusting White OLEDs with Yellow Light Emission Phosphor Dye and Ultrathin NPB Layer Structure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available High efficiency white organic light emission devices were demonstrated with phosphor material dye bis[2-(4-tertbutylphenylbenzothiazolato-N,C2′]iridium (acetylacetonate and ultrathin layer structure. The ultra thin layer be composed of 4,4′-bis[N-1-naphthyl-N-phenyl-amino]biphenyl (NPB or 4,4′-N,N′-dicarbazole-biphenyl : NPB mixed layer with blue light emission. The emission spectra of devices could be adjusted by different phosphor doping concentrations and ultra thin layer structure. Warm white light emitting device could be obtained with 5 wt% doping concentration and power efficiency of 9.93 lm/W at 5 V. Pure white light with Commission Internationale de l'Eclairage (CIE coordinates of (0.33, 0.30 and external quantum efficiency of 4.49% could be achieved with ultra thin layer device structure and 3 wt% phosphor doped device.

  10. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  11. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  12. Analysis of the structure of poly-3-hydroxybutyrate ultrathin fibers modified with iron (III) complex with tetraphenylporphyrin

    Science.gov (United States)

    Olkhov, A. A.; Karpova, S. G.; Lobanov, A. V.; Tyubaeva, P. M.; Artemov, N. S.; Iordansky, A. L.

    2017-12-01

    In the treatment of many infectious diseases and cancer, transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties are often used. One of the most promising types of matrices with antiseptic properties are the ones of nano- and microfiber-bonded cloth obtained by electrospinning based on biopolymer poly(3-hydroxybutyrate). The present work investigates the effects of iron (III) complex with tetraphenylporphyrin and the influence on the geometry, crystalline order and molecular dynamics in the intercrystalline (amorphous phase) of ultrathin PHB fibers.

  13. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Csik, A.; Vad, K.

    2011-01-01

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C 60 , fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C 60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C 60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C 60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe 5+ and Fe + ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 10 18 ion/cm 3 and 10 22 ion/cm 3 ) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of

  14. The production of ultra-thin layers of ion-exchange resin and metallic silver by electrospraying

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1988-10-01

    Highly efficient radioactive sources for use in radioisotope metrology have been prepared on ultra-thin layers of electrosprayed ion-exchange resin. The efficiency of these sources can be reduced for the purpose of radioactivity standardisation by coating them with conducting silver layers which are also produced by electrospraying. A description is given of improvements to the electrospraying methods, together with details of the rotating, oscillating source-mount turntable

  15. PREFACE: Ultrathin layers of graphene, h-BN and other honeycomb structures Ultrathin layers of graphene, h-BN and other honeycomb structures

    Science.gov (United States)

    Geber, Thomas; Oshima, Chuhei

    2012-08-01

    nanometer scale. This special section contains interesting papers on graphene, h-BN and related 'honeycomb' compounds on solid surfaces, which are currently in development. Interfacial interaction strongly modifies the electronic and atomic structures of these overlayer systems and substrate surfaces. In addition, one can recognize a variety of growth phenomena by changing the surface and growth conditions, which are promising as regards fabricating those noble nanosystems. We have great pleasure in acknowledging the enthusiastic response and participation of our invited authors and their diligent preparation of the manuscripts. Ultrathin layers of graphene, h-BN and other honeycomb structures contents Ultrathin layers of graphene, h-BN and other honeycomb structuresThomas Geber and Chuhei Oshima Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicitiesEli Sutter, Bin Wang, Peter Albrecht, Jayeeta Lahiri, Marie-Laure Bocquet and Peter Sutter Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3N A Vinogradov, K A Simonov, A V Generalov, A S Vinogradov, D V Vyalikh, C Laubschat, N Mårtensson and A B Preobrajenski Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfacesF D Natterer, S Rusponi, M Papagno, C Carbone and H Brune Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase depositionSamuel Grandthyll, Stefan Gsell, Michael Weinl, Matthias Schreck, Stefan Hüfner and Frank Müller High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer compositesXuebin Wang, Amir Pakdel, Chunyi Zhi, Kentaro Watanabe, Takashi Sekiguchi, Dmitri Golberg and Yoshio Bando BCx layers with honeycomb lattices on an NbB2(0001) surfaceChuhei Oshima Epitaxial growth of boron-doped graphene by thermal decomposition of B4CWataru Norimatsu, Koichiro Hirata, Yuta Yamamoto, Shigeo Arai and Michiko

  16. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    Directory of Open Access Journals (Sweden)

    Miao Yanqin

    2018-01-01

    Full Text Available By incorporating ultrathin (80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V–9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE of 17.82%–19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  17. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  18. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  19. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  20. Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes with Biodegradable Sacrificial Layers.

    Science.gov (United States)

    Jiao, Xiangbing; Wang, Yuan; Qing, Quan

    2017-12-13

    For long-term biocompatibility and performance, implanted probes need to further reduce their size and mechanical stiffness to match that of the surrounding cells, which, however, makes accurate and minimally invasive insertion operations difficult due to lack of rigidity and brings additional complications in assembling and surgery. Here, we report a scalable fabrication framework of implantable probes utilizing biodegradable sacrificial layers to address this challenge. Briefly, the integrated biodegradable sacrificial layer can dissolve in physiological fluids shortly after implantation, which allows the in situ formation of functional ultrathin film structures off of the initial small and rigid supporting backbone. We show that the dissolution of this layer does not affect the viability and excitability of neuron cells in vitro. We have demonstrated two types of probes that can be used out of the box, including (1) a compact probe that spontaneously forms three-dimensional bend-up devices only after implantation and (2) an ultraflexible probe as thin as 2 μm attached to a small silicon shaft that can be accurately delivered into the tissue and then get fully released in situ without altering its shape and position because the support is fully retracted. We have obtained a >93% yield of the bend-up structure, and its geometry and stiffness can be systematically tuned. The robustness of the ultraflexible probe has been tested in tissue-mimicking agarose gels with <1% fluctuation in the test resistance. Our work provides a general strategy to prepare ultrasmall and flexible implantable probes that allow high insertion accuracy and minimal surgical damages with the best biocompatibility.

  1. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  2. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  3. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  4. The kinetics of dewetting ultra-thin Si layers from silicon dioxide

    International Nuclear Information System (INIS)

    Aouassa, M; Favre, L; Ronda, A; Berbezier, I; Maaref, H

    2012-01-01

    In this study, we investigate the kinetically driven dewetting of ultra-thin silicon films on silicon oxide substrate under ultra-high vacuum, at temperatures where oxide desorption and silicon lost could be ruled out. We show that in ultra-clean experimental conditions, the three different regimes of dewetting, namely (i) nucleation of holes, (ii) film retraction and (iii) coalescence of holes, can be quantitatively measured as a function of temperature, time and thickness. For a nominal flat clean sample these three regimes co-exist during the film retraction until complete dewetting. To discriminate their roles in the kinetics of dewetting, we have compared the dewetting evolution of flat unpatterned crystalline silicon layers (homogeneous dewetting), patterned crystalline silicon layers (heterogeneous dewetting) and amorphous silicon layers (crystallization-induced dewetting). The first regime (nucleation) is described by a breaking time which follows an exponential evolution with temperature with an activation energy E H ∼ 3.2 eV. The second regime (retraction) is controlled by surface diffusion of matter from the edges of the holes. It involves a very fast redistribution of matter onto the flat Si layer, which prevents the formation of a rim on the edges of the holes during both heterogeneous and homogeneous dewetting. The time evolution of the linear dewetting front measured during heterogeneous dewetting follows a characteristic power law x ∼ t 0.45 consistent with a surface diffusion-limited mechanism. It also evolves as x ∼ h -1 as expected from mass conservation in the absence of thickened rim. When the surface energy is isotropic (during dewetting of amorphous Si) the dynamics of dewetting is considerably modified: firstly, there is no measurable breaking time; secondly, the speed of dewetting is two orders of magnitude larger than for crystalline Si; and thirdly, the activation energy of dewetting is much smaller due to the different driving

  5. An ultrathin polymer coating of carboxylate self-assembled monolayer adsorbed on passivated iron to prevent iron corrosion in 0.1 M Na2SO4

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2010-01-01

    For preparing an ultrathin two-dimensional polymer coating adsorbed on passivated iron, a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer (SAM) was modified with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and octadecyltriethoxysilane C 18 H 37 Si(OC 2 H 5 ) 3 . Protection of passivated iron against passive film breakdown and corrosion of iron was investigated by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M Na 2 SO 4 solution during immersion for many hours. The time required for passive film breakdown of the polymer-coated electrode was markedly higher in this solution than that of the passivated one, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, more than 99.9% in 0.1 M Na 2 SO 4 before the passive film was broken down, showing prominent cooperative suppression of iron corrosion in the solution by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis (EPMA). Prevention of passive film breakdown and iron corrosion for the polymer-coated electrode healed in 0.1 M NaNO 3 was also examined in 0.1 M Na 2 SO 4 .

  6. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  7. Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: Formation of surface nanostructures

    Science.gov (United States)

    Liu, Hongfei; Yang, Ren Bin; Yang, Weifeng; Jin, Yunjiang; Lee, Coryl J. J.

    2018-05-01

    Ultrathin MoO3 layers have been grown on Si substrates at 120 °C by atomic layer deposition (ALD) using molybdenum hexacarbonyl [Mo(CO)6] and ozone (O3) as the Mo- and O-source precursors, respectively. The ultrathin films were further annealed in air at Tann = 550-750 °C for 15 min. Scanning-electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have been employed to evaluate the morphological and elemental properties as well as their evolutions upon annealing of the thin films. They revealed an interfacial SiOx layer in between the MoO3 layer and the Si substrate; this SiOx layer converted into SiO2 during the annealing; and the equivalent thickness of the MoO3 (SiO2) layer decreased (increased) with the increase in Tann. Particles with diameters smaller than 50 nm emerged at Tann = 550 °C and their sizes (density) were reduced (increased) by increasing Tann to 650 °C. A further increase of Tann to 750 °C resulted in telephone-cord-like MoO3 structures, initiated from isolated particles on the surface. These observations have been discussed and interpreted based on temperature-dependent atomic interdiffusions, surface evaporations, and/or melting of MoO3, which shed new light on ALD MoO3 towards its electronic applications.

  8. Manipulating magnetic anisotropy of the ultrathin Co{sub 2}FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F.S., E-mail: wenfsh03@126.com [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, W.H. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Hu, W.T.; Liu, Z.Y. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    The ultrathin films of Co{sub 2}FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions.

  9. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    International Nuclear Information System (INIS)

    Wen, F.S.; Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F.; Wang, W.H.; Hu, W.T.; Liu, Z.Y.

    2013-01-01

    The ultrathin films of Co 2 FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions

  10. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  11. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  12. Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer

    Science.gov (United States)

    Kuryliuk, V.; Korotchenkov, O.; Cantarero, A.

    2012-02-01

    We present computational results for strain effects on charge carrier confinement in GexSi1-x quantum dots (QDs) grown on an oxidized Si surface. The strain and free carrier probability density distributions are obtained using the continuum elasticity theory and the effective-mass approximation implemented by a finite-element modeling scheme. Using realistic parameters and conditions for hemisphere and pyramid QDs, it is pointed out that an uncapped hemisphere dot deposited on the Si surface with an intermediate ultrathin oxide layer offers advantageous electron-hole separation distances with respect to a square-based pyramid grown directly on Si. The enhanced separation is associated with a larger electron localization depth in the Si substrate for uncapped hemisphere dots. Thus, for dot diameters smaller than 15-20 nm and surface density of the dots (nQD) ranging from about 1010 to 1012 cm-2, the localization depth may be enhanced from about 8 nm for a pyramid to 38 nm for a hemisphere dot. We find that the effect in a hemisphere dot is very sensitive to the dot density and size, whereas the localization depth is not significantly affected by the variation of the Ge fraction x in GexSi1-x and the aspect ratio of the dot. We also calculate the effect of the fixed oxide charge (Qox) with densities ranging from 10-9 to 10-7 C/cm2 for 10-Ωcm p-type Si wafers on the carrier confinement. Although the confinement potential can be strongly perturbed by the charge at nQD less than ≈4×1011 cm-2, it is not very sensitive to the value of Qox at higher nQD. Since, to our knowledge, there are no data on carrier confinement for Ge QDs deposited on oxidized Si surfaces, these results might be applicable to functional devices utilizing separated electrons and holes such as photovoltaic devices, spin transistors, and quantum computing components. The use of hemisphere QDs placed on oxidized Si rather than pyramid dots grown on bare Si may help to confine charge carriers deeper

  13. Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters

    Science.gov (United States)

    Loh, Tamie A. J.; Tanemura, Masaki; Chua, Daniel H. C.

    2016-09-01

    2-dimensional (2D) inorganic analogues of graphene such as MoS2 and WS2 present interesting opportunities for field emission technology due to their high aspect ratio and good electrical conductivity. However, research on 2D MoS2 and WS2 as potential field emitters remains largely undeveloped compared to graphene. Herein, we present an approach to directly fabricate ultrathin MoS2 and WS2 onto Ag nano-tips using pulsed laser deposition at low temperatures of 450-500 °C. In addition to providing a layer of chemical and mechanical protection for the Ag nano-tips, the growth of ultrathin MoS2 and WS2 layers on Ag led to enhanced emission properties over that of pristine nano-tips due to a reduction of the effective barrier height arising from charge injection from Ag to the overlying MoS2 or WS2. For WS2 on Ag nano-tips, the phasic mixture was also an important factor influencing the field emission performance. The presence of 1T-WS2 at the metal-WS2 interface in a hybrid film of 2H/1T-WS2 leads to improvement in the field emission capabilities as compared to pure 2H-WS2 on Ag nano-tips.

  14. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  15. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  16. Nucleation of ultrathin silver layer by magnetron sputtering in Ar/N2 plasma

    Czech Academy of Sciences Publication Activity Database

    Bulíř, Jiří; Novotný, Michal; Lančok, Ján; Fekete, Ladislav; Drahokoupil, Jan; Musil, Jindřich

    2013-01-01

    Roč. 228, č. 1 (2013), S86-S90 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/11/1298; GA ČR GP202/09/P324 Institutional support: RVO:68378271 Keywords : ultrathin silver * magnetron sputtering * spectral ellipsometry * in-situ monitoring Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.199, year: 2013

  17. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  18. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  19. Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell

    Science.gov (United States)

    Park, Tae Hyung; Song, Seul Ji; Kim, Hae Jin; Kim, Soo Gil; Chung, Suock; Kim, Beom Yong; Lee, Kee Jeung; Kim, Kyung Min; Choi, Byung Joon; Hwang, Cheol Seong

    2015-11-01

    Resistance switching (RS) devices with ultra-thin Ta2O5 switching layer (0.5-2.0 nm) with a cell diameter of 28 nm were fabricated. The performance of the devices was tested by voltage-driven current—voltage (I-V) sweep and closed-loop pulse switching (CLPS) tests. A Ta layer was placed beneath the Ta2O5 switching layer to act as an oxygen vacancy reservoir. The device with the smallest Ta2O5 thickness (0.5 nm) showed normal switching properties with gradual change in resistance in I-V sweep or CLPS and high reliability. By contrast, other devices with higher Ta2O5 thickness (1.0-2.0 nm) showed abrupt switching with several abnormal behaviours, degraded resistance distribution, especially in high resistance state, and much lower reliability performance. A single conical or hour-glass shaped double conical conducting filament shape was conceived to explain these behavioural differences that depended on the Ta2O5 switching layer thickness. Loss of oxygen via lateral diffusion to the encapsulating Si3N4/SiO2 layer was suggested as the main degradation mechanism for reliability, and a method to improve reliability was also proposed.

  20. Characterization of light element impurities in ultrathin silicon-on-insulator layers by luminescence activation using electron irradiation

    International Nuclear Information System (INIS)

    Nakagawa-Toyota, Satoko; Tajima, Michio; Hirose, Kazuyuki; Ohshima, Takeshi; Itoh, Hisayoshi

    2009-01-01

    We analyzed light element impurities in ultrathin top Si layers of silicon-on-insulator (SOI) wafers by luminescence activation using electron irradiation. Photoluminescence (PL) analysis under ultraviolet (UV) light excitation was performed on various commercial SOI wafers after the irradiation. We detected the C-line related to a complex of interstitial carbon and oxygen impurities and the G-line related to a complex of interstitial and substitutional carbon impurities in the top Si layer with a thickness down to 62 nm after electron irradiation. We showed that there were differences in the impurity concentration depending on the wafer fabrication methods and also that there were variations in these concentrations in the respective wafers. Xenon ion implantation was used to activate top Si layers selectively so that we could confirm that the PL signal under the UV light excitation comes not from substrates but from top Si layers. The present method is a very promising tool to evaluate the light element impurities in top Si layers. (author)

  1. Preparation of iron boride layers from the gas phase

    International Nuclear Information System (INIS)

    Marx, G.; Plaenitz, H.; Treffer, G.; Koenig, H.; Altenburger, S.

    1980-01-01

    Coating of Armco iron, steel-C100W1, and steel-100Cr6 with borides by decomposition of boron tribromide on the surface of the specimens is described. The experiments were carried out in a laboratory apparatus at temperatures between 923 and 1223 K. The dependence of the thickness of the boride layers on time and temperature is presented in graphs

  2. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  3. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy.

    Science.gov (United States)

    Weng, Yangziwan; Guan, Shanyue; Lu, Heng; Meng, Xiangmin; Kaassis, Abdessamad Y; Ren, Xiaoxue; Qu, Xiaozhong; Sun, Chenghua; Xie, Zheng; Zhou, Shuyun

    2018-07-01

    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

    Science.gov (United States)

    Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi

    2011-11-09

    With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.

  5. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.

    Science.gov (United States)

    Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E

    2015-12-09

    Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and

  6. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  7. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    International Nuclear Information System (INIS)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong; Ma, Zhongquan

    2016-01-01

    Highlights: • A new kind of functional material with plasticity of dielectric was obtained. • Powerful characterization methods was exploited to determine this ultra-thin layer. • The electronic structures and properties of this intermediate layer were analyzed. • A potential application of this structure were investigated. - Abstract: A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  8. Fabrication of highly oriented D03-Fe3Si nanocrystals by solid-state dewetting of Si ultrathin layer

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Nakagawa, Tatsuhiko; Machida, Nobuya; Shigematsu, Toshihiko; Nakao, Motoi; Sudoh, Koichi

    2013-01-01

    In this paper, highly oriented nanocrystals of Fe 3 Si with a D0 3 structure are fabricated on SiO 2 using ultrathin Si on insulator substrate. First, (001) oriented Si nanocrystals are formed on the SiO 2 layer by solid state dewetting of the top Si layer. Then, Fe addition to the Si nanocrystals is performed by reactive deposition epitaxy and post-deposition annealing at 500 °C. The structures of the Fe–Si nanocrystals are analyzed by cross-sectional transmission electron microscopy and nanobeam electron diffraction. We observe that Fe 3 Si nanocrystals with D0 3 , B2, and A2 structures coexist on the 1-h post-annealed samples. Prolonged annealing at 500 °C is effective in obtaining Fe 3 Si nanocrystals with a D0 3 single phase, thereby promoting structural ordering in the nanocrystals. We discuss the formation process of the highly oriented D0 3 -Fe 3 Si nanocrystals on the basis of the atomistic structural information. - Highlights: • Highly oriented Fe–Si nanocrystals (NCs) are fabricated by reactive deposition. • Si NCs formed by solid state dewetting of Si thin layers are used as seed crystals. • The structures of Fe–Si NCs are analyzed by nanobeam electron diffraction. • Most of Fe–Si NCs possess the D0 3 structure after post-deposition annealing

  9. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    Science.gov (United States)

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  10. Questing and the application for silicon based ternary compound within ultra-thin layer of SIS intermediate region

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shumin; Gao, Ming; Wan, Yazhou; Du, Huiwei; Li, Yong [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai 200444 (China); Ma, Zhongquan, E-mail: zqma@shu.edu.cn [SHU-SolarE R& D Lab, Department of Physics, Shanghai University, Shanghai 200444 (China); Instrumental Analysis & Research Center, Shanghai University, Shanghai 200444 (China)

    2016-12-01

    Highlights: • A new kind of functional material with plasticity of dielectric was obtained. • Powerful characterization methods was exploited to determine this ultra-thin layer. • The electronic structures and properties of this intermediate layer were analyzed. • A potential application of this structure were investigated. - Abstract: A silicon based ternary compound was supposed to be solid synthesized with In, Si and O elements by magnetron sputtering of indium tin oxide target (ITO) onto crystal silicon substrate at 250 °C. To make clear the configuration of the intermediate region, a potential method to obtain the chemical bonding of Si with other existing elements was exploited by X-ray photoelectron spectroscopy (XPS) instrument combined with other assisted techniques. The phase composition and solid structure of the interfacial region between ITO and Si substrate were investigated by X-ray diffraction (XRD) and high resolution cross sectional transmission electron microscope (HR-TEM). A photovoltaic device with structure of Al/Ag/ITO/SiOx/p-Si/Al was assembled by depositing ITO films onto the p-Si substrate by using magnetron sputtering. The new matter has been assumed to be a buffer layer for semiconductor-insulator-semiconductor (SIS) photovoltaic device and plays critical role for the promotion of optoelectronic conversion performance from the view point of device physics.

  11. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  12. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    Science.gov (United States)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  13. Ultrathin Layered SnSe Nanoplates for Low Voltage, High-Rate, and Long-Life Alkali-Ion Batteries.

    Science.gov (United States)

    Wang, Wei; Li, Peihao; Zheng, Henry; Liu, Qiao; Lv, Fan; Wu, Jiandong; Wang, Hao; Guo, Shaojun

    2017-12-01

    2D electrode materials with layered structures have shown huge potential in the fields of lithium- and sodium-ion batteries. However, their poor conductivity limits the rate performance and cycle stability of batteries. Herein a new colloid chemistry strategy is reported for making 2D ultrathin layered SnSe nanoplates (SnSe NPs) for achieving more efficient alkali-ion batteries. Due to the effect of weak Van der Waals forces, each semiconductive SnSe nanoplate stacks on top of each other, which can facilitate the ion transfer and accommodate volume expansion during the charge and discharge process. This unique structure as well as the narrow-bandgap semiconductor property of SnSe simultaneously meets the requirements of achieving fast ionic and electronic conductivities for alkali-ion batteries. They exhibit high capacity of 463.6 mAh g -1 at 0.05 A g -1 for Na-ion batteries and 787.9 mAh g -1 at 0.2 A g -1 for Li-ion batteries over 300 cycles, and also high stability for alkali-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the conductive properties of MgO films grown on ultrathin hexagonal close-packed Co(0001) layer

    International Nuclear Information System (INIS)

    Gladczuk, L.; Aleszkiewicz, M.

    2013-01-01

    Here we present a scanning tunneling microscopy study of electrical conductivity of (110)-oriented MgO ultrathin films grown on hexagonal close-packed Co(0001) surface by molecular beam epitaxy, being a good candidate for tunneling barrier for future-generation spintronic devices. Three-dimensional growth of the tunneling barrier, expected for compressive strains emerging at the Co/MgO interface, is demonstrated by reflection high-energy electron diffraction and atomic force microscopy. The 5 eV height of the full barrier of MgO is reached at a layer thickness of 4 nm. Thinner MgO layers exhibit randomly distributed spots of the high conductance on the tunneling current map. The current–voltage curves indicate the existence of vacancies in MgO crystal lattice, lowering the resistivity of the tunneling barrier. - Highlights: • Conductivity of MgO barrier in MgO/hexagonal close-packed-Co bilayer • Conductivity strongly varies with MgO thickness • MgO barrier exhibits randomly distributed spots of particularly high conductance • Tunneling current–voltage curves indicate the existence of vacancies in MgO lattice

  15. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  16. The Recovery of a Magnetically Dead Layer on the Surface of an Anatase (Ti,CoO2 Thin Film via an Ultrathin TiO2 Capping Layer

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2017-03-01

    Full Text Available The effect of an ultrathin TiO2 capping layer on an anatase Ti0.95Co0.05O2−δ (001 epitaxial thin film on magnetism at 300 K was investigated. Films with a capping layer showed increased magnetization mainly caused by enhanced out-of-plane magnetization. In addition, the ultrathin capping layer was useful in prolonging the magnetization lifetime by more than two years. The thickness dependence of the magnetic domain structure at room temperature indicated the preservation of magnetic domain structure even for a 13 nm thick film covered with a capping layer. Taking into account nearly unchanged electric conductivity irrespective of the capping layer’s thickness, the main role of the capping layer is to prevent surface oxidation, which reduces electron carriers on the surface.

  17. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  18. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  19. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  20. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    Science.gov (United States)

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  1. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  2. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    Science.gov (United States)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  3. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    Science.gov (United States)

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  4. A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery.

    Science.gov (United States)

    Yan, Li; Zhou, Mengjiao; Zhang, Xiujuan; Huang, Longbiao; Chen, Wei; Roy, Vellaisamy A L; Zhang, Wenjun; Chen, Xianfeng

    2017-10-04

    Layered double hydroxide (LDH) nanoparticles have been widely used for various biomedical applications. However, because of the difficulty of surface functionalization of LDH nanoparticles, the systemic administration of these nanomaterials for in vivo therapy remains a bottleneck. In this work, we develop a novel type of aqueous dispersible two-dimensional ultrathin LDH nanosheets with a size of about 50 nm and a thickness of about 1.4 to 4 nm. We are able to covalently attach positively charged rhodamine B fluorescent molecules to the nanosheets, and the nanohybrid retains strong fluorescence in liquid and even dry powder form. Therefore, it is available for bioimaging. Beyond this, it is convenient to modify the nanosheets with neutral poly(ethylene glycol) (PEG), so the nanohybrid is suitable for drug delivery through systemic administration. Indeed, in the test of using these nanostructures for delivery of a negatively charged anticancer drug, methotrexate (MTX), in a mouse model, dramatically improved therapeutic efficacy is achieved, indicated by the effective inhibition of tumor growth. Furthermore, our systematic in vivo safety investigation including measuring body weight, determining biodistribution in major organs, hematology analysis, blood biochemical assay, and hematoxylin and eosin stain demonstrates that the new material is biocompatible. Overall, this work represents a major development in the path of modifying functional LDH nanomaterials for clinical applications.

  5. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    International Nuclear Information System (INIS)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S.; Mahne, N.; Doyle, B. P.; Pasquali, L.

    2016-01-01

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  6. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, R.; Koshmak, K.; Giglia, A.; Mukherjee, S.; Nannarone, S. [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Mahne, N. [Elettra, s.s. 14, km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Doyle, B. P. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Pasquali, L., E-mail: luca.pasquali@unimore.it [IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Dipartimento di Ingegneria “Enzo Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy)

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  7. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  8. UV light induced insulator-metal transition in ultra-thin ZnO/TiO{sub x} stacked layer grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2016-08-28

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality

  9. Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate.

    Science.gov (United States)

    Gao, Shan; Jiao, Xingchen; Sun, Zhongti; Zhang, Wenhua; Sun, Yongfu; Wang, Chengming; Hu, Qitao; Zu, Xiaolong; Yang, Fan; Yang, Shuyang; Liang, Liang; Wu, Ju; Xie, Yi

    2016-01-11

    Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and superior structural stability. As a prototype, 1.72 and 3.51 nm thick Co3O4 layers were synthesized through a fast-heating strategy. The atomic thickness endowed Co3O4 with abundant active sites, ensuring a large CO2 adsorption amount. The increased and more dispersed charge density near Fermi level allowed for enhanced electronic conductivity. The 1.72 nm thick Co3O4 layers showed over 1.5 and 20 times higher electrocatalytic activity than 3.51 nm thick Co3O4 layers and bulk counterpart, respectively. Also, 1.72 nm thick Co3O4 layers showed formate Faradaic efficiency of over 60% in 20 h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  11. Structure and morphology of ultrathin NiO layers on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Giovanardi, C.; Di Bona, A.; Altieri, S.; Luches, P.; Liberati, M.; Rossi, F.; Valeri, S

    2003-03-20

    The structure and morphology of thin NiO films prepared on Ag(001) by reactive growth at 460 K has been investigated as a function of the film thickness in the 3-20 monolayers range. Emphasis was on the study of the oxide layer misfit strain. Primary beam diffraction modulated electron emission and low energy electron diffraction experiments allowed the determination of the in-plane and out-of-plane strain in the oxide layer, while scanning tunneling microscopy, X-ray photoelectron spectroscopy and secondary electron imaging have been used to monitor the film morphology, stoichiometry and structure, respectively. The film strain begins to be removed at a critical thickness of 10 ML, while at 20 ML the film is fully relaxed. Strain analysis indicates that the Poisson ratio of the oxide layer is nearly equal to that of the bulk material.

  12. Photoreflectance study of InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Dhifallah, I.; Daoudi, M.; Bardaoui, A.; Eljani, B.; Ouerghi, A.; Chtourou, R.

    2011-01-01

    Photoreflectance and photoluminescence studies were performed to characterize InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs high electron mobility transistors. These structures were grown by Molecular Beam Epitaxy on (1 0 0) oriented GaAs substrates with different silicon-delta-doped layer densities. Interband energy transitions in the InAs ultrathin layer quantum well were observed below the GaAs band gap in the photoreflectance spectra, and assigned to electron-heavy-hole (E e-hh ) and electron-light-hole (E e-lh ) fundamental transitions. These transitions were shifted to lower energy with increasing silicon-δ-doping density. This effect is in good agreement with our theoretical results based on a self-consistent solution of the coupled Schroedinger and Poisson equations and was explained by increased escape of photogenerated carriers and enhanced Quantum Confined Stark Effect in the Si-delta-doped InAs/GaAs QW. In the photoreflectance spectra, not only the channel well interband energy transitions were observed, but also features associated with the GaAs and AlGaAs bulk layers located at about 1.427 and 1.8 eV, respectively. By analyzing the Franz-Keldysh Oscillations observed in the spectral characteristics of Si-δ-doped samples, we have determined the internal electric field introduced by ionized Si-δ-doped centers. We have observed an increase in the electric field in the InAs ultrathin layer with increasing silicon content. The results are explained in terms of doping dependent ionized impurities densities and surface charges. - Research highlights: → Studying HEMTs structures with different silicon doping content. → An increase of the electric field in the InAs layer with increasing Si content. → The interband energy transitions in the HEMTs structures have been obtained from PR. → Experimental and theoretical values of transitions energies were in good agreement.

  13. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  14. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.; Lin, Yenhung; Zhao, Kui; Li, Ruipeng; Thomas, Stuart R.; Semple, James; Androulidaki, Maria; Sygellou, Lamprini; McLachlan, Martyn A.; Stratakis, Emmanuel; Amassian, Aram; Anthopoulos, Thomas D.

    2015-01-01

    reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization

  15. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    Science.gov (United States)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  16. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    Science.gov (United States)

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of Nanolaminates with Ultrathin Nanolayers Using Atomic Layer Deposition: Nucleation & Growth Issues

    Science.gov (United States)

    2009-02-01

    Tecnologia de Superficies y Materiales (SMCTSM), XXVII Congreso Nacional, Oaxaca, Oaxaca, Mexico, September 26, 2007. 26. "Atomic Layer Deposition of...Nanolaminates: Fabrication and Properties" (Plenary Lecture), Sociedad Mexicana de Ciencia y Tecnologia de Superficies y Materiales (SMCTSM), XXVII

  18. Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Pleštil, Josef; Janda, Pavel; Bohuslav, Jan; Ihiawakrim, D.; Ersen, O.; Rogez, G.; Lang, Kamil

    2013-01-01

    Roč. 1, č. 37 (2013), s. 11429-11437 ISSN 2050-7488 R&D Projects: GA ČR GAP207/10/1447; GA ČR GP13-09462P Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : layered hydroxide * delamination * nanosheet * batteries Subject RIV: CA - Inorganic Chemistry; CD - Macromolecular Chemistry (UMCH-V); CF - Physical ; Theoretical Chemistry (UFCH-W)

  19. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  20. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  1. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  2. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  3. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers

    Science.gov (United States)

    Khan, S.; Yogeswaran, N.; Taube, W.; Lorenzelli, L.; Dahiya, R.

    2015-12-01

    This work presents a novel manufacturing route for obtaining high performance bendable field effect transistors (FET) by embedding silicon (Si) microwires (2.5 μm thick) in layers of solution-processed dielectric and metallic layers. The objective of this study is to explore heterogeneous integration of Si with polymers and to exploit the benefits of both microelectronics and printing technologies. Arrays of Si microwires are developed on silicon on insulator (SOI) wafers and transfer printed to polyimide (PI) substrate through a polydimethylsiloxane (PDMS) carrier stamp. Following the transfer printing of Si microwires, two different processing steps were developed to obtain top gate top contact and back gate top contact FETs. Electrical characterizations indicate devices having mobility as high as 117.5 cm2 V-1 s-1. The fabricated devices were also modeled using SILVACO Atlas. Simulation results show a trend in the electrical response similar to that of experimental results. In addition, a cyclic test was performed to demonstrate the reliability and mechanical robustness of the Si μ-wires on flexible substrates.

  4. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers

    International Nuclear Information System (INIS)

    Khan, S; Yogeswaran, N; Lorenzelli, L; Taube, W; Dahiya, R

    2015-01-01

    This work presents a novel manufacturing route for obtaining high performance bendable field effect transistors (FET) by embedding silicon (Si) microwires (2.5 μm thick) in layers of solution-processed dielectric and metallic layers. The objective of this study is to explore heterogeneous integration of Si with polymers and to exploit the benefits of both microelectronics and printing technologies. Arrays of Si microwires are developed on silicon on insulator (SOI) wafers and transfer printed to polyimide (PI) substrate through a polydimethylsiloxane (PDMS) carrier stamp. Following the transfer printing of Si microwires, two different processing steps were developed to obtain top gate top contact and back gate top contact FETs. Electrical characterizations indicate devices having mobility as high as 117.5 cm 2 V −1 s −1 . The fabricated devices were also modeled using SILVACO Atlas. Simulation results show a trend in the electrical response similar to that of experimental results. In addition, a cyclic test was performed to demonstrate the reliability and mechanical robustness of the Si μ-wires on flexible substrates. (paper)

  5. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Chin, Byung Doo

    2007-01-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O 3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  6. Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors

    Science.gov (United States)

    Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj

    2010-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.

  7. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voděrová

    2013-07-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  8. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voderova

    2013-05-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  9. Tuning of Rashba/Dresselhaus Spin Splittings by Inserting Ultra-Thin InAs Layers at Interfaces in Insulating GaAs/AlGaAs Quantum Wells.

    Science.gov (United States)

    Yu, Jinling; Zeng, Xiaolin; Cheng, Shuying; Chen, Yonghai; Liu, Yu; Lai, Yunfeng; Zheng, Qiao; Ren, Jun

    2016-12-01

    The ratio of Rashba and Dresselhaus spin splittings of the (001)-grown GaAs/AlGaAs quantum wells (QWs), investigated by the spin photocurrent spectra induced by circular photogalvanic effect (CPGE) at inter-band excitation, has been effectively tuned by changing the well width of QWs and by inserting a one-monolayer-thick InAs layer at interfaces of GaAs/AlGaAs QWs. Reflectance difference spectroscopy (RDS) is also employed to study the interface asymmetry of the QWs, whose results are in good agreement with that obtained by CPGE measurements. It is demonstrated that the inserted ultra-thin InAs layers will not only introduce structure inversion asymmetry (SIA), but also result in additional interface inversion asymmetry (IIA), whose effect is much stronger in QWs with smaller well width. It is also found that the inserted InAs layer brings in larger SIA than IIA. The origins of the additional SIA and IIA introduced by the inserted ultra-thin InAs layer have been discussed.

  10. Interfacial engineering with ultrathin poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) layer for high efficient perovskite light-emitting diodes

    Science.gov (United States)

    Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang

    2018-02-01

    Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.

  11. Erosion behaviour of ultrathin carbon layers and hydrogen retention in beryllium

    International Nuclear Information System (INIS)

    Reinelt, Matthias

    2008-01-01

    Plasma-wall-interaction plays an important role on the way to technical feasibility of thermonuclear fusion. In this context, the erosion behavior of few nanometer thin amorphous carbon layers on different metallic substrates by energetic deuterium and helium ions is investigated. Several aspects of the interaction are distinguishable by XPS. Ion induced carbide formation is governed by kinematic intermixing of carbon and metal substrate. Several methods of quantification of XPS measurements are developed and discussed. Comparison of results from these methods with NRA measurements show that surface roughness and implantation of particles into the carbon layer and intermixing zone influence the XPS measurements, which are sensitive to parameters such as material density. The retention of 1 keV deuterium ions implanted into single crystalline and cleaned beryllium at room temperature is investigated by temperature programmed desorption (TPD). The residual BeO coverage was 0.2 ML. The retention is 78% at low fluences and saturates above a bombardment with a fluence of 2.10 17 cm -2 . The retained maximum areal density is 2.10 17 cm -2 . Above 900 K, no deuterium is retained in the sample. An onset of self diffusion is observed at this temperature and metallic beryllium from the bulk segregates though thin BeO layers on the surface. From deuterium desorption traces, retention mechanisms are obtained. The measured TPDspectra are modeled by TMAP7 and rate equations to obtain activation energies for the release processes. From these, binding energies for the system Be-D are derived. Up to a implantation fluence of 1.10 17 cm -2 , deuterium is trapped in ion induced defects in the beryllium lattice with binding energies of 1.69 eV and 1.86 eV and release temperatures of 770 K and 840 K, respectively. The occupation of these states shows a different isotope behavior for 1 H and 2 H. The states are filled by diffusion of deuterium at the end of its implantation trajectory

  12. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Zighem, F.; Chérif, S. M.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2015-01-01

    Co 2 FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm 2 and 0.74 erg/cm 2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin

  13. The Role of Iron In Sporadic E Layers

    Science.gov (United States)

    Vondrak, T.; Woodcock, K. R. I.; Plane, J. M. C.

    Sporadic E layers in the lower thermosphere are mostly composed of metallic ions, of which Fe+ is the most abundant. Because dielectric recombination (Fe+ + elec- tron) is very slow, the lifetime of Fe+ above about 100 km is at least several days. However, below this height molecular ions such as FeO+, FeO2+ and FeN2+ form in- creasingly rapidly through reactions with O3, O2 and N2, respectively. These undergo rapid dissociative recombination with electrons, causing Fe+ to be neutralised increas- ingly rapidly as a sporadic E layer descends. Indeed, this is the most likely mechanism for the formation of the sporadic neutral Fe layers that are observed by lidar. However, atomic O plays a very important role in reducing these molecular ions back to Fe+, competing with dissociative recombination and thus slowing the rate at which Fe+ is neutralised and a sporadic E layer dissipates. This paper will discuss a laboratory and modelling study of the reactions of FeO+, FeO2+ and FeN2+ with atomic O. These reactions were studied (for the first time) in a fast flow tube, using the pulsed laser ablation of a rotating iron rod as the source of Fe+ ions in the upstream section of the tube. Reactants were then added to produce molecular ions, and atomic O further downstream through a movable injector. Fe+ and the molecular ions were detected at the downstream end of the tube using a two-stage quadrupole mass spectrometer. The spectroscopy of the FeO+ ion, observed by laser induced fluorescence, will also be discussed as a candidate for future ground-based lidar studies of the ion chemistry of the lower thermosphere.

  14. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    Science.gov (United States)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  15. Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Changchun 130022 (China); Zhao, Yongbiao [Luminous Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Zhang, Hongmei [Department of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China)

    2014-06-28

    By adopting an ultra-thin non-doped orange emission layer sandwiched between two blue emission layers, high efficiency white organic light-emitting diodes (WOLEDs) with reduced efficiency roll-off were fabricated. The optimized devices show a balanced white emission with Internationale de L'Eclairage of (0.41, 0.44) at the luminance of 1000 cd/m{sup 2}, and the maximum power efficiency, current efficiency (CE), and external quantum efficiency reach 63.2 lm/W, 59.3 cd/A, and 23.1%, which slightly shift to 53.4 lm/W, 57.1 cd/A, and 22.2% at 1000 cd/m{sup 2}, respectively, showing low efficiency roll-off. Detailed investigations on the recombination zone and the transient electroluminescence (EL) clearly reveal the EL processes of the ultra-thin non-doped orange emission layer in WOLEDs.

  16. N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer

    International Nuclear Information System (INIS)

    Tanida, Shinji; Noda, Kei; Kawabata, Hiroshi; Matsushige, Kazumi

    2009-01-01

    N-channel operation of thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) with a 9-nm-thick poly(methyl methacrylate) (PMMA) gate buffer layer was examined. The uniform coverage of the ultrathin PMMA layer on an SiO 2 gate insulator, verified by X-ray reflectivity measurement, caused the increase of electron field-effect mobility because of the suppression of electron traps existing on the SiO 2 surface. In addition, air stability for n-channel operation of the NTCDA transistor was also improved by the PMMA layer which possibly prevented the adsorption of ambient water molecules onto the SiO 2 surface.

  17. A high mobility C60 field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes

    International Nuclear Information System (INIS)

    Zhou Jian-Lin; Yu Jun-Sheng; Yu Xin-Ge; Cai Xin-Yang

    2012-01-01

    C 60 field-effect transistor (OFET) with a mobility as high as 5.17 cm 2 /V·s is fabricated. In our experiment, an ultrathin pentacene passivation layer on poly-(methyl methacrylate) (PMMA) insulator and a bathophenanthroline (Bphen)/Ag bilayer electrode are prepared. The OFET shows a significant enhancement of electron mobility compared with the corresponding device with a single PMMA insultor and an Ag electrode. By analysing the C 60 film with atomic force microscopy and X-ray diffraction techniques, it is shown that the pentacene passivation layer can contribute to C 60 film growth with the large grain size and significantly improve crystallinity. Moreover, the Bphen buffer layer can reduce the electron contact barrier from Ag electrodes to C 60 film efficiently. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  19. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al2O3 interlayers

    International Nuclear Information System (INIS)

    Chauhan, Lalit; Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A.; Hughes, G.

    2015-01-01

    The effect of inserting ultra-thin atomic layer deposited Al 2 O 3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al 2 O 3 /p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al 2 O 3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al 2 O 3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al 2 O 3 /n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface

  20. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al{sub 2}O{sub 3} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012 (India); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2015-08-31

    The effect of inserting ultra-thin atomic layer deposited Al{sub 2}O{sub 3} dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al{sub 2}O{sub 3}/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al{sub 2}O{sub 3} interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al{sub 2}O{sub 3} interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al{sub 2}O{sub 3}/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface.

  1. Fabrication of Inverted Bulk-Heterojunction Organic Solar Cell with Ultrathin Titanium Oxide Nanosheet as an Electron-Extracting Buffer Layer

    Science.gov (United States)

    Itoh, Eiji; Maruyama, Yasutake; Fukuda, Katsutoshi

    2012-02-01

    The contributions and deposition conditions of ultrathin titania nanosheet (TN) crystallites were studied in an inverted bulk-heterojunction (BHJ) cell in indium tin oxide (ITO)/titania nanosheet/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic devices. Only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film deposited by the layer-by-layer deposition technique effectively decreased the leakage current and increased both open circuit voltage (VOC) and fill factor (FF), and power conversion efficiency (η) was increased nearly twofold by the insertion of two TN layers. The deposition of additional TN layers caused the reduction in FF, and the abnormal S-shaped curves above VOC for the devices with three and four TN layers were ascribed to the interfacial potential barrier at the ITO/TN interface and the series resistance across the multilayers of TN and PDDA. The performance of the BHJ cell with TN was markedly improved, and the S-shaped curves were eliminated following the the insertion of anatase-phase titanium dioxide between the ITO and TN layers owing to the decrease in the interfacial potential barrier.

  2. Photoreflectance study of InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Dhifallah, I., E-mail: ines.dhifallah@gmail.co [Laboratoire de Photovoltaique, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l' energie, BP 95 Hammam-Lif 2050 (Tunisia); Daoudi, M.; Bardaoui, A. [Laboratoire de Photovoltaique, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l' energie, BP 95 Hammam-Lif 2050 (Tunisia); Eljani, B. [Unite de recherche sur les Hetero-Epitaxie et Applications, Faculte des Sciences de Monastir (Tunisia); Ouerghi, A. [Laboratoire de Photonique et de Nanostructures, CNRS Route de Nozay 91 46a0, Marcoussis (France); Chtourou, R. [Laboratoire de Photovoltaique, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l' energie, BP 95 Hammam-Lif 2050 (Tunisia)

    2011-05-15

    Photoreflectance and photoluminescence studies were performed to characterize InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs high electron mobility transistors. These structures were grown by Molecular Beam Epitaxy on (1 0 0) oriented GaAs substrates with different silicon-delta-doped layer densities. Interband energy transitions in the InAs ultrathin layer quantum well were observed below the GaAs band gap in the photoreflectance spectra, and assigned to electron-heavy-hole (E{sub e-hh}) and electron-light-hole (E{sub e-lh}) fundamental transitions. These transitions were shifted to lower energy with increasing silicon-{delta}-doping density. This effect is in good agreement with our theoretical results based on a self-consistent solution of the coupled Schroedinger and Poisson equations and was explained by increased escape of photogenerated carriers and enhanced Quantum Confined Stark Effect in the Si-delta-doped InAs/GaAs QW. In the photoreflectance spectra, not only the channel well interband energy transitions were observed, but also features associated with the GaAs and AlGaAs bulk layers located at about 1.427 and 1.8 eV, respectively. By analyzing the Franz-Keldysh Oscillations observed in the spectral characteristics of Si-{delta}-doped samples, we have determined the internal electric field introduced by ionized Si-{delta}-doped centers. We have observed an increase in the electric field in the InAs ultrathin layer with increasing silicon content. The results are explained in terms of doping dependent ionized impurities densities and surface charges. - Research highlights: {yields} Studying HEMTs structures with different silicon doping content. {yields} An increase of the electric field in the InAs layer with increasing Si content. {yields} The interband energy transitions in the HEMTs structures have been obtained from PR. {yields} Experimental and theoretical values of transitions energies were in good agreement.

  3. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application

    International Nuclear Information System (INIS)

    Zhang Zhonghai; Hossain, Md. Faruk.; Arakawa, Takuya; Takahashi, Takakazu

    2010-01-01

    In this paper, various zinc oxide (ZnO) films are deposited by a versatile and effective dc-reactive facing-target sputtering method. The ratios of Ar to O 2 in the mixture gas are varied from 8:2 to 6:4 at a fixed sputtering pressure of 1.0 Pa. X-ray diffraction, spectrophotometer and scanning electron microscope are used to study the crystal structure, optical property and surface morphology of the as-deposited films. The Pt ultra-thin layer, ∼2 nm thick, is deposited on the surface of ZnO film by dc diode sputtering with a mesh mask controlling the coated area. The photocatalytic activity of ZnO films and Pt-ZnO films is evaluated by decomposition of methanol under UV-vis light irradiation. The variation of photocatalytic activity depends on the ratios of Ar to O 2 , which is mainly attributed to the different grain size and carrier mobility. Though the pure ZnO film normally shows a low gas-phase photocatalytic activity, its activity is significantly enhanced by depositing Pt ultra-thin layer.

  4. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.

  5. 4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten

    2017-09-01

    Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.

  6. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie; Hu, Weijin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.; Wu, Tao; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-01-01

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  7. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    Science.gov (United States)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  8. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie

    2018-01-30

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  9. Ultrathin HfON/SiO2 dual tunneling layer for improving the electrical properties of metal–oxide–nitride–oxide–silicon memory

    International Nuclear Information System (INIS)

    Liu, L.; Xu, J.P.; Chen, J.X.; Ji, F.; Huang, X.D.; Lai, P.T.

    2012-01-01

    A high-k gate stack structure with ultrathin HfON/SiO 2 as dual tunneling layer (DTL), AlN as charge storage layer (CSL) and HfAlO as blocking layer (BL) is proposed to make a charge-trapping-type metal–oxide–nitride–oxide–silicon non-volatile memory device by employing in-situ sputtering method. The validity of the structure is examined and confirmed by transmission electron microscopy. The memory window, program/erase, endurance and retention properties are investigated and compared with similar gate stack structure with Si 3 N 4 /SiO 2 as DTL, HfO 2 as CSL and Al 2 O 3 as BL. Results show that a large memory window of 3.55 V at a program/erase (P/E) voltage of + 8 V/− 15 V, high P/E speed, and good endurance and retention characteristic can be achieved using the Au/ HfAlO/AlN/(HfON/SiO 2 )/Si gate stack structure. The main mechanisms lie in the enhanced electron injection through the ultrathin high-k HfON/SiO 2 DTL with suitable band offset, high trapping efficiency of the high-k AlN material, and effective blocking role of the high-k HfAlO BL. - Highlights: ► An Au/HfAlO/AlN/(HfON/SiO 2 )/Si high-k gate stack structure is proposed. ► A band-engineered dual tunneling layer (HfON/SiO 2 ) is proposed and prepared. ► A good trade-off among the memory characteristics is obtained. ► In-situ sputtering method is employed to fabricate the gate stack structure.

  10. Ultrathin protective films of two-dimensional polymers on passivated iron against corrosion in 0.1M NaCl

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2005-01-01

    Prevention of iron corrosion in an aerated 0.1M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and alkyltriethoxysilane C n H 2n+1 Si(OC 2 H 5 ) 3 (n=8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than -0.2V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely

  11. Epitaxial growth of ultra-thin NbN films on AlxGa1−xN buffer-layers

    International Nuclear Information System (INIS)

    Krause, S; Meledin, D; Desmaris, V; Pavolotsky, A; Belitsky, V; Rudziński, M; Pippel, E

    2014-01-01

    The suitability of Al x Ga 1−x N epilayers to deposit onto ultra-thin NbN films has been demonstrated for the first time. High quality single-crystal films with 5 nm thickness confirmed by high resolution transmission electron microscopy (HRTEM) have been deposited in a reproducible manner by means of reactive DC magnetron sputtering at elevated temperatures and exhibit critical temperatures (T c ) as high as 13.2 K and residual resistivity ratio (RRR) ∼1 on hexagonal GaN epilayers. On increasing the Al content x in the Al x Ga 1−x N epilayer above 20%, a gradual deterioration of T c to 10 K was observed. Deposition of NbN on bare silicon substrates served as a reference and comparison. Excellent spatial homogeneity of the fabricated films was confirmed by R(T) measurements of patterned micro-bridges across the entire film area. The superconducting properties of these films were further characterized by critical magnetic field and critical current measurements. It is expected that the employment of GaN material as a buffer-layer for the deposition of ultra-thin NbN films will prospectively benefit terahertz electronics, particularly hot electron bolometer (HEB) mixers. (paper)

  12. Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials

    International Nuclear Information System (INIS)

    Yan, Tao; Li, Ruiyi; Li, Zaijun

    2014-01-01

    Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. • The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g −1 at the current density of 1 A g −1 . The specific capacitance can remain 1274.7 F g −1 at the current density of 15 A g −1 and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied

  13. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  14. HREM investigation of the constitution and the crystallography of thin thermal oxide layers on iron

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.

    1997-01-01

    Oxide layers formed at 573 K in O2 at atmospheric pressure, both on a clean iron surface and on an iron surface covered with an etching induced (hydro)oxide film, were investigated with high-resolution transmission electron microscopy (HREM). Cross-sections of oxidised samples were prepared by a ...

  15. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    Science.gov (United States)

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  16. Ultrathin highly uniform Ni(Al) germanosilicide layer with modulated B8 type Ni5(SiGe)3 phase formed on strained Si1−xGex layers

    International Nuclear Information System (INIS)

    Liu, Linjie; Xu, Dawei; Jin, Lei; Knoll, Lars; Wirths, Stephan; Nichau, Alexander; Buca, Dan; Mussler, Gregor; Holländer, Bernhard; Zhao, Qing-Tai; Mantl, Siegfried; Feng Di, Zeng; Zhang, Miao

    2013-01-01

    We present a method to form ultrathin highly uniform Ni(Al) germanosilicide layers on compressively strained Si 1−x Ge x substrates and their structural characteristics. The uniform Ni(Al) germanosilicide film is formed with Ni/Al alloy at an optimized temperature of 400 °C with an optimized Al atomic content of 20 at. %. We find only two kinds of grains in the layer. Both grains show orthogonal relationship with modified B8 type phase. The growth plane is identified to be (10-10)-type plane. After germanosilicidation the strain in the rest Si 1−x Ge x layer is conserved, which provides a great advantage for device application

  17. Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies

    International Nuclear Information System (INIS)

    Dincer, Ilker; Tozkoparan, Onur; German, Sergey V.; Markin, Alexey V.; Yildirim, Oguz; Khomutov, Gennady B.; Gorin, Dmitry A.; Venig, Sergey B.; Elerman, Yalcin

    2012-01-01

    Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film. - Highlights: ► The magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers. ► The iron oxide nanoparticle phase in nanocomposite coatings is a mixture of magnetite and maghemite phases. ► The magnetite and maghemite phases depend on a number of iron oxide nanoparticle layers because the iron oxide nanoparticles are oxidized from magnetite to maghemite.

  18. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    Science.gov (United States)

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-06

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.

  19. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    Science.gov (United States)

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  20. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    Science.gov (United States)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  1. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  2. Fabrication of highly oriented D0{sub 3}-Fe{sub 3}Si nanocrystals by solid-state dewetting of Si ultrathin layer

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Muneyuki, E-mail: naito22@center.konan-u.ac.jp [Department of Chemistry, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501 (Japan); Nakagawa, Tatsuhiko; Machida, Nobuya; Shigematsu, Toshihiko [Department of Chemistry, Konan University, Okamoto, Higashinada, Kobe, Hyogo 658-8501 (Japan); Nakao, Motoi [Graduate School of Engineering, Kyushu Institute of Technology, Sensui, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan); Sudoh, Koichi [The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2013-07-31

    In this paper, highly oriented nanocrystals of Fe{sub 3}Si with a D0{sub 3} structure are fabricated on SiO{sub 2} using ultrathin Si on insulator substrate. First, (001) oriented Si nanocrystals are formed on the SiO{sub 2} layer by solid state dewetting of the top Si layer. Then, Fe addition to the Si nanocrystals is performed by reactive deposition epitaxy and post-deposition annealing at 500 °C. The structures of the Fe–Si nanocrystals are analyzed by cross-sectional transmission electron microscopy and nanobeam electron diffraction. We observe that Fe{sub 3}Si nanocrystals with D0{sub 3}, B2, and A2 structures coexist on the 1-h post-annealed samples. Prolonged annealing at 500 °C is effective in obtaining Fe{sub 3}Si nanocrystals with a D0{sub 3} single phase, thereby promoting structural ordering in the nanocrystals. We discuss the formation process of the highly oriented D0{sub 3}-Fe{sub 3}Si nanocrystals on the basis of the atomistic structural information. - Highlights: • Highly oriented Fe–Si nanocrystals (NCs) are fabricated by reactive deposition. • Si NCs formed by solid state dewetting of Si thin layers are used as seed crystals. • The structures of Fe–Si NCs are analyzed by nanobeam electron diffraction. • Most of Fe–Si NCs possess the D0{sub 3} structure after post-deposition annealing.

  3. Efficient bright white organic light-emitting diode based on non-doped ultrathin 5,6,11,12-tetraphenylnaphthacene layer

    International Nuclear Information System (INIS)

    Li Lu; Yu Junsheng; Tang Xiaoqing; Wang Tao; Li Wei; Jiang Yadong

    2008-01-01

    High-performance undoped white organic light-emitting diode (OLED) has been fabricated using an ultrathin yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (rubrene) inserted at two sides of interface between two N,N'-bis-(1-naphthyl)-N,N'- biphenyl-1,1'-biphenyl-4,4'- diamine (NPB) layers as a hole transporting and blue emissive layer, respectively. The results showed that a maximum luminance of the device reached to as high as 21,500 cd/m 2 at 15 V. The power efficiencies of 2.5 and 1.6 lm/W at a luminance of 1000 and 10000 cd/m 2 , respectively, were obtained. The peaks of electroluminescent (EL) spectra locate at 429 and 560 nm corresponding to the Commissions Internationale De L'Eclairage (CIE) coordinates of (0.32, 0.33), which is independent of bias voltage. The performance enhancement of the device may result from direct charge carrier trapping in rubrene. Energy transfer mechanism was also found in the EL process

  4. Efficient bright white organic light-emitting diode based on non-doped ultrathin 5,6,11,12-tetraphenylnaphthacene layer

    Energy Technology Data Exchange (ETDEWEB)

    Li Lu [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Tang Xiaoqing; Wang Tao; Li Wei; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-11-15

    High-performance undoped white organic light-emitting diode (OLED) has been fabricated using an ultrathin yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (rubrene) inserted at two sides of interface between two N,N'-bis-(1-naphthyl)-N,N'- biphenyl-1,1'-biphenyl-4,4'- diamine (NPB) layers as a hole transporting and blue emissive layer, respectively. The results showed that a maximum luminance of the device reached to as high as 21,500 cd/m{sup 2} at 15 V. The power efficiencies of 2.5 and 1.6 lm/W at a luminance of 1000 and 10000 cd/m{sup 2}, respectively, were obtained. The peaks of electroluminescent (EL) spectra locate at 429 and 560 nm corresponding to the Commissions Internationale De L'Eclairage (CIE) coordinates of (0.32, 0.33), which is independent of bias voltage. The performance enhancement of the device may result from direct charge carrier trapping in rubrene. Energy transfer mechanism was also found in the EL process.

  5. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  6. Luminous composite ultrathin films of CdTe quantum dots/silk fibroin co-assembled with layered doubled hydroxide: Enhanced photoluminescence and biosensor application

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail Haroone

    2018-06-01

    Full Text Available Quantum dots (QDs luminescent films are extensively applied to optoelectronics and optical devices. However, QDs aggregation results in the quenching of their fluorescence property which limits their practical applications to a greater extent. In order to resolve this issue, 3-mercaptopropionic acid (3-MPA functionalized Cadmium Tellurium (CdTe QDs were stabilized by silk fibroin (SB and co-assembled with layered doubled hydroxide (LDH to form (QDs@SF/LDHn ultrathin films (UTFs via the layer-by-layer (LBL technique. UV–Vis absorption and fluorescence spectroscopy showed a stepwise and normal growth of the films upon increasing the number of deposition cycles. XRD and AFM studies confirmed the formation of a periodic layered structure and regular surface morphology of the thin films. As compared to (CdTe QDs/LDHnUTFs, the (CdTe QDs@SF/LDHnUTFs displayed fluorescence enhancement and longer fluorescent lifetime, both in solid states and aqueous solutions. Furthermore compared with the solution state, the fluorescence enhancement of SF-RC and SF-β are, respectively, 7 times and 17 times in the (CdTe QDs@SF/LDHn UTFs, indicating that the LDH nanosheets favor the fluorescence enhancement effect on the CdTe QDs@SF. The fabricated materials displayed fluorescence response to a biological molecule such as immune globulin, lgG. Thus, the (CdTe QDs@SF/LDHn UTFs has a potential to be used as biosensor. Keywords: CdTe quantum dots, Silk fibroin, Layered doubled hydroxide, Co-assembly, Fluorescence enhancement

  7. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  8. Texture-enhanced Al-Cu electrodes on ultrathin Ti buffer layers for high-power durable 2.6 GHz SAW filters

    Science.gov (United States)

    Fu, Sulei; Wang, Weibiao; Xiao, Li; Lu, Zengtian; Li, Qi; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Achieving high resistance to acoustomigration and electromigration in the electrodes used in high-power and high-frequency surface acoustic wave (SAW) filters is important to mobile communications development. In this study, the effects of the Ti buffer layers on the textures and acoustomigration and electromigration resistances of the Al-Cu electrodes were studied comprehensively. The results demonstrate that both power durability and electromigration lifetime are positively correlated with the Al-Cu electrode texture quality. Ultrathin (˜2 nm) Ti can lead to the strongest Al-Cu (111) textured electrodes, with a full width at half maximum of the rocking curve of 2.09°. This represents a remarkable enhancement of the power durability of high-frequency 2.6 GHz SAW filters from 29 dBm to 35 dBm. It also produces lifetime almost 7 times longer than those of electrodes without Ti buffer layers in electromigration tests. X-ray diffraction and transmission electron microscopy analyses revealed that these improved acoustomigration and electromigration resistances can be attributed primarily to the reductions in overall and large-angle grain boundaries in the highly Al-Cu (111) textured electrodes. Furthermore, the growth mechanism of highly Al-Cu texture films is discussed in terms of surface-interface energy balance.

  9. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Fischer, Sebastian F.; Muschna, Stefan; Bührig-Polaczek, Andreas; Bünck, Matthias

    2014-01-01

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV 0.1 ±52 HV 0.1 to 505 HV 0.1 ±87 HV 0.1 . Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  10. Interfacial exchange, magnetic coupling and magnetoresistance in ultra-thin GdN/NbN/GdN tri-layers

    Science.gov (United States)

    Takamura, Yota; Goncalves, Rafael S.; Cascales, Juan Pedro; Altinkok, Atilgan; de Araujo, Clodoaldo I. L.; Lauter, Valeria; Moodera, Jagadeesh S.; MIT Team

    Superconducting spin-valve structures with a superconductive (SC) spacer sandwiched between ferromagnetic (FM) insulating layers [Li PRL 2013, Senapati APL 2013, Zhu Nat. Mat. 2016.] are attractive since the SC and FM characteristics can mutually be controlled by the proximity effect. We investigated reactively sputtered GdN/NbN/GdN tri-layer structures with various (SC) NbN spacer thicknesses (dNbN) from superconducting to normal layers. Magnetoresistive behavior similar to GMR in metallic magnetic multilayers was observed in the tri-layers with dNbN between 5-10 monolayers (ML), where thinner NbN layers did not show superconductivity down to 4.2 K. The occurrence of GMR signal indicates the presence of a ML of FM metallic layers at the GdN/NbN interfaces. Susceptibility and transport measurements in these samples revealed that the interface layers (ILs) are ferromagnetically coupled with adjacent GdN layers. The thickness of each of the IL is deduced to be about 1.25 ML, and as a result for dNbN magnetically coupled and switched simultaneously. These findings and interfacial characterization by various techniques will be presented. Work supported by NSF and ONR Grants.

  11. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  12. The Role of Peat Layers on Iron Dynamics in Peatlands

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2010-09-01

    Full Text Available The research aimed to study the effect of peat thickness and humification stage of the peat material on Fe solubility at the peatlands with sulfidic material as substratum. The research was conducted at three conditionals of ombrogen peatlands ie ; deep, moderate and shallow peat. Soil samples were collected by using peat borer according to interlayer (the border layer of peat and mineral layer and conditional of soil horizons. The sample point depth were (cm G.s2 : 25, G.s1 : 50, Int.s : 70, M.s1 : 90 and M.s2 : 100 for shallow peat, G.m2 : 47, G.m1 : 100, Int.m : 120 and M.m1 : 135 for moderate peat and G.d3 : 50, G.d2 : 150, G.d1 : 200, Int.d : 220 and M.d1 : 235 for deep peat respectively. The results showed that most of Fe on the tested soils was found in organic forms. The peat layers above the sulfidic material decreased the Fe2+ solubility at peatlands. Fe2+ concentration in peat layer decreased with its increasing distance from sulfidic material. There was any other processes beside complexation and chelation of Fe2+ by humic material and its processes was reduction of Fe3+ and this conditions was reflected in redox potential values (Eh.

  13. Atomic emission spectroscopic investigations for determining depth profiles at boride layers on iron materials

    International Nuclear Information System (INIS)

    Danzer, K.; Marx, G.

    1980-01-01

    A combination of atomic emission spectroscopic surface analysis and mechanical removement of defined surface areas in layers by grinding yields information about the depth distribution of boron in iron. In addition, the evaluation with the aid of the two-dimensional variance analysis leads to statements on the homogeneous distribution within individual layers at different depth. The results obtained in this way are in agreement with those of other methods

  14. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  15. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  16. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Florian, E-mail: f.winkler@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Tavabi, Amir H. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Barthel, Juri [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Gemeinschaftslabor für Elektronenmikroskopie (GFE), RWTH Aachen University, D-52074 Aachen (Germany); Duchamp, Martial [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Yucelen, Emrah [FEI Company, Achtseweg Noord 5, Eindhoven 5600 KA (Netherlands); Borghardt, Sven; Kardynal, Beata E. [Peter Grünberg Institute 9 (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); and others

    2017-07-15

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe{sub 2} is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe{sub 2} from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe{sub 2} of 18.9±0.8 V, which is 12% lower than the value calculated from neutral atom scattering factors. - Highlights: • Quantitative analysis of high resolution electron holograms of WSe{sub 2}. • Local specimen thickness determination and estimation of tilt angle. • Mean inner potential evaluation of WSe2 avoiding dynamical diffraction.

  17. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  18. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    Science.gov (United States)

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment

    Science.gov (United States)

    Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2017-01-01

    The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.

  20. Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer

    International Nuclear Information System (INIS)

    Guang-Cai, Yuan; Zheng, Xu; Su-Ling, Zhao; Fu-Jun, Zhang; Xue-Yan, Tian; Xu-Rong, Xu; Na, Xu

    2009-01-01

    The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers are limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at V DS = −20 V showed excellent hole mobility μFE and threshold voltage V TH of 0.58 cm 2 /(V·s) and −4.6 V, respectively

  1. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    International Nuclear Information System (INIS)

    Tinoco, J.C.; Estrada, M.; Baez, H.; Cerdeira, A.

    2006-01-01

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO 2 , and high-k layers of TiO 2 . We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO 2 layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10 11 cm -2 and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm 2 and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O 2 and N 2 O as reactive gases. MOS capacitors with TiO 2 layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO 2 over SiO 2 , both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO 2 as a candidate for next technology nodes

  2. Corrosion behaviour of layers obtained by nitrogen implantation into boron films deposited onto iron substrates

    International Nuclear Information System (INIS)

    Marchetti, F.; Fedrizzi, L.; Giacomozzi, F.; Guzman, L.; Borgese, A.

    1985-01-01

    The electrochemical behaviour and corrosion resistance of boron films deposited onto Armco iron after bombardment with 100 keV N + ions were determined in various test solutions. The changes in the electrochemical parameters give evidence of lower anodic dissolution rates for the treated samples. Scanning electron microscopy and Auger analysis of the corroded surfaces confirm the presence of protective layers. (Auth.)

  3. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  4. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  5. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    International Nuclear Information System (INIS)

    Evelt, M.; Demidov, V. E.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; Loubens, G. de; Klein, O.; Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-01-01

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  6. Hybrid density functional study on the mechanism for the enhanced photocatalytic properties of the ultrathin hybrid layered nanocomposite g-C3N4/BiOCl

    Science.gov (United States)

    Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu

    2018-03-01

    To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.

  7. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    Science.gov (United States)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  8. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  9. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  10. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    Science.gov (United States)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  11. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael Hsuan-Yi

    2018-05-21

    To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    Science.gov (United States)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  13. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui; Wang, Kaiyu; Chung, Tai Shung Neal; Chen, Hongmin; Jean, Yanching; Amy, Gary L.

    2010-01-01

    polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water

  14. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  15. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high- k metal gate NMOSFET with kMC TDDB simulations

    International Nuclear Information System (INIS)

    Xu Hao; Yang Hong; Luo Wei-Chun; Xu Ye-Feng; Wang Yan-Rong; Tang Bo; Wang Wen-Wu; Qi Lu-Wei; Li Jun-Feng; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2016-01-01

    The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high- k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it / N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. (paper)

  17. Study of first electronic transition and hydrogen bonding state of ultra-thin water layer of nanometer thickness on an α-alumina surface by far-ultraviolet spectroscopy

    Science.gov (United States)

    Goto, Takeyoshi; Kinugasa, Tomoya

    2018-05-01

    The first electronic transition (A˜ ← X˜) and the hydrogen bonding state of an ultra-thin water layer of nanometer thickness between two α-alumina surfaces (0.5-20 nm) were studied using far-ultraviolet (FUV) spectroscopy in the wavelength range 140-180 nm. The ultra-thin water layer of nanometer thickness was prepared by squeezing a water droplet ( 1 μL) between a highly polished α-alumina prism and an α-alumina plate using a high pressure clamp ( 4.7 MPa), and the FUV spectra of the water layer at different thicknesses were measured using the attenuated total reflection method. As the water layer became thinner, the A˜ ← X˜ bands were gradually shifted to higher or lower energy relative to that of bulk water; at thicknesses smaller than 4 nm, these shifts were substantial (0.1-0.2 eV) in either case. The FUV spectra of the water layer with thickness lost at thicknesses below 4 nm, because of steric hydration forces between the α-alumina surfaces.

  18. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  19. Investigation of defects in ultra-thin Al{sub 2}O{sub 3} films deposited on pure copper by the atomic layer deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.L.; Wang, L.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, H.C., E-mail: hclinntu@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Chen, M.J., E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, K.M. [Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan (China)

    2015-12-30

    Graphical abstract: Some residual OH ligands originating from incomplete reaction between TMA and surface species of OH* during ALD process induce the defects in deposited Al{sub 2}O{sub 3} films. Three possible types of defects are suggested. The analytic results indicate the defects are Type-I and/or Type-II but do not directly expose the substrate, like pinholes (Type-III). - Highlights: • Oxidation trials were conducted to investigate the defects in ultra-thin Al{sub 2}O{sub 3} films deposited ALD technique on pure copper. • The residual OH ligands in the deposited Al{sub 2}O{sub 3} films induce looser micro-structure which has worse oxidation resistance. • Superficial contamination particles on substrate surface are confirmed to be one of nucleation sites of the defects. - Abstract: Al{sub 2}O{sub 3} films with various thicknesses were deposited by the atomic layer deposition (ALD) technique on pure copper at temperatures of 100–200 °C. Oxidation trials were conducted in air at 200 °C to investigate the defects in these films. The analytic results show that the defects have a looser micro-structure compared to their surroundings, but do not directly expose the substrate, like pinholes. The film's crystallinity, mechanical properties and oxidation resistance could also be affected by these defects. Superficial contamination particles on the substrate surface are confirmed to be nucleation sites of the defects. A model for the mechanism of defect formation is proposed in this study.

  20. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    Science.gov (United States)

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  1. Ultrathin (Nanocellulose Paper

    Science.gov (United States)

    Wu, Jingda; Lin, Lih Y.

    2017-03-01

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications.

  2. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  4. Microfabrication, separations, and detection by mass spectrometry on ultrathin-layer chromatography plates prepared via the low-pressure chemical vapor deposition of silicon nitride onto carbon nanotube templates.

    Science.gov (United States)

    Kanyal, Supriya S; Häbe, Tim T; Cushman, Cody V; Dhunna, Manan; Roychowdhury, Tuhin; Farnsworth, Paul B; Morlock, Gertrud E; Linford, Matthew R

    2015-07-24

    Microfabrication of ultrathin-layer chromatography (UTLC) plates via conformal deposition of silicon nitride by low-pressure chemical vapor deposition onto patterned carbon nanotube (CNT) scaffolds was demonstrated. After removal of the CNTs and hydroxylation, the resulting UTLC phase showed no expansion or distortion of their microfeatures and the absence/reduction of remaining nitrogenic species. Developing time of a mixture of lipophilic dyes on this UTLC plates was 86% shorter than on high-performance thin-layer chromatography (HPTLC) plates. A water-soluble food dye mixture was also separated resulting in low band broadening and reduced developing time compared to HPTLC. For the latter example, mobile phase optimization on a single UTLC plate consisted of 14 developments with different mobile phases, each preceded by a plate prewashing step. The same plate was again reused for additional 11 separations under varying conditions resulting in a development procedure with a mean separation efficiency of 233,000theoretical plates/m and a reduced mobile phase consumption of only 400μL. This repeated use proved the physical robustness of the ultrathin layer and its resistance to damage. The layer was highly suited for hyphenation to ambient mass spectrometry, including desorption electrospray ionization (DESI) mass spectrometry imaging and direct analysis in real time (DART) mass spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Erosion behaviour of ultrathin carbon layers and hydrogen retention in beryllium; Untersuchungen zur Erosion ultraduenner Kohlenstoffschichten und Wasserstoffrueckhaltung in Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Reinelt, Matthias

    2008-04-16

    Plasma-wall-interaction plays an important role on the way to technical feasibility of thermonuclear fusion. In this context, the erosion behavior of few nanometer thin amorphous carbon layers on different metallic substrates by energetic deuterium and helium ions is investigated. Several aspects of the interaction are distinguishable by XPS. Ion induced carbide formation is governed by kinematic intermixing of carbon and metal substrate. Several methods of quantification of XPS measurements are developed and discussed. Comparison of results from these methods with NRA measurements show that surface roughness and implantation of particles into the carbon layer and intermixing zone influence the XPS measurements, which are sensitive to parameters such as material density. The retention of 1 keV deuterium ions implanted into single crystalline and cleaned beryllium at room temperature is investigated by temperature programmed desorption (TPD). The residual BeO coverage was 0.2 ML. The retention is 78% at low fluences and saturates above a bombardment with a fluence of 2.10{sup 17} cm{sup -2}. The retained maximum areal density is 2.10{sup 17} cm{sup -2}. Above 900 K, no deuterium is retained in the sample. An onset of self diffusion is observed at this temperature and metallic beryllium from the bulk segregates though thin BeO layers on the surface. From deuterium desorption traces, retention mechanisms are obtained. The measured TPDspectra are modeled by TMAP7 and rate equations to obtain activation energies for the release processes. From these, binding energies for the system Be-D are derived. Up to a implantation fluence of 1.10{sup 17} cm{sup -2}, deuterium is trapped in ion induced defects in the beryllium lattice with binding energies of 1.69 eV and 1.86 eV and release temperatures of 770 K and 840 K, respectively. The occupation of these states shows a different isotope behavior for {sup 1}H and {sup 2}H. The states are filled by diffusion of deuterium at the

  6. Ultrathin Planar Graphene Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Meunier, Vincent [ORNL; Sumpter, Bobby G [ORNL; Ajayan, Pullikel M [Rice University; Yoo, Jung Joon [KAIST, Daejeon, Republic of Korea; Balakrishnan, Kaushik [Rice University; Srivastava, Anchal [Rice University; Conway, Michelle [Rice University; Reddy, Arava Leela Mohan [Rice University; Yu, Jin [Rice University; Vajtai, Robert [Rice University

    2011-01-01

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an in-plane fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multi-layer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 Fcm-2. While, much higher (394 Fcm-2) specific capacities are observed in case of multi-layered graphene oxide electrodes, owing to the better utilization of the available electrochemical surface area. The performances of devices with pristine as well as thicker graphene based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  7. “Self-Peel-Off” Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices

    KAUST Repository

    Tai, Yanlong

    2017-02-23

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  8. Secondary ion emission from ultra-thin oxide layers bombarded by energetic (MeV) heavy ions: depth of origin and layer homogeneity

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.; Cabaud, B.; Fuchs, G.; Hoareau, A.; Treilleux, M.; Danel, J.S.

    1993-09-01

    The escape depth of the secondary ions resulting from electronic sputtering of fast heavy ions in inorganic thin films has been investigated. Chromium layers deposited onto SiO 2 substrate as well as SiO x layers deposited onto chromium substrate have been characterized by secondary ion emission mass spectrometry (SIMS) in combination with time-of-flight (TOF) mass analysis (also referred as HSF-SIMS). These crossed experiments lead to a value around 1 nm for SiO x layers and 0.5 nm for Cr layers. On the other hand, HSF-SIMS can be used to correlate the intensity of the secondary ion emission to the film coverage rate and (or) the morphology of particular films like those produced by Low Energy Cluster Beam Deposition (LECBD). Using Sb deposits, the non-linear relationship between ion emission and coverage is interpreted in terms of sputtering enhancement in the individual supported clusters. (author) 22 refs., 9 figs., 1 tab

  9. Enhancing photocatalytic CO{sub 2} reduction by coating an ultrathin Al{sub 2}O{sub 3} layer on oxygen deficient TiO{sub 2} nanorods through atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huilei; Chen, Jiatang; Rao, Guiying; Deng, Wei; Li, Ying, E-mail: yingli@tamu.edu

    2017-05-15

    Highlights: • Oxygen deficient TiO{sub 2} anatase nanorods are coated with an ultrathin Al{sub 2}O{sub 3} layer by ALD. • Exposed {100} facets and oxygen vacancies promote CO{sub 2} photoreduction to CO and CH{sub 4}. • Al{sub 2}O{sub 3} overlayer passivates surface states and mitigates surface charge recombination. • Two cycles of ALD coating lead to maximum photocatalytic CO{sub 2} reduction. • More than five cycles of ALD coating prohibits electron transfer to the surface. - Abstract: In this work, anatase nanorods (ANR) of TiO{sub 2} with active facet {100} as the major facet were successfully synthesized, and reducing the ANR by NaBH{sub 4} led to the formation of gray colored oxygen deficient TiO{sub 2-x} (ReANR). On the surface of ReANR, a thin layer of Al{sub 2}O{sub 3} was deposited using atomic layer deposition (ALD), and the thickness of Al{sub 2}O{sub 3} varied by the number of ALD cycles (1, 2, 5, 10, 50, 100, or 200). The growth rate of Al{sub 2}O{sub 3} was determined to be 0.25 Å per cycle based on high-resolution TEM analysis, and the XRD result showed the amorphous structure of Al{sub 2}O{sub 3}. All the synthesized photocatalysts (ANR, ReANR, and Al{sub 2}O{sub 3} coated ReANR) were tested for CO{sub 2} photocatalytic reduction in the presence of water vapor, with CO detected as the major reduction product and CH{sub 4} as the minor product. Compared with ANR, ReANR had more than 50% higher CO production and more than ten times higher CH{sub 4} production due to the oxygen vacancies that possibly enhanced CO{sub 2} adsorption and activation. By applying less than 5 cycles of ALD, the Al{sub 2}O{sub 3} coated ReANR had enhanced overall production of CO and CH{sub 4} than uncoated ReANR, with 2 cycles being the optimum, about 40% higher overall production than ReANR. Whereas, both CO and CH{sub 4} production decreased with increasing number of ALD cycles when more than 5 cycles were applied. Photoluminescence (PL) analysis showed an

  10. Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors.

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-07-07

    Ultrathin cobalt phosphate (CoHPO4 · 3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4 · 3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g(-1), and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.

  11. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr; Zighem, F.; Chérif, S. M. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Gabor, M. S., E-mail: mihai.gabor@phys.utcluj.ro; Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Department of Physics and Chemistry, Technical University of Cluj-Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Lorraine Université, BP 70239, F-54506 Vandoeuvre (France)

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  12. Effects of Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} ultra-thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Garcia, H., E-mail: hamog@ier.unam.mx [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63155 Tepic, Nayarit (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Martínez, H. [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico)

    2016-04-01

    As-deposited bismuth sulfide thin films prepared by means of a chemical bath deposition were treated with argon AC plasma. In this paper, we present the results on the physical modifications which were observed when a pre-treatment, containing a solution of 1 M sodium hydroxide, was applied to the glass substrates before depositing the bismuth sulfide. The bismuth sulfide thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV–VIS, and electrical measurements. The XRD analysis demonstrated an enhancement in the crystalline properties, as well as an increment in the crystal size. The energy band gap value was calculated as 1.60 eV. Changes in photoconductivity (σ{sub p}) values were also observed due to the pre-treatment in NaOH. A value of σ{sub p} = 6.2 × 10{sup −6} (Ω cm){sup −1} was found for samples grown on substrates without pre-treatment, and a value of σ{sub p} = 0.28 (Ω cm){sup −1} for samples grown on substrates with pre-treatment. Such σ{sub p} values are optimal for the improvement of solar cells based on Bi{sub 2}S{sub 3} thin films as absorber material. - Highlights: • We report our findings about Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} thin layers. • The Na pre-treatment improves the structural and electrical properties of Bi{sub 2}S{sub 3} films. • The E{sub g} value was 1.60 eV for films with pre-treatment with NaOH and treatment in Ar plasma.

  13. Reductive dehalogenation by layered iron(II)-iron(III) hydroxides and related iron(II) containing solids

    DEFF Research Database (Denmark)

    Yin, Weizhao

    In the present PhD project, novel synthesis and modifications of layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) were investigated with focus on improved dehalogenation of carbon tetrachloride by using modified green rusts and/or altered reaction conditions. The Ph.D. project has comprised: 1...... sulphate green rust formation by aerial oxidation of FeII or co-precipitation by adding Fe(III) salt to Fe(II). In comparison with traditional green rust synthesis, pure GRs were synthesized in minutes. 2. Enhanced dehalogenation of CT by GR in presence of selected amino acids. In presence of glycine......, chloroform (CF) formation is effectively suppressed: less than 10% of CT is transformed to CF, and more than 90% of dehalogenation products are found to be formic acid and carbon monoxide in presence of 60 mM glycine; while a 80% of CF recovery was obtained without amino acids addition. 3. A “switch...

  14. Ultrathin ZnO interfacial passivation layer for atomic layer deposited ZrO2 dielectric on the p-In0.2Ga0.8As substrate

    Science.gov (United States)

    Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin

    2018-06-01

    Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.

  15. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  16. Characterization of Nitride Layers Formed by Nitrogen Ion Implantation into Surface Region of Iron

    International Nuclear Information System (INIS)

    Sudjatmoko; Subki, M. Iyos R.

    2000-01-01

    Ion implantation is a convenient means of modifying the physical and chemical properties of the near-surface region of materials. The nitrogen implantation into pure iron has been performed at room temperature with ion dose of 1.310 17 to 1.310 18 ions/cm 2 and ion energy of 20 to 100 keV. The optimum dose of nitrogen ions implanted into pure iron was around 2.2310 17 ions/cm 2 in order to get the maximum wear resistant. SEM micrographs and EDX show that the nitride layers were found on the surface of substrate. The nitrogen concentration profile was measured using EDX in combination with spot technique, and it can be shown that the depth profile of nitrogen implanted into substrate was nearly Gaussian. (author)

  17. Graphitic Layer Encapsulated Iron Based Non‐precious Catalysts for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie

    consisting of uniform metallic nanoparticles encapsulated in graphitic layers. The thesis work is conducted aiming at three major objectives: further optimization of the pyrolysis to achieve improved performance of catalysts, investigation of the complex Fe-containing components, and exploration...... of the nitrogen functionalities. Two anions in the electrolyte are used to probe the iron containing active sites towards the ORR, cyanide (CN-) in alkaline and thiocyanate (SCN-) in acidic medium, which seem supporting the above conclusions. These findings provide new insights to the encapsulation structure...

  18. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS2 (pyrite) on TiO2

    International Nuclear Information System (INIS)

    Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H.

    1992-01-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS 2 (pyrite) were grown on TiO 2 (anatase) by chemical vapor deposition. The FeS 2 films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO 2 (anatase) coated with FeS 2 ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS 2 to the conduction band of TiO 2 . Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte

  19. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS[sub 2] (pyrite) on TiO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Fiechter, S.; Tributsch, H. (Abt. Solare Energetik, Hahn-Meitner-Inst., D-1000 Berlin 39 (Germany)); Giersig, M.; Vogel, R.; Weller, H. (Abt. Photochemie, Hahn-Meitner-Inst., D-1000 Berlin 39 (Germany))

    1992-09-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS[sub 2] (pyrite) were grown on TiO[sub 2] (anatase) by chemical vapor deposition. The FeS[sub 2] films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO[sub 2] (anatase) coated with FeS[sub 2] ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS[sub 2] to the conduction band of TiO[sub 2]. Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte.

  20. Complete protection of a passive film on iron from breakdown in a borate buffer containing 0.1M of Cl- by coverage with an ultrathin film of two-dimensional polymer

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2006-01-01

    An ultrathin film of two-dimensional polymer was prepared on a passivated iron electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and octadecyltriethoxysilane C 18 H 37 Si(OC 2 H 5 ) 3 . This film prevented passive film breakdown examined by potentiodynamic anodic polarization of the coated electrode in the borate buffer solution containing 0.1M of Cl - . Neither current spikes nor the pitting potential was observed in the passive and transpassive regions of polarization curve. The anodic current density was decreased in these regions markedly, implying hindrance to permeation of Cl - and water through the film. Structure of the film was clarified by X-ray photoelectron and FTIR reflection spectroscopies and contact angle measurement with a drop of water. Electron-probe microanalysis of the passivated surface coated with the film after anodic polarization scanning up to the transpassive region revealed that the polymer film prevents pit initiation by an attack on the passive film with Cl -

  1. Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers

    International Nuclear Information System (INIS)

    Kim, Dong Chan; Jung, Byung Oh; Cho, Hyung Koun; Lee, Ju Ho; Lee, Jeong Yong; Lee, Jun Hee

    2011-01-01

    This study reports that the visible-blind ultraviolet (UV) photodetecting properties of ZnO nanowire based photodetectors were remarkably improved by introducing ultrathin insulating MgO layers between the ZnO nanowires and Si substrates. All layers were grown without pause by metal organic chemical vapor deposition and the density and vertical arrangement of the ZnO nanowires were strongly dependent on the thickness of the MgO layers. The sample in which an MgO layer with a thickness of 8 nm was inserted had high density nanowires with a vertical alignment and showed dramatically improved UV photosensing performance (photo-to-dark current ratio = 1344.5 and recovery time = 350 ms). The photoresponse spectrum revealed good visible-blind UV detectivity with a sharp cut off at 378 nm and a high UV/visible rejection ratio. A detailed discussion regarding the developed UV photosensing mechanism from the introduction of the i-MgO layers and highly dense nanowires in the n-ZnO nanowires/i-MgO/n-Si substrates structure is presented in this work.

  2. Interface sulfur passivation using H2S annealing for atomic-layer-deposited Al2O3 films on an ultrathin-body In0.53Ga0.47As-on-insulator

    International Nuclear Information System (INIS)

    Jin, Hyun Soo; Cho, Young Jin; Lee, Sang-Moon; Kim, Dae Hyun; Kim, Dae Woong; Lee, Dongsoo; Park, Jong-Bong; Won, Jeong Yeon; Lee, Myoung-Jae; Cho, Seong-Ho; Hwang, Cheol Seong; Park, Tae Joo

    2014-01-01

    Highlights: • ALD Al 2 O 3 films were grown on ultrathin-body In 0.53 Ga 0.47 As substrates for III-V compound-semiconductor-based devices. • Interface sulfur passivation was performed with wet processing using (NH 4 ) 2 S solution, and dry processing using post-deposition annealing under a H 2 S atmosphere. • Electrical properties of the device were better for (NH 4 ) 2 S wet-treatment than the PDA under a H 2 S atmosphere. • PDA under a H 2 S atmosphere following (NH 4 ) 2 S wet-treatment resulted in an increased S concentration at the interface, which improved the electrical properties of the devices. - Abstract: Atomic-layer-deposited Al 2 O 3 films were grown on ultrathin-body In 0.53 Ga 0.47 As substrates for III-V compound-semiconductor-based devices. Interface sulfur (S) passivation was performed with wet processing using ammonium sulfide ((NH 4 ) 2 S) solution, and dry processing using post-deposition annealing (PDA) under a H 2 S atmosphere. The PDA under the H 2 S atmosphere resulted in a lower S concentration at the interface and a thicker interfacial layer than the case with (NH 4 ) 2 S wet-treatment. The electrical properties of the device, including the interface property estimated through frequency dispersion in capacitance, were better for (NH 4 ) 2 S wet-treatment than the PDA under a H 2 S atmosphere. They might be improved, however, by optimizing the process conditions of PDA. The PDA under a H 2 S atmosphere following (NH 4 ) 2 S wet-treatment resulted in an increased S concentration at the interface, which improved the electrical properties of the devices

  3. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  4. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  5. Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel

    Science.gov (United States)

    Selles Canto, Miguel Angel

    The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing

  6. Investigations on structural iron electrochemical properties in layered silicates using massive mica electrodes

    International Nuclear Information System (INIS)

    Hadi, J.; Ignatiadis, I.; Tournassat, C.; Charlet, L.; Silvester, E.

    2012-01-01

    Saturated Calomel Electrode as reference electrodes. Open Circuit Potential (OCP) measurements and Cyclic Voltammetry (CV) were realised as well as Long term OCP measurements, along with pH and other parameters, are also measured. Most of the experiments discussed here have been conducted in unbuffered NaCl or KCl 0.1 M solutions, at 25 deg. C. Anoxic conditions were maintained by first bubbling N 2 and then maintaining a gas layer in the head space of the reactor. Long term measurements showed that in these conditions, pH stays at a value around 8.9 and is stable for several weeks. Experiments realised in buffered solution, at pH 7.5, using 1 mM Piperazine-1,4-bis(2-ethanesulfonic acid) and 2 mM NaOH did not show any observable change. In some experiments, 5 mM ferricyanide have also been used as a redox probe. High resistivities previously have been reported for this type of material. Given the current flows detection limit of the apparatus used for measuring (∼nA), the mm-thick pieces used in first experiments should normally behave like insulating screens on Ag electrodes, e.g. no current could be measured across the sample with low iron content. OCP measurement consists in measuring the electrode rest potential against a reference electrode, in absence of observable current. It provides a first indication on the type of material present on the support electrode; normally no potential should be measured in absence of an electrically conductive path. Unfortunately, first records showed that OCP can be measured immediately after the immersion of all the first electrodes prepared even on muscovite and lepidolite, clearly indicating the presence of water in the different samples. However, signals obtained for lepidolite and muscovite are less stable and can only be conveniently recorded in absence of external perturbation around the electrode such as vibration or even air movement, whereas signals obtained for the different biotite samples are very stable. Changing

  7. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  8. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  9. Molecular orbital calculations for the formation of GaN layers on ultra-thin AlN/6H-SiC surface using alternating pulsative supply of gaseous trimethyl gallium (TMG) and NH3

    International Nuclear Information System (INIS)

    Seong, See Yearl; Hwang, Jin Soo

    2001-01-01

    The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH 3 gases have been examined by ASED-MO calculations. We postulate that the gallium clusters was formed with the evaporation of CH 4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl gallium (MMG). During the injection of NH 3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH 3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH 3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth

  10. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  11. Ultrathin SiO{sub 2} layer formed by the nitric acid oxidation of Si (NAOS) method to improve the thermal-SiO{sub 2}/Si interface for crystalline Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Taketoshi; Nakajima, Hiroki; Irishika, Daichi; Nonaka, Takaaki; Imamura, Kentaro; Kobayashi, Hikaru, E-mail: h.kobayashi@sanken.osaka-u.ac.jp

    2017-02-15

    Highlights: • The density of interface states at the SiO{sub 2}/Si interface is decreased by NAOS. • The minority carrier lifetime is increased by the NAOS treatment. • Great interfacial properties of the NAOS layer are kept after thermal oxidation. - Abstract: A combination of the nitric acid oxidation of Si (NAOS) method and post-thermal oxidation is found to efficiently passivate the SiO{sub 2}/n-Si(100) interface. Thermal oxidation at 925 °C and annealing at 450 °C in pure hydrogen atmosphere increases the minority carrier lifetime by three orders of magnitude, and it is attributed to elimination of Si dangling bond interface states. Fabrication of an ultrathin, i.e., 1.1 nm, NAOS SiO{sub 2} layer before thermal oxidation and H{sub 2} annealing further increases the minority carrier lifetime by 30% from 8.6 to 11.1 ms, and decreased the interface state density by 10% from 6.9 × 10{sup 9} to 6.3 × 10{sup 9}eV{sup −1} cm{sup −2}. After thermal oxidation at 800 °C, the SiO{sub 2} layer on the NAOS-SiO{sub 2}/Si(100) structure is 2.26 nm thick, i.e., 0.24 nm thicker than that on the Si(100) surface, while after thermal oxidation at 925 °C, it is 4.2 nm thick, i.e., 0.4 nm thinner than that on Si(100). The chemical stability results from the higher atomic density of a NAOS SiO{sub 2} layer than that of a thermal oxide layer as reported in Ref. [28] (Asuha et al., 2002). Higher minority carrier lifetime in the presence of the NAOS layer indicates that the NAOS-SiO{sub 2}/Si interface with a low interface state density is preserved after thermal oxidation, which supports out-diffusion oxidation mechanism, by which a thermal oxide layer is formed on the NAOS SiO{sub 2} layer.

  12. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  13. Structural and Optothermal Properties of Iron Ditelluride Layered Structures in the Framework of the Lattice Compatibility Theory

    Directory of Open Access Journals (Sweden)

    K. Ben Messaoud

    2014-01-01

    Full Text Available This study concerns structural and optothermal properties of iron ditelluride layered structures which were fabricated via a low-cost protocol. The main precursors were FeCl3 · 6H2O and Fe2O3. After a heat treatment within a tellurium-rich medium at various temperatures (470°C, 500°C, and 530°C during 24 h, classical analyses have been applied to the iron ditelluride layered structures. A good crystalline state with a preferential orientation of the crystallites along (111 direction has been recorded. Moreover, additional opto-thermal investigation and analyses within the framework of the Lattice Compatibility Theory gave plausible explanation for prompt temperature-dependent incorporation of tellurium element inside hematite elaborated matrices.

  14. Bonding mechanism of a yttrium iron garnet film on Si without the use of an intermediate layer

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Patriarche, Gilles; Talneau, Anne; Youssef, Jamal Ben

    2014-01-01

    Direct bonding of yttrium iron garnet (YIG) on silicon without the use of an intermediate bonding layer is demonstrated and characterized using scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy. During the bonding experiment, the garnet is reduced in the presence of oxide-free silicon. As a result, a 5 nm thick SiO 2 /amorphous-YIG bilayer is formed and welds the garnet to silicon.

  15. Bio-mimicked atomic-layer-deposited iron oxide-based memristor with synaptic potentiation and depression functions

    Science.gov (United States)

    Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng

    2018-06-01

    In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.

  16. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    Science.gov (United States)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  17. Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer

    International Nuclear Information System (INIS)

    Huang, H.-H.; Chu, S.-Y.; Kao, P.-C.; Chen, Y.-C.; Yang, M.-R.; Tseng, Z.-L.

    2009-01-01

    The advantages of using an anode buffer layer of ZnO on the electro-optical properties of organic light emitting devices (OLEDs) are reported. ZnO powders were thermal-evaporated and then treated with ultra-violet (UV) ozone exposure to make the ZnO layers. The turn-on voltage of OLEDs decreased from 4 V (4.2 cd/m 2 ) to 3 V (3.4 cd/m 2 ) and the power efficiency increased from 2.7 lm/W to 4.7 lm/W when a 1-nm-thick ZnO layer was inserted between indium tin oxide (ITO) anodes and α-naphthylphenylbiphenyl diamine (NPB) hole-transporting layers. X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS) results revealed the formation of the ZnO layer and showed that the work function increased by 0.59 eV when the ZnO/ITO layer was treated by UV-ozone for 20 min. The surface of the ZnO/ITO film became smoother than that of bare ITO film after the UV-ozone treatment. Thus, the hole-injection energy barrier was lowered by inserting an ZnO buffer layer, resulting in a decrease of the turn-on voltage and an increase of the power efficiency of OLEDs.

  18. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng; Xia, Chuan; Zhu, Zhiyong; Wen, Yan; Zhang, Qiang; Alshareef, Husam N.; Zhang, Xixiang

    2016-01-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin

  19. Molecular orbital calculations for the formation of GaN layers on ultra-thin AlN/6H-SiC surface using alternating pulsative supply of gaseous trimethyl gallium (TMG) and NH sub 3

    CERN Document Server

    Seong, S Y

    2001-01-01

    The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH sub 3 gases have been examined by ASED-MO calculations. We postulate that the gallium clusters was formed with the evaporation of CH sub 4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl gallium (MMG). During the injection of NH sub 3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH sub 3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH sub 3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster...

  20. Growth and microstructure of iron nitride layers and pore formation in {epsilon}-Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, C.; Mader, W. [Univ. Bonn, Inst. fuer Anorganische Chemie, Bonn (Germany)

    2003-03-01

    Layers of {epsilon}-Fe{sub 3}N and {gamma}'-Fe{sub 4}N on ferrite were produced by nitriding iron single crystals or rolled sheets of iron in flowing ammonia at 520 C. The nitride layers were characterised using X-ray diffraction, light microscopy as well as scanning and transmission electron microscopy. The compound layer consists of {epsilon}-Fe{sub 3}N at the surface and of {gamma}'-Fe{sub 4}N facing the ferrite. After 4 h of nitriding, pores develop in the near surface region of {epsilon}-Fe{sub 3}N showing more or less open porosity. Growth of the entire compound layer as well as of the massive and the porous {epsilon}-Fe{sub 3}N sublayer is diffusion-controlled and follows a parabolic growth rate. The {gamma}'-Fe{sub 4}N layer is formed as a transition phase within a narrow interval of nitrogen activity, and it shows little growth in thickness. The transformation of {gamma}'-Fe{sub 4}N to {epsilon}-Fe{sub 3}N is topotactic, where the orientation of the closed-packed iron layers of the crystal structures is preserved. Determination of lattice plane spacings was possible by X-ray diffraction, and this was correlated to the nitrogen content of {epsilon}-Fe{sub 3}N. While the porous layer exhibits an enhanced nitrogen content corresponding to the chemical composition Fe{sub 3}N{sub 1.1}, the massive e Fe{sub 3}N layer corresponds to Fe{sub 3}N{sub 1.0}. The pore formation in {epsilon}-Fe{sub 3}N{sub 1.1} is concluded to be the result of excess nitrogen atoms on non-structural sites, which have a high mobility. Therefore, recombination of excess nitrogen to molecular N{sub 2} at lattice defects is preferred in {epsilon}-Fe{sub 3}N with high nitrogen content compared to stoichiometric {epsilon}-Fe{sub 3}N{sub 1.0} with nitrogen on only structural sites. (orig.)

  1. Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)m /(GaN)n (m>n) superlattice substitution for Al-rich AlGaN disorder alloy: ultra-thin GaN layer modulation

    International Nuclear Information System (INIS)

    Jiang, Xin-he; Shi, Jun-jie; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Yu, Tong-jun; Shen, Bo; Lu, Jing; Zhang, Min; Wang, Xihua

    2014-01-01

    The problem of achieving high light extraction efficiency in Al-rich Al x Ga 1−x N is of paramount importance for the realization of AlGaN-based deep ultraviolet (DUV) optoelectronic devices. To solve this problem, we investigate the microscopic mechanism of valence band inversion and light polarization, a crucial factor for enhancing light extraction efficiency, in Al-rich Al x Ga 1−x N alloy using the Heyd–Scuseria–Ernzerhof hybrid functional, local-density approximation with 1/2 occupation, and the Perdew–Burke–Ernzerhof functional, in which the spin–orbit coupling effect is included. We find that the microscopic Ga-atom distribution can effectively modulate the valence band structure of Al-rich Al x Ga 1−x N. Moreover, we prove that the valence band arrangement in the decreasing order of heavy hole, light hole, and crystal-field split-off hole can be realized by using nanoscale (AlN) m /(GaN) n (m>n) superlattice (SL) substituting for Al-rich Al x Ga 1−x N disorder alloy as the active layer of optoelectronic devices due to the ultra-thin GaN layer modulation. The valence band maximum, i.e., the heavy hole band, has p x - and p y -like characteristics and is highly localized in the SL structure, which leads to the desired transverse electric (TE) polarized (E⊥c) light emission with improved light extraction efficiency in the DUV spectral region. Some important band-structure parameters and electron/hole effective masses are also given. The physical origin for the valence band inversion and TE polarization in (AlN) m /(GaN) n SL is analyzed in depth. (paper)

  2. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3

    NARCIS (Netherlands)

    Terlinden, N.M.; Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    Al2O3 synthesized by plasma-assisted atomic layer deposition yields excellent surface passivation of crystalline silicon (c-Si) for films down to ~ 5 nm in thickness. Optical second-harmonic generation was employed to distinguish between the influence of field-effect passivation and chemical

  3. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  4. Ultra-Thin Atomic Layer Deposited TiN Films: Non-Linear I–V Behaviour and the Importance of Surface Passivation

    NARCIS (Netherlands)

    Van Hao, B.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2011-01-01

    We report the electrical resistivity of atomic layer deposited TiN thin films in the thickness range 2.5-20 nm. The measurements were carried out using the circular transfer length method structures. For the films with thickness in the range of 10-20 nm, the measurements exhibited linear

  5. On-line and precise measurement of iron wear using thin layer activation reactions by proton beam

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nishimura, Kazuo.

    1990-01-01

    For the purpose of the on-line measurement of iron wear, thin layer activation (TLA) method or surface layer activation (SLA) method has been carried out since early 1970s. This method uses the irradiation of charged particle beam like protons from an accelerator onto a metal surface to produce a thin activated layer of several tens μm. The wear of this activated layer is measured by nondestructive on-line method with a radiation detector. There are two methods of the measurement. One is the activity loss measurement on the surface, and the other is the activity measurement of the metal debris collected in a filter. The former method is considered here. The purpose it to measure the wear of engine cam noses to help the development of good engine oil. Proton beam irradiation with a tandem van de Graaff accelerator, wear calibration using a gamma ray spectrometer, on-line wear measurement of cam noses of car engines by TLA method and so on are reported. The 7.00 MeV proton beam from a van de Graaff accelerator was used for activation, and Co-56, Co-57 and Co-58 were obtained in thin layers. (K.I.)

  6. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    Science.gov (United States)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  7. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and perylene red support whiskers

    Directory of Open Access Journals (Sweden)

    Atanasoska Ljiljana L.

    2013-01-01

    Full Text Available The interface formation between nano-structured perylene red (PR whiskers and oxygen evolution reaction (OER catalysts ruthenium and iridium has been studied systematically by XPS and STEM. The OER catalyst over-layers with thicknesses ranging from ~0.1 to ~50 nm were vapor deposited onto PR ex-situ. STEM images demonstrate that, with increasing thickness, Ru and Ir transform from amorphous clusters to crystalline nanoparticles, which agglomerate with increased over-layer thickness. XPS data show a strong interaction between Ru and PR. Ir also interacts with PR although not to the extent seen for Ru. At low coverages, the entire Ru deposit is in the reacted state while a small portion of the deposited Ir remains metallic. Ru and Ir bonding occur at the PR carbonyl sites as evidenced by the attenuation of carbonyl photoemission and the emergence of new peak assigned to C-O single bond. The curve fitting analysis and the derived stoichiometry indicates the formation of metallo-organic bonds. The co-existence of oxide bonds is also apparent.

  9. Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Aronniemi, Mikko; Saino, J.; Lahtinen, J.

    2008-01-01

    In this work we investigate an iron oxide thin film grown with atomic layer deposition for a gas sensor application. The objective is to characterize the structural, chemical, and electrical properties of the film, and to demonstrate its gas-sensitivity. The obtained scanning electron microscopy and atomic force microscopy results indicate that the film has a granular structure and that it has grown mainly on the glass substrate leaving the platinum electrodes uncovered. X-ray diffraction results show that iron oxide is in the α-Fe 2 O 3 (hematite) phase. X-ray photoelectron spectra recorded at elevated temperature imply that the surface iron is mainly in the Fe 3+ state and that oxygen has two chemical states: one corresponding to the lattice oxygen and the other to adsorbed oxygen species. Electric conductivity has an activation energy of 0.3-0.5 eV and almost Ohmic current-voltage dependency. When exposed to O 2 and CO, a typical n-type response is observed

  10. Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment

    KAUST Repository

    Cui, Yue; Liu, Xiang-Yang; Chung, Neal Tai-Shung

    2016-01-01

    ) membranes. The polyamide selective layer usually possesses a high selectivity and permeability, making it the heart of this membrane technology. To further improve and understand its formation, with entirely excluding the effect of substrate, an ultrathin

  11. High throughput CIGS solar cell fabrication via ultra-thin absorber layer with optical confinement and (Cd, CBD)-free heterojunction partner

    Energy Technology Data Exchange (ETDEWEB)

    Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States)

    2015-11-30

    The main objective of this proposal was to use several pathways to reduce the production cost of Cu(In,Ga)Se2 (CIGS) PV modules and therefore the levelized cost of energy (LCOE) associated with this technology. Three high cost drivers were identified, nominally: 1) Materials cost and availability; 2) Large scale uniformity; 3) Improved throughput These three cost drivers were targeted using the following pathways: 1) Reducing the thickness of the CIGS layer while enhancing materials quality; 2) Developing and applying enhanced in-situ metrology via real time spectroscopic ellipsometry; 3) Looking into alternative heterojunction partner, back contact and anti-reflection (AR) coating Eleven main Tasks were then defined to achieve these goals (5 in Phase 1 and 6 in Phase 2), with 11 Milestones and 2 Go/No-go decision points at the end of Phase 1. The key results are summarized below

  12. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts

    DEFF Research Database (Denmark)

    Zhong, Lijie; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2018-01-01

    is still unclear compared with the well-recognized surface coordinated FeNx/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN−) in alkaline and thiocyanate (SCN−) in acidic media, the metal containing active sites are electrochemically probed. Three...

  13. Thermally Evaporated Iron (Oxide) on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    We report the XPS characterization of a thermally evaporated iron thin film (6 nm) deposited on an Si/SiO_2/Al_2O_3 substrate using Al Ka X-rays. An XPS survey spectrum, narrow Fe 2p scan, narrow O 1s, and valence band scan are shown.

  14. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    Science.gov (United States)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical knowledge from this project was also used to enhance the nanoparticle surface functionalization described above. In all, a practical

  15. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  16. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO₂ Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A

    2018-03-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  17. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rachel L. Wilson

    2018-03-01

    Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  18. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  19. Ultrathin metallized PBI paper

    Science.gov (United States)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  20. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  1. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu, E-mail: gycao@wipm.ac.cn

    2017-01-15

    Highlights: • Growth of FeO layers on Pt(111) is found to consecutively reduce the work function of the system. • The electrostatic compression effect and the structural relaxation make major contributions to the reductions. • Significant rectifying effect observed in the FeO layer is induced by band alignment shift as work function changing. - Abstract: Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  2. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    International Nuclear Information System (INIS)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu

    2017-01-01

    Highlights: • Growth of FeO layers on Pt(111) is found to consecutively reduce the work function of the system. • The electrostatic compression effect and the structural relaxation make major contributions to the reductions. • Significant rectifying effect observed in the FeO layer is induced by band alignment shift as work function changing. - Abstract: Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  3. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  4. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  5. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  6. Chemical vapor deposition of diamond onto iron based substrates. The use of barrier layers

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.

    1995-01-01

    When Fe is exposed to the plasma environment suitable for the chemical vapor deposition (CVD) of diamond, the surface is rapidly covered with a thick layer graphitic soot and C swiftly diffuses into the Fe substrate. Once the soot reaches a critical thickness, diamond films nucleate and grow on top of it. However, adhesion of the film to the substrate is poor due to the lack of structural integrity of the soot layer, A thin coating of TiN on the Fe can act to prevent diffusion and soot formation. Diamond readily grows upon the TiN via an a-C interface layer, but the a-C/TiN interface is weak and delamination occurs at this interface. In order to try and improve the adhesion, the use of a high dose Ti implant was investigated to replace the TiN coating. 7 refs., 6 figs

  7. Ultrathin Shape Change Smart Materials.

    Science.gov (United States)

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  8. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  9. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  10. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  11. Characterization of graded iron / tungsten layers for the first wall of fusion reactors

    International Nuclear Information System (INIS)

    Heuer, Simon

    2017-01-01

    The nuclear fusion has great potential to enable a CO 2 -neutral energy supply of future generations. The technical utilization of this energy source has hitherto been a challenge. In particular, high thermal loads and neutron-induced damage lead to extreme demands on the choice of materials for plasma-facing components (PFCs). These are therefore, as currently understood, made from a tungsten protective layer which is joined to a structure of low activation ferritic-martensitic (LAFM) steel. Due to the discrete transition of material properties at the LAFM-W joining zone as well as thermal loads, macroscopic stresses and plastic strains arise here. A feasible way to reduce this is to implement an intermediate layer with graded LAFM / W ratio, a so-called functional graded material (FGM). In the present work, macro-stresses and strains in the first wall of the fusion reactor DEMO are examined and evaluated by means of a finite element simulation. In this framework model components with and without graded interlayer are taken into account and the advantage of a FGM is emphasized. Parameter studies serve as a constructive guideline for the structural implementation of FGMs and components of the first wall. In addition, the feasibility of four methods (magnetron sputtering, liquid phase infiltration, modified atmospheric plasma spraying and electrodischarge sintering) with respect to the fabrication of FGMs is being studied. The resulting layers are microstructurally, thermo-physically and mechanically examined in detail. Based on this characterization and the finite element simulation, their suitability as a graded layer in the first wall of DEMO is evaluated and finally compared with alternative joining systems that are currently being tested in the research environment. [de

  12. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    Science.gov (United States)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  13. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc iron layered double hydroxides by one-step coprecipitation route

    Science.gov (United States)

    Zhang, Hui; Wen, Xing; Wang, Yingxia

    2007-05-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Mössbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 42--containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 42--containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435·Fe II0.094·Fe III0.470·(OH) 2]·(SO 42-) 0.235·1.0H 2O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 42--containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS.

  14. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  15. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology.

    Directory of Open Access Journals (Sweden)

    Justin Y Kwan

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI studies have previously shown hypointense signal in the motor cortex on T(2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2(*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.

  16. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  17. Elastic properties of ultrathin diamond/AlN membranes

    International Nuclear Information System (INIS)

    Zuerbig, V.; Hees, J.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Kirste, L.; Heidrich, N.; Nebel, C.E.; Ambacher, O.; Lebedev, V.

    2014-01-01

    Nanocrystalline diamond- (NCD) and AlN-based ultrathin single layer and bilayer membranes are investigated towards their mechanical properties. It is shown that chemo-mechanical polishing and heavy boron doping of NCD thin films do not impact the elastic properties of NCD layers as revealed by negligible variations of the NCD Young's modulus (E). In addition, it is demonstrated that the combination of NCD elastic layer and AlN piezo-actuator is highly suitable for the fabrication of mechanically stable ultrathin membranes in comparison to AlN single layer membranes. The elastic parameters of NCD/AlN heterostructures are mainly determined by the outstanding high Young's modulus of NCD (E = 1019 ± 19 GPa). Such ultrathin unimorph membranes allow for fabrication of piezo-actuated AlN/NCD microlenses with tunable focus length. - Highlights: • Mechanical properties of nanocrystalline diamond (NCD) and AlN circular membranes • No influence of polishing of NCD thin films on the mechanical properties of NCD • No influence of heavy boron-doping on the mechanical properties of NCD • Demonstration of mechanically stable piezo-actuated NCD/AlN membranes • Reported performance of AlN/NCD microlenses with adjustable focus length

  18. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation route

    International Nuclear Information System (INIS)

    Zhang Hui; Wen Xing; Wang Yingxia

    2007-01-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Moessbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 4 2- -containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 4 2- -containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435 .Fe II 0.094 .Fe III 0.470 .(OH) 2 ].(SO 4 2- ) 0.235 .1.0H 2 O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 4 2- -containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS. - Graphical abstract: For Zn 2+ -Fe 2+ -Fe 3+ GR2(SO 4 2- ), according to the derived chemical formula, Fe 3+ was arranged at 1a (0, 0, 0) position, while all Zn 2+ were in 2d position with the occupancy 0.645, and the left part of 2d positions were taken by Fe 2+ /Fe 3+

  19. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  20. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  1. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  2. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    NARCIS (Netherlands)

    Huijben, Mark; Yu, P.; Martin, L.W.; Molegraaf, Hajo; Chu, Y.H.; Holcomb, M.B.; Balke, N.; Rijnders, Augustinus J.H.M.; Ramesh, R.

    2013-01-01

    Exchange bias coupling at the multiferroic- ferromagnetic interface in BiFeO3/La0.7Sr0.3MnO3 heterostructures exhibits a critical thickness for ultrathin BiFeO3 layers of 5 unit cells (2 nm). Linear dichroism measurements demonstrate the dependence on the BiFeO3 layer thickness with a strong

  3. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  4. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  5. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  6. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Self-induced inverse spin-Hall effect in an iron and a cobalt single-layer films themselves under the ferromagnetic resonance

    Science.gov (United States)

    Kanagawa, Kazunari; Teki, Yoshio; Shikoh, Eiji

    2018-05-01

    The inverse spin-Hall effect (ISHE) is produced even in a "single-layer" ferromagnetic material film. Previously, the self-induced ISHE in a Ni80Fe20 film under the ferromagnetic resonance (FMR) was discovered. In this study, we observed an electromotive force (EMF) in an iron (Fe) and a cobalt (Co) single-layer films themselves under the FMR. As origins of the EMFs in the films themselves, the ISHE was main for Fe and dominant for Co, respectively 2 and 18 times larger than the anomalous Hall effect. Thus, we demonstrated the self-induced ISHE in an Fe and a Co single-layer films themselves under the FMR.

  8. Charge Ordering, Competing Magnetic Interactions, and Magneto-Resistance Effects in Layered Iron(IV)-Based Oxides

    International Nuclear Information System (INIS)

    Adler, P.; Ghosh, S.

    2002-01-01

    Iron(IV)-based Ruddlesden-Popper-type oxides Sr 3 Fe 2-x Co x O 7-y (0≤x≤1) have been synthesized and studied by various techniques. It is shown that iron-57 Moessbauer spectroscopy is a powerful tool for elucidating the intimate correlations between chemical composition, electron-transport properties, electronic state, magnetism, and the large magneto-resistance effects in this system.

  9. Structural studies on Langmuir-Blodgett ultra-thin films on tin (IV) stearate using X-ray diffraction technique

    International Nuclear Information System (INIS)

    Mohamad Deraman; Muhamad Mat Salleh; Mohd Ali Sulaiman; Mohd Ali Sufi

    1991-01-01

    X-ray diffraction measurements were carried out on Langmuir-Blodgett (LB) ultra-thin films of tin (IV) stearate for different numbers of layers. The structural information such as interplanar spacing, unit cells spacing, molecular length and orientation of molecular chains were obtained from the diffraction data. This information is discussed and compared with that previously published for LB ultra-thin films of manganese stearate and cadmium stearate

  10. Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    OpenAIRE

    Bourgeois, O.; Frydman, A.; Dynes, R. C.

    2003-01-01

    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\\AA . Samples with single layers thinner t...

  11. Ultrathin microwave absorber based on metamaterial

    International Nuclear Information System (INIS)

    Kim, Y J; Yoo, Y J; Hwang, J S; Lee, Y P

    2016-01-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments. (paper)

  12. Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2−xSxO3

    International Nuclear Information System (INIS)

    Liu, Y.; Zhang, S.B.; Tan, S.G.; Yuan, B.; Kan, X.C.; Zu, L.; Sun, Y.P.

    2015-01-01

    A new series of sulfur-substituted iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 (0≤x≤0.4) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with I4/mmm space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E ρ (152–202 meV), and thermopower, E S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound Nd 2 Fe 2 Se 2 O 3 exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration. - Graphical abstract: The crystal structure of Nd 2 Nd 2 Fe 2 Se 2−x S x O 3 is built up by stacking fluorite-like Nd 2 O 2 layers and anti-CuO 2 -type Fe 2 O(Se/S) 2 layers with Fe 2+ cations coordinated by two in-plane O 2- and four Se 2- above and below the square Fe 2 O plane. - Highlights: • We have synthesized a new series of layered iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 . • They crystallize in layered tetragonal structure and show semiconducting behavior. • The transport analysis indicates the polaronic transport mechanism of the carrier. • The parent compound shows a frustrated antiferromagnetic (AFM) ground state. • The S-substitution induces an enhanced ferromagnetic (FM) component

  13. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  14. Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting.

    Science.gov (United States)

    Bennett, Roger A; Etman, Haitham A; Hicks, Hannah; Richards, Leah; Wu, Chen; Castell, Martin R; Dhesi, Sarnjeet S; Maccherozzi, Francesco

    2018-04-11

    The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe 3 O 4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.

  15. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  16. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS)

    Science.gov (United States)

    Goyal, Anshu; Yadav, Brajesh S.; Raman, R.; Kapoor, Ashok K.

    2018-02-01

    Angle resolved X-ray photoelectron spectroscopy (ARXPS) and secondary ion mass spectrometry (SIMS) investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer) and quantitative (cap layer thickness) characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σ/Ga σAl ) for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  17. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS

    Directory of Open Access Journals (Sweden)

    Anshu Goyal

    2018-02-01

    Full Text Available Angle resolved X-ray photoelectron spectroscopy (ARXPS and secondary ion mass spectrometry (SIMS investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer and quantitative (cap layer thickness characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σGaσAl for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  18. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  19. D.C electrical conductivity of ultrathin Ag-Si0 superlattices

    International Nuclear Information System (INIS)

    Abu El-Haija, A.J.; Madjid, A.H.

    1985-10-01

    Ultrathin multilayer structures of successive silver and silicon monoxide layer pairs were prepared using evaporation techniques. Small angle x-ray diffraction and multiple reflection interferometric techniques have been used to establish the identity periods of samples. A review of the electrical properties is presented. Both applied voltage and thermally induced resistance switching were observed. These phenomena are described from an empirical vantage. (author)

  20. COVALENTLY ATTACHED MULTILAYER ULTRA-THIN FILMS FROM DIAZORESIN AND CALIXARENES

    Institute of Scientific and Technical Information of China (English)

    Zhao-hui Yang; Wei-xiao Cao

    2003-01-01

    A kind of photosensitive ultra-thin film was fabricated from diazoresin (DR) and various calixarenes by using the self-assembly technique. Under UV irradiation both the ionic- and hydrogen bonds between the layers of the film will convert into covalent bonds. As a result, the stability of the film toward polar solvents increases dramatically.

  1. Interface sulfur passivation using H{sub 2}S annealing for atomic-layer-deposited Al{sub 2}O{sub 3} films on an ultrathin-body In{sub 0.53}Ga{sub 0.47}As-on-insulator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyun Soo [Department of Materials Science and Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Cho, Young Jin; Lee, Sang-Moon [High-Performance Device Group, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Dae Hyun [Department of Materials Science and Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Department of Advanced Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, Dae Woong [Department of Materials Science and Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Dongsoo [High-Performance Device Group, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Park, Jong-Bong [Department of Advanced Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Won, Jeong Yeon [Analytical Science Group, Computational and Analytical Science Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Lee, Myoung-Jae; Cho, Seong-Ho [High-Performance Device Group, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Tae Joo, E-mail: tjp@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2014-10-01

    Highlights: • ALD Al{sub 2}O{sub 3} films were grown on ultrathin-body In{sub 0.53}Ga{sub 0.47}As substrates for III-V compound-semiconductor-based devices. • Interface sulfur passivation was performed with wet processing using (NH{sub 4}){sub 2}S solution, and dry processing using post-deposition annealing under a H{sub 2}S atmosphere. • Electrical properties of the device were better for (NH{sub 4}){sub 2}S wet-treatment than the PDA under a H{sub 2}S atmosphere. • PDA under a H{sub 2}S atmosphere following (NH{sub 4}){sub 2}S wet-treatment resulted in an increased S concentration at the interface, which improved the electrical properties of the devices. - Abstract: Atomic-layer-deposited Al{sub 2}O{sub 3} films were grown on ultrathin-body In{sub 0.53}Ga{sub 0.47}As substrates for III-V compound-semiconductor-based devices. Interface sulfur (S) passivation was performed with wet processing using ammonium sulfide ((NH{sub 4}){sub 2}S) solution, and dry processing using post-deposition annealing (PDA) under a H{sub 2}S atmosphere. The PDA under the H{sub 2}S atmosphere resulted in a lower S concentration at the interface and a thicker interfacial layer than the case with (NH{sub 4}){sub 2}S wet-treatment. The electrical properties of the device, including the interface property estimated through frequency dispersion in capacitance, were better for (NH{sub 4}){sub 2}S wet-treatment than the PDA under a H{sub 2}S atmosphere. They might be improved, however, by optimizing the process conditions of PDA. The PDA under a H{sub 2}S atmosphere following (NH{sub 4}){sub 2}S wet-treatment resulted in an increased S concentration at the interface, which improved the electrical properties of the devices.

  2. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  3. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2

    Science.gov (United States)

    Abdel-Hafiez, M.; Zhao, Y.; Huang, Z.; Cho, C.-w.; Wong, C. H.; Hassen, A.; Ohkuma, M.; Fang, Y.-W.; Pan, B.-J.; Ren, Z.-A.; Sadakov, A.; Usoltsev, A.; Pudalov, V.; Mito, M.; Lortz, R.; Krellner, C.; Yang, W.

    2018-04-01

    While the layered 122 iron arsenide superconductors are highly anisotropic, unconventional, and exhibit several forms of electronic orders that coexist or compete with superconductivity in different regions of their phase diagrams, we find in the absence of iron in the structure that the superconducting characteristics of the end member BaPd2As2 are surprisingly conventional. Here we report on complementary measurements of specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and synchrotron high pressure x-ray diffraction measurements supplemented with theoretical calculations for BaPd2As2 . Its superconducting properties are completely isotropic as demonstrated by the critical fields, which do not depend on the direction of the applied field. Under the application of high pressure, Tc is linearly suppressed, which is the typical behavior of classical phonon-mediated superconductors with some additional effect of a pressure-induced decrease in the electronic density of states and the electron-phonon coupling parameters. Structural changes in the layered BaPd2As2 have been studied by means of angle-dispersive diffraction in a diamond-anvil cell. At 12 GPa and 24.2 GPa we observed pressure induced lattice distortions manifesting as the discontinuity and, hence discontinuity in the Birch-Murnaghan equation of state. The bulk modulus is B0=40 (6 ) GPa below 12 GPa and B0=142 (3 ) GPa below 27.2 GPa.

  4. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  5. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  6. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    Science.gov (United States)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio 2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  7. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  8. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Jao, Chi-Yu; Chuang, Farn-Yih; Chen, Fang-Yi

    2017-01-01

    Highlights: • Electrochemical process can purify the urea-rich wastewater, producing hydrogen gas. • Carbon-encapsulated nickel iron nanoparticles (CE-NiFe) are prepared by pyrolysis. • An ultra-thin layer of CE-NiFe nanoparticles is attached to the 3D Ni foam. • CE-NiFe nanoparticles escalate both the urea electrolysis and hydrogen evolution. - Abstract: A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NF. Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells.

  9. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  10. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells

    KAUST Repository

    Yu, Weili

    2016-02-18

    We demonstrate that ultrathin P-type Cu2O thin films fabricated by a facile thermal oxidation method can serve as a promising hole-transporting material in perovskite solar cells. Following a two-step method, inorganic-organic hybrid perovskite solar cells were fabricated and a power conversion efficiency of 11.0% was achieved. We find that the thickness and properties of Cu2O layers must be precisely tuned in order to achieve the optimal solar cell performance. The good performance of such perovskite solar cells can be attributed to the unique properties of ultrathin Cu2O, including high hole mobility, good energy level alignment with CH3NH3PbI3, and longer lifetime of photo-excited carriers. Combining merits of low cost, facile synthesis, and high device performance, ultrathin Cu2O films fabricated via thermal oxidation hold promise for facilitating the developments of industrial-scale perovskite solar cells.

  11. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.

    Science.gov (United States)

    Moon, Seung Ho; Noh, Seung-Hyun; Lee, Jae-Hyun; Shin, Tae-Hyun; Lim, Yongjun; Cheon, Jinwoo

    2017-02-08

    The magnetic exchange coupling interaction between hard and soft magnetic phases has been important for tailoring nanoscale magnetism, but spin interactions at the core-shell interface have not been well studied. Here, we systematically investigated a new interface phenomenon termed enhanced spin canting (ESC), which is operative when the shell thickness becomes ultrathin, a few atomic layers, and exhibits a large enhancement of magnetic coercivity (H C ). We found that ESC arises not from the typical hard-soft exchange coupling but rather from the large magnetic surface anisotropy (K S ) of the ultrathin interface. Due to this large increase in magnetism, ultrathin core-shell nanoparticles overreach the theoretical limit of magnetic energy product ((BH) max ) and exhibit one of the largest values of specific loss power (SLP), which testifies to their potential capability as an effective mediator of magnetic energy conversion.

  12. Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    International Nuclear Information System (INIS)

    Stoldt, Conrad R; Bright, Victor M

    2006-01-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film. (topical review)

  13. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials

    International Nuclear Information System (INIS)

    Coker, Eric Nicholas

    2010-01-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  14. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Taotao, E-mail: wutaotao@nint.ac.cn; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-30

    Highlights: • Firstly, iron samples with different color features were obtained by continuous wave laser irradiation depending on progressive durations. The real-time reflectivity and temperature of samples were measured. The color and the reflectivity evolution were related. They were both caused by the forming oxide films. • Secondly, laser-induced oxidation process of iron was studied by microscope, X-ray diffraction and Raman spectrum. The first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. • Lastly, the laser-induced oxide films were thin, orientated and badly crystallized. The Wagner oxidation theory was incapable of describing the non-isothermal and early stage oxidation process. So we emphasized that a precise oxidation model depending on the experiment and the optical constants of the laser-induced oxides must be studied. - Abstract: Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm{sup 2}. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by

  15. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Alevli, Mustafa; Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi

    2016-01-01

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor

  16. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr [Department of Physics, Marmara University, Göztepe Kadıköy, 34722 İstanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  17. Biosensors Based on Ultrathin Film Composite Membranes

    Science.gov (United States)

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  18. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  19. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  20. Magnetic properties of ultrathin Co/Ge(111) and Co/Ge(100) films

    International Nuclear Information System (INIS)

    Cheng, W. C.; Tsay, J. S.; Yao, Y. D.; Lin, K. C.; Yang, C. S.; Lee, S. F.; Tseng, T. K.; Neih, H. Y.

    2001-01-01

    The orientation of the magnetization and the occurrence of interfacial ferromagnetic inactive layers for ultrathin Co films grown on Ge(111) and Ge(100) surfaces have been studied using the in situ surface magneto-optic Kerr effect. On a Ge(111) substrate, cobalt films (≤28 monolayers) with in-plane easy axis of magnetization have been observed; however, on a Ge(100) substrate, ultrathin Co films (14 - 16 monolayers) with canted out-of-plane easy axis of magnetization were measured. The ferromagnetic inactive layers were formed due to the intermixing of Co and Ge and lowering the Curie temperature by reducing Co film thickness. The Co - Ge compound inactive layers were 3.8 monolayers thick for Co films grown on Ge(111) and 6.2 monolayers thick for Co films deposited on Ge(100). This is attributed to the difference of the density of surface atoms on Ge(111) and Ge(100). [copyright] 2001 American Institute of Physics

  1. Surface structure of ultrathin metal films deposited on copper single crystals

    International Nuclear Information System (INIS)

    Butterfield, M.T.

    2000-04-01

    Ultrathin films of Cobalt, Iron and Manganese have been thermally evaporated onto an fcc Copper (111) single crystal substrate and investigated using a variety of surface structural techniques. The small lattice mismatch between these metals and the Cu (111) substrate make them an ideal candidate for the study of the phenomena of pseudomorphic film growth. This is important for the understanding of the close relationship between film structure and magnetic properties. Growing films with the structure of their substrate rather than their bulk phase may provide an opportunity to grow materials with novel physical and magnetic properties, and hence new technological applications. Both Cobalt and Iron have been found to initially maintain a registry with the fcc Cu (111) surface in a manner consistent with pseudomorphic growth. This growth is complicated by island rather than layer by layer growth in the initials stages of the film. In both cases a change in the structure of the film seems to occur at a point where the coalescence of islands in the film may be expected to occur. When the film does change structure they do not form a perfect overlayer with the structure of their bulk counterpart. The films do contain a number of features representative of the bulk phase but also contain considerable disorder and possibly remnants of fcc (111) structure. The order present in these films can be greatly improved by annealing. Manganese appears to grow with an fcc Mn (111) lattice spacing and there is no sign of a change in structure in films of up to 4.61 ML thick. The gradual deposition and annealing of a film to 300 deg. C, with a total deposition time the same as that for a 1 ML thick film, causes a surface reconstruction to occur that is apparent in a R30 deg. (√3 x √3) LEED pattern. This is attributed to the formation of a surface alloy, which is also supported by the local expansion of the Cu lattice in the (111) direction. (author)

  2. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying.

    Science.gov (United States)

    Janicki, Damian

    2018-01-05

    TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.

  3. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    Science.gov (United States)

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  4. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    Science.gov (United States)

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  5. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui; Jabbour, Ghassan E.

    2013-01-01

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices

  6. A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

    Directory of Open Access Journals (Sweden)

    Peter Krauß

    2017-09-01

    Full Text Available Chemical vapor deposition (CVD of carbon precursors employing a metal catalyst is a well-established method for synthesizing high-quality single-layer graphene. Yet the main challenge of the CVD process is the required transfer of a graphene layer from the substrate surface onto a chosen target substrate. This process is delicate and can severely degrade the quality of the transferred graphene. The protective polymer coatings typically used generate residues and contamination on the ultrathin graphene layer. In this work, we have developed a graphene transfer process which works without a coating and allows the transfer of graphene onto arbitrary substrates without the need for any additional post-processing. During the course of our transfer studies, we found that the etching process that is usually employed can lead to contamination of the graphene layer with the Faradaic etchant component FeCl3, resulting in the deposition of iron oxide FexOy nanoparticles on the graphene surface. We systematically analyzed the removal of the copper substrate layer and verified that crystalline iron oxide nanoparticles could be generated in controllable density on the graphene surface when this process is optimized. It was further confirmed that the FexOy particles on graphene are active in the catalytic growth of carbon nanotubes when employing a water-assisted CVD process.

  7. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    International Nuclear Information System (INIS)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-01-01

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  8. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  9. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  10. Investigations on structural and multiferroic properties of artificially engineered lead zirconate titanate-cobalt iron oxide layered nanostructures

    Science.gov (United States)

    Ortega Achury, Nora Patricia

    Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic, electric, and ferroelastic ordering, have drawn increasing interest due to their multi-functionality for a variety of device applications. Since, very rare single phase materials exist in nature this kind of properties, an intensive research activity is being pursued towards the development of new engineered materials with strong magneto-electric (ME) coupling. In the present investigation, we have fabricated polycrystalline and highly oriented PbZr0.53,Ti0.47O3--CoFe 2O4 (PZT/CFO) artificially multilayers (MLs) engineered nanostructures thin films which were grown on Pt/TiO2/SiO2/Si and La 0.5Sr0.5CoO3 (LSCO) coated (001) MgO substrates respectively, using the pulsed laser deposition technique. The effect of various PZT/CFO sandwich configurations having 3, 5, and 9 layers, while maintaining similar total PZT and CFO thickness, has been systematically investigated. The first part of this thesis is devoted to the analysis of structural and microstructure properties of the PZT/CFO MLs. X-ray diffraction (XRD) and micro Raman analysis revealed that PZT and CFO were in the perovskite and spinel phases respectively in the all layered nanostructure, without any intermediate phase. The TEM and STEM line scan of the ML thin films showed that the layered structure was maintained with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase, however better interface was observed in highly oriented films. Second part of this dissertation was dedicated to study of the dielectric, impedance, modulus, and conductivity spectroscopies. These measurements were carried out over a wide range of temperatures (100 K to 600 K) and frequencies (100 Hz to 1 MHz) to investigate the grain and grain boundary effects on electrical properties of MLs. The temperature dependent dielectric and loss tangent illustrated step-like behavior and

  11. Controlling fuel crossover and hydration in ultrathin proton exchange membrane-based fuel cells using Pt-nanosheet catalysts

    DEFF Research Database (Denmark)

    Wang, Rujie; Zhang, Wenjing (Angela); He, Gaohong

    2014-01-01

    and provided in situ hydration inside Nafion membranes to maintain their proton conductivity level. Furthermore, LDH nanosheets reinforced the Nafion membranes, with 181% improvement in tensile modulus and 166% improvement in yield strength. In a hydrogen fuel cell running with dry fuel, the membrane......An ultra-thin proton exchange membrane with Pt-nanosheet catalysts was designed for a self-humidifying fuel cell running on H2 and O2. In this design, an ultra-thin Nafion membrane was used to reduce ohmic resistance. Pt nanocatalysts were uniformly anchored on exfoliated, layered double hydroxide...

  12. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  13. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III).

    Science.gov (United States)

    Tang, Sheng; Chang, Yuepeng; Shen, Wei; Lee, Hian Kee

    2016-07-01

    A highly selective method has been proposed for the determination of iron cation (Fe(3+)). (Nitriloacetic acid-nickel)-layered double hydroxide ((NTA-Ni)-LDH) was successfully synthesized and used as dissolvable sorbent in dispersive solid-phase extraction to pre-concentrate and separate Fe(3+) from aqueous phase. Since Fe(3+) has a larger formation constant with NTA compared to Ni(2+), subsequently ion exchange occurred when (NTA-Ni)-LDH was added to the sample solution. The resultant (NTA-Fe)-LDH sol was isolated and transferred in an acidic medium containing potassium thiocyanate (KSCN). Since (NTA-Fe)-LDH could be dissolved in acidic conditions, Fe(3+)was released and reacted with SCN(-) to form an Fe-SCN complex. The resulting product was measured by ultraviolet-visible spectrometry for quantitative detection of Fe(3+). Extraction factors, including sample pH, reaction pH, extraction temperature, extraction time, reaction time and concentration of KSCN were optimized. This method achieved a low limit of detection of 15.2nM and a good linear range from 0.05 to 50μM (r(2)=0.9937). A nearly 18-fold enhancement of signal intensity was achieved after selective extraction. The optimized conditions were validated by applying the method to determine Fe(3+) in seawater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. SrFe1‑xMoxO2+δ : parasitic ferromagnetism in an infinite-layer iron oxide with defect structures induced by interlayer oxygen

    Science.gov (United States)

    Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang

    2018-04-01

    The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.

  15. Ultra-thin films for plasmonics: a technology overview

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei

    2015-01-01

    Ultra-thin films with low surface roughness that support surface plasmon-polaritons in the infra-red and visible ranges are needed in order to improve the performance of devices based on the manipulation of plasmon propagation. Increasing amount of efforts is made in order not only to improve...... the quality of the deposited layers but also to diminish their thickness and to find new materials that could be used in this field. In this review, we consider various thin films used in the field of plasmonics and metamaterials in the visible and IR range. We focus our presentation on technological issues...... of their deposition and reported characterization of film plasmonic performance....

  16. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien

    2016-01-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  17. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2016-07-12

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  18. Kink effect in ultrathin FDSOI MOSFETs

    Science.gov (United States)

    Park, H. J.; Bawedin, M.; Choi, H. G.; Cristoloveanu, S.

    2018-05-01

    Systematic experiments demonstrate the presence of the kink effect even in FDSOI MOSFETs. The back-gate bias controls the kink effect via the formation of a back accumulation channel. The kink is more or less pronounced according to the film thickness and channel length. However, in ultrathin (MOSFETs.

  19. Growth of ultra-thin Ag films on Ni(111)

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Axel; Flege, Jan Ingo; Falta, Jens [Institute of Solid State Physics, University of Bremen, 28359 Bremen (Germany); Senanayake, Sanjaya [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Alamgir, Faisal [Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2009-07-01

    The physical and chemical properties of ultra-thin metal films on metallic substrates strongly depend on their morphology and the structure of the buried interface. Hence, detailed knowledge of the growth mechanisms is essential for the creation of new functional materials with novel characteristics. In this contribution, we present a comprehensive structural study of the growth and properties of epitaxial Ag films on Ni(111) by in-situ low energy electron microscopy (LEEM). For lower temperatures, the growth of the Ag film proceeds in a Stranski-Krastanov mode after completion of the wetting layer, while for higher temperatures layer-by-layer growth is observed. Quantitative information about the film structure were obtained by analyzing the intensity-voltage (I-V) dependence of the local electron reflectivity (IV-LEEM). The corresponding I(V) spectra showed intensity oscillations depending on local thickness of the Ag film due to the quantum size effect (QSE). Modeling of the I(V) spectra was performed both within the framework of a one-dimensional Kronig-Penney model and multiple scattering IV-LEED calculations. The results of both approaches concerning the variation of the layer spacings and interface characteristics for different temperatures and film thicknesses will be discussed.

  20. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  1. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    International Nuclear Information System (INIS)

    Kellar, S.A.; Lawrence Berkeley National Lab., CA

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f 7/5 core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 ± 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 ± 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 ± 0.02 A and 0.30 ± 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed

  2. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  3. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  4. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  5. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai; Toyohara, Taiga; Nakata, Jyoji [Department of mathematics and physics, Kanagawa University, 2946, Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscope (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.

  6. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  7. Reliability assessment of ultra-thin HfO{sub 2} films deposited on silicon wafer

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Nano-mechanical properties on annealed ultra-thin HfO{sub 2} film are studied. Black-Right-Pointing-Pointer By AFM analysis, hardness of the crystallized HfO{sub 2} film significantly increases. Black-Right-Pointing-Pointer By nano-indention, the film hardness increases with less contact stiffness. Black-Right-Pointing-Pointer Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO{sub 2}) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO{sub 2} films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO{sub 2} films deposited on silicon wafers (HfO{sub 2}/SiO{sub 2}/Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO{sub 2} (nominal thickness Almost-Equal-To 10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO{sub 2} phases for the atomic layer deposited HfO{sub 2}. The HfSi{sub x}O{sub y} complex formed at the interface between HfO{sub 2} and SiO{sub 2}/Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO{sub 2} film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically

  8. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation

    International Nuclear Information System (INIS)

    Phenrat, Tanapon; Saleh, Navid; Sirk, Kevin; Kim, Hye-Jin; Tilton, Robert D.; Lowry, Gregory V.

    2008-01-01

    Nanoscale zerovalent iron (NZVI) particles are 5-40 nm sized Fe 0 /Fe-oxide particles that rapidly transform many environmental contaminants to benign products and are a promising in situ remediation agent. Rapid aggregation and limited mobility in water-saturated porous media limits the ability to deliver NZVI dispersions in the subsurface. This study prepares stable NZVI dispersions through physisorption of commercially available anionic polyelectrolytes, characterizes the adsorbed polymer layer, and correlates the polymer coating properties with the ability to prevent rapid aggregation and sedimentation of NZVI dispersions. Poly(styrene sulfonate) with molecular weights of 70 k and 1,000 k g/mol (PSS70K and PSS1M), carboxymethyl cellulose with molecular weights of 90 k and 700 k g/mol (CMC90K and CMC700K), and polyaspartate with molecular weights of 2.5 k and 10 k g/mol (PAP2.5K and 10K) were compared. Particle size distributions were determined by dynamic light scattering during aggregation. The order of effectiveness to prevent rapid aggregation and stabilize the dispersions was PSS70K(83%) > ∼PAP10K(82%) > PAP2.5K(72%) > CMC700K(52%), where stability is defined operationally as the volume percent of particles that do not aggregate after 1 h. CMC90K and PSS1M could not stabilize RNIP relative to bare RNIP. A similar trend was observed for their ability to prevent sedimentation, with 40, 34, 32, 20, and 5 wt%, of the PSS70K, PAP10K, PAP2.5K, CMC700K, and CMC90K modified NZVI remaining suspended after 7 h of quiescent settling, respectively. The stable fractions with respect to both aggregation and sedimentation correlate well with the adsorbed polyelectrolyte mass and thickness of the adsorbed polyelectrolyte layers as determined by Oshima's soft particle theory. A fraction of the particles cannot be stabilized by any modifier and rapidly agglomerates to micron sized aggregates, as is also observed for unmodified NZVI. This non-dispersible fraction is

  9. Effect of localized electron states on superconductivity of ultrathin beryllium films

    International Nuclear Information System (INIS)

    Tutov, V.I.; Semenenko, E.E.

    1988-01-01

    A wide spectrum of distortions is induced in ultrathin beryllium films of thickness less than 10 A, which are responsible for the system transition from the strong localization state completely suppressing superconductivity (in this case R □ of the layer reaches 97600 Ohm) to the weak localization stae coexisting with superconductivity at comparatively high T c (5 K). The resistance per square R □ of the films decreases more than by an order of magnitude. The superconductivity with T c =1.7 K occurs at rather strong localization, when R □ of the layer is 34000 Ohm

  10. Insulator at the ultrathin limit: MgO on Ag(001).

    Science.gov (United States)

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  11. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    International Nuclear Information System (INIS)

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  12. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  13. Use of resonance ionization spectroscopy to detect DNA bands on ultrathin spin-coated gels.

    Science.gov (United States)

    Doktycz, M J; Gibson, W A; Arlinghaus, H F; Allen, R C; Jacobson, K B

    1993-01-01

    Development of alternative electrophoresis procedures are necessary for large volume sequencing and mapping studies. The use of stable isotopes as DNA labels and ultrathin gels promises to greatly increase the rate of sequencing. Spin coating is presented as an alternative method for producing ultrathin polyacrylamide gels. The technique has the potential of producing gels of micron to submicron thicknesses by varying the viscosity of the acrylamide solution and the spinning speed. Thirty micron thick 6% (weight %) gels were produced in this manner. Tin-labeled DNA oligomers were electrophoresed and detected using sputter-initiated resonance ionization spectroscopy (SIRIS). The usefulness of SIRIS and laser atomization RIS (LARIS) to sample the surface and deeper layers of 240 microns thick gels was investigated. With LARIS, whole cross-sections of the gel can be atomized, possibly allowing complete sampling of labels.

  14. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    Science.gov (United States)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  15. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  16. Photoresponsive properties of ultrathin silicon nanowires

    International Nuclear Information System (INIS)

    Tran, Duy P.; Macdonald, Thomas J.; Nann, Thomas; Thierry, Benjamin; Wolfrum, Bernhard; Stockmann, Regina; Offenhäusser, Andreas

    2014-01-01

    Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 10 4  A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices

  17. Photoresponsive properties of ultrathin silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Duy P.; Macdonald, Thomas J.; Nann, Thomas; Thierry, Benjamin, E-mail: a.offenhaeusser@fz-juelich.de, E-mail: benjamin.thierry@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, MM Bldg., Mawson Lakes Blvd., Mawson Lakes, South Australia 5095 (Australia); Wolfrum, Bernhard; Stockmann, Regina; Offenhäusser, Andreas, E-mail: a.offenhaeusser@fz-juelich.de, E-mail: benjamin.thierry@unisa.edu.au [Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 2.4v Bldg., Wilhelm-Johnen St., Jülich 52428 (Germany)

    2014-12-08

    Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 10{sup 4 }A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices.

  18. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  19. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers

    International Nuclear Information System (INIS)

    Li, Sucheng; Anwar, Shahzad; Lu, Weixin; Hang, Zhi Hong; Hou, Bo; Shen, Mingrong; Wang, Chin-Hua

    2014-01-01

    We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations

  20. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    Science.gov (United States)

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  1. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  2. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  3. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements

    International Nuclear Information System (INIS)

    Kossoy, A.; Simakov, D.; Olafsson, S.; Leosson, K.

    2013-01-01

    The paper describes usage of X-ray reflectivity for characterization of surface coverage (i.e. film continuity) of ultra-thin gold films which are widely studied for optical, plasmonic and electronic applications. The demonstrated method is very sensitive and can be applied for layers below 1 nm. It has several advantages over other techniques which are often employed in characterization of ultra-thin metal films, such as optical absorption, Atomic Force Microscopy, Transmission Electron Microscopy or Scanning Electron Microscopy. In contrast to those techniques our method does not require specialized sample preparation and measurement process is insensitive to electrostatic charge and/or presence of surface absorbed water. We validate our results with image processing of Scanning Electron Microscopy images. To ensure precise quantitative analysis of the images we developed a generic local thresholding algorithm which allowed us to treat series of images with various values of surface coverage with similar image processing parameters. - Highlights: • Surface coverage/continuity of ultra-thin Au films (up to 7 nm) was determined. • Results from X-ray reflectivity were verified by scanning electron microscopy. • We developed local thresholding algorithm to treat non-homogeneous image contrast

  4. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  5. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...

  6. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  7. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui

    2013-05-29

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices with the emissive layer consisting of multiple platinum-complex/spacer layer cells show a peak external quantum efficiency of 18.1%, which is among the best EQE values for platinum-complex based light emitting devices. Devices with an ultrathin phosphor emissive layer show stronger luminance decay with the operating time compared to the counterpart devices having a host-guest emissive layer.

  8. The strength limits of ultra-thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhirn, Guillaume

    2007-07-02

    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 {mu}m thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method between -160 C and 500 C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 {mu}m and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they

  9. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Deyin; Zhou, Weidong [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Yin, Xin; Wang, Xudong [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  10. Interaction of Light with Metallized Ultrathin Silicon Membrane

    Science.gov (United States)

    Shome, Krishanu

    Freestanding metallized structures, a few tens of nanometer thick, show promise in creating flow-through sensors, single molecule detectors and novel solar cells. In this thesis we study test structures that are a step towards creating such devices. Finite- difference time-domain simulations have been used to understand and predict the interaction of light with such devices. Porous nanocrystalline silicon membrane is a novel freestanding layer structure that has been used as a platform to fabricate and study sensors and novel slot nanohole devices. Optical mode studies of the sensing structures, together with the method of fabrication inspired the creation of ultrathin freestanding hydrogenated amorphous silicon p-i-n junctions solar cells. All the freestanding structures used in this thesis are just a few tens of nanometers in thicknesses. In the first part of the thesis the sensing properties of the metallized porous nanocrystalline structure are studied. The surprising blueshift associated with the sensing peak is observed experimentally and predicted theoretically with the help of simulations. Polarization dependence of the membranes is predicted and confirmed for angled deposition of metal on the membranes. In the next part, a novel slot structure is fabricated and modeled to study the slot effect in nanohole metal-insulator-metal structures. Atomic layer deposition of alumina is used to conformally deposit alumina within the nanohole to create the slot structure. Simulation models were used to calculate the lowest modal volume of 4x10-5 mum3 for an optimized structure. In the last part of the thesis, freestanding solar cells are fabricated by effectively replacing the porous nanocrystalline silicon layer of the membranes with a hydrogenated amorphous silicon p-i-n junction with metal layers on both sides of the p-i-n junction. The metal layers act both as electrical contacts as well as mirrors for a Fabry Perot cavity resonator. This helps in tuning the

  11. Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage

    Science.gov (United States)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2015-11-01

    Highly-crystalline gadolinium doped and carbon-coated ultrathin Li4Ti5O12 (LTO) nanosheets (denoted as LTO-Gd-C) as an anode material for Li-ion batteries (LIBs) are synthesized on large scale by controlling the amount of carbon precursor in the topotactic transformation of layered ultrathin Li1.81H0.19Ti2O5·xH2O (H-LTO) nanosheets at 700 °C. The characterizations of structure and morphology reveal that the gadolinium doped and carbon-coated ultrathin LTO nanosheets have high crystallinity with a thickness of about 10 nm. Gadolinium doping allows the spinel LTO products to be stabilized, thereby preserving the precursor's sheet morphology and single crystal structure. Carbon encapsulation serves dual functions by restraining crystal growth of the LTO primary nanoparticles in the LTO-Gd-C nanosheets and decreasing the external electron transport resistance. Owing to the synergistic effects rendered by ultrathin nanosheets with high crystallinity, gadolinium doping and carbon coating, the developed ultrathin LTO nanosheets possess excellent specific capacity, cycling performance, and rate capability compared with reference materials, when evaluated as an anode material for lithium ion batteries (LIBs). The simple and effective strategy encompassing nanoscale morphological engineering, surface modification, and doping improves the performance of LTO-based anode materials for high energy density and high power LIBs applied in large scale energy storage.

  12. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  13. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G. (Lawrence Livermore National Lab., CA (USA)); Wagner, M.K. (Wisconsin Univ., Madison, WI (USA). Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. (Wisconsin Univ., Milwaukee, WI (USA). Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  14. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael

    2012-01-01

    Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

  15. Direct evidence of superconductivity and determination of the superfluid density in buried ultrathin FeSe grown on SrTiO3

    Science.gov (United States)

    Biswas, P. K.; Salman, Z.; Song, Q.; Peng, R.; Zhang, J.; Shu, L.; Feng, D. L.; Prokscha, T.; Morenzoni, E.

    2018-05-01

    Bulk FeSe is superconducting with a critical temperature Tc≅8 K and SrTiO3 is insulating in nature, yet high-temperature superconductivity has been reported at the interface between a single-layer FeSe and SrTiO3. Angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements observe a gap opening at the Fermi surface below ≈60 K. Elucidating the microscopic properties and understanding the pairing mechanism of single-layer FeSe is of utmost importance as it is a basic building block of iron-based superconductors. Here, we use the low-energy muon spin rotation/relaxation technique to detect and quantify the supercarrier density and determine the gap symmetry in FeSe grown on SrTiO3 (100). Measurements in applied field show a temperature-dependent broadening of the field distribution below ˜60 K, reflecting the superconducting transition and formation of a vortex state. Zero-field measurements rule out the presence of magnetism of static or fluctuating origin. From the inhomogeneous field distribution, we determine an effective sheet supercarrier density ns2 D≃6 ×1014cm-2 at T →0 K, which is a factor of 4 larger than expected from ARPES measurements of the excess electron count per Fe of 1 monolayer FeSe. The temperature dependence of the superfluid density ns(T ) can be well described down to ˜10 K by simple s -wave BCS, indicating a rather clean superconducting phase with a gap of 10.2(1.1) meV. The result is a clear indication of the gradual formation of a two-dimensional vortex lattice existing over the entire large FeSe/STO interface and provides unambiguous evidence for robust superconductivity below 60 K in ultrathin FeSe.

  16. Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Paul M., E-mail: paul.dietrich@yahoo.de [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Glamsch, Stephan [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Ehlert, Christopher [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam (Germany); Lippitz, Andreas [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Kulak, Nora [Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34/36, 14195 Berlin (Germany); Unger, Wolfgang E.S. [Bundesanstalt für Materialforschung und – prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-02-15

    Graphical abstract: - Highlights: • A synchrotron-based XPS method to analyze ultra-thin silane films is presented. • Specification and quantification of organic next to inorganic silicon is demonstrated. • Non-destructive chemical depth profiles of the silane monolayers were obtained. - Abstract: The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z{sub 95} of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO{sub 2}/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS.

  17. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    Science.gov (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  18. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vermang, Bart, E-mail: Bart.Vermang@angstrom.uu.se [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); ESAT-KU Leuven, University of Leuven, Leuven 3001 (Belgium); Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika [Ångström Solar Center, University of Uppsala, Uppsala 75121 (Sweden); Gunnarsson, Rickard; Pilch, Iris; Helmersson, Ulf [Plasma & Coatings Physics, University of Linköping, Linköping 58183 (Sweden); Kotipalli, Ratan; Henry, Frederic; Flandre, Denis [ICTEAM/IMNC, Université Catholique de Louvain, Louvain-la-Neuve 1348 (Belgium)

    2015-05-01

    Al{sub 2}O{sub 3} rear surface passivated ultra-thin Cu(In,Ga)Se{sub 2} (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al{sub 2}O{sub 3} layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm{sup 2}; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al{sub 2}O{sub 3} film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination.

  19. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    Science.gov (United States)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  20. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    Science.gov (United States)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  1. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae; Kundhikanjana, Worasom; Cha, Judy J.; Lai, Keji; Kong, Desheng; Meister, Stefan; Kelly, Michael A.; Shen, Zhi-Xun; Cui, Yi

    2010-01-01

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  2. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    Science.gov (United States)

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  3. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae

    2010-08-11

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  4. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Science.gov (United States)

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Long Li

    2017-12-01

    Full Text Available The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene (P(VDF-TrFE films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE copolymer ultrathin film.

  7. Effective optical constants and effective optical properties of ultrathin trilayer structures

    International Nuclear Information System (INIS)

    Haija, A.J.; Larry Freeman, W.; Umbel, Rachel

    2011-01-01

    This work presents an extension of the characteristic effective medium approximation (CEMA) to ultrathin trilayer systems. The extension has been carried out analytically and is supported by corresponding calculations of the effective optical constants of Cu-Au-Cu and Ag-SiO-Ag trilayer systems using the CEMA approximation. This work is in essence a generalization of the characteristic effective medium approximation introduced earlier for ultrathin bilayer structures. This method is used to derive the effective optical constants of a trilayer system, consisting of three thin layers with each constituent layer of thickness much less than the wavelength of the incident radiation. Within this regime a trilayer system is viewed as one effective layer referred to as an effective stack (ES) with well defined effective optical constants, which can be used to calculate the optical properties of the trilayer stack within a specified wavelength range. The CEMA based calculations of the effective optical constants are applied to two trilayer systems with a total of five stacks. Three are Cu-Au-Cu and two are Ag-SiO-Ag stacks. The thicknesses of the parent layers in the Cu-Au-Cu stack range from 3 to 30 nm for Cu and 4 to 40 nm for Au; in the Ag-SiO-Ag stack the constituent layers are 6 nm for Ag, but range from 5 to 10 nm for SiO. This study is for normal or near normal incidence spectroscopy in a wavelength range that extends from visible to near infrared. The agreement between CEMA based ES stack results and those of the standard CMT technique is very satisfactory.

  8. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates; Etudes electrochimiques du systeme fer/carbonates appliquees a la formation de couches minces de siderite sur des substrats inertes

    Energy Technology Data Exchange (ETDEWEB)

    Ithurbide, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Peulon, S. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France); Mandin, Ph. [Ecole Nationale Superieure de Chimie de Paris (ENSCP), UMR 7575, 75 - Paris (France); Beaucaire, C. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Chausse, A. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France)

    2007-07-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  9. Ultrathin NbN Films for Superconducting Single-Photon Detectors

    International Nuclear Information System (INIS)

    Slysz, W.; Guziewicz, M.; Borysiewicz, M.

    2011-01-01

    We present our research on fabrication and structural and transport characterization of ultrathin superconducting NbN layers deposited on both single-crystal Al 2 O 3 and Si wafers, and SiO 2 and Si 3 N 4 buffer layers grown directly on Si wafers. The thicknesses of our films varied from 6 nm to 50 nm and they were grown using reactive RF magnetron sputtering on substrates maintained at the temperature 850 o C. We have performed extensive morphology characterization of our films using the X-ray diffraction method and atomic force microscopy, and related the results to the type of the substrate used for the film deposition. Our transport measurements showed that even the thinnest, 6 nm thick NbN films had the superconducting critical temperature of 10-12 K, which was increased to 14 K for thicker films. (author)

  10. Molecular dynamics simulations of ultrathin water film confined between flat diamond plates

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2008-12-01

    Full Text Available Molecular dynamics simulations of ultrathin water film confined between atomically flat rigid diamond plates are described. Films with thickness of one and two molecular diameters are concerned and TIP4P model is used for water molecules. Dynamical and equilibrium characteristics of the system for different values of the external load and shear force are investigated. An increase of the external load causes the transition of the film to a solidlike state. This is manifested in a decrease of the diffusion constant and in the ordering of the liquid molecules into quasidiscrete layers. For two-layer film under high loads, the molecules also become ordered parallel to the surfaces. Time dependencies of the friction force and the changes of its average value with the load are obtained. In general, the behaviour of the studied model is consistent with the experimental results obtained for simple liquids with spherical molecules.

  11. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    Science.gov (United States)

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  12. Quantifying the dependence of Ni(P) thickness in ultrathin-ENEPIG metallization on the growth of Cu–Sn intermetallic compounds in soldering reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-Ying; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2014-11-14

    A new multilayer metallization, ENEPIG (Electroless Ni(P)/Electroless Pd/Immersion Au) with ultrathin Ni(P) deposit (ultrathin-ENEPIG), was designed to be used in high frequency electronic packaging in this study because of its ultra-low electrical impedance. Sequential interfacial microstructures of commercial Sn–3.0Ag–0.5Cu solders reflowed on ultarthin-ENEPIG with Ni(P) deposit thickness ranged from 4.79 μm to 0.05 μm were first investigated. Accelerated thermal aging test was then conducted to evaluate the long-term thermal stabilization of solder joints. The results showed that P-rich intermetallic compound (IMC) layer formed when the Ni(P) thickness was greater than a critical vale (about 0.18 μm). Besides, it is interesting to mention that the growth of (Cu,Ni){sub 6}Sn{sub 5} and (Cu,Ni){sub 3}Sn IMCs was suppressed with the formation of P-rich layer, i.e., Ni{sub 3}P and Ni{sub 2}Sn{sub 1+x}P{sub 1−x} phase, even though the electroless-plated Ni(P) layer was exhausted at initial stage of reflow process. The atomic Cu flux in solder joints without P-rich layer was calculated to be several times larger than that with P-rich layer formation after calculation, which implies that the P-rich layer and ultrathin Ni(P) deposit in ENEPIG served as diffusion barrier against rapid Cu diffusion. - Highlights: • Microstructures in ultrathin-ENEPIG with various Ni(P) thickness are investigated. • P-rich IMC layer formed when the Ni(P) thickness is greater than 0.18 μm. • Secondary (Cu,Ni){sub 6}Sn{sub 5} formed when the Ni(P) thickness is between 0.18 and 0.31 μm. • Cu diffusion flux without P-rich layer is larger than those with P-rich layer. • P-rich layer in ultrathin-ENEPIG exhibits good diffusion barrier characteristic.

  13. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 solar cells

    International Nuclear Information System (INIS)

    Yin, Guanchao; Steigert, Alexander; Andrae, Patrick; Goebelt, Manuela; Latzel, Michael; Manley, Phillip; Lauermann, Iver; Christiansen, Silke; Schmid, Martina

    2015-01-01

    Graphical abstract: Plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells are investigated. Ag diffusion is successfully passivated by reducing the substrate temperature and introducing a 50 nm atomic layer deposition (ALD) prepared Al_2O_3 film. This clears the thermal obstacle in incorporating Ag nanoparticles in CIGSe solar cells. Simulations show that Ag nanoparticles have the potential to greatly enhance the light absorption in ultra-thin CIGSe solar cells. - Highlights: • Ag nanoparticles are able to diffuse through ITO substrate into CIGSe absorber even at a low substrate temperature of 440 °C. • The direction (inserting a dielectric passivation layer) to thermally block the Ag diffusion and the requirements for the passivation layer are indicated and generalized. • An atomic layer deposited Al_2O_3 layer is experimentally proved to be able to thermally passivate the Ag nanoparticles, which clears the thermal obstacle in using Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. • It is theoretically proved that the Ag nanoparticles as a back reflector have the potential to effectively enhance the absorption in ultra-thin CIGSe solar cells. - Abstract: Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se_2 (CIGSe) solar cells is investigated. X-ray photoelectron spectroscopy results show that Ag nanoparticles underneath a Sn:In_2O_3 back contact could not be thermally passivated even at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick Al_2O_3 film prepared by atomic layer deposition is able to block the diffusion of Ag, clearing the thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the potential to contribute the effective absorption in CIGSe solar cells.

  14. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  15. Effect of annealing temperature on the structure and coke-resistance of nickel–iron bimetallic catalytic layer for in situ methane steam reforming in SOFC operation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuehua; Zhang, Hanqing; Zhao, DanDan; Tang, Dian; Zhang, Teng, E-mail: teng_zhang@fzu.edu.cn

    2014-11-15

    Highlights: • An intermediate FeNi{sub 3} phase forms in all N{sub i0.75}Fe{sub 0.25} catalysts in present work. • The catalyst annealed at 705 °C has smallest calculated surface energy. • The catalyst annealed at 705 °C also exhibits the best coke resistance in methane. • The cell with catalyst layer annealed at 705 °C has the best stability in methane. - Abstract: In this paper, the effect on coke formation of adding a Ni{sub 0.75}Fe{sub 0.25} catalyst layer to the anode side of a fuel cell running on methane is investigated. The formation of an intermediate FeNi{sub 3} phase can be observed in catalysts annealed at different temperatures. The catalyst annealed at 705 °C has the smallest calculated surface energy and grain size among all catalysts annealed at different temperatures. In addition, the O{sub 2}-TPO profiles and Raman spectra of spent anode material reveal that the catalyst annealed at 705 °C has the best coke resistance among all catalysts. Moreover, the cell with catalyst layer annealed at 705 °C, under a current density of 600 mA cm{sup −2} at 650 °C, experiences a decrease of 10% after operating in methane for 260 min, which is much more stable than that without catalyst layer (a decrease of 50%)

  16. Moessbauer study on the distribution of iron vacancies in iron sulfide Fe sub(1-x)S

    International Nuclear Information System (INIS)

    Igaki, Kenzo; Sato, Masaki; Shinohara, Takeshi.

    1982-01-01

    The distribution of iron vacancies in iron sulfide Fe sub(1-x)S with the controlled compositions was investigated by Moessbauer spectroscopy at room temperature. Moessbauer spectrum was composed of several component spectra. These component spectra were assigned to the iron atoms with different configurations of neighboring iron vacancies. Judging from the composition dependence of intensity of each component, iron vacancies are considered to lie in every second iron layer for specimens with x between 0.125 and 0.10. For specimens with x between 0.10 and 0.09, this arrangement is nearly kept in the sample quenched from a higher temperature than 473 K, but after annealing at a lower temperature than 473 K iron vacancies are considered to lie not only in every second iron layer but also in every third iron layer or in adjacent iron layers. The iron vacancy arrangement lying in every third iron layer or in adjacent iron layers tends to dominate for specimens with x below 0.09. (author)

  17. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  18. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Science.gov (United States)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  19. Scattering of ultrarelativistic electrons in ultrathin crystals

    Directory of Open Access Journals (Sweden)

    N.F. Shul'ga

    2017-06-01

    Full Text Available Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  20. Scattering of ultrarelativistic electrons in ultrathin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, N.F., E-mail: shulga@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine); Shulga, S.N. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine)

    2017-06-10

    Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  1. A Broadband Ultrathin Nonlinear Switching Metamaterial

    Directory of Open Access Journals (Sweden)

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  2. CEMS and XRD studies on changing shape of iron nano-particles by irradiation of Au ions of Fe-implanted Al2O3 granular layer

    International Nuclear Information System (INIS)

    Kato, T.; Wakabayashi, H.; Hashimoto, M.; Toriyama, T.; Taniguchi, S.; Hayashi, N.; Sakamoto, I.

    2007-01-01

    In order to observe an inverse Ostwald ripening of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers, 3 MeV Au ions were irradiated to Fe nano-particles in these layers with doses of 0.5x and 1.5x10 16 ions/cm 2 . It was found by Conversion Electron Mossbauer Spectroscopy (CEMS) that the inverse Ostwald ripening occurred by fractions of percentages and the magnetic anisotropy of Fe nano-particles was induced to the direction of Au ion beam, i.e. perpendicular to the granular plane. The average crystallite diameters of Fe nano-particles for Au ions unirradiated and irradiated samples were measured using Scherrer's formula from FWHM of Fe (110) X-ray Diffraction (XRD) patterns obtained by 2θ and 2θ/θ methods. It was confirmed that the average crystallite diameters of Fe nano-particles in Fe-implanted Al 2 O 3 granular layers were extended by Au ions irradiation. (author)

  3. Ultrathin, Ultrasmooth Gold Layer on Dielectrics without the Use of Additional Metallic Adhesion Layers

    DEFF Research Database (Denmark)

    Leandro, Lorenzo; Malureanu, Radu; Rozlosnik, Noemi

    2015-01-01

    With advances in the plasmonics and metamaterials research field, it has become more and more important to fabricate thin and smooth Au metal films in a reliable way. Here, by thin films we mean that their average height is below 10 mu and their average roughness is below 5% of the total thicknes...

  4. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-01-01

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  5. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    Science.gov (United States)

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  6. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu

    2017-06-03

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  7. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    Science.gov (United States)

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  8. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  9. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    International Nuclear Information System (INIS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics. (paper)

  10. Dependence of the organic nonvolatile memory performance on the location of ultra-thin Ag film

    International Nuclear Information System (INIS)

    Jiao Bo; Wu Zhaoxin; He Qiang; Mao Guilin; Hou Xun; Tian Yuan

    2010-01-01

    We demonstrated organic nonvolatile memory devices based on 4,4',4''-tris[N-(3-methylphenyl)-N-phenylamino] triphenylamine (m-MTDATA) inserted by an ultra-thin Ag film. The memory devices with different locations of ultra-thin Ag film in m-MTDATA were investigated, and it was found that the location of the Ag film could affect the performance of the organic memory, such as ON/OFF ratio, retention time and cycling endurance. When the Ag film was located at the ITO/m-MTDATA interface, the largest ON/OFF ratio (about 10 5 ) could be achieved, but the cycling endurance was poor. When the Ag film was located in the middle region of the m-MTDATA layer, the ON/OFF ratios came down by about 10 3 , but better performance of cycling endurance was exhibited. When the Ag film was located close to the Al electrode, the ON/OFF ratios and the retention time of this device decreased sharply and the bistable phenomenon almost disappeared. Our works show a simple approach to improve the performance of organic memory by adjusting the location of the metal film.

  11. Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance

    Science.gov (United States)

    Xu, Yongshuai; Zhang, Lili; Yin, Minghui; Xie, Dengyu; Chen, Jiaqi; Yin, Jingzhou; Fu, Yongsheng; Zhao, Pusu; Zhong, Hui; Zhao, Yijiang; Wang, Xin

    2018-05-01

    A novel visible-light-responsive photocatalyst is fabricated by introducing g-C3N4 ultrathin films onto the surface of attapulgite (ATP) via a simple in-situ depositing technique, in which ATP was pre-grafted using (3-Glycidyloxypropyl) trimethoxysilane (KH560) as the surfactant. A combination of XRD, FT-IR, BET, XPS, UV-vis, TEM and SEM techniques are utilized to characterize the composition, morphology and optical properties of the products. The results show that with the help of KH560, g-C3N4 presented as ultrathin layer is uniformly loaded onto the surface of ATP by forming a new chemical bond (Sisbnd Osbnd C). Comparing with g-C3N4 and ATP, ATP/g-C3N4 exhibits remarkably enhanced visible-light photocatalytic activity in degradation of methyl orange (MO) because of its high surface area, appropriate band gap and the synergistic effect between g-C3N4 and ATP. To achieve the best photocatalyst, the ratio of g-C3N4 was adjusted by controlling the mass portion between ATP-KH560 and melamine (r = m (ATP-KH560)/m (melamine)). The highest decomposition rate of methyl orange (MO) was 96.06% when r = 0.5 and this degradation efficiency remained unchanged after 4 cycles, which is 10 times as that of pure g-C3N4 particles. Possible photocatalytic mechanism is presented.

  12. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  13. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    Science.gov (United States)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  14. Structural features of layered iron pnictide oxides (Fe{sub 2}As{sub 2})(Sr{sub 4}M{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, H., E-mail: tuogino@mail.ecc.u-tokyo.ac.j [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Sato, S.; Matsumura, Y.; Kawaguchi, N.; Ushiyama, K. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Katsura, Y. [Magnetic Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Horii, S. [JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Kishio, K.; Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    Structural features of newly found perovskite-based iron pnictide oxide system have been studied. Compared to REFePnO system, perovskite-based system tend to have smaller Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxigen atoms. As-Fe-As angles of (Fe{sub 2}As{sub 2})(Sr{sub 4}Cr{sub 2}O{sub 6}), (Fe{sub 2}As{sub 2})(Sr{sub 4}V{sub 2}O{sub 6}) and (Fe{sub 2}Pn{sub 2})(Sr{sub 4}MgTiO{sub 6}) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may lead to realization of high-T{sub c} superconductivity in this system.

  15. Layered ordering of vacancies of lead iron phosphate Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Malakho, A.P. [Moscow State Univ., Dept. of Material Science (Russian Federation); Morozov, V.A.; Pokholok, V.; Lazoryak, B.I. [Moscow State Univ., Dept. of Chemisty (Russian Federation); Morozov, V.A.; Van Tendeloo, G. [Antwerp Univ., EMAT (Belgium)

    2005-07-01

    Lead iron phosphate Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4} has been synthesized by solid state method and characterized by X-ray powder and electron diffraction, differential scanning calorimetry, Moessbauer and infrared spectroscopy. A structural model for Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4} is proposed and is refined by the Rietveld method. The compound crystallizes in the monoclinic space group P2{sub 1}/c with a=9.0065(6) Angstroms, b=9.0574(6) Angstroms, c=9.3057(6) Angstroms, {beta}=116.880(4) degrees, V=677.10(8) (Angstroms){sup 3}, Z=2, R{sub wp}=3.52%, R{sub p}=2.66%. It exhibits a structure with a three-dimensional open framework. The 3D framework is formed by PO{sub 4} tetrahedra and FeO{sub 6} octahedra connected via common vertices. 3/4 of cavities in the framework are occupied by lead and 1/4 are vacant. (authors)

  16. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  17. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  18. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  19. Fabrication and characterization of novel gate-all-around polycrystalline silicon junctionless field-effect transistors with ultrathin horizontal tube-shape channel

    Science.gov (United States)

    Chang, You-Tai; Peng, Kang-Ping; Li, Pei-Wen; Lin, Horng-Chih

    2018-04-01

    In this paper, we report on a novel fabrication process for the production of junctionless field-effect transistors with an ultrathin polycrystalline silicon (poly-Si) tube channel in a gate-all-around (GAA) configuration. The core of the poly-Si tube channel is filled with either a silicon nitride or a silicon oxide layer, and the effects of the core layers on the device characteristics are evaluated. The devices show excellent switching performance, thanks to the combination of the ultrathin tube channel and the GAA structure. Hysteresis loops in the transfer characteristics of the nitride-core devices are observed, owing to the dynamic trapping of electrons in the nitride core.

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  1. Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene

    Science.gov (United States)

    Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel

    Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.

  2. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

    International Nuclear Information System (INIS)

    Abreu, G. J. P.; Pancotti, A; Lima, L. H. de; Landers, R.; Siervo, A. de

    2013-01-01

    Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe 3 O 4 (111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

  3. Fabrication of ultra-thin cerium oxide layers on Ru(0001) single crystal surfaces. Scanning tunneling microscopic and photoelectron spectroscopic studies on growth, structure and properties; Herstellung ultraduenner Ceroxidschichten auf Ru(0001)-Einkristallflaechen. Rastertunnelmikroskopische und photoelektronenspektroskopische Untersuchungen zu Wachstum, Struktur und Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bouchtaoui, Mustapha

    2016-12-07

    The thesis at hand aims at a study of structure and properties of well-defined ultrathin CeO{sub 2} films supported on Ru(0001). Such systems may serve as model systems in heterogenous catalysis. The epitaxial growth of ceria films on Ru(0001) surface has been achieved by electron beam evaporation of metal Cer at low background oxygen pressure of 10{sup -6} mbar under ultrahigh-vacuum conditions at room temperature. Cerium oxide qualifies for proper oxygen-storage in oxidation reactions, and hence it widely used in heterogenous catalysis. The oxidation begins with the adsorption of CO on the CeO{sub 2}(111) surface, and it ends with participation of lattice oxygen leading to vacancy formation and CO{sub 2} desorption. We investigate the geometric structure by means of scanning tunneling microscopy and low energy electron diffraction. The coverage of 2.5 monolayers (ML) was sufficient to cover the substrate almost completely. We further analysed the interaction of CO with the CeO{sub 2}/Ru(0001) and the Pt/CeO{sub 2}/Ru(0001) systems. During the interaction process the ratio of Ce{sup 4+} and Ce{sup 3+} changes significantly. This ratio change as well as the effect of Pt evaporated onto the surface with respect to the reducibility of CeO{sub 2}/Ru(0001) in CO environment has been studied by X-ray photoemission spectroscopy and it has been confirmed with thermal desorption spectroscopy. It is revealed that the Pt-Nanoparticles with a height from 7.15 Aa to 9.73 Aa clearly enhances the reducibility of CeO{sub 2}.

  4. Characterization of graded iron / tungsten layers for the first wall of fusion reactors; Charakterisierung gradierter Eisen/Wolfram-Schichten fuer die erste Wand von Fusionsreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Simon

    2017-07-01

    The nuclear fusion has great potential to enable a CO{sub 2}-neutral energy supply of future generations. The technical utilization of this energy source has hitherto been a challenge. In particular, high thermal loads and neutron-induced damage lead to extreme demands on the choice of materials for plasma-facing components (PFCs). These are therefore, as currently understood, made from a tungsten protective layer which is joined to a structure of low activation ferritic-martensitic (LAFM) steel. Due to the discrete transition of material properties at the LAFM-W joining zone as well as thermal loads, macroscopic stresses and plastic strains arise here. A feasible way to reduce this is to implement an intermediate layer with graded LAFM / W ratio, a so-called functional graded material (FGM). In the present work, macro-stresses and strains in the first wall of the fusion reactor DEMO are examined and evaluated by means of a finite element simulation. In this framework model components with and without graded interlayer are taken into account and the advantage of a FGM is emphasized. Parameter studies serve as a constructive guideline for the structural implementation of FGMs and components of the first wall. In addition, the feasibility of four methods (magnetron sputtering, liquid phase infiltration, modified atmospheric plasma spraying and electrodischarge sintering) with respect to the fabrication of FGMs is being studied. The resulting layers are microstructurally, thermo-physically and mechanically examined in detail. Based on this characterization and the finite element simulation, their suitability as a graded layer in the first wall of DEMO is evaluated and finally compared with alternative joining systems that are currently being tested in the research environment. [German] Die Kernfusion besitzt grosses Potenzial eine CO{sub 2}-neutrale Energieversorgung zukuenftiger Generationen zu ermoeglichen. Dabei stellt die technische Nutzbarmachung dieser

  5. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  6. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  7. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  8. Thermodynamical fluctuations and critical behavior in weakly disordered YBCO thin and ultra-thin films

    International Nuclear Information System (INIS)

    Lesueur, J.; Aprili, M.; Degoy, S.; Chambonnet, D.; Keller, D.

    1996-01-01

    The specific role of disorder in the transport properties of YBCO has been investigated, using both light-ion irradiation of thin films to finely tune the amount of atomic disorder, and ultra-thin films grown to study possible dimensional effects. For weak disorder, the samples display a resistive transition typical of the mean-field paraconductive regime of a homogeneous media, well described by the Lawrence and Doniach model for layered superconductors. As the disorder increases, two effects take place. First, the c-axis coherence length becomes shorter, leading to a more anisotropic material, as shown by the excess conductivity above T c . Second, an incipient granularity is revealed, leading to a less sharper transition, which is analyzed within the random 3D XY critical model for the paracoherence transition. Two main results are derived: an experimental test of the Ginzburg criteria for the paracoherence transition, and a new fluctuation regime in nanometric grain size superconductors

  9. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells

    International Nuclear Information System (INIS)

    Wen, Long; Sun, Fuhe; Chen, Qin

    2014-01-01

    The incorporation of plasmonic nanostructures in the thin-film solar cells (TFSCs) is a promising route to harvest light into the nanoscale active layer. However, the light trapping scheme based on the plasmonic effects intrinsically presents narrow-band resonant enhancement of light absorption. Here we demonstrate that by cascading metal nanogratings with different sizes atop the TFSCs, broadband absorption enhancement can be realized by simultaneously exciting multiple localized surface plasmon resonances and inducing strong coupling between the plasmonic modes and photonic modes. As a proof of concept, we demonstrate of 66.5% in the photocurrent in an ultrathin amorphous silicon TFSC with two-dimensional cascaded gratings over the reference cell without gratings

  10. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  11. Intrinsic radiation tolerance of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, L. C.; Yakes, M. K.; Warner, J. H.; Schmieder, K. J.; Walters, R. J.; Jenkins, P. P. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, D.C. 20375 (United States); Bennett, M. F. [Sotera Defense Solutions, Inc., Annapolis Junction, Maryland 20701-1067 (United States)

    2016-07-18

    Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in V{sub oc} with increasing fluence; however, the 80 nm cell showed no degradation in I{sub sc} for fluences up to 10{sup 14 }p{sup +} cm{sup −2}. For the same exposure, the I{sub sc} of the 800 nm cell had severely degraded leaving a remaining factor of 0.26.

  12. Combined ellipsometry and X-ray related techniques for studies of ultrathin organic nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Markus, E-mail: axo@standing-waves.d [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund (Germany); AXO DRESDEN GmbH, Siegfried-Raedel-Str. 31, 01809 Heidenau (Germany); Roodenko, Katy [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V.-Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Laboratory for Surface and Nanostructure Modification, University of Texas at Dallas-NSERL, 800W. Campbell Rd., Richardson, TX 75080 (United States); Pollakowski, Beatrix [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hinrichs, Karsten [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V.-Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Rappich, Joerg [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Abteilung Silizium-Photovoltaik, Kekulestr. 5, 12489 Berlin (Germany); Esser, Norbert [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V.-Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Bohlen, Alex von; Hergenroeder, Roland [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund (Germany)

    2010-07-30

    Ultrathin nanocomposite films of nitrobenzene on silicon were analyzed by Infrared Spectroscopic Ellipsometry (IRSE), X-ray reflectivity (XRR) and X-ray standing waves (XSW) before and after evaporation of gold. Infrared Spectroscopic Ellipsometry measurements were performed for identification of adsorbates and for investigation of the molecular orientation. Results for film thickness were correlated with XRR measurements. Further, XSW measurements of elements incorporated in nitrobenzene (C, N, and O) were performed with soft X-rays. The combination of the different methods allowed to confirm a model for the electrochemically deposited nitrobenzene films before and after gold evaporation. The characterization by XRR and XSW scans using hard X-rays showed that gold had penetrated into the nitrobenzene film and thus changed density and optical properties of this layer significantly. A depth profile correlated to the electron density is deduced from the XRR measurements. This profile allows to localize-in vertical direction-gold islands within the composite film.

  13. One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films

    Science.gov (United States)

    Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.

    2018-03-01

    We study existence and properties of 1D edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate 1D micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with a Dirichlet boundary condition at the edge. We also perform a numerical study of these 1D domain walls and uncover further properties of these domain wall profiles.

  14. Performance regeneration of InGaZnO transistors with ultra-thin channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binglei; Li, He; Zhang, Xijian, E-mail: zhangxijian@sdu.edu.cn, E-mail: songam@sdu.edu.cn; Luo, Yi; Wang, Qingpu [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: zhangxijian@sdu.edu.cn, E-mail: songam@sdu.edu.cn [School of Physics, Shandong University, Jinan 250100 (China); School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-02

    Thin-film transistors (TFTs) based on ultra-thin amorphous indium gallium zinc oxide (a-IGZO) semiconductors down to 4 nm were studied motivated by the increasing cost of indium. At and below 5 nm, it was found that the field-effect mobility was severely degraded, the threshold voltage increased, and the output characteristics became abnormal showing no saturated current. By encapsulating a layer of polymethyl methacrylate on the IGZO TFTs, the performance of the 5-nm-thick device was effectively recovered. The devices also showed much higher on/off ratios, improved hysteresis, and normal output characteristic curves as compared with devices not encapsulated. The stability of the encapsulated devices was also studied over a four month period.

  15. Tribological performance of ultrathin diamond-like carbon films prepared by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Liao, J X; Li, E Q; Tian, Z; Pan, X F; Xu, J; Jin, L; Yang, H G

    2008-01-01

    Ultrathin diamond-like carbon (DLC) films with thicknesses of 5-60 nm have been prepared on Si by plasma-based ion implantation. Raman spectrum and x-ray photoelectron spectroscopy (XPS) show that these DLC films present high sp 3 /sp 2 ratios. XPS also displays that each DLC film firmly adheres to the Si substrate owing to a C-Si transition layer. Atomic force microscopy shows that the DLC films are smooth and compact with average roughness (R a ) of about 0.25 nm. Sliding friction experiments reveal that these DLC films show significantly improved tribological performance. With increase of DLC film thickness, the sp 3 /sp 2 ratio increases, the roughness decreases, the hardness increases, the adhesive wear lightens and thereby the tribological performance becomes enhanced. Also, the effects of the applied load and the reciprocating frequency on the tribological performance are discussed

  16. Tuning the magnetoresistance of ultrathin WTe2 sheets by electrostatic gating.

    Science.gov (United States)

    Na, Junhong; Hoyer, Alexander; Schoop, Leslie; Weber, Daniel; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus

    2016-11-10

    The semimetallic, two-dimensional layered transition metal dichalcogenide WTe 2 has raised considerable interest due to its huge, non-saturating magnetoresistance. While for the origin of this effect, a close-to-ideal balance of electrons and holes has been put forward, the carrier concentration dependence of the magnetoresistance remains to be clarified. Here, we present a detailed study of the magnetotransport behaviour of ultrathin, mechanically exfoliated WTe 2 sheets as a function of electrostatic back gating. The carrier concentration and mobility, determined using the two band model and analysis of the Shubnikov-de Haas oscillations, indicate enhanced surface scattering for the thinnest sheets. By the back gate action, the magnetoresistance could be tuned by up to ∼100% for a ∼13 nm-thick WTe 2 sheet.

  17. Visible light dynamical diffraction in a 1-D photonic crystal-based interferometer with an extremely thin spacer layer

    International Nuclear Information System (INIS)

    Prudnikov, I.R.

    2016-01-01

    Properties of light diffraction in a Fabry–Pérot-like interferometer composed of two 1-D photonic crystals and a nanometer-thick spacer layer are analytically investigated. It is shown that the resonant enhancement of light wave intensity in such a layer is possible because of light dynamical diffraction from the photonic crystals of the interferometer. Numerical simulations of (i) light reflectivity and transmittance curves of the interferometer having an ultra-thin spacer layer (its thickness changes from less than 1 nm to about 10 nm) and (ii) the resonant distribution of the light wave intensity in the vicinity of the layer are performed. Based on the numerical simulations, potentialities for the determination of the structural parameters (e.g., thicknesses and refraction indexes) of ultra-thin spacer films are discussed. A difference is found to appear in resonant intensity enhancements inside the ultra-thin spacer layers between s- and p-polarized light waves.

  18. The effect of Ti and ITO adhesion layers on gold split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2010-01-01

    Ultrathin adhesion layers serve a well-documented fabrication purpose while its influence on the optical properties of gold nanostructures is often neglected. Gold split-ring resonators are fabricated with two commonly used adhesion layers: titanium and indium tin oxide. When compared to all-gold...

  19. Theoretical Analyses of Superconductivity in Iron Based ...

    African Journals Online (AJOL)

    fire7-

    using double time temperature dependent Green's function formalism and a suitable decoupling approximation technique, we ... phenomenon of zero electric resistivity in mercury was soon followed by the observation of the superconducting state in ... The iron, Fe2+ forms tetrahedron within the layers. This means that, iron-.

  20. A route to ultrathin quantum gases at polar perovskite heterointerfaces

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo

    2012-01-01

    that is confined to an ultrathin slab of only 5.6 Å thickness. Electronegative cations therefore are a promising way to enhance the quantum nature of hole gases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamic response of ultrathin highly dense ZIF-8 nanofilms.

    Science.gov (United States)

    Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E

    2014-10-11

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.

  2. Dynamic response of ultrathin highly dense ZIF-8 nanofilms

    OpenAIRE

    Cookney, J.; Ogieglo, Wojciech; Hrabanek, P.; Vankelecom, I.; Fila, V.; Benes, Nieck Edwin

    2014-01-01

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for nonequilibrium organic polymers.

  3. Dynamic response of ultrathin highly dense ZIF-8 nanofilms

    NARCIS (Netherlands)

    Cookney, J.; Ogieglo, Wojciech; Hrabanek, P.; Vankelecom, I.; Fila, V.; Benes, Nieck Edwin

    2014-01-01

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles

  4. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  5. Dynamic response of ultrathin highly dense ZIF-8 nanofilms

    Czech Academy of Sciences Publication Activity Database

    Cookney, J.; Ogieglo, W.; Hrabánek, Pavel; Vankelecom, I.; Fíla, V.; Benes, N. E.

    2014-01-01

    Roč. 50, AUG 2014 (2014), s. 11698-11700 ISSN 1359-7345 Institutional support: RVO:61388955 Keywords : ultrathin FIF-8 nanofilms * metal-organic frameworks * zeolitic imidazolate frameworks Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.834, year: 2014

  6. Ultra-Thin Coatings Beautify Art

    Science.gov (United States)

    2013-01-01

    The craftsmen in the Roman Empire who constructed the Lycurgus Cup 17 centuries ago probably didn't think their artifact would survive for nearly 2,000 years as a prized possession. And they certainly couldn't have known that the technology they used to make it would eventually become an important part of space exploration. Carved from one solid mass, the cup is one of the few complete glass objects from that period, and the only one made from dichroic glass. Meaning "two-colored" in Greek, dichroic glass was originally created by adding trace amounts of gold and silver to a large volume of glass melt. The resulting medium partially reflects the light passing through it, causing an observer to see different colors depending on the direction of the light source. The Lycurgus Cup, for example, is famous for appearing green in daylight and red when lit at night, symbolic of the ripening grapes used to fill it with wine. NASA revitalized the production of dichroic glass in the 1950s and 1960s as a means of protecting its astronauts. Ordinary clear substances cannot protect human vision from the harsh rays of unfiltered sunlight, and everything from the human body to spacecraft sensors and computers are at risk if left unprotected from the radiation that permeates space. The microscopic amounts of metal present in dichroic glass make it an effective barrier against such harmful radiation. While the ancient manufacturing technique called for adding metals to glass melt, NASA developed a process in which metals are vaporized by electron beams in a vacuum chamber and then applied directly to surfaces in an ultra-thin film. The vapor condenses in the form of crystal structures, and the process is repeated for up to several dozen coatings. The resulting material, still only about 30 millionths of an inch thick, is sufficient to reflect radiation even while the glass, or polycarbonate, as in the case of space suit helmets, remains transparent to the human eye.

  7. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    Science.gov (United States)

    Laval, M.; Lüders, U.; Bobo, J. F.

    2007-09-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.

  8. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    International Nuclear Information System (INIS)

    Laval, M.; Lueders, U.; Bobo, J.F.

    2007-01-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant K eff and exchange-bias coupling J E , which are significantly different from the ones determined by standard switching field measurements

  9. Direct peroral cholangioscopy using an ultrathin endoscope: making technique easier

    Directory of Open Access Journals (Sweden)

    Javier Sola-Vera

    2014-01-01

    Full Text Available Background: Cholangioscopy is a useful tool for the study and treatment of biliary pathology. Ultrathin upper endoscopes allow direct peroral cholangioscopy (DPC but have some drawbacks. Objective: The aim of the study was to evaluate the success rate of DPC with an ultrathin endoscope using a balloon catheter to reach the biliary confluence. Material and methods: Prospective observational study. An ultrathin endoscope (Olympus XP180N, outer diameter 5.5 mm, working channel 2 mm was used. To access the biliary tree, free-hand technique was used. To reach the biliary confluence an intraductal balloon catheter (Olympus B5-2Q diameter 1.9 mm and a 0.025 inch guide wire was used. In all cases sphincterotomy and/or sphincteroplasty was performed. The success rate was defined as the percentage of cases in which the biliary confluence could be reached with the ultrathin endoscope. Results: Fifteen patients (8 men/7 women were included. Mean age was 77.7 ± 10.8 years (range 45-91. The indications for cholangioscopy were suspected bile duct stones (n = 9, electrohydraulic lithotripsy for the treatment of difficult choledocholithiasis (n = 5 and evaluation of biliary stricture (n = 1. Access to the bile duct was achieved in 14/15 cases (93.3 %. Biliary confluence was reached in 13/15 cases (86.7 %. One complication was observed in one patient (oxigen desaturation. Conclusions: DPC with an ultrathin endoscope can be done with the free-hand technique. Intraductal balloon-guided DPC allows full examination of the common bile duct in most cases.

  10. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  11. Organized organic ultrathin films fundamentals and applications

    CERN Document Server

    Ariga, Katsuhiko

    2012-01-01

    This handy reference is the first comprehensive book covering both fundamentals and recent developments in the field with an emphasis on nanotechnology. Written by a highly regarded author in the field, the book details state-of-the-art preparation, characterization and applications of thin films of organic molecules and biomaterials fabricated by wet processes and also highlights applications in nanotechnology The categories of films covered include monomolecular films (monolayers) both on a water surface and on a solid plate, Langmuir-Blodgett films (transferred multilayer films on a solid plate from a water surface), layer-by-layer films (adsorbed multilayer films on a solid support), and spontaneously assembled films in solution.

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  14. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  2. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and severity. Treatments may include iron supplements, procedures, surgery, and dietary ... iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  5. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  6. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  7. In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution

    International Nuclear Information System (INIS)

    Reikowski, Finn; Maroun, Fouad; Di, Nan; Allongue, Philippe; Ruge, Martin; Stettner, Jochim; Magnussen, Olaf M.

    2016-01-01

    The oxidation behavior of ultrathin electrodeposited Co films on Au(111) in alkaline electrolyte was studied using in situ surface X-ray scattering techniques employing synchrotron radiation and complementary optical reflectivity and electrochemical measurements. The films are formed at pH 4 and consist of (001)-oriented hcp Co crystallites that are several nm high, a few ten nm in diameter, and remain largely unchanged after electrolyte exchange to pH 12 solution. In the pre-oxidation peak only minor changes were observed in the diffraction studies, excluding the formation of Co(OH)_2 layers. In the potential regime of Co hydroxide formation a rapid reduction of the amount of Co is observed, while the characteristic height of the islands decreases only slightly. On longer times scales, growth of 3D crystals of Co(OH)_2 occurs as well as irreversible Co dissolution into the electrolyte is found. On the basis of the structural observations oxidation of the Co film is proposed to proceed via fast formation of an ultrathin passivating layer, followed by nucleation and growth of 3D hydroxide crystals at the grain boundaries in the Co deposit.

  8. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films.

    Science.gov (United States)

    Song, Li; Guo, Xiaoyang; Hu, Yongsheng; Lv, Ying; Lin, Jie; Liu, Zheqin; Fan, Yi; Liu, Xingyuan

    2017-09-07

    Efficient inorganic perovskite light-emitting diodes (PeLEDs) with an ultrathin perovskite emission layer (∼30 nm) were realized by doping Lewis base polyethylene glycol (PEG) into CsPbBr 3 films. PEG in the perovskite films not only physically fills the crystal boundaries but also interacts with the perovskite crystals to passivate the crystal grains, reduce nonradiative recombination, and ensure efficient luminance and high efficiency. As a result, promoted brightness, current efficiency (CE), and external quantum efficiency (EQE) were achieved. The nonradiative decay rate of the PEG:CsPbBr 3 composite film is 1 order of magnitude less than that of the neat CsPbBr 3 film. After further optimization of the molar ratio between CsBr and PbBr 2 , a peak CE of 19 cd/A, a maximum EQE of 5.34%, and a maximum brightness of 36600 cd/m 2 were achieved, demonstrating the interaction between PEG and the precursors. The results are expected to offer some helpful implications in optimizing the polymer-assisted PeLEDs with ultrathin emission layers, which might have potential application in see-through displays.

  9. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    Science.gov (United States)

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  10. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    Science.gov (United States)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  11. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.

    2014-04-14

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  12. Charge selective contact on ultra-thin In(OH)xS y/Pb(OH) xS y heterostructure prepared by SILAR

    International Nuclear Information System (INIS)

    Gavrilov, S.; Oja, I.; Lim, B.; Belaidi, A.; Bohne, W.; Strub, E.; Roehrich, J.; Lux-Steiner, M.-Ch.; Dittrich, Th.

    2006-01-01

    Ultra-thin In(OH) x S y /Pb(OH) x S y heterostructures were formed by the wet chemical SILAR (successive ion layer adsorption and reaction) technique. ERDA (elastic recoil detection analysis) was used for stoichiometry analysis. The heterocontacts were conditioned by joint annealing of the two layers at different low temperatures in air. The charge selectivity was demonstrated with various small area solar cell structures. The results are discussed on the base of formation of bonds between sulphide clusters and passivation of defects with hydrogen containing species in hydroxy-sulphides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Interfacial magnetic coupling in ultrathin all-manganite La0.7Sr0.3MnO3-TbMnO3 superlattices

    KAUST Repository

    Tian, Y. F.; Lebedev, O. I.; Roddatis, V. V.; Lin, W. N.; Ding, J. F.; Hu, S. J.; Yan, S. S.; Wu, Tao

    2014-01-01

    We report the growth and magnetic properties of all-manganite superlattices composed of ultrathin double-exchange ferromagnetic La0.7Sr0.3MnO3 and noncollinear multiferroic TbMnO3 layers. Spontaneous magnetization and hysteresis loops are observed in such superlattices with individual La0.7Sr0.3MnO3 layers as thin as two unit cells, which are accompanied by pronounced exchange bias and enhanced coercivity. Our results indicate substantial interfacial magnetic coupling between spin sublattices in such superlattices, providing a powerful approach towards tailoring the properties of artificial magnetic heterostructures.

  14. Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment

    KAUST Repository

    Cui, Yue

    2016-12-21

    The thin film composite (TFC) membrane synthesized via interfacial polymerization is the workhorse of the prevalent membrane technologies such as nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), and pressure retarded osmosis (PRO) membranes. The polyamide selective layer usually possesses a high selectivity and permeability, making it the heart of this membrane technology. To further improve and understand its formation, with entirely excluding the effect of substrate, an ultrathin membrane which consists of only the polyamide selective layer has been fabricated via free-standing interfacial polymerization between M-phenylenediamine (MPD) and trimesoyl chloride (TMC) in this study. The influences of monomer concentration on polyamide layer formation is first examined. Different from previous studies which indicated that the variation of MPD concentration might affect the polyamide layer formation even when in excess, the MPD concentration when in excess does not affect membrane properties significantly, while increasing the TMC concentration gradually densifies the polyamide layer and enhances its transport resistance. Adding lithium bromide (LiBr) and sodium dodecyl sulfate (SDS) in MPD solutions is found to facilitate the reaction between the two phases and result in a significant improvement in water permeability. However, a high amount of additives leads to an augmentation in transport resistance. The N,N-dimethylformamide (DMF) treatment on the polyamide membrane shows pronounced improvements on water flux under FO tests and water permeability under RO tests without compromising reverse salt flux and salt rejection because the dense polyamide core stays intact. This study may offer a different perspective on membrane formation and intrinsic properties of the polyamide selective layer and provide useful insights for the development of next-generation TFC membranes.

  15. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Science.gov (United States)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  16. High-speed growth of TiO{sub 2} nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Xiaoliang; Zheng Maojun; Shen Wenzhong [Key Laboratory of Artificial Structures and Quantum Control, Ministry of Education, Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma Li, E-mail: mjzheng@sjtu.edu.cn [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-10-08

    Highly ordered TiO{sub 2} nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 {mu}m min{sup -1}), which is nearly 16 times faster than traditional fabrication of TiO{sub 2} at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO{sub 2} nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO{sub 2} nanotubular arrays for practical applications.

  17. Discharge amplified photo-emission from ultra-thin films applied to tuning work function of transparent electrodes in organic opto-electronic devices

    International Nuclear Information System (INIS)

    Gentle, A.R.; Smith, G.B.; Watkins, S.E.

    2013-01-01

    A novel photoemission technique utilising localised discharge amplification of photo-yield is reported. It enables fast, accurate measurement of work function and ionisation potential for ultra-thin buffer layers vacuum deposited onto single and multilayer transparent conducting electrodes for organic solar cells and OLED's. Work function in most traditional transparent electrodes has to be raised to maximise charge transfer while high transmittance and high conductance must be retained. Results are presented for a range of metal oxide buffers, which achieve this goal. This compact photo-yield spectroscopy tool with its fast turn-around has been a valuable development aid since ionisation potential can vary significantly as deposition conditions change slightly, and as ultra-thin films grow. It has also been useful in tracking the impact of different post deposition cleaning treatments along with some storage and transport protocols, which can adversely reduce ionisation potential and hence subsequent device performance.

  18. Laser Radiation Pressure Acceleration of Monoenergetic Protons in an Ultra-Thin Foil

    Science.gov (United States)

    Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald Z.; Shukla, Padma K.

    2009-11-01

    We present theoretical and numerical studies of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The stability of the foil is investigated by direct Vlasov-Maxwell simulations for different sets of laser-plasma parameters. It is found that the foil is stable, due to the trapping of both electrons and ions in the thin laser-plasma interaction region, where the electrons are trapped in a potential well composed of the ponderomo-tive potential of the laser light and the electrostatic potential due to the ions, and the ions are trapped in a potential well composed of the inertial potential in an accelerated frame and the electrostatic potential due to the electrons. The result is a stable double layer, where the trapped ions are accelerated to monoenergetic energies up to 100 MeV and beyond, which makes them suitable for medical applications cancer treatment. The underlying physics of trapped and untapped ions in a double layer is also investigated theoretically and numerically.

  19. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    Science.gov (United States)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  1. Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles

    Science.gov (United States)

    An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai

    2017-12-01

    The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.

  2. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  3. System and method for producing metallic iron

    Science.gov (United States)

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  4. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  5. Characterization of ultrathin insulators in CMOS technology: Wearout and failure mechanisms due to processing and operation

    Science.gov (United States)

    Okandan, Murat

    In the CMOS technology the gate dielectric is the most critical layer, as its condition directly dictates the ultimate performance of the devices. In this thesis, the wear-out and failure mechanisms in ultra-thin (around 50A and lower) oxides are investigated. A new degradation phenomenon, quasi-breakdown (or soft-breakdown), and the annealing and stressing behavior of devices after quasi-breakdown are considered in detail. Devices that are in quasi-breakdown continue to operate as switches, but the gate leakage current is two orders of magnitude higher than the leakage in healthy devices and the stressing/annealing behavior of the devices are completely altered. This phenomenon is of utmost interest, since the reduction in SiO2 dielectric thickness has reached its physical limits, and the quasi-breakdown behavior is seen to dominate as a failure mode in this regime. The quasi-breakdown condition can be brought on by stresses during operation or processing. To further study this evolution through stresses and anneals, cyclic current-voltage (I-V) measurement has been further developed and utilized in this thesis. Cyclic IV is a simple and fast, two terminal measurement technique that looks at the transient current flowing in an MOS system during voltage sweeps from accumulation to inversion and back. During these sweeps, carrier trapping/detrapping, generation and recombination are observed. An experimental setup using a fast electrometer and analog to digital conversion (A/D) card and the software for control of the setup and data analysis were also developed to gain further insight into the detailed physics involved. Overall, the crucial aspects of wear-out and quasi-breakdown of ultrathin dielectrics, along with the methods for analyzing this evolution are presented in this thesis.

  6. Culturing of primary rat neurons and glia on ultra-thin parylene-C

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we will describe how we have successfully cultured dissociated embryonic cortical neurons and glia from the postnatal rat hippocampus on extremely thin layers (up to 10 nm) of Parylene-C on a silicon dioxide substrate. Silicon wafers were oxidised, deposited with the biomaterial, Parylene-C, photo-lithographically patterned and plasma etched to produce chips that consisted of lines of Paryl ene-C with varying widths, thickness and lengths. The chips produced were then immersed in Horse Serum and plated with the cells. Ratios of Neurons; Glia; Cell Body were measured on, adjacent to and away from the Parylene-C. Our initial results show how these ratios remained roughly constant for ultra-thin Parylene-C thicknesses of 10 nm as compared to a benchmark thickness of 100 nm (where such cells are known to grow well). Thus, our findings demonstrate that it is possible to culture primary rat neurons and glia to practically cell membrane thicknesses of Parylene-C. Being able to culture cells on such ultra thin levels of Parylene-C will open up the possibility to develop Multi-Electrode Arrays (MEA) that can capacitively couple embedded electrodes through the parylene to the cells on its surface. Thus, providing a neat, insulated passive electrode. Only the ultra-thin thicknesses of Parylene demonstrated here would allow for the rea isation of such a technology. Hence, the outcome of this work, will be of great interest to the Neuroengineering and the Multi-Electrode Array (MEA) community, as an alternative material for the fabric tion of passive electrodes, used in capacitive coupling mode.

  7. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells

    International Nuclear Information System (INIS)

    Huang, Xiaokun; Hu, Ziyang; Xu, Jie; Wang, Peng; Zhang, Jing; Zhu, Yuejin

    2017-01-01

    Highlights: • An ultrathin and discrete TiO 2 (u-TiO 2 ) was fabricated at low temperature. • High-performance perovskite solar cells based u-TiO 2 was realized. • u-TiO 2 between perovskite and FTO functions as a bridge for electron transport. • u-TiO 2 accelerates electron transfer and alleviates charge recombination. - Abstract: A compact TiO 2 (c-TiO 2 ) layer fabricated by spin coating or spray pyrolysis following a high-temperature sintering is a routine in high-performance planar heterojunction perovskite solar cells. Here, we demonstrate an effective low-temperature approach to fabricate an ultrathin and discrete TiO 2 (u-TiO 2 ) for enhancing photovoltaic performance of perovskite solar cells. Via hydrolysis of low-concentration TiCl 4 solution at 70 °C, u-TiO 2 was grown on a fluorine doped tin oxide (FTO) substrate, forming the electron selective contact with the photoactive CH 3 NH 3 PbI 3 film. The perovskite solar cell using u-TiO 2 achieves an efficiency of 13.42%, which is compared to 13.56% of the device using c-TiO 2 prepared by high-temperature sintering. Cyclic voltammetry, steady-state photoluminescence spectroscopy and electrical impedance spectroscopy were conducted to study interface engineering and charge carrier dynamics. Our results suggest that u-TiO 2 functions as a bridge for electron transport between perovskite and FTO, which accelerates electron transfer and alleviates charge recombination.

  8. Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

    DEFF Research Database (Denmark)

    Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka

    2013-01-01

    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analy......We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive...... an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits...

  9. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    Science.gov (United States)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  10. Surface plasmon—polaritons on ultrathin metal films

    International Nuclear Information System (INIS)

    Quan Jun; Zhang Jun; Shao Le-Xi; Tian Ying

    2011-01-01

    We discuss the surface plasmon—polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Two-dimensional superconductivity in ultrathin disordered thin films

    International Nuclear Information System (INIS)

    Beasley, M.R.

    1992-01-01

    The status of the understanding of two-dimensional superconductivity in ultrathin, disordered thin films is reviewed. The different consequences of microscopic versus macroscopic disorder are stressed. It is shown that microscopic disorder leads to a rapid suppression of the mean-field transition temperature. The consequences of macroscopic disorder are not well understood, but a universal behavior of the zero-bias resistance as a function of field and temperature has been observed. (orig.)

  12. Nearly zero transmission through periodically modulated ultrathin metal films

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Zhang, Jingjing; Peng, Liang

    2010-01-01

    Transmission of light through an optically ultrathin metal film with a thickness comparable to its skin depth is significant. We demonstrate experimentally nearly-zero transmission of light through a film periodically modulated by a one-dimensional array of subwavelength slits. The suppressed...... optical transmission is due to the excitation of surface plasmon polaritons and the zero-transmission phenomenon is strongly dependent on the polarization of the incident wave....

  13. Ultrathin Metallic Coatings Can Induce Quantum Levitation between Nanosurfaces

    OpenAIRE

    Boström, Mathias; Ninham, Barry W.; Brevik, Iver; Persson, Clas; Parsons, Drew F.; Sernelius, Bo E.

    2012-01-01

    There is an attractive Casimir-Lifshitz force between two silica surfaces in a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin (5-50 angstrom) metallic nanocoating to one of the surfaces results in repulsive Casimir-Lifshitz forces above a critical separation. The onset of such quantum levitation comes at decreasing separations as the film thickness decreases. Remarkably, the effect of retardation can turn attraction into repulsion. From that we explain how an ultrathi...

  14. Ultrathin monomolecular films and robust assemblies based on cyclic catechols

    Czech Academy of Sciences Publication Activity Database

    Zieger, M. M.; Pop-Georgievski, Ognen; de los Santos Pereira, Andres; Verveniotis, E.; Preuss, C. M.; Zorn, M.; Reck, B.; Goldmann, A. S.; Rodriguez-Emmenegger, Cesar; Barner-Kowollik, C.

    2017-01-01

    Roč. 33, č. 3 (2017), s. 670-679 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : cyclic catechols * ultrathin films * macromolecules monolayers Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  15. On the persistence of polar domains in ultrathin ferroelectric capacitors

    Czech Academy of Sciences Publication Activity Database

    Zubko, P.; Lu, H.; Bark, C.-W.; Martí, Xavier; Santiso, J.; Eom, C.-B.; Catalan, G.; Gruverman, A.

    2017-01-01

    Roč. 29, č. 28 (2017), s. 1-8, č. článku 284001. ISSN 1361-648X R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : ultrathin barium titanate * tunnel junctions * ferroelectric domains * polarization screening * retention * negative capacitance Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  16. Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, HX; Zhang, LL; Pettes, MT; Li, HF; Chen, SS; Shi, L; Piner, R; Ruoff, RS

    2012-05-01

    We report the use of free-standing, lightweight, and highly conductive ultrathin graphite foam (UGF), loaded with lithium iron phosphate (LFP), as a cathode in a lithium ion battery. At a high charge/discharge current density of 1280 mA g(-1), the specific capacity of the LFP loaded on UGF was 70 mAh g(-1), while LFP loaded on Al foil failed. Accounting for the total mass of the electrode, the maximum specific capacity of the UGF/LFP cathode was 23% higher than that of the Al/LFP cathode and 170% higher than that of the Ni-foam/LFP cathode. Using UGF, both a higher rate capability and specific capacity can be achieved simultaneously, owing to its conductive (similar to 1.3 x 10(5) S m(-1) at room temperature) and three-dimensional lightweight (similar to 9.5 mg cm(-3)) graphitic structure. Meanwhile, UGF presents excellent electrochemical stability comparing to that of Al and Ni foils, which are generally used as conductive substrates in lithium ion batteries. Moreover, preparation of the UGF electrode was facile, cost-effective, and compatible with various electrochemically active materials.

  17. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.; Sarkar, Dabraj; Hilali, Mohamed M.; Saha, Sayan; Mathew, Leo; Rao, Rajesh A.; Smith, Ryan S.; Xu, Dewei; Jawarani, Dharmesh; Garcia, Ricardo; Ainom, Moses; Banerjee, Sanjay K.

    2014-01-01

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  18. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  19. Ultrathin TaOx film based photovoltaic device

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2011-01-01

    Application of the economical metal oxide thin-film photovoltaic devices is hindered by the poor energy efficiency. This paper investigates the photovoltaic effect with an ultrathin tantalum oxide (TaOx) tunnel barrier, formed by the plasma oxidation of a pre-deposited tantalum (Ta) film. These ∼ 3 nm TaOx tunnel barriers showed approximately 160 mV open circuit voltage and 3-5% energy efficiency, for varying light intensity. The ultrathin TaOx (∼ 3 nm) could absorb approximately 12% of the incident light radiation in 400-1000 nm wavelength range; this strong light absorbing capability was found to be associated with the dramatically large extinction coefficient. Spectroscopic ellipsometry revealed that the extinction coefficient of 3 nm TaOx was ∼ 0.2, two orders higher than that of tantalum penta oxide (Ta 2 O 5 ). Interestingly, refractive index of this 3 nm thick TaOx was comparable with that of stochiometeric Ta 2 O 5 . However, heating and prolonged high-intensity light exposure deteriorated the photovoltaic effect in TaOx junctions. This study provides the basis to explore the photovoltaic effect in a highly economical and easily processable ultrathin metal oxide tunnel barrier or analogous systems.

  20. A study of DLC coatings for ironing of stainless steel

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i...