WorldWideScience

Sample records for ultrasound velocity measurements

  1. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  2. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    Science.gov (United States)

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  3. Comparison of shear wave velocity measurements assessed with two different ultrasound systems in an ex-vivo tendon strain phantom.

    Science.gov (United States)

    Rosskopf, Andrea B; Bachmann, Elias; Snedeker, Jess G; Pfirrmann, Christian W A; Buck, Florian M

    2016-11-01

    The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model. A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation. A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827-0.954, p Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012). In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.

  4. Influence of coupling substances in the measurement of ultrasound velocity in stone materials

    Science.gov (United States)

    Giuzio, Beatrice; Alvarez de Buergo, Monica; Fort, Rafael; Masini, Nicola

    2015-04-01

    Ultrasonic (US) testing is widely applied in many fields (i.e. aviation, petrochemical, power engineering, construction and metallurgical industries). In the field of built cultural heritage and science conservation, US testing can provide the quality of the historic building materials (physic-mechanical properties), their heterogeneity/homogeinity and anisotropy, in terms of materials characterization, but also how deterioration processes can affect their quality (either after natural decay or simulation ageing tests in the laboratory). Moreover, US testing is a useful technique in evaluating the effectiveness of conservation and restoration techniques such as assessing the compatibility among original and restoration materials, identification of original quarries, and the success or not in the increase of a material cohesion when applying consolidating products. In order to obtain precise, real and reliable measurements, coupling substances between the material surface and the ultrasonic sensors are frequently used, to provide a proper contact between the transducer and the material, to assure the perfect transmission of the ultrasonic wave. Various coupling agents can be applied for this purpose. According to Wesolowski (2012), the choice of the coupling agent significantly affects the measurement of propagation velocity in material samples and, as a consequence, the US test results. In this paper, the effect of six coupling agents (medical gel used for ultrasonography, gel + parafilm, plasticine, honey, glicerine and a plastic material provided for ultrasound measurement by Panametrics) on ultrasonic measurements conducted on specific building materials is investigated on two different types of building stones (granite and dolostone from the area of Madrid, traditionally used in the construction of the built heritage, 4 stone specimens for each rock variety, 20 x 6 x 8 cm). Direct and indirect modes measuring were performed, the first one with the transducers

  5. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  6. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...... search can also yield the direction, and the full velocity vector is thereby found. An examples from a flow rig is shown....

  7. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...... are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking...

  8. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...

  9. Velocity Estimation in Medical Ultrasound [Life Sciences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Villagómez Hoyos, Carlos Armando; Holbek, Simon

    2017-01-01

    This article describes the application of signal processing in medical ultrasound velocity estimation. Special emphasis is on the relation among acquisition methods, signal processing, and estimators employed. The description spans from current clinical systems for one-and two-dimensional (1-D an...

  10. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI

    International Nuclear Information System (INIS)

    Meckel, Stephan; Leitner, Lorenz; Schubert, Tilman; Bonati, Leo H.; Lyrer, Philippe; Santini, Francesco; Stalder, Aurelien F.; Markl, Michael; Wetzel, Stephan G.

    2013-01-01

    4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques. (orig.)

  11. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  12. Magnetic phase diagram of Ba3CoSb2O9 as determined by ultrasound velocity measurements

    Science.gov (United States)

    Quirion, G.; Lapointe-Major, M.; Poirier, M.; Quilliam, J. A.; Dun, Z. L.; Zhou, H. D.

    2015-07-01

    Using high-resolution sound velocity measurements we have obtained a very precise magnetic phase diagram of Ba3CoSb2O9 , a material that is considered to be an archetype of the spin-1/2 triangular-lattice antiferromagnet. Results obtained for the field parallel to the basal plane (up to 18 T) show three phase transitions, consistent with predictions based on simple two-dimensional isotropic Heisenberg models and previous experimental investigations. The phase diagram obtained for the field perpendicular to the basal plane clearly reveals an easy-plane character of this compound and, in particular, our measurements show a single first-order phase transition at Hc 1=12.0 T which can be attributed to a spin flop between an umbrella-type configuration and a coplanar V -type order where spins lie in a plane perpendicular to the a b plane. At low temperatures, softening of the lattice within some of the ordered phases is also observed and may be a result of residual spin fluctuations.

  13. Principle and performance of the transverse oscillation vector velocity technique in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Pihl, Michael Johannes; Udesen, Jesper

    2010-01-01

    Medical ultrasound systems measure the blood velocity by tracking the blood cells motion along the ultrasound field. The is done by pulsing in the same direction a number of times and then find e.q. the shift in phase between consecutive pulses. Properly normalized this is directly proportional...... a double oscillating field. A special estimator is then used for finding both the axial and lateral velocity component, so that both magnitude and phase can be calculated. The method for generating double oscillating ultrasound fields and the special estimator are described and its performance revealed...

  14. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    imaging, and, finally, some of the more recent experimental techniques. The authors shows that the Doppler shift, usually considered the way velocity is detected, actually, plays a minor role in pulsed systems. Rather, it is the shift of position of signals between pulses that is used in velocity...

  15. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  16. Relative ultrasound energy measurement circuit

    OpenAIRE

    Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker

    2005-01-01

    A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...

  17. Spectral velocity estimation in ultrasound using sparse data sets

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2006-01-01

    Velocity distributions in blood vessels can be displayed using ultrasound scanners by making a Fourier transform of the received signal and then showing spectra in an M-mode display. It is desired to show a B-mode image for orientation, and data for this have to be acquired interleaved with the f......Velocity distributions in blood vessels can be displayed using ultrasound scanners by making a Fourier transform of the received signal and then showing spectra in an M-mode display. It is desired to show a B-mode image for orientation, and data for this have to be acquired interleaved...... with the flow data. This either halves the effective pulse repetition frequency fprf or gaps appear in the spectrum from B-mode emissions. This paper presents a techniques for maintaining the highest possible fprf and at the same time show a B-mode image. The power spectrum can be calculated from the Fourier...

  18. Blood velocity estimation using ultrasound and spectral iterative adaptive approaches

    DEFF Research Database (Denmark)

    Gudmundson, Erik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2011-01-01

    -mode images are interleaved with the Doppler emissions. Furthermore, the techniques are shown, using both simplified and more realistic Field II simulations as well as in vivo data, to outperform current state-of-the-art techniques, allowing for accurate estimation of the blood velocity spectrum using only 30......This paper proposes two novel iterative data-adaptive spectral estimation techniques for blood velocity estimation using medical ultrasound scanners. The techniques make no assumption on the sampling pattern of the emissions or the depth samples, allowing for duplex mode transmissions where B...

  19. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the foot ultrasound scanner reduced precision errors by half (p quantitative ultrasound measurements is feasible. (E-mail: m.daugschies@rad.uni-kiel.de) (C) 2015 World Federation for Ultrasound in Medicine & Biology....

  20. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  1. An Iterative Adaptive Approach for Blood Velocity Estimation Using Ultrasound

    DEFF Research Database (Denmark)

    Gudmundson, Erik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2010-01-01

    This paper proposes a novel iterative data-adaptive spectral estimation technique for blood velocity estimation using medical ultrasound scanners. The technique makes no assumption on the sampling pattern of the slow-time or the fast-time samples, allowing for duplex mode transmissions where B......-mode images are interleaved with the Doppler emissions. Furthermore, the technique is shown, using both simplified and more realistic Field II simulations, to outperform current state-of-the-art techniques, allowing for accurate estimation of the blood velocity spectrum using only 30% of the transmissions......, thereby allowing for the examination of two separate vessel regions while retaining an adequate updating rate of the B-mode images. In addition, the proposed method also allows for more flexible transmission patterns, as well as exhibits fewer spectral artifacts as compared to earlier techniques....

  2. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  3. Measuring probe for measurement of local velocities

    International Nuclear Information System (INIS)

    Casal, V.; Arnold, G.; Kirchner, R.; Kussmaul, H.; Miller, H.

    1988-03-01

    The report describes a method for measurement of local velocities. It bases on the detection of the propagation of a temperature pulse induced into the fluid. The method can also be applied in flowing liquid metals with superimposed magnetic field; in this case common measuring principles fail application. The measuring system discussed consists of, a measuring head, a heating system, amplifiers and a PC. The latter performs process operation, data sampling, and evaluation of velocity. The measuring head itself includes a miniaturized heater (as a pulse marker) heated by the heating system in a short pulse, and a number of thermocouples (sensors) for detection of signals. The design, construction, and examination of a developed measuring device is described. (orig.) [de

  4. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    2010-01-01

    New ultrasound techniques for blood flow estimation have been investigated in-vivo. These are vector velocity estimators (Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane Wave Excitation) and adaptive spectral estimators (Blood spectral Power Capon and Blood...

  5. Carotid stenosis measurement on colour Doppler ultrasound: Agreement of ECST, NASCET and CCA methods applied to ultrasound with intra-arterial angiographic stenosis measurement

    International Nuclear Information System (INIS)

    Wardlaw, Joanna M.; Lewis, Steff

    2005-01-01

    Purpose: Carotid stenosis is usually determined on Doppler ultrasound from velocity readings. We wondered if angiography-style stenosis measurements applied to ultrasound images improved accuracy over velocity readings alone, and if so, which measure correlated best with angiography. Materials and methods: We studied prospectively patients undergoing colour Doppler ultrasound (CDU) for TIA or minor stroke. Those with 50%+ symptomatic internal carotid artery (ICA) stenosis had intra-arterial angiography (IAA). We measured peak systolic ICA velocity, and from the ultrasound image, the minimal residual lumen, the original lumen (ECST), ICA diameter distal (NASCET) and CCA diameter proximal (CCA method) to the stenosis. The IAAs were measured by ECST, NASCET and CCA methods also, blind to CDU. Results: Amongst 164 patients (328 arteries), on CDU the ECST, NASCET and CCA stenosis measures were similarly related to each other (ECST = 0.54 NASCET + 46) as on IAA (ECST = 0.6 NASCET + 40). Agreement between CDU- and IAA-measured stenosis was similar for ECST (r = 0.51), and CCA (r = 0.48) methods, and slightly worse for NASCET (r = 0.41). Adding IAA-style stenosis to the peak systolic ICA velocity did not improve agreement with IAA over peak systolic velocity alone. Conclusion: Angiography-style stenosis measures have similar inter-relationships when applied to CDU, but do not improve accuracy of ultrasound over peak systolic ICA velocity alone

  6. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  7. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  8. Peculiar velocity measurement in a clumpy universe

    Science.gov (United States)

    Habibi, Farhang; Baghram, Shant; Tavasoli, Saeed

    Aims: In this work, we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0.5 deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task, we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then, we use the SNe Ia sample of Union 2, to investigate the relativistic effects, we consider. Results: We show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here, we quantify this effect. We show that at low redshifts the lensing effect is negligible compare to the effect of peculiar velocity. From the observational point of view, we show that the uncertainties on luminosity of the present SNe Ia data prevent us from precise measuring the peculiar velocities even at low redshifts (z < 0.2).

  9. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  10. Carotid near-occlusion frequently has high peak systolic velocity on Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Khangure, Simon R.; Machnowska, Matylda; Fox, Allan J.; Hojjat, Seyed-Parsa; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Division of Neuroimaging, Toronto (Canada); Benhabib, Hadas [Sunnybrook Health Sciences Centre, Department of Medical Imaging, Neuroradiology Division, Toronto, ON (Canada); Groenlund, Christer [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Herod, Wendy [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); Maggisano, Robert [Department of Surgery, Sunnybrook Health Sciences Centre, Toronto (Canada); University of Toronto, Division of Vascular Surgery, Department of Surgery, Toronto (Canada); Sjoeberg, Anders [Umeaa University, Department of Radiation Sciences, Biomedical Engineering, Umeaa (Sweden); Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Wester, Per [Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden); Karolinska Institutet Danderyds Hospital, Department of Clinical Sciences, Stockholm (Sweden); Hopyan, Julia [University of Toronto, Division of Neurology, Department of Medicine, Toronto (Canada); Johansson, Elias [Umeaa University, Department of Pharmacology and Clinical Neuroscience, Umeaa (Sweden); Umeaa University, Department of Public Health and Clinical Medicine, Umeaa (Sweden)

    2018-01-15

    Carotid near-occlusion is a tight atherosclerotic stenosis of the internal carotid artery (ICA) resulting in decrease in diameter of the vessel lumen distal to the stenosis. Near-occlusions can be classified as with or without full collapse, and may have high peak systolic velocity (PSV) across the stenosis, mimicking conventional > 50% carotid artery stenosis. We aimed to determine how frequently near-occlusions have high PSV in the stenosis and determine how accurately carotid Doppler ultrasound can distinguish high-velocity near-occlusion from conventional stenosis. Included patients had near-occlusion or conventional stenosis with carotid ultrasound and CT angiogram (CTA) performed within 30 days of each other. CTA examinations were analyzed by two blinded expert readers. Velocities in the internal and common carotid arteries were recorded. Mean velocity, pulsatility index, and ratios were calculated, giving 12 Doppler parameters for analysis. Of 136 patients, 82 had conventional stenosis and 54 had near-occlusion on CTA. Of near-occlusions, 40 (74%) had high PSV (≥ 125 cm/s) across the stenosis. Ten Doppler parameters significantly differed between conventional stenosis and high-velocity near-occlusion groups. However, no parameter was highly sensitive and specific to separate the groups. Near-occlusions frequently have high PSV across the stenosis, particularly those without full collapse. Carotid Doppler ultrasound does not seem able to distinguish conventional stenosis from high-velocity near-occlusion. These findings question the use of ultrasound alone for preoperative imaging evaluation. (orig.)

  11. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  12. The OPERA neutrino velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Universitaet Hamburg (Germany)

    2012-07-01

    OPERA is a long-baseline neutrino oscillation experiment designed to find tau neutrinos appearing in a pure muon neutrino beam. Recently, a measurement of the flight time of the neutrinos between the CNGS at CERN and the OPERA detector at the LNGS has been performed. It was found that the neutrinos arrive at the detector significantly earlier in time than expected if travelling at the speed of light. In this talk, the main aspects of this measurement are presented, including timing and geodesy issues and the analysis procedure. An update concerning results with a fine structured time distribution of the beam is given, as well as latest information on some additional cross checks.

  13. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  14. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  15. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  16. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  17. A new approach for estimation of the axial velocity using ultrasound

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    2000-01-01

    for the data segment. The benefit of this method is an estimate of the mean axial velocity which is independent of the center frequency of the propagating ultrasound pulse. The estimate will only depend on fs and fprf. Results of the estimation method is presented based on both simple generated RF harmonic...

  18. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  19. In-vivo evaluation of three ultrasound vector velocity techniques with MR angiography

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Oddershede, Niels

    2008-01-01

    In conventional Doppler ultrasound (US) the blood velocity is only estimated along the US beam direction. The estimate is angle corrected assuming laminar flow parallel to the vessel boundaries. As the now in the vascular system never is purely laminar, the velocities estimated with conventional...... additionally constructed and mean differences for the three comparisons were: DB/MRA = 0.17 ml; STA/MRA = 0.07 ml; TO/MRA = 0.24 ml. The three US vector velocity techniques yield quantitative insight in to flow dynamics and can potentially give the clinician a powerful tool in cardiovascular disease assessment....

  20. Coded excitation and sub-band processing for blood velocity estmation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of broadband coded excitation and subband processing for blood velocity estimation in medical ultrasound. In conventional blood velocity estimation a long (narrow-band) pulse is emitted and the blood velocity is estimated using an auto-correlation based approach....... However, the axial resolution of the narrow-band pulse is too poor for brightness-mode (B-mode) imaging. Therefore, a separate transmission sequence is used for updating the B-mode image, which lowers the overall frame-rate of the system. By using broad-band excitation signals, the backscattered received...... signal can be divided into a number of narrow frequency bands. The blood velocity can be estimated in each of the bands and the velocity estimates can be averaged to form an improved estimate. Furthermore, since the excitation signal is broadband, no secondary B-mode sequence is required, and the frame...

  1. A framework for simulating ultrasound imaging based on first order nonlinear pressure–velocity relations

    DEFF Research Database (Denmark)

    Du, Yigang; Fan, Rui; Li, Yong

    2016-01-01

    An ultrasound imaging framework modeled with the first order nonlinear pressure–velocity relations (NPVR) based simulation and implemented by a half-time staggered solution and pseudospectral method is presented in this paper. The framework is capable of simulating linear and nonlinear ultrasound...... propagation and reflections in a heterogeneous medium with different sound speeds and densities. It can be initialized with arbitrary focus, excitation and apodization for multiple individual channels in both 2D and 3D spatial fields. The simulated channel data can be generated using this framework......, and ultrasound image can be obtained by beamforming the simulated channel data. Various results simulated by different algorithms are illustrated for comparisons. The root mean square (RMS) errors for each compared pulses are calculated. The linear propagation is validated by an angular spectrum approach (ASA...

  2. Measurement of ventricular function using Doppler ultrasound

    International Nuclear Information System (INIS)

    Teague, S.M.

    1986-01-01

    Doppler has wide application in the evaluation of valvular heart disease. The need to know ventricular function is a much more common reason for an echocardiographic evaluation. Interestingly, Doppler examinations can assess ventricular function from many perspectives. Description of ventricular function entails measurement of the timing, rate and volume of ventricular filling and ejection. Doppler ultrasound examination reveals all of these aspects of ventricular function noninvasively, simply, and without great expense or radiation exposure, as described in this chapter

  3. Size and velocity measurements in combustion systems

    International Nuclear Information System (INIS)

    Levy, Y.; Timnat, Y.M.

    1986-01-01

    Two-phase flow measurements for size and velocity determination in combustion systems are discussed: the pedestal technique and phase Doppler anemometry (PDA) are described in detail. The experimental apparatus for the pedestal method includes the optical laser-Doppler anemometry (LDA) package and the electronic data acquisition system. The latter comprises three channels for recording the Doppler frequency, and the pedestal amplitude as well as the validation pulse. Results of measurements performed in a dump combustor, into which kerosene droplets were injected, are presented. The principle of the PDA technique is explained and validation experiments, using latex particles, are reported. Finally the two methods are compared

  4. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  5. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  6. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  7. Comparative analysis of contrast between hepatic vein and hepatic parenchyma with controlled velocity of ultrasound in normal and fatty liver

    International Nuclear Information System (INIS)

    Yun, Eun Joo; Choi, Byung Jin; Han, Joon Koo; Cha, Joo Hee; Kim, Seung Hyup; Lee, Dong Hyuk

    2000-01-01

    To evaluate the contrast between hepatic vein and hepatic parenchyma with controlled velocities of ultrasound in normal and fatty liver. 31 patient with normal liver and 39 patients with moderate degree of fatty liver were studies with sonography with controlled velocities of ultrasound (1,580 m/sec, 1,540 m/sec, 1,500 m/sec, 1,460 m/sec). Sonographic images were captured with picture grabbing (Sono-PACS) and were recalled with visual C++(Microsoft Redmond. WA, USA). The contrast between hepatic vein and parenchyma was measured and analyzed on each sonographic image. The number of patients with the highest contrast between hepatic vein and hepatic parenchyma among the 31 patients with normal liver were 5 (16.1%) with 1,580 m/sec, 12 (38.8%) with 1,540 m/sec, 9 (29.0%) with 1,500 m/sec, and 5 (16.1%) with 1,460 m/sec. The number of patients with highest contrast between hepatic vein and hepatic parenchyma among the 39 patients with fatty liver were 3 (7.7%) with 1,580 m/sec, 7 (17.9%) with 1,540 m/sec, 12 (30.8%) with 1,500 m/sec and 17 (43.6%) with 1,460 m/sec. The velocity of ultrasound for the highest contrast between hepatic vein and hepatic parenchyma in normal liver was 1,540 m/sec, and 1,460 m/sec in fatty liver.

  8. Acoustic methods for measuring bullet velocity

    OpenAIRE

    Courtney, Michael

    2008-01-01

    This article describes two acoustic methods to measure bullet velocity with an accuracy of 1% or better. In one method, a microphone is placed within 0.1 m of the gun muzzle and a bullet is fired at a steel target 45 m away. The bullet's flight time is the recorded time between the muzzle blast and sound of hitting the target minus the time for the sound to return from the target to the microphone. In the other method, the microphone is placed equidistant from both the gun muzzle and the stee...

  9. Ultrasound measurement of transcranial distance during head-down tilt

    Science.gov (United States)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  10. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    program. Simulations are shown for a parabolic velocity profile for flow-to-beam angles of 30, 45, 60, and 90 degrees using a 64 elements linear array with a center frequency of 3 MHz, a pitch of 0.3 mm, and an element height of 5 mm. The peak velocity in the parabolic flow was 0.5 m/s, and the pulse...... repetition frequency was 3.5 kHz. Using four pulse-echo lines, the parabolic flow profile was found with a standard deviation of 0.028 m/s at 60 degrees and 0.092 m/s at 90 degrees (transverse to the ultrasound beam), corresponding to accuracies of 5.6% and 18.4%. Using ten lines gave standard deviations...

  11. A pilot study using Tissue Velocity Ultrasound Imaging (TVI to assess muscle activity pattern in patients with chronic trapezius myalgia

    Directory of Open Access Journals (Sweden)

    Brodin Lars-Åke

    2008-09-01

    Full Text Available Abstract Background Different research techniques indicate alterations in muscle tissue and in neuromuscular control of aching muscles in patients with chronic localized pain. Ultrasound can be used for analysis of muscle tissue dynamics in clinical practice. Aim This study introduces a new muscle tissue sensitive ultrasound technique in order to provide a new methodology for providing a description of local muscle changes. This method is applied to investigate trapezius muscle tissue response – especially with respect to specific regional deformation and deformation rates – during concentric shoulder elevation in patients with chronic trapezius myalgia and healthy controls before and after pain provocation. Methods Patients with trapezius myalgia and healthy controls were analyzed using an ultrasound system equipped with tissue velocity imaging (TVI. The patients performed a standardized 3-cm concentric shoulder elevation before and after pain provocation/exercise at a standardized elevation tempo (30 bpm. A standardized region of interest (ROI, an ellipsis with a size that captures the upper and lower fascia of the trapezius muscle (4 cm width at rest, was placed in the first frame of the loop registration of the elevation. The ROI was re-anchored frame by frame following the same anatomical landmark in the basal fascia during all frames of the concentric phase. In cardiac measurement, tissue velocities are measured in the axial projection towards and against the probe where red colour represents shortening and red lengthening. In the case of measuring the trapezius muscle, tissue deformation measurements are made orthogonally, thus, indirectly. Based on the assumption of muscle volume incompressibility, blue represents tissue contraction and red relaxation. Within the ROI, two variables were calculated as a function of time: deformation and deformation rate. Hereafter, max, mean, and quadratic mean values (RMS of each variable were

  12. Logistic discriminant analysis of breast cancer using ultrasound measurement

    International Nuclear Information System (INIS)

    Abdolmaleki, P.; Mokhtari Dizaji, M.; Vahead, M.R.; Gity, M.

    2004-01-01

    Background: Logistic discriminant method was applied to differentiate malignant from benign in a group of patients with proved breast lesions of the basis of ultrasonic parameters. Materials and methods: Our database include 273 patients' ultrasonographic pictures consisting of 14 quantitative variables. The measured variables were ultrasound propagation velocity, acoustic impedance and attenuation coefficient at 10 MHz in breast lesions at 20, 25, 30 and 35 d ig c temperature, physical density and age. This database was randomly divided into the estimation of 201 and validation of 72 samples. The estimation samples were used to build the logistic discriminant model, and validation samples were used to validate the performance. Finally important criteria such as sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were evaluated. Results: Our results showed that the logistic discriminant method was able to classify correctly 67 out of 72 cases presented in the validation sample. The results indicate a remarkable diagnostic accuracy of 93%. Conclusion: A logistic discriminator approach is capable of predicting the probability of malignancy of breast cancer. Features from ultrasonic measurement on ultrasound imaging is used in this approach

  13. Crack velocity measurement by induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V.; Rabinovitch, A.; Bahat, D.

    2006-01-01

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality

  14. Crack velocity measurement by induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2006-07-31

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.

  15. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  16. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  17. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...... the ability to estimate a large velocity range, or alternatively measure at two sites to find e.g. stenosis degree in a vessel. The mean angle at the vessel center was estimated to 90.9◦±8.2◦ indicating a laminar flow from a turbulence index being close to zero (0.1 ±0.1). Volume flow was 1.29 ±0.26 mL/stroke...... (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  18. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  19. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  20. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  1. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  2. Estimation of urinary flow velocity in models of obstructed and unobstructed urethras by decorrelation of ultrasound radiofrequency signals

    NARCIS (Netherlands)

    Arif, M.; Idzenga, T.; Mastrigt, R. van; Korte, C.L. de

    2014-01-01

    The feasibility of estimating urinary flow velocity from the decorrelation of radiofrequency (RF) signals was investigated in soft tissue-mimicking models of obstructed and unobstructed urethras. The decorrelation was studied in the near field, focal zone and far field of the ultrasound beam.

  3. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  4. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  5. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  6. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  7. Measuring velocity by differentiation of analog encoder signals

    NARCIS (Netherlands)

    Winarto, R.F.; Steinbuch, M.; Molengraft, van de M.J.G.

    2013-01-01

    In this report a new method for measuring velocities has been introduced. During the research in literature an overview has been made of the existing methods of measuring velocities. From this research, it can be concluded that a lot of existing approaches only work in specific settings. Besides

  8. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  9. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  10. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  11. A comparative study of calculated and measured particle velocities

    International Nuclear Information System (INIS)

    Tariq, S.M.

    2005-01-01

    After an explosive is detonated in a blast hole, seismic waves are generated in the ground surrounding the blast hole. These waves cause the particles of rock to oscillate about its position. As the wave attenuate, the particles come back to their original position. The rapidity with which the particles move is called the particle velocity. The peak or maximum velocity is the value which is of prime concern. This value of peak particle velocity can be estimated by the equations determined by the United States Bureau of Mines and by the DUPONT. A research program was conducted by the author at the 'Beck Materials Quarry' situated near Rolla, Missouri, USA. The purpose was to draw a comparison between the predicted and measured particle velocities. It was generally found that the predicted peak particle velocities were quite high as compared to the velocities measured by the Seismographs. (author)

  12. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available is known to perform well. Although radial velocities derived from ASAR are on occasion able to represent the measured flow with incredible accuracy, the overall performance of the ASAR radial velocity product is negatively impacted by a few very large...

  13. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  14. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  15. Electron drift velocity measurements in liquid krypton-methane mixtures

    CERN Document Server

    Folegani, M; Magri, M; Piemontese, L

    1999-01-01

    Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.

  16. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  17. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  18. Measurement of ultrasound power using a calorimeter

    Science.gov (United States)

    Morgado, G.; Miqueleti, S.; Costa-Felix, R. P. B.

    2018-03-01

    This paper presents a comparison between the ultrasound power of a 1 MHz therapy equipment on the water using a calorimeter and a radiation force balance. For a range of 5 to 10 W, the results presented a normalized error less than 1, disclosing compatibility of the results from the developed system and the radiation force balance. The calorimetric method might be used as a faster and cheaper means for the verification of the ultrasonic power emitted by an equipment for physiotherapeutic treatment.

  19. Ultrasound as an Outcome Measure in Gout. A Validation Process by the OMERACT Ultrasound Working Group

    DEFF Research Database (Denmark)

    Terslev, Lene; Gutierrez, Marwin; Schmidt, Wolfgang A

    2015-01-01

    OBJECTIVE: To summarize the work performed by the Outcome Measures in Rheumatology (OMERACT) Ultrasound (US) Working Group on the validation of US as a potential outcome measure in gout. METHODS: Based on the lack of definitions, highlighted in a recent literature review on US as an outcome tool...

  20. Measurement of particle velocity using a mutual inductance technique

    International Nuclear Information System (INIS)

    Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven

    2004-01-01

    Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement

  1. Doppler velocity measurements from large and small arteries of mice

    Science.gov (United States)

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  2. Evaluation of Portal Venous Velocity with Doppler Ultrasound in Patients with Nonalcoholic Fatty Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulusan, Serife; Yakar, Tolga; Koc, Zafer [Baskent University Faculty of Medicine, Adana (Turkmenistan)

    2011-08-15

    We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.

  3. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  4. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  5. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  6. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  7. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  8. Cerenkov detector for heavy-ion velocity measurements

    International Nuclear Information System (INIS)

    Olson, D.L.; Baumgartner, M.; Dufour, J.P.; Girard, J.G.; Greiner, D.E.; Lindstrom, P.J.; Symons, T.J.M.; Crawford, H.J.

    1984-08-01

    We have developed a highly sensitive velocity measuring detector using total-internal-reflection Cerenkov counters of a type mentioned by Jelly in 1958. If the velocity of the particle is above the threshold for total-internal-reflection these counters have a charge resolution of sigma = 0.18e for a 3mm thick glass radiator. For the velocity measurement we use a fused silica radiator so that the velocity of the particles are near the threshold for total-internal reflection. For momentum-analyzed projectile fragments of 1.6 GeV/nucleon 40 Ar, we have measured a mass resolution of sigma = 0.1u for isotope identification

  9. Importance of diastolic velocities in the detection of celiac and mesenteric artery disease by duplex ultrasound

    DEFF Research Database (Denmark)

    Perko, M J; Just, S; Schroeder, T V

    1997-01-01

    To assess the predictive value of ultrasound duplex scanning in the detection of superior mesenteric artery (SMA) and celiac artery (CA) occlusive disease.......To assess the predictive value of ultrasound duplex scanning in the detection of superior mesenteric artery (SMA) and celiac artery (CA) occlusive disease....

  10. Burning velocity measurements of nitrogen-containing compounds.

    Science.gov (United States)

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  11. Time-dependent coolant velocity measurements in an operating BWR

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Crowe, R.D.

    1980-01-01

    A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)

  12. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  13. A mixing method for traceable air velocity measurements

    International Nuclear Information System (INIS)

    Sillanpää, S; Heinonen, M

    2008-01-01

    A novel and quite simple method to establish a traceability link between air velocity and the national standards of mass and time is presented in this paper. The method is based on the humidification of flowing air before the blower of a wind tunnel with a known mass flow of water. Then air velocity can be calculated as a function of humidification water flow. The method is compared against a Pitot-tube-based velocity measurement in a wind tunnel at the MIKES. The results of these two different methods agreed well, with a maximum difference of 0.7%

  14. Measurement bias of fluid velocity in molecular simulations

    International Nuclear Information System (INIS)

    Tysanner, Martin W.; Garcia, Alejandro L.

    2004-01-01

    In molecular simulations of fluid flow, the measurement of mean fluid velocity is considered to be a straightforward computation, yet there is some ambiguity in its definition. We show that in systems far from equilibrium, such as those with large temperature or velocity gradients, two commonly used definitions give slightly different results. Specifically, a bias can arise when computing the mean fluid velocity by measuring the mean particle velocity in a cell and averaging this mean over samples. We show that this bias comes from the correlation of momentum and density fluctuations in non-equilibrium fluids, obtain an analytical expression for predicting it, and discuss what system characteristics (e.g., number of particles per cell, temperature gradients) reduce or magnify the error. The bias has a physical origin so although we demonstrate it by direct simulation Monte Carlo (DSMC) computations, the same effect will be observed with other particle-based simulation methods, such as molecular dynamics and lattice gases

  15. Measurements of electron drift velocity in pure isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  16. Measurements of electron drift velocity in pure isobutane

    International Nuclear Information System (INIS)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2009-01-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  17. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  18. Validation of Navigation Ultrasound for Clavicular Length Measurement

    DEFF Research Database (Denmark)

    Høj, Anders Thorsmark; Villa, Chiara; Christensen, Ole M.

    2017-01-01

    interval): approximately ± 7.5 mm, Pearson's correlation R: 0.948-0.974). Navigation ultrasound can measure clavicular length with an intra-rater reliability matching that of 3-D rendered computed tomography scans and with high validity. Its use could spread to other fields requiring accurate...... of 52.5 (range: 21-78 y) were included. Navigation ultrasound exhibited high reliability (intra-class correlation coefficient: 0.942-0.997, standard error of the mean: 0.7-2.9 mm, minimal detectable change: 2.3-8.1 mm) and validity (measurement error: 1.3%-1.8%, limits of agreement (95% confidence...

  19. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2008-01-01

    Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  20. Free-surface velocity measurements using an optically recording velocity interferometer

    International Nuclear Information System (INIS)

    Lu Jianxin; Wang Zhao; Liang Jing; Shan Yusheng; Zhou Chuangzhi; Xiang Yihuai; Lu Ze; Tang Xiuzhang

    2006-01-01

    An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity could be recorded by the electronic streak camera. In the experiments, ORVIS got a 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called 'Heaven I' with laser wavelength of 248.4 nm, pulse duration of 25 ns and maximum energy 158 J. Free-surface velocity of 20 μm thick iron got 3.86 km/s with laser intensity of 6.24 x 10 11 W·cm -2 , and free-surface velocity of 100 μm thick aluminum with 100 μm CH foil at the front got 2.87 km/s with laser intensity 7.28 x 10 11 W·cm -2 . (authors)

  1. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  2. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  3. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  4. Velocity Measurement of ultrasonic for evaluation of aging epoxy coating in containment structure of nuclear power plant

    International Nuclear Information System (INIS)

    Eun, Gil Soo; Kim, Noh Yu; Nah, Hwan Seon; Song, Young Chol

    2001-01-01

    Relative variation of ultrasonic velocity in aging epoxy coating in nuclear plant is measured for evaluation of the degradation of the epoxy coating. Time delay for ultrasound to travel through the epoxy film due to change of ultrasonic velocity is measured indirectly using ultrasonic interferometry which compares two reflection waves from the same point of coating surface at two different distances. Magnitude of the difference of two waves increases or decreases depending on change of the time of flight of ultrasound in the epoxy film caused by heat damage in the epoxy coating. Based on the transfer functions of the wedge and the epoxy coating in frequency domain, the reflection wave is analyzed and related to the velocity of ultrasound in the epoxy coating. A specially designed conical wedge is adopted to minimize the waviness effect of the surface of the epoxy coating. Epoxy films are fabricated, degraded under the accelerated aging conditions and tested to evaluate the change of ultrasonic velocity in the films. The experimental results show that the method can be applied to evaluate quantitatively the sealing quality of the epoxy coating.

  5. Using embedded fibers to measure explosive detonation velocities

    Energy Technology Data Exchange (ETDEWEB)

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  6. Estimating Radar Velocity using Direction of Arrival Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  7. Measurement of the neutrino velocity in OPERA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dracos, M., E-mail: marcos.dracos@in2p3.fr [IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France)

    2013-02-15

    The OPERA neutrino experiment has measured the neutrino velocity using the CERN CNGS beam over a baseline of 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010, 2011. An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (6.5±7.4(stat.){sub −8.0}{sup +8.3}(sys.))ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light (v−c)/c=(2.7±3.1(stat.){sub −3.3}{sup +3.4}(sys.))×10{sup −6}. During spring 2012 the CNGS provided during two weeks a short proton bunched beam dedicated to the neutrino velocity measurement. The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos with slightly modified setup compared to 2011 measurements. These modifications increased the timing accuracy and also fixed previous problems. The arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum has been found to be in agreement with the previous measurement. This result confirms the revised OPERA result and that indeed the neutrino anticipation announced in September 2011 was due to technical problems.

  8. Ultrasound measurements of testicular volume: Comparing the three ...

    African Journals Online (AJOL)

    T.U. Mbaeri

    The ultrasound measurements of the testicular volume were calculated using the following three formulas: (a) length ... ticular growth, development and function. Studies in ... of the components of a minimum full evaluation of male infertility is palpation of ... opted for orchidectomy after counseling in our center. Subjects and ...

  9. Correlation between self-reported gestational age and ultrasound measurements

    DEFF Research Database (Denmark)

    Olesen, Annette Wind; Westergaard, Jes Grabow; Thomsen, Sten Grove

    2004-01-01

    BACKGROUND: We studied the agreement between different measurements of gestational age, i.e. self-reported gestational age in the Danish National Birth Cohort Study, ultrasound-estimated gestational age from the medical records in one Danish county and gestational age from the Danish National...

  10. Optic-microwave mixing velocimeter for superhigh velocity measurement

    International Nuclear Information System (INIS)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua

    2011-01-01

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  11. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  12. Hemodynamic study of ischemic limb by velocity measurement in foot

    International Nuclear Information System (INIS)

    Shionoya, S.; Hirai, M.; Kawai, S.; Ohta, T.; Seko, T.

    1981-01-01

    By means of a tracer technique with 99mTc-pertechnetate, provided with seven zonal regions of interest, 6 mm in width, placed at equal spaces of 18 mm, from the toe tip to the midfoot at a right angle to the long axis of the foot, arterial flow velocity in the foot during reactive hyperemia was measured. The mean velocity in the foot was 5.66 +/- 1.78 cm/sec in 14 normal limbs, 1.58 +/- 1.07 cm/sec in 29 limbs with distal thromboangiitis obliterans (TAO), 0.89 +/- 0.61 cm/sec in 13 limbs with proximal TAO, and 0.97 +/- 0.85 cm/sec in 15 limbs with arteriosclerosis obliterans (ASO). The velocity returned to normal in all 12 limbs after successful arterial reconstruction, whereas the foot or toe blood pressure remained pathologic in 9 of the 12 limbs postoperatively; the velocity reverted to normal in 4 of 13 limbs after lumbar sympathectomy. When the velocity was normalized after operation, the ulceration healed favorably, and the ischemic limb was salvaged. The most characteristic feature of peripheral arterial occlusive disease of the lower extremity was a stagnation of arterial circulation in the foot, and the flow velocity in the foot was a sensitive predictive index of limb salvage

  13. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  14. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  15. Optical-fiber interferometer for velocity measurements with picosecond resolution

    International Nuclear Information System (INIS)

    Weng Jidong; Tan Hua; Wang Xiang; Ma Yun; Hu Shaolou; Wang Xiaosong

    2006-01-01

    The conventional Doppler laser-interference velocimeters are made up of traditional optical elements such as lenses and mirrors and will generally restrict its applications in multipoint velocity measurements. By transfering the light from multimode optical fiber to single-mode optical fiber and using the currently available conventional telecommunications elements, the authors have constructed a velocimeter called all-fiber displacement interferometer system for any reflector. The unique interferometer system is only made up of fibers or fiber-coupled components. The viability of this technique is demonstrated by measuring the velocity of an interface moving at velocity of 2133 m/s with 50 ps time resolution. In addition, the concept of optical-fiber mode conversion would provide a way to develop various optical-fiber sensors

  16. Coherence measures in automatic time-migration velocity analysis

    International Nuclear Information System (INIS)

    Maciel, Jonathas S; Costa, Jessé C; Schleicher, Jörg

    2012-01-01

    Time-migration velocity analysis can be carried out automatically by evaluating the coherence of migrated seismic events in common-image gathers (CIGs). The performance of gradient methods for automatic time-migration velocity analysis depends on the coherence measures used as the objective function. We compare the results of four different coherence measures, being conventional semblance, differential semblance, an extended differential semblance using differences of more distant image traces and the product of the latter with conventional semblance. In our numerical experiments, the objective functions based on conventional semblance and on the product of conventional semblance with extended differential semblance provided the best velocity models, as evaluated by the flatness of the resulting CIGs. The method can be easily extended to anisotropic media. (paper)

  17. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    for isotropic fluids to the estimated velocity fields. The velocity fields were measured for a steady flow on a carotid bifurcation phantom (Shelley Medical, Canada) with a 70% constriction on the internal branch. Scanning was performed with a BK8670 linear transducer (BK Medical, Denmark) connected to a BK...

  18. Poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry

    International Nuclear Information System (INIS)

    Pavlichenko, O.S.; Skibenko, A.I.; Fomin, I.P.; Pinos, I.B.; Ocheretenko, V.L.; Berezhniy, V.L.

    2001-01-01

    Results of experiment modeling backscattering of microwaves from rotating plasma layer perturbed by fluctuations are presented. It was shown that auto- and crosscorrelation of reflected power have a periodicity equal to rotation period. Such periodicity was observed by microwave reflectometry in experiments on RF plasma production on U-3M torsatron and was used for measurement of plasma poloidal rotation velocity. (author)

  19. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  20. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  1. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  2. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  3. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Baylor, L.R.

    2004-01-01

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations

  4. Testing measurements of airflow velocity in road tunnels

    Directory of Open Access Journals (Sweden)

    Danišovič Peter

    2017-01-01

    Full Text Available Within the project entitled “Models of formation and spread of fire to increase safety of road tunnels”, it was necessary to devise a method how to record airflow velocity during the fire in situ tests in road tunnels. Project is in first year of its solution so one testing measurement was performed to check the functionality of anemometers selected for this project and the first in situ measurement was also performed just a few days ago.

  5. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation

    International Nuclear Information System (INIS)

    Chayer, Boris; Cloutier, Guy; L Pitts, Katie; Fenech, Marianne

    2012-01-01

    Micro particle image velocimetry (µPIV) is a common method to assess flow behavior in blood microvessels in vitro as well as in vivo. The use of red blood cells (RBCs) as tracer particles, as generally considered in vivo, creates a large depth of correlation (DOC), even as large as the vessel itself, which decreases the accuracy of the method. The limitations of µPIV for blood flow measurements based on RBC tracking still have to be evaluated. In this study, in vitro and in silico models were used to understand the effect of the DOC on blood flow measurements using µPIV RBC tracer particles. We therefore employed a µPIV technique to assess blood flow in a 15 µm radius glass tube with a high-speed CMOS camera. The tube was perfused with a sample of 40% hematocrit blood. The flow measured by a cross-correlating speckle tracking technique was compared to the flow rate of the pump. In addition, a three-dimensional mechanical RBC-flow model was used to simulate optical moving speckle at 20% and 40% hematocrits, in 15 and 20 µm radius circular tubes, at different focus planes, flow rates and for various velocity profile shapes. The velocity profiles extracted from the simulated pictures were compared with good agreement with the corresponding velocity profiles implemented in the mechanical model. The flow rates from both the in vitro flow phantom and the mathematical model were accurately measured with less than 10% errors. Simulation results demonstrated that the hematocrit (paired t tests, p = 0.5) and the tube radius (p = 0.1) do not influence the precision of the measured flow rate, whereas the shape of the velocity profile (p < 0.001) and the location of the focus plane (p < 0.001) do, as indicated by measured errors ranging from 3% to 97%. In conclusion, the use of RBCs as tracer particles makes a large DOC and affects the image processing required to estimate the flow velocities. We found that the current µPIV method is acceptable to estimate the flow rate

  6. In-vivo Examples of Flow Patterns With The Fast Vector Velocity Ultrasound Method

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2009-01-01

    and using a 100 CPU linux cluster for post processing, PWE can achieve a frame of 100 Hz where one vector velocity sequence of approximately 3 sec, takes 10 h to store and 48 h to process. In this paper a case study is presented of in-vivo vector velocity estimates in different complex vessel geometries...

  7. Velocity-pressure correlation measurements in complex free shear flows

    International Nuclear Information System (INIS)

    Naka, Yoshitsugu; Obi, Shinnosuke

    2009-01-01

    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  8. Gas and particle velocity measurements in an induction plasma

    International Nuclear Information System (INIS)

    Lesinski, J.; Gagne, R.; Boulos, M.I.

    1981-08-01

    Laser doppler anemometry was used for the measurements of the plasma and particle velocity profiles in the coil region of an inductively coupled plasma. Results are reported for a 50 mm ID induction torch operated at atmospheric pressure with argon as the plasma gas. The oscillator frequency was 3 MHz and the power in the coil was varied between 4.6 and 10.5 kW. The gas velocity measurements were made using a fine carbon powder as a tracer (dp approx. = 1 μm). Measurements were also made with larger silicon particles (dp = 33 μm and sigma = 13 μm) centrally injected in the plasma under different operating conditions

  9. Ultrasound transmission measurements for tensile strength evaluation of tablets.

    Science.gov (United States)

    Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko

    2011-05-16

    Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. HIFU Ultrasound Power Measurements at INRiM

    International Nuclear Information System (INIS)

    Durando, G; Guglielmone, C; Musacchio, C

    2011-01-01

    In this work the new system for the ultrasound power measurement of High Intensity Focused Ultrasound transducers realized at INRIM ultrasounds laboratory is presented. The system is based on a submersible load cell that takes the place of the balance. This solution presents essentially two advantages. The first one, of mechanical nature, is relevant to the fact that the target is directly connected to the force transducer, eliminating unwanted target motion at high power. The second, of electric nature, concerns the possibility to reduce the insonation time (the ON period of the electric driving signal to the HIFU transducer) under of 2 s, and is allowed for by the faster response of the force transducer (700 Hz bandwidth). The main components of uncertainty and the overall budget of the measurement system are presented together with the results of measures of conductance, G, carried on a HIFU transducer, at the work frequencies 2.0 MHz and 6.38 MHz, for values of power ranging from 10 W to 100 W. The results of the ultrasonic conductance, G, obtained with the new system are compared with values obtained using the traditional measuring system for low powers (P ≤ 20W).

  11. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  12. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  13. Discharge estimation combining flow routing and occasional measurements of velocity

    Directory of Open Access Journals (Sweden)

    G. Corato

    2011-09-01

    Full Text Available A new procedure is proposed for estimating river discharge hydrographs during flood events, using only water level data at a single gauged site, as well as 1-D shallow water modelling and occasional maximum surface flow velocity measurements. One-dimensional diffusive hydraulic model is used for routing the recorded stage hydrograph in the channel reach considering zero-diffusion downstream boundary condition. Based on synthetic tests concerning a broad prismatic channel, the "suitable" reach length is chosen in order to minimize the effect of the approximated downstream boundary condition on the estimation of the upstream discharge hydrograph. The Manning's roughness coefficient is calibrated by using occasional instantaneous surface velocity measurements during the rising limb of flood that are used to estimate instantaneous discharges by adopting, in the flow area, a two-dimensional velocity distribution model. Several historical events recorded in three gauged sites along the upper Tiber River, wherein reliable rating curves are available, have been used for the validation. The outcomes of the analysis can be summarized as follows: (1 the criterion adopted for selecting the "suitable" channel length based on synthetic test studies has proved to be reliable for field applications to three gauged sites. Indeed, for each event a downstream reach length not more than 500 m is found to be sufficient, for a good performances of the hydraulic model, thereby enabling the drastic reduction of river cross-sections data; (2 the procedure for Manning's roughness coefficient calibration allowed for high performance in discharge estimation just considering the observed water levels and occasional measurements of maximum surface flow velocity during the rising limb of flood. Indeed, errors in the peak discharge magnitude, for the optimal calibration, were found not exceeding 5% for all events observed in the three investigated gauged sections, while the

  14. Air-coupled ultrasound for plate thickness measurements

    OpenAIRE

    Waag, Grunde

    2017-01-01

    Non-destructive testing using ultrasound is well established as a technique of inspecting miscellaneous structures and components. Ultrasonic waves propagating in an elastic solid are sensitive to both the material and geometrical properties of the solid. Decades of experience have shown that it is possible to extract these properties from the waves in an efficient and reliable way in a variety of practical measurement settings. Different techniques have been developed over many decades, and ...

  15. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  16. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  17. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  18. Velocity ratio measurement using the frequency of gyro backward wave

    International Nuclear Information System (INIS)

    Muggli, P.; Tran, M.Q.; Tran, T.M.

    1990-10-01

    The operating diagram of a low quality factor, 8GHz TE 01 0 gyrotron exhibits oscillations between 6.8 and 7.3GHz. These oscillations are identified as the backward wave component of the TE 21 0 traveling mode. As the resonance condition of this mode depends on the average parallel velocity [ > of the beam electrons (ω BW ≅Ω C /γ - k [ [ >), the measurement of ω BW for given Ω C and γ, is used as a diagnostic for the beam electrons velocity ratio α= / [ >. The values of α, deduced from ω BW through the linear dispersion relation for the electron cyclotron instability in an infinite waveguide, are unrealistic. A non-linear simulation code gives α values which are in very good agreement with the ones predicted by a particle trajectory code (+10% to +20%). We find numerically that the particles' velocity dispersion in vperpendicular and v [ increases ω BW . This effect explains part of the discrepancy between the values of α inferred from ω BW without velocity dispersion and the expected values. (author) 10 refs., 6 figs., 1 tab

  19. Measurements of phoretic velocities of aerosol particles in microgravity conditions

    Science.gov (United States)

    Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.

    2006-11-01

    Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.

  20. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  1. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  2. Model-assisted measurements of suspension-feeding flow velocities.

    Science.gov (United States)

    Du Clos, Kevin T; Jones, Ian T; Carrier, Tyler J; Brady, Damian C; Jumars, Peter A

    2017-06-01

    Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis , measured using a direct method based on particle image velocimetry (PIV). Past uses of PIV in suspension-feeding studies have been limited by strong laser reflections that interfere with velocity measurements proximate to the siphon. We used a new approach based on fitting PIV-based velocity profile measurements to theoretical profiles from computational fluid dynamic (CFD) models, which allowed us to calculate inhalant siphon Reynolds numbers ( Re ). We used these inhalant Re and measurements of siphon diameters to calculate exhalant Re , pumping rates, and mean inlet and outlet velocities. For the three species studied, inhalant Re ranged from 8 to 520, and exhalant Re ranged from 15 to 1073. Volumetric pumping rates ranged from 1.7 to 7.4 l h -1 for M . arenaria , 0.3 to 3.6 l h -1 for M . m ercenaria and 0.07 to 0.97 l h -1 for C . intestinalis We also used CFD models based on measured pumping rates to calculate capture regions, which reveal the spatial extent of pumped water. Combining PIV data with CFD models may be a valuable approach for future suspension-feeding studies. © 2017. Published by The Company of Biologists Ltd.

  3. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  4. Measured and modeled dry deposition velocities over the ESCOMPTE area

    Science.gov (United States)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant

  5. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  6. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  7. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Carlucci, L.N.

    1984-01-01

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  8. Metatarsophalangeal joint extension changes ultrasound measurements for plantar fascia thickness.

    Science.gov (United States)

    Granado, Michael J; Lohman, Everett B; Gordon, Keith E; Daher, Noha S

    2018-01-01

    Ultrasound is an inexpensive method for quantifying plantar fascia thickness, especially in those with plantar fasciitis. Ultrasound has also been used to assess the effectiveness of various treatments for plantar fasciitis by comparing plantar fascia thickness before and after an intervention period. While a plantar fascia thickness over 4 mm via ultrasound has been proposed to be consistent with plantar fasciitis, some researchers believe the 4 mm plantar fascia thickness level to be a dubious guideline for diagnosing plantar fasciitis due to the lack of standardization of the measurement process for plantar fascia thickness. In particular, no universal guidelines exist on the positioning of the metatarsophalangeal (MTP) joints during the procedure and the literature also has inconsistent protocols. The purpose of this study is to investigate and compare the influence of MTP joint extension on plantar fascia thickness in healthy participants and those with unilateral plantar fasciitis. The plantar fascia thickness of forty participants (20 with unilateral plantar fasciitis and 20 control) was measured via ultrasound three times at three different MTP joint positions: 1) at rest, 2) 30° of extension from the plantar surface, and 3) maximal extension possible. The plantar fascia became significantly thinner as MTP joint extension increased in both the plantar fasciitis group ( p  plantar fasciitis group, the involved plantar fascia was 1.2 to 1.3 mm thicker (p plantar fascia thickness between the two sides was less than 0.1 mm ( p  plantar fascia thickness. It is recommended that plantar fascia thickness measurements be performed with the toes at rest. If MTP joints must be extended, then the toes should be extended maximally and then noted to ensure subsequent ultrasound procedures are repeated. Standardizing the position of the MTP joints is not only important for attaining the most accurate thickness measurement of the plantar fascia, but is also

  9. Particle Image Velocimetry (PIV) Measurements of Suspension-Feeding Velocities

    Science.gov (United States)

    Du Clos, K.; Jones, I. T.; Carrier, T. J.; Jumars, P. A.

    2016-02-01

    Active suspension feeders, such as bivalves and tunicates, connect benthic and pelagic ecosystems by packaging suspended matter into larger fecal and pseudofecal particles, greatly enhancing the flux of carbon and nutrients from the water column to the benthos. The volume of water processed by a population of suspension feeders is commonly estimated by scaling up results from experiments that measure the clearance rate (the volume of water cleared of particles per time) of one or a few individual suspension feeders. Clearance rates vary, however, between species, within a species, and over time for a single individual; and the velocity fields produced by suspension feeders are likely to interact in complex ways. We measured the water velocity fields produced by two species of bivalve, Mya arenaria and Mercenaria mercenaria, and the tunicate Ciona intestinalis, using particle image velocimetry (PIV). We used these measurements to calculate flow rates and Reynolds numbers of inhalant and exhalant siphons. We also observed strong entrainment of water by M. arenaria's exhalant siphon jet that may help to explain how the clam avoids depleting the water around it of particles and oxygen as it feeds. We are using these measurements to inform computational fluid mechanics (CFD) models of suspension feeding, allowing us to examine the interactions of flow fields produced by multiple suspension feeders and other effects not quantified by clearance-rate measurements.

  10. A PRACTICAL APPROACH TO THE GROUND OSCILLATION VELOCITY MEASUREMENT METHOD

    Directory of Open Access Journals (Sweden)

    Siniša Stanković

    2017-01-01

    Full Text Available The use of an explosive’s energy during blasting includes undesired effects on the environment. The seismic influence of a blast, as a major undesired effect, is determined by many national standards, recommendations and calculations where the main parameter is ground oscillation velocity at the field measurement location. There are a few approaches and methods for calculation of expected ground oscillation velocities according to charge weight per delay and the distance from the blast to the point of interest. Utilizations of these methods and formulas do not provide satisfactory results, thus the measured values on diverse distance from the blast field more or less differ from values given by previous calculations. Since blasting works are executed in diverse geological conditions, the aim of this research is the development of a practical and reliable approach which will give a different model for each construction site where blasting works have been or will be executed. The approach is based on a greater number of measuring points in line from the blast field at predetermined distances. This new approach has been compared with other generally used methods and formulas through the use of measurements taken during research along with measurements from several previously executed projects. The results confirmed that the suggested model gives more accurate values.

  11. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  12. Blood flow velocity in the Popliteal Vein using Transverse Oscillation Ultrasound

    DEFF Research Database (Denmark)

    Bechsgaard, Thor; Lindskov Hansen, Kristoffer; Brandt, Andreas Hjelm

    2016-01-01

    . Transverse Oscillation US (TOUS), a non-invasive angle independent method, has been implemented on a commercial scanner. TOUS’s advantage compared to SDUS is a more elaborate visualization of complex flow. The aim of this study was to evaluate, whether TOUS perform equal to SDUS for recording velocities...

  13. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  14. Assessment of performance measures and learning curves for use of a virtual-reality ultrasound simulator in transvaginal ultrasound examination

    DEFF Research Database (Denmark)

    Madsen, M E; Konge, L; Nørgaard, L N

    2014-01-01

    OBJECTIVE: To assess the validity and reliability of performance measures, develop credible performance standards and explore learning curves for a virtual-reality simulator designed for transvaginal gynecological ultrasound examination. METHODS: A group of 16 ultrasound novices, along with a group......-6), corresponding to an average of 219 min (range, 150-251 min) of training. The test/retest reliability was high, with an intraclass correlation coefficient of 0.93. CONCLUSIONS: Competence in the performance of gynecological ultrasound examination can be assessed in a valid and reliable way using virtual-reality...

  15. SU-D-210-07: The Dependence On Acoustic Velocity of Medium On the Needle Template and Electronic Grid Alignment in Ultrasound QA for Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, P; Kapoor, R; Curran, B [Virginia Commonwealth University, Richmond, VA (United States); HH McGuire VA Hospital, Richmond, VA (United States)

    2015-06-15

    Purpose: To analyze the impact on acoustic velocity (AV) of two different media (water and milk) using the needle template/electronic grid alignment test. Water, easily available, makes a good material to test the alignment of the template and grid although water’s AV (1498 m/s at 25°C) is significantly different from tissue (1540 m/s). Milk, with an AV much closer (1548 m/s) to prostate tissue, may be a good substitute for water in ultrasound quality assurance testing. Methods: Tests were performed using a Hitachi ultrasound unit with a mechanical arrangement designed to position needles parallel to the transducer. In this work, two materials – distilled water and homogenized whole milk (AVs of 1498 and 1548 m/s at 25°C) were used in a phantom to test ultrasound needle/grid alignment. The images were obtained with both materials and analyzed for their placement accuracy. Results: The needle template/electronic grid alignment tests showed displacement errors between measured and calculated values. The measurements showed displacements of 2.3mm (water) and 0.4mm (milk), and 1.6mm (water) and 0.3mm (milk) at depths of 7cm and 5cm respectively from true needle positions. The calculated results showed a displacement of 2.36 mm (water); 0.435mm (milk), and 1.66mm (water) and 0.31mm (milk) at a depth of 7cm and 5cm respectively. The displacements in the X and Y directions were also calculated. At depths of 7cm and 5cm, the (ΔX,ΔY) displacements in water were (0.829mm, 2.21mm) and (0.273mm, 1.634mm) and for milk were (0.15mm, 0.44mm) and (0.05mm, 0.302mm) respectively. Conclusion: The measured and calculated values were in good agreement for all tests. They show that milk provides superior results when performing needle template and electronic grid alignment tests for ultrasound units used in prostate brachytherapy.

  16. Pressure drop ana velocity measurements in KMRR fuel rod bundles

    International Nuclear Information System (INIS)

    Yagn, Sun Kyu; Chung, Heung June; Chung, Chang Whan; Chun, Se Young; Song, Chul Wha; Won, Soon Yeun; Chung, Moon Ki

    1990-01-01

    The detailed hydraulic characteristic measurements in subchannels of longitudinally finned rod bundles using one-component LDV(Laser Doppler Velocimeter) were performed. Time mean axial velocity, turbulent intensity, and turbulent micro scales, such as time auto-correlation, Eulerian integral and micro scale, Kolmogorov length and time scale, and Taylor micro length scale were measured. The signals from LDV are inherently more or less discontinuous. The spectra of signals having such intermittent defects can be obtained by the fast Fourier transformation (FFT) of the auto-correlation function. The turbulent crossflow mixing rate between neighboring subchannels and dominant frequencies were evaluated from the measured data. Pressure drop data were obtained for the typical 36-element and 18-element fuel rod bundles fabricated by the design requirement of KMRR fuel and for other type of fuels assembled with 6-fin rods to investigate the fin effects on the pressure drop characteristics

  17. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  18. Reliability of ultrasound for measurement of selected foot structures.

    Science.gov (United States)

    Crofts, G; Angin, S; Mickle, K J; Hill, S; Nester, C J

    2014-01-01

    Understanding the relationship between the lower leg muscles, foot structures and function is essential to explain how disease or injury may relate to changes in foot function and clinical pathology. The aim of this study was to investigate the inter-operator reliability of an ultrasound protocol to quantify features of: rear, mid and forefoot sections of the plantar fascia (PF); flexor hallucis brevis (FHB); flexor digitorum brevis (FDB); abductor hallucis (AbH); flexor digitorum longus (FDL); flexor hallucis longus (FHL); tibialis anterior (TA); and peroneus longus and brevis (PER). A sample of 6 females and 4 males (mean age 29.1 ± 7.2 years, mean BMI 25.5 ± 4.8) was recruited from a university student and staff population. Scans were obtained using a portable Venue 40 musculoskeletal ultrasound system (GE Healthcare UK) with a 5-13 MHz wideband linear array probe with a 12.7 mm × 47.1mm footprint by two operators in the same scanning session. Intraclass Correlation Coefficients (ICC) values for muscle thickness (ICC range 0.90-0.97), plantar fascia thickness (ICC range 0.94-0.98) and cross sectional muscle measurements (ICC range 0.91-0.98) revealed excellent inter-operator reliability. The limits of agreement, relative to structure size, ranged from 9.0% to 17.5% for muscle thickness, 11.0-18.0% for plantar fascia, and 11.0-26.0% for cross sectional area measurements. The ultrasound protocol implemented in this work has been shown to be reliable. It therefore offers the opportunity to quantify the structures concerned and better understand their contributions to foot function. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. Effect of therapeutic ultrasound intensity on subcutaneous tissue temperature and ulnar nerve conduction velocity.

    Science.gov (United States)

    Kramer, J F

    1985-02-01

    Twenty subjects completed 5 min. periods of sonation, at each of six US intensities, over the ulnar nerve in the proximal forearm. All posttreatment NCV's differed significantly from the respective pretreatment velocities. The immediate posttreatment NCV associated with placebo US was significantly (p less than 0.01) less than that observed immediately pretreatment (2.81 m/s), while the five clinical US intensities produced significantly increased immediate posttreatment velocities: 0.5 w/cm2 (2.23 m/s) at (p less than 0.05), and 1.0 w/cm2 (2.78 m/s), 1.5 w/cm2 (3.15 m/s), 2.0 w/cm2 (4.47 m/s) and 2.5 w/cm2 (2.97 m/s) at (p less than 0.01). The posttreatment velocities associated with the five clinical intensities were all significantly greater (p less than 0.01) than that associated with placebo US. Subcutaneous tissue temperatures were directly related to the intensity of US. Not until US intensity had reached 1.5 w/cm2 did the heating effect of US negate the cooling effect of the US transmission gel, to produce significantly increased subcutaneous tissue temperatures after 5 min. sonation. The decreased ulnar motor NCV's associated with placebo US are attributed to the cooling effect of the US transmission gel. The increased ulnar motor NCV's associated with the clinical intensities of US are attributed to the deep heating effect of US. The breakdown of this linear relationship at 2.5 w/cm2 intensity suggests that at this point heating on the nerve and/or the mechanical effects of US were of sufficient magnitude so as to limit the increase in conduction velocity. Sonation over an area of approximately 4.5 times the soundhead for 5 min., along the proximal forearm, at clinical intensities did not have a bipositive effect on motor NCV.

  20. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  1. Automatic ultrasound technique to measure angle of progression during labor.

    Science.gov (United States)

    Conversano, F; Peccarisi, M; Pisani, P; Di Paola, M; De Marco, T; Franchini, R; Greco, A; D'Ambrogio, G; Casciaro, S

    2017-12-01

    To evaluate the accuracy and reliability of an automatic ultrasound technique for assessment of the angle of progression (AoP) during labor. Thirty-nine pregnant women in the second stage of labor, with fetus in cephalic presentation, underwent conventional labor management with additional translabial sonographic examination. AoP was measured in a total of 95 acquisition sessions, both automatically by an innovative algorithm and manually by an experienced sonographer, who was blinded to the algorithm outcome. The results obtained from the manual measurement were used as the reference against which the performance of the algorithm was assessed. In order to overcome the common difficulties encountered when visualizing by sonography the pubic symphysis, the AoP was measured by considering as the symphysis landmark its centroid rather than its distal point, thereby assuring high measurement reliability and reproducibility, while maintaining objectivity and accuracy in the evaluation of progression of labor. There was a strong and statistically significant correlation between AoP values measured by the algorithm and the reference values (r = 0.99, P < 0.001). The high accuracy provided by the automatic method was also highlighted by the corresponding high values of the coefficient of determination (r 2  = 0.98) and the low residual errors (root mean square error = 2°27' (2.1%)). The global agreement between the two methods, assessed through Bland-Altman analysis, resulted in a negligible mean difference of 1°1' (limits of agreement, 4°29'). The proposed automatic algorithm is a reliable technique for measurement of the AoP. Its (relative) operator-independence has the potential to reduce human errors and speed up ultrasound acquisition time, which should facilitate management of women during labor. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  2. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  3. Determination of groundwater flow velocity by radon measurements

    International Nuclear Information System (INIS)

    Hohn, E.; von Gunten, H.R.

    1990-01-01

    The groundwater resources of glacio-fluvial perialpine valleys are recharged significantly by the infiltration from rivers. The groundwater residence times between rivers and wells should be known in groundwater management problems. Short residence times can be estimated using radon. Radon concentrations in rivers are usually very low. Upon filtration and movement of the water in the ground, radon is picked up and its concentration increases by 2-3 orders of magnitude according to radioactive growth laws. Residence times and flow velocities can be estimated from the increasing radon concentrations measured in groundwater sampling tubes at different distances from the river. Results obtained with this method agree with the results from experiments with artificial tracers

  4. Radio-controlled boat for measuring water velocities and bathymetry

    Science.gov (United States)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  5. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  6. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Michael [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: ormying@polyu.edu.hk; Sin Manhong [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Pang, Shuk-fan [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-11-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = {pi}/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects.

  7. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    International Nuclear Information System (INIS)

    Ying, Michael; Sin Manhong; Pang, Shuk-fan

    2005-01-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = π/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects

  8. Endoscopic ultrasound duplex scanning for measurement of portal venous flow. Validation against transit time ultrasound flowmetry in pigs

    DEFF Research Database (Denmark)

    Hansen, E F; Strandberg, C; Bendtsen, F

    1999-01-01

    with that of transit time ultrasound (TTU) in healthy pigs. The ability of EUS to detect changes in the portal venous flow after pharmacologic intervention was also investigated. METHODS: Six anaesthetized pigs were studied. Portal venous flow was measured simultaneously by EUS duplex scanning, using a Pentax FG-32UA...... echoendoscope connected to a Hitachi EUB 515-A ultrasound scanner, and by TTU with a Cardiomed CM 4000 flowmeter probe placed on the portal vein. Terlipressin, 1 mg, and placebo were administered in a blind, randomized, crossover design. Measurements were taken at base line and 30 min after each drug...

  9. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Serial measurements of serum human placental lactogen (hPL) and serial ultrasound examinations in the evaluation of fetal growth

    DEFF Research Database (Denmark)

    Sørensen, Steen; von Tabouillot, D; Schioler, V

    2000-01-01

    Serial serum hPL measurements and serial ultrasound fetometry were compared in the evaluation of fetal growth by relating these two parameters to size at birth and to clinical factors known to influence size at birth. The data were from a prospective study of 1000 consecutive pregnant women...... considered to be at risk for fetal growth retardation with retrospective analysis. Serum hPL was measured by radioimmunoassay and fetal weight estimated by ultrasound every 3 weeks during the last trimester. hPL values were expressed as multiples of the median (MoM) and linear regression analysis of the h......PL MoM values was carried out for each pregnancy to find the slope of the line (hPL-slope); at least 3 serum hPL values were required. The estimated fetal weight and weight-for-age at birth was expressed in Z-scores. The individual intrauterine growth velocity was calculated by regression analysis...

  11. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  12. Video Measurement of the Muzzle Velocity of a Potato Gun

    Science.gov (United States)

    Jasperson, Christopher; Pollman, Anthony

    2011-01-01

    Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile…

  13. Particle velocity measurements in laser irradiated foils using ORVIS

    International Nuclear Information System (INIS)

    Sheffield, S.A.; Fisk, G.A.

    1983-01-01

    Aluminum foils from 2- to 200-μm thick have been subjected to a Nd:YAG laser pulse of low irradiance (10 9 W/cm 2 , approx. 10 ns pulse) to produce laser-driven shocks in the foils. The particle velocity history of the foil side opposite the laser deposition was monitored with nanosecond resolution by a velocity interferometer system called ORVIS. These histories indicate a shock reverberation process accelerates the foil. Peak foil velocities can be adequately calculated using a ricket propulsion model developed from experiments at much higher irradiances. A velocity of 1 km/s was developed in a 2-μm-thick free foil in a time of 50 ns. Water-confined foils attained peak particle velocities about three times higher than those of free foils

  14. Quality management of nuchal translucency ultrasound measurement in Australia.

    Science.gov (United States)

    Nisbet, Debbie; Robertson, Ann; Mannil, Blessy; Pincham, Vanessa; Mclennan, Andrew

    2018-02-22

    Nuchal translucency measurement has an established role in first trimester screening. Accurate measurement requires that technical guidelines are followed. Performance can be monitored by auditing the distribution of measurements obtained in a series of cases. The primary aim is to develop an accessible, theory-based educational program for individuals whose distribution of measurements at audit falls outside an acceptable range, and assess operator performance following this intervention. Operators whose nuchal translucency measurement distributions fall outside a normal range (38-65% above the median) were expected to undergo a teleconference tutorial. Accessible from anywhere in Australia, the one hour tutorials were run by a senior sonographer (to explain technical ultrasound aspects) and the audit program manager (to explain the audit process). In 2011, 83 operators attended the teleconference tutorials. Compared to a random comparison group of operators meeting standard in 2011, teleconference tutorial attendees were significantly more likely to: (i) operate in rural or regional, rather than metropolitan, centres (P = 0.001); (ii) be less experienced (P audit cycle and was maintained over subsequent years. The mean percentage of the study cohort reaching standard over the five-year audit was 77.8% which was not statistically different from the average for the comparison cohort of all other audited operators (79.3%; P = 0.61). Teleconference tutorials are a convenient, accessible and effective way to obtain immediate and sustained improvement in operator performance. © 2018 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  15. Measurement of surface recombination velocity on heavily doped indium phosphide

    International Nuclear Information System (INIS)

    Jenkins, P.; Ghalla-Goradia, M.; Faur, M.; Bailey, S.

    1990-01-01

    The controversy surrounding the published low values of surface recombination velocity (SRV) in n-InP, solidified in recent years when modeling of existing n/p InP solar cells revealed that the front surface SRV had to be higher than 1 x 10 6 cm/sec in order to justify the poor blue response that is characteristic of all n/p InP solar cells. In this paper, SRV on heavily doped (>10 18 cm -3 )n-type and p-type InP is measured as a function of surface treatment. For the limited range of substrates and surface treatments studied, SRV and surface stability depend strongly on the surface treatment. SRVs of ∼10 5 cm/sec in both p-type and n-type InP are obtainable, but in n-type the low SRV surfaces were unstable, and the only stable surfaces on n-type had SRVs of >10 6 cm/sec

  16. Hepatic venous pressure gradients measured by duplex ultrasound

    International Nuclear Information System (INIS)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.

    2002-01-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  17. Hepatic venous pressure gradients measured by duplex ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  18. [Renal length measured by ultrasound in adult mexican population].

    Science.gov (United States)

    Oyuela-Carrasco, J; Rodríguez-Castellanos, F; Kimura, E; Delgado-Hernández, R; Herrera-Félix, J P

    2009-01-01

    Renal length estimation by ultrasound is an important parameter in clinical evaluation of kidney disease and healthy donors. Changes in renal volume may be a sign of kidney disease. Correct interpretation of renal length requires the knowledge of normal limits, these have not been described for Latin American population. To describe normal renal length (RL) by ultrasonography in a group of Mexican adults. Ultrasound measure of RL in 153 healthy Mexican adults stratified by age. Describe the association of RL to several anthropometric variables. A total of 77 males and 76 females were scanner. The average age for the group was 44.12 +/- 15.44 years. The mean weight, body mass index (BMI) and height were 68.87 +/- 11.69 Kg, 26.77 +/- 3.82 kg/m2 and 160 +/- 8.62 cm respectively. Dividing the population by gender, showed a height of 166 +/- 6.15 cm for males and 154.7 +/- 5.97 cm for females (p =0.000). Left renal length (LRL) in the whole group was 105.8 +/- 7.56 mm and right renal length (RRL) was 104.3 +/- 6.45 mm (p = 0.000.) The LRL for males was 107.16 +/- 6.97 mm and for females was 104.6 +/- 7.96 mm. The average RRL for males was 105.74 +/- 5.74 mm and for females 102.99 +/- 6.85 mm (p = 0.008.) We noted that RL decreased with age and the rate of decline accelerates alter 60 years of age. Both lengths correlated significantly and positively with weight, BMI and height. The RL was significantly larger in males than in females in both kidneys (p = 0.036) in this Mexican population. Renal length declines after 60 years of age and specially after 70 years.

  19. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  20. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  1. Video measurements of fluid velocities and water levels in breaking waves

    CSIR Research Space (South Africa)

    Govender, K

    2002-01-01

    Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...

  2. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    Science.gov (United States)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  3. Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines

    Directory of Open Access Journals (Sweden)

    Cameron Alyse FM

    2009-11-01

    Full Text Available Abstract Background Diagnostic ultrasound provides a method of analysing soft tissue structures of the musculoskeletal system effectively and reliably. The aim of this study was to evaluate within and between session reliability of measuring muscle dorso-plantar thickness, medio-lateral length and cross-sectional area, of the abductor hallucis muscle using two different ultrasound machines, a higher end Philips HD11 Ultrasound machine and clinically orientated Chison 8300 Deluxe Digital Portable Ultrasound System. Methods The abductor hallucis muscle of both the left and right feet of thirty asymptomatic participants was imaged and then measured using both ultrasound machines. Interclass correlation coefficients (ICC with 95% confidence intervals (CI were used to calculate both within and between session intra-tester reliability. Standard error of the measurement (SEM calculations were undertaken to assess difference between the actual measured score across trials and the smallest real difference (SRD was calculated from the SEM to indicate the degree of change that would exceed the expected trial to trial variability. Results The ICCs, SEM and SRD for dorso-plantar thickness and medial-lateral length were shown to have excellent to high within and between-session reliability for both ultrasound machines. The between-session reliability indices for cross-sectional area were acceptable for both ultrasound machines. Conclusion The results of the current study suggest that regardless of the type ultrasound machine, intra-tester reliability for the measurement the abductor hallucis muscle parameters is very high.

  4. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  5. A study of the river velocity measurement techniques and analysis methods

    Science.gov (United States)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating

  6. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  7. Influence of power density on the setting behaviour of light-cured glass-ionomer cements monitored by ultrasound measurements.

    Science.gov (United States)

    Tonegawa, Motoka; Yasuda, Genta; Chikako, Takubo; Tamura, Yukie; Yoshida, Takeshi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2009-07-01

    To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements. The ultrasound equipment comprised a pulser-receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm(2). The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements. When the LCGICs were light-irradiated, each curve displayed an initial plateau at approximately 1500 m/s and then rapidly increased to a second plateau at approximately 2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm(2) than with a power density of 600 mW/cm(2). Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated. The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.

  8. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    Science.gov (United States)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  9. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Olsen, Michael; Greve, Sara; Blicher, Marie

    2016-01-01

    OBJECTIVE: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular (CV) risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood...... pressure and previously published equations. The aim of this study was to investigate whether ePWV could predict CV events independently of traditional cardiovascular risk factors and/or cfPWV. DESIGN AND METHOD: cfPWV was measured and ePWV calculated in 2366 apparently healthy subjects from four age...

  10. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    Science.gov (United States)

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  11. Accuracy of ultrasound-measured bladder wall thickness for the ...

    African Journals Online (AJOL)

    M.M. Ali

    history taking, general physical and genital examination, urine analysis, urine culture, blood chemistry, ... supine position, using an ultrasound device (BK Medical, Herlev, .... The standardisation of terminology of lower urinary tract function:.

  12. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  13. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  14. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  15. AISI/DOE Advanced Process Control Program Vol. 4 of 6: ON-LINE, NON-DESTRUCTIVE MECHANICAL PROPERTY MEASUREMENT USING LASER-ULTRASOUND

    Energy Technology Data Exchange (ETDEWEB)

    Andre' Moreau; Martin Lord; Daniel Levesqure; Marc Dubois; Jean Bussiere; Jean-Pierre Monchalin; Christian Padioleau; Guy Lamouche; Teodor Veres; Martin Viens; Harold Hebert; Pierre Basseras; Cheng-Kuei Jen

    2001-03-31

    The goal of this project was to demonstrate the feasibility to measure the mechanical properties, such as yield strength, tensile strength, elongation, strain hardening exponent and plastic strain ratio parameters, of low carbon steel sheets on the production line using laser ultrasound. The ultrasound generated by the developed apparatus travels mostly back and forth in the thickness of the steel sheet. By measuring the time delay between two echoes, and the relative amplitude of these two echoes, one can measure ultrasound velocity and attenuation. These are governed by the microstructure: grain size, crystallographic texture, dislocations, etc. Thus, by recording the time behavior of the ultrasonic signal, one can extract microstructural information. These microstructural information together with the modified Hall-Petch equation allow measurement of the mechanical properties. Through laboratory investigations with a laboratory laser ultrasound system, followed by the installation of a prototype system at LTV Steel Company's No.1 Inspection Line in Cleveland, all target mechanical properties of ultra low carbon (ULC), low carbon (LC) and high strength low alloy (HSLA) steel sample lots were measured meeting or nearly meeting all the target accuracies. Thus, the project realized its goal to demonstrate that the mechanical properties of low carbon steel sheets can be measured on-line using laser ultrasound

  16. Aortic pulse wave velocity measurement in systemic sclerosis patients

    Directory of Open Access Journals (Sweden)

    M. Sebastiani

    2012-12-01

    Full Text Available Background. Systemic sclerosis (SSc is characterized by endothelial dysfunction and widespread microangiopathy. However, a macrovascular damage could be also associated. Aortic pulse wave velocity (aPWV is known to be a reliable indicator of arterial stiffness and a useful prognostic predictor of cardiovascular events. Moreover, aPWV may be easily measured by non-invasive, user-friendly tool. Aim of our study was to evaluate aPWV alterations in a series of SSc patients. Methods. The aPWV was evaluated in 35 consecutive female SSc patients and 26 sex- and age-matched healthy controls. aPWV alterations were correlated with cardiopulmonary involvement. Results. A significant increase of aPWV was observed in SSc patients compared to controls (9.4±3.2 m/s vs 7.3±1 m/s; P=0.002. In particular, 14/35 (40% SSc patients and only 1/26 (4% controls (P=0.0009 showed increased aPWV (>9 m/s cut-off value. Moreover, echocardiography evaluation showed an increased prevalence of right atrial and ventricular dilatation (atrial volume: 23.6±6.2 mL vs 20.3±4.3 mL, P=0.026; ventricular diameter 19.5±4.9 mm vs 15.9±1.6 mm; P=0.001 associated to higher values of pulmonary arterial systolic pressure (PAPs in SSc patients (31.5±10.4 mmHg vs 21.6±2.9 mmHg; P50 years old. Furthermore, altered aPWV was more frequently associated with limited cutaneous pattern, longer disease duration (≥5 years, and/or presence of anticentromere antibody (ACA. Conclusions. A significantly higher prevalence of abnormally increased aPWV was evidenced in SSc patients compared to healthy controls. The possibility of more pronounced and diffuse vascular damage in a particular SSc subset (ACA-positive subjects with limited cutaneous scleroderma and longer disease duration might be raised.

  17. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    Science.gov (United States)

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  18. Method of measuring directed electron velocities in flowing plasma using the incoherent regions of laser scattering

    International Nuclear Information System (INIS)

    Jacoby, B.A.; York, T.M.

    1979-02-01

    With the presumption that a shifted Maxwellian velocity distribution adequately describes the electrons in a flowing plasma, the details of a method to measure their directed velocity are described. The system consists of a ruby laser source and two detectors set 180 0 from each other and both set at 90 0 with respect to the incident laser beam. The lowest velocity that can be determined by this method depends on the electron thermal velocity. The application of this diagnostic to the measurement of flow velocities in plasma being lost from the ends of theta-pinch devices is described

  19. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  20. Central corneal thickness and anterior chamber depth measurement by Sirius® Scheimpflug tomography and ultrasound

    Directory of Open Access Journals (Sweden)

    Jorge J

    2013-02-01

    Full Text Available J Jorge,1 JL Rosado,2 JA Díaz-Rey,1 JM González-Méijome11Clinical and Experimental Optometry Research Laboratory, Center of Physics (Optometry, School of Sciences, University of Minho, Braga, 2Opticlinic, Lisboa, PortugalBackground: The purpose of this study was to compare the accuracy of the new Sirius® Scheimpflug anterior segment examination device for measurement of central corneal thickness (CCT and anterior chamber depth (ACD with that of CCT measurements obtained by ultrasound pachymetry and ACD measurements obtained by ultrasound biometry, respectively.Methods: CCT and ACD was measured in 50 right eyes from 50 healthy subjects using a Sirius Scheimpflug camera, SP100 ultrasound pachymetry, and US800 ultrasound biometry.Results: CCT measured with the Sirius was 546 ± 39 µm and 541 ± 35 µm with SP100 ultrasound pachymetry (P = 0.003. The difference was statistically significant (mean difference 4.68 ± 10.5 µm; limits of agreement −15.8 to 25.20 µm. ACD measured with the Sirius was 2.96 ± 0.3 mm compared with 3.36 ± 0.29 mm using US800 ultrasound biometry (P < 0.001. The difference was statistically significant (mean difference −0.40 ± 0.16 mm; limits of agreement −0.72 to 0.07 mm. When the ACD values obtained using ultrasound biometry were corrected according to the values for CCT measured by ultrasound, the agreement increased significantly between both technologies for ACD measurements (mean difference 0.15 ± 0.16 mm; limits of agreement −0.16 to 0.45 mm.Conclusion: CCT and ACD measured by Sirius and ultrasound methods showing good agreement between repeated measurements obtained in the same subjects (repeatability with either instrument. However, CCT and ACD values, even after correcting ultrasound ACD by subtracting the CCT value obtained with either technology should not be used interchangeably.Keywords: Scheimpflug corneal tomography, ultrasound biometry, ultrasound pachymetry, limits of agreement

  1. Direct measurement technique for shock wave velocity with irradiation drive

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiaoshi; Liu Shenye; Jiang Xiaohua; Ding Yongkun

    2011-01-01

    According to the ionization mechanism of transparent material under super high pressure, the direct diagnosis method of shock wave has been analyzed. With the Drude free electron model, the reflectivity difference of shock wave front under different pressures was analyzed. The blank effect in the detector was studied, which is caused by the X-ray ionization of transparent material, after analyzing the reflectivity data in space-time scale. The experiment shows that the beginning point and duration of blank effect are consistent with the start point and duration of laser pulse, respectively. And the reflectivity of shock wave front is about 35% when the shock velocity is 32 km/s. The reason and solution for blank effect was presented. The formula to calculate the shock wave velocity in transparent material was also deduced and verified. (authors)

  2. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 μm2 cross-section. The flow field is seeded with polystyrene microspheres of size dp = 2.1 μm. The volumetric flow rate is set equal to 20 μl/min.

  3. Bulk velocity measurements by video analysis of dye tracer in a macro-rough channel

    International Nuclear Information System (INIS)

    Ghilardi, T; Franca, M J; Schleiss, A J

    2014-01-01

    Steep mountain rivers have hydraulic and morphodynamic characteristics that hinder velocity measurements. The high spatial variability of hydraulic parameters, such as water depth (WD), river width and flow velocity, makes the choice of a representative cross-section to measure the velocity in detail challenging. Additionally, sediment transport and rapidly changing bed morphology exclude the utilization of standard and often intrusive velocity measurement techniques. The limited technical choices are further reduced in the presence of macro-roughness elements, such as large, relatively immobile boulders. Tracer tracking techniques are among the few reliable methods that can be used under these conditions to evaluate the mean flow velocity. However, most tracer tracking techniques calculate bulk flow velocities between two or more fixed cross-sections. In the presence of intense sediment transport resulting in an important temporal variability of the bed morphology, dead water zones may appear in the few selected measurement sections. Thus a technique based on the analysis of an entire channel reach is needed in this study. A dye tracer measurement technique in which a single camcorder visualizes a long flume reach is described and developed. This allows us to overcome the problem of the presence of dead water zones. To validate this video analysis technique, velocity measurements were carried out on a laboratory flume simulating a torrent, with a relatively gentle slope of 1.97% and without sediment transport, using several commonly used velocity measurement instruments. In the absence of boulders, salt injections, WD and ultrasonic velocity profiler measurements were carried out, along with dye injection technique. When boulders were present, dye tracer technique was validated only by comparison with salt tracer. Several video analysis techniques used to infer velocities were developed and compared, showing that dye tracking is a valid technique for bulk velocity

  4. Velocity measurement by vortex shedding. Contribution to the mass-flow measurement

    International Nuclear Information System (INIS)

    Martinez Piquer, T.

    1988-01-01

    The phenomenon of vortex shedding has been known for centuries and has been the subject of scientific studies for about one hundred years. It is only in the ten last years that is has been applied to the measurement of fluids velocity. In 1878 F. Strouhal observed the vortex shedding phenomenon and shown that the shedding frequency of a wire vibrating in the wind was related to the wire diameter and the wind velocity. Rayleigh, who introduced the non-dimensional Strouhal number, von Karman and Rohsko, carried out extensive work or the subject which indicated that vortex shedding could form the basis for a new type of flowmeter. The thesis describes two parallel lines of investigation which study in depth the practical applications of vortex shedding. The first one deals with the measure of velocity and it presents the novelty of a bluff body with a cross-section which has not been used until this day. This body is a circular cylinder with a two-dimensional slit along the diameter and situated in crossdirection to the fluid's stream. It possesses excellent characteristics and it is the most stable as a vortex shedder, which gives it great advantage to the rest of the shapes used until now. The detection of the vortex has been performed by measuring the pressure changes generated by the vortex on two posts situated just beside the slit. To calculate the frequency of the vortex shedding, we obtain the difference of the mentioned signals, which are the same and 180 out of phase. Finding out the period of the autocorrelation function of this signal we can estimate the velocity of the fluid. A logical equipment based on a microprocessor has been designed for the calculation using a zero-crossing time algorithm implemented in assembler language. The second line of research refers to a new method of measure mass flow. The pressure signal generated by the vortex has an intensity which is proportional to the density and to the square of the velocity. Since we have already

  5. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    International Nuclear Information System (INIS)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko; Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-01-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  6. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko [Tokyo Medical Coll. (Japan); Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-11-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  7. Method for Estimating Evaporative Potential (IM/CLO) from ASTM Standard Single Wind Velocity Measures

    Science.gov (United States)

    2016-08-10

    IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY MEASURES DISCLAIMER The opinions or assertions contained herein are the private views of the...USARIEM TECHNICAL REPORT T16-14 METHOD FOR ESTIMATING EVAPORATIVE POTENTIAL (IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY... ASTM STANDARD SINGLE WIND VELOCITY MEASURES Adam W. Potter Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements ...

  9. Factors Affecting Estimated Fetal Weight Measured by Ultrasound

    Directory of Open Access Journals (Sweden)

    Hasan Energin

    2016-06-01

    Full Text Available Objective: In this study, we aimed to evaluate the fac­tors that affect the accuracy of estimated fetal weight in ultrasound. Methods: This study was conducted in 3rd degree hospi­tal antenatal outpatient clinic and perinatology inpatient clinic between June 2011 and January 2012. The data were obtained from 165 pregnant women. Inclusion cri­teria were; no additional diseases, giving birth within 48 hours after ultrasound. The same physician executed all ultrasound process. Age, height, weight, obstetric history and obstetric follow –up findings were recorded. Results: Fetal gender, fetal presentation, presence of meconium in amniotic fluid, maternal parity, did not sig­nificantly affect the accuracy of fetal weight estimation by ultrasound. The mean difference between estimated fetal weight and birth weight was 104.48±84 gr in nullipars and 94.2±81 gr in multipars (p=0.44; mean difference was 98.22±79 gr in male babies and 98.15±86 gr in female babies (p=0.99. Mean difference between estimated fetal weight and birth weight was 96.92±81 gr in babies with cephalic presentation and 110.9±90 gr in babies with breech presentation (p=0.53; this difference was 95.36±79 gr in babies with amniotic fluid with meconium and 98.82± 83 gr in babies with amniotic fluid without me­conium (p=0.83. Conclusion: Fetal weight is estimation is one of key points in the obstetrician’s intrapartum managament. And it is important to make fetal weight estimation accurately. In our study, consistent with literature, we observed that fetal gender; meconium presence in amniotic fluid, fetal presentation, maternal parity does not significantly effect the accuracy of fetal weight estimation by ultrasound.

  10. Functional analysis of third ventriculostomy patency with phase-contrast MRI velocity measurements

    International Nuclear Information System (INIS)

    Lev, S.; Bhadelia, R.A.; Estin, D.; Heilman, C.B.; Wolpert, S.M.

    1997-01-01

    Our purpose was to explore the utility of cine phase-contrast MRI velocity measurements in determining the functional status of third ventriculostomies, and to correlate the quantitative velocity data with clinical follow-up. We examined six patients with third ventriculostomies and 12 normal subjects by phase-contrast MRI. The maximum craniocaudal to maximum caudocranial velocity range was measured at regions of interest near the third ventricular floor, and in cerebrospinal fluid anterior to the upper pons and spinal cord on midline sagittal images. Ratios of the velocities of both the third ventricle and prepontine space to the space anterior to the spinal cord were obtained. The velocities near the third ventricular floor and in the pontine cistern were significantly higher in patients than in normal subjects, but the velocity anterior to the spinal cord was similar between the groups. The velocity ratios, used to normalize individual differences, were also higher in patients than in controls. Two patients had lower velocity ratios than their fellows at the third ventricular floor and in the pontine cistern; one required a shunt 11 months later, while in the other, who had a third ventricular/thalamic tumor, the lower values probably reflect distortion of the third ventricular floor. We conclude that phase-contrast MR velocity measurements, specifically the velocity ratio between the high pontine cistern and the space anterior to the spinal cord, can help determine the functional status of third ventriculostomies. (orig.)

  11. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  12. Shear wave velocity measurements for differential diagnosis of solid breast masses: a comparison between virtual touch quantification and virtual touch IQ.

    Science.gov (United States)

    Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko

    2013-12-01

    This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. A Measuring Method About the Bullet Velocity in Electromagnetic Rail Gun

    Directory of Open Access Journals (Sweden)

    Jianming LIU

    2014-02-01

    Full Text Available The operating principle of electromagnetic rail gun by store capacitor was analyzed. A simulation model about the bullet velocity in the electromagnetic rail gun was built. The results of computer simulation experiment showed the relationships between the bullet velocity and the capacitor charging voltage and the pellet mass. By ten coil targets, a new kind of measuring method for the bullet velocity in electromagnetic rail gun was presented. The results of the actual experiment were analyzed. The improving method for measuring bullet velocity was put forward.

  14. Doppler ultrasound for detection of renal transplant artery stenosis - Threshold peak systolic velocity needs to be higher in a low-risk or surveillance population

    International Nuclear Information System (INIS)

    Patel, U.; Khaw, K.K.; Hughes, N.C.

    2003-01-01

    AIMS: To establish the ideal threshold arterial velocity for the diagnosis of renal transplant artery stenosis in a surveillance population with a low pre-test probability of stenosis. METHODS: Retrospective review of Doppler ultrasound, angiographic and clinical outcome data of patients transplanted over a 3-year period. Data used to calculate sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) for various threshold peak systolic velocity values. RESULTS: Of 144 patients transplanted, full data were available in 117 cases. Five cases had renal transplant artery stenosis--incidence 4.2% [stenosis identified at a mean of 6.5 months (range 2-10 months)]. All five cases had a significant arterial pressure gradient across the narrowing and underwent angioplasty. Threshold peak systolic velocity of ≥2.5 m/s is not ideal [specificity=79% (CI 65-82%), PPV=18% (CI 6-32%), NPV=100% (CI 94-100%)], subjecting many patients to unnecessary angiography--8/117 (6%) in our population. Comparable values if the threshold is set at ≥3.0 m/s are 93% (CI 77-96%), 33% (CI 7-44%) and 99% (CI 93-100%), respectively. The clinical outcome of all patients was satisfactory, with no unexplained graft failures or loss. CONCLUSIONS: In a surveillance population with a low pre-test probability of stenosis, absolute renal artery velocity ≥2.5 m/s is a limited surrogate marker for significant renal artery stenosis. The false-positive rate is high, and ≥3.0 m/s is a better choice which will halve the number of patients enduring unnecessary angiography. Close clinical follow-up of patients in the 2.5-3.0 m/s range, with repeat Doppler ultrasound if necessary, will identify the test false-negatives

  15. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  16. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  19. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  20. Velocity Deficits in the Wake of Model Lemon Shark Dorsal Fins Measured with Particle Image Velocimetry

    Science.gov (United States)

    Terry, K. N.; Turner, V.; Hackett, E.

    2017-12-01

    Aquatic animals' morphology provides inspiration for human technological developments, as their bodies have evolved and become adapted for efficient swimming. Lemon sharks exhibit a uniquely large second dorsal fin that is nearly the same size as the first fin, the hydrodynamic role of which is unknown. This experimental study looks at the drag forces on a scale model of the Lemon shark's unique two-fin configuration in comparison to drag forces on a more typical one-fin configuration. The experiments were performed in a recirculating water flume, where the wakes behind the scale models are measured using particle image velocimetry. The experiments are performed at three different flow speeds for both fin configurations. The measured instantaneous 2D distributions of the streamwise and wall-normal velocity components are ensemble averaged to generate streamwise velocity vertical profiles. In addition, velocity deficit profiles are computed from the difference between these mean streamwise velocity profiles and the free stream velocity, which is computed based on measured flow rates during the experiments. Results show that the mean velocities behind the fin and near the fin tip are smallest and increase as the streamwise distance from the fin tip increases. The magnitude of velocity deficits increases with increasing flow speed for both fin configurations, but at all flow speeds, the two-fin configurations generate larger velocity deficits than the one-fin configurations. Because the velocity deficit is directly proportional to the drag force, these results suggest that the two-fin configuration produces more drag.

  1. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    Science.gov (United States)

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. High Precision UTDR Measurements by Sonic Velocity Compensation with Reference Transducer

    Directory of Open Access Journals (Sweden)

    Sam Stade

    2014-07-01

    Full Text Available An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol’skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21–39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol’skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  3. Paediatric renal length measurements from ultrasound and DMSA scans: does clinical practice reflect theoretical normal values?

    International Nuclear Information System (INIS)

    Que, L.; Rutland, M.D.; Hassan, I.M.

    1999-01-01

    Full text: Renal length measurement is a routine part of ultrasound examination in children and those results are plotted on a normogram style graph, so that each child's results are compared to a normal range (mean ± 2 S.D.). Renal length measurements from the posterior oblique views of dimercaptosuccinic acid (DMSA) scans in our department have not always correlated well with the ultrasound measurements on the same patients. Renal lengths from the DMSA scans of 120 patients with apparently normal kidneys were recorded and used to generate a normogram of renal length at different ages (0.5-7 years). This DMSA normogram was compared to the ultrasound (US) normogram used in the Paediatric Radiology Department, and it showed slight differences in renal lengths (3-8 mm), but that the US normogram had smaller coefficients of variation (US = 6.6%, NM 8.3%), implying a 'tighter' normal range. 39 of these patients had DMSA and ultrasound measurements of renal length within 3 months, and these were studied first by calculating the mean and CV values for different age groups, and then by plotting individual renal lengths on the appropriate normograms. The measured data produced much greater variability in the ultrasound measurements than the DTPA measurements, and the individual points produced 4/78 (5.1%) abnormal results for DMSA, but 21/78 (26.9%) abnormal results for ultrasound. Thus, in routine clinical use, using patients with apparently normal kidneys, ultrasound was unable to match the 'normal range' set by their current normogram, but the nuclear medicine showed 5.1% of values outside the normal (DMSA) range, which was completely appropriate for a range of ± 2 standard deviations

  4. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    Science.gov (United States)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  5. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  6. Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Different Ultrasound Systems

    Science.gov (United States)

    Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.

    2014-01-01

    Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth

  7. Temperature and velocity measurement fields of fluids using a schlieren system.

    Science.gov (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David

    2012-06-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  8. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jida Xing

    2015-06-01

    Full Text Available In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared

  9. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  10. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  11. Measurement of the burning velocity of propane-air mixtures using soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yukio

    1988-12-20

    By filling a soap bubble with propane-air mixture of spacified equivalence ratio and by igniting it at the center, the flame propagation velocity was measured applying multiplex exposure Schlieren method. And the flow velocity of the unburnt propane-air mixture was also measured by a hot-wire anemometer. From the differences of the above two velocities, the burning velocity was obtained. The values of the burning velocity agreed well with the highly accurate results of usual measurements. The maximum value of the burning velocity, which exists at an equivalence ratio of 1.1, was 50cm/s. This value agreed well with the theoretical calculation result on the on-dimensional flame by Warnatz. The burning velocity in the range of from 0.7 to 1.5 equivalence ratios decreases symmetrically with the maximum value at the center. The velocity decrease in the excessive concentration range of fuel is only a little and converges between 7 and 10 cm/s. To evade the influence of the flame-front instability, measurements were done from 2 to 5cm from the ignition center. Thus accurate values were obtained. 23 refs., 5 figs.

  12. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Kofman, Abraham G; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    Recently, Kocsis et al (2011 Science 332 1170) reported the observation of ‘average trajectories of single photons’ in a two-slit interference experiment. This was possible by using the quantum weak-measurement method, which implies averaging over many events, i.e. in fact, a multi-photon limit of classical linear optics. We give a classical-optics interpretation of this experiment and other related problems. It appears that weak measurements of the local momentum of photons made by Kocsis et al represent measurements of the Poynting vector in an optical field. We consider both the real and imaginary parts of the local momentum and show that their measurements have been realized in classical optics using small-probe particles. We also examine the appearance of ‘anomalous’ values of the local momentum: either negative (backflow) or exceeding the wavenumber (superluminal propagation). These features appear to be closely related to vortices and evanescent waves. Finally, we revisit a number of older works and find examples of photon trajectories and anomalous-momentum measurements in various optical experiments. (paper)

  14. Evaluation of StereoPIV Measurement of Droplet Velocity in an Effervescent Spray

    Directory of Open Access Journals (Sweden)

    Sina Ghaemi

    2010-06-01

    Full Text Available Particle image velocimetry (PIV is a well known technique for measuring the instantaneous velocity field of flows. However, error may be introduced when measuring the velocity field of sprays using this technique when the spray droplets are used as the seed particles. In this study, the effect of droplet number density, droplet velocity profile, and droplet size distribution of a spray produced by an effervescent atomizer on velocity measurement using a StereoPIV has been investigated. A shadowgraph-particle tracking velocimetry (S-PTV system provided measurement of droplet size and velocity for comparison. This investigation demonstrated that the StereoPIV under-estimates velocity at near-field dense spray region where measurement accuracy is limited by multi-scattering of the laser sheet. In the dilute far-field region of the spray, StereoPIV measurement is mostly in agreement with velocity of the droplet size-class which is close to the mean diameter based on droplet number frequency times droplet cross sectional area.

  15. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  16. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  17. Improved flow velocity estmates from oving-boat ADCO measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Sassi, M.G.; Hoitink, A.J.F.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  18. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.

    1997-01-01

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  19. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  20. Measurement of lithium target surface velocity in the IFMIF/EVEDA lithium test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura.takuji@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan); Hoashi, Eiji [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Yoshihashi, Sachiko; Horiike, Hiroshi [Fukui University of Technology, Gakuen 3-6-1, Fukui-shi, Fukui 910-8505 (Japan); Wakai, Eiichi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2016-11-01

    Highlights: • The objective is to measure the free-surface velocity field of the IFMIF Li target. • The Li target has an important role to remove 10 MW heat input from a deuteron beam. • The free-surface of the Li target is under the most severe heat load condition. • Measured surface velocities are almost equal to cross-sectional average velocities. • It was confirmed that the IFMIF Li target has adequate heat removal performance. - Abstract: In the framework of the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), we measured surface velocity fields of a lithium (Li) target at the EVEDA Li test loop under specifically-designated IFMIF conditions (target speeds of 10, 15, and 20 m/s, vacuum pressure of 10{sup −3} Pa, and Li temperature of 250 °C). In the current design of the IFMIF, the free surface of the Li target is under a most severe heat load condition with respect to Li boiling. The objective of this study is to measure the actual free-surface velocity under these IFMIF conditions to evaluate the heat removal performance of the Li target. The measured results (using the surface-wave tracking method that our team developed) showed two-dimensional time-averaged velocity distributions around the IFMIF beam footprint being virtually uniform, and close to the cross-sectional average velocity. The uniformity of the velocity distributions was less than 1 m/s. The comparison between the measured and analyzed surface velocity at the beam center showed that the analysis accurately predicts the measurement results within a margin of 3%. Finally, it was confirmed that the Li target delivers adequate heat removal performance in the IFMIF as designed.

  1. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-01-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion

  2. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    Science.gov (United States)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  3. Measurement of sound velocity on metal surfaces by impulsive stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Shimada, Yukihiro; Murakami, Hiroshi; Nishimura, Akihiko

    2005-01-01

    Impulsive stimulated Brillouin Scattering (ISBS) experiment was performed in order to measure acoustic waves on metal surfaces. The ISBS technique offers robust method of obtaining acoustic velocities without physical contact. The generation and detection mechanism were discussed. (author)

  4. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  5. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  6. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  7. Computational fluid dynamics using in vivo ultrasound blood flow measurements

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    . The geometry for the CFD simulation model was obtained by segmentation of MRI scans using a 3 Tesla scanner (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). Spectral velocity data were obtained from a BK Medical ProFocus scanner using a research interface. All data were obtained from healthy volunteers...

  8. Precise measurement of velocity dependent friction in rotational motion

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh, E-mail: sabieh@lums.edu.pk [School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A, Lahore 54792 (Pakistan)

    2011-09-15

    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the disc. It is thus observed how the maximum height is achieved by the hanger decrements in every bounce. From the decrements, the rotational frictional losses are measured. The precision is enhanced by correlating vertical motion with the angular motion. This method leads to a substantial improvement in precision. Furthermore, the frictional torque is shown to be proportional to the angular speed. The experiment has been successfully employed in the undergraduate lab setting.

  9. Recent results from the ICARUS experiment - Measurements concerning neutrino velocity

    International Nuclear Information System (INIS)

    Cieslik, K.

    2014-01-01

    The ICARUS T600 detector at the LNGS Gran Sasso underground Laboratory is the first large mass Liquid Argon Time Projection Chamber (LAr-TPC) designed to study the ν μ → ν τ oscillation for neutrinos from the CERN-CNGS beam, the atmospheric neutrinos and matter stability. In stable conditions the detector has been collecting data since October 2010. The results, presented here, of the search for analogue to the Cherenkov radiation at superluminal speeds and the measurement of the neutrino time of flight are incompatible with the OPERA collaboration claiming that CNGS muon neutrinos arrive to Gran Sasso, after covering a distance of about 732 km, earlier than expected from the luminal speed. (author)

  10. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  11. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  12. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    International Nuclear Information System (INIS)

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  13. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  14. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    Science.gov (United States)

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  15. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  16. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Kamiar Aminian

    2012-09-01

    Full Text Available Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer’s natural technique.

  17. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses......Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  18. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    by ultrasound dilution was determined within three days of the procedure. The methods were compared using regression analysis and tested for systematic bias. Results: Failure to position the thermodilutional catheter correctly was observed in 8 out of 46 (17%) pre-intervention measurements. Post-intervention......Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...

  19. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  20. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  1. The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.

    Science.gov (United States)

    Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K

    2011-09-01

    To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.

  2. Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures

    Science.gov (United States)

    Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.

    2017-12-01

    Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.

  3. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    DEFF Research Database (Denmark)

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor

    2004-01-01

    For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously...... developed mathematical model of the anemometer in combination with a large database of representative room flows measured with a 3-D Laser Doppler anemometer (LDA). A direct comparison between measurements with a thermal anemometer and a 3-D LDA in flows of varying velocity and turbulence intensity shows...... good agreement not only between the two instruments but also between the thermal anemometer and its mathematical model. The differences in the measurements performed with the two instruments are all well within the measurement uncertainty of both anemometers....

  4. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  5. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis

    Science.gov (United States)

    St. Clair, James; Holbrook, W. Steven

    2017-12-01

    Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR) has been shown to be an effective tool for measuring snow water equivalent (SWE) because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD) filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3-21 % of the manual measurements when the antenna is mounted on the front of a snowmobile ˜ 0.5 m above the snow surface.

  6. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis

    Directory of Open Access Journals (Sweden)

    J. St. Clair

    2017-12-01

    Full Text Available Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR has been shown to be an effective tool for measuring snow water equivalent (SWE because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3–21 % of the manual measurements when the antenna is mounted on the front of a snowmobile  ∼  0.5 m above the snow surface.

  7. Blood flow velocity measurements in chicken embryo vascular network via PIV approach

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Tuchin, Valery V.

    2018-04-01

    A method for measuring of blood velocity in the native vasculature of a chick embryo by the method of micro anemometry from particle images (μPIV) is improved. A method for interrogation regions sorting by the mask of the vasculature is proposed. A method for sorting of the velocity field of capillary blood flow is implemented. The in vitro method was evaluated for accuracy in a glass phantom of a blood vessel with a diameter of 50 μm and in vivo on the bloodstream of a chicken embryo, by comparing the transverse profile of the blood velocity obtained by the PIV method with the theoretical Poiseuille laminar flow profile.

  8. Measurements of Terminal Velocities of Cirrus Clouds in the Upper Trosphere

    Directory of Open Access Journals (Sweden)

    Nee Jan Bai

    2016-01-01

    Full Text Available Cirrus clouds are composed of ice crystals condensed from humidity due to low temperature condition in the upper atmosphere. The microphysics of cirrus clouds including sizes and shapes of ice particles are not well understood but are important in climate modeling. Ice crystal will fall under gravitational sedimentation to reach terminal velocities which depend on the size, mass, and ice habit. We studied here the terminal velocity of cirrus clouds by using lidar observations at Chungli (25N, 121E. The terminal velocities for a few cases of stable cirrus clouds are measured to determine the ice particle sizes and processes in the upper atmosphere.

  9. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  10. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  11. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    Science.gov (United States)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  12. Parallel ion flow velocity measurement using laser induced fluorescence method in an electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Okamoto, Atsushi; Terasaka, Kenichiro; Ogiwara, Kohei; Tanaka, Masayoshi Y.; Aramaki, Mitsutoshi

    2010-01-01

    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model. (author)

  13. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  14. 3D velocity measurements in fluid flows using multiple exposure holography

    International Nuclear Information System (INIS)

    Stanislas, M.; Rodriguez, O.; Dadi, M.; Beluche, F.

    1987-01-01

    An account is given of multiple exposure holography's application to the measurement of velocity in fluid flows. The method is nonintrusive, and yields access to the three components of the instantaneous velocity in three-dimensional domains. These characteristics render such holographic data complementary to classical LDV. Attention is given to solutions proposed for such limitations inherent in the method as the rather lengthy acquisition time; this difficulty is presently addressed by means of an automated evaluation methodology. 12 references

  15. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  16. Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis.

    Science.gov (United States)

    Cerrolaza, Juan J; Peters, Craig A; Martin, Aaron D; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius George

    2016-04-01

    We define sonographic biomarkers for hydronephrotic renal units that can predict the necessity of diuretic nuclear renography. We selected a cohort of 50 consecutive patients with hydronephrosis of varying severity in whom 2-dimensional sonography and diuretic mercaptoacetyltriglycine renography had been performed. A total of 131 morphological parameters were computed using quantitative image analysis algorithms. Machine learning techniques were then applied to identify ultrasound based safety thresholds that agreed with the t½ for washout. A best fit model was then derived for each threshold level of t½ that would be clinically relevant at 20, 30 and 40 minutes. Receiver operating characteristic curve analysis was performed. Sensitivity, specificity and area under the receiver operating characteristic curve were determined. Improvement obtained by the quantitative imaging method compared to the Society for Fetal Urology grading system and the hydronephrosis index was statistically verified. For the 3 thresholds considered and at 100% sensitivity the specificities of the quantitative imaging method were 94%, 70% and 74%, respectively. Corresponding area under the receiver operating characteristic curve values were 0.98, 0.94 and 0.94, respectively. Improvement obtained by the quantitative imaging method over the Society for Fetal Urology grade and hydronephrosis index was statistically significant (p hydronephrosis can identify thresholds of clinically significant washout times with 100% sensitivity to decrease the number of diuretic renograms in up to 62% of children. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Measuring the Angular Velocity of a Propeller with Video Camera Using Electronic Rolling Shutter

    Directory of Open Access Journals (Sweden)

    Yipeng Zhao

    2018-01-01

    Full Text Available Noncontact measurement for rotational motion has advantages over the traditional method which measures rotational motion by means of installing some devices on the object, such as a rotary encoder. Cameras can be employed as remote monitoring or inspecting sensors to measure the angular velocity of a propeller because of their commonplace availability, simplicity, and potentially low cost. A defect of the measurement with cameras is to process the massive data generated by cameras. In order to reduce the collected data from the camera, a camera using ERS (electronic rolling shutter is applied to measure angular velocities which are higher than the speed of the camera. The effect of rolling shutter can induce geometric distortion in the image, when the propeller rotates during capturing an image. In order to reveal the relationship between the angular velocity and the image distortion, a rotation model has been established. The proposed method was applied to measure the angular velocities of the two-blade propeller and the multiblade propeller. The experimental results showed that this method could detect the angular velocities which were higher than the camera speed, and the accuracy was acceptable.

  18. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  19. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  20. The cardiac cycle is a major contributor to variability in size measurements of abdominal aortic aneurysms by ultrasound

    DEFF Research Database (Denmark)

    Grøndal, Nikolaj Fibiger; Bramsen, Morten; Thomsen, Marie Dahl

    2012-01-01

    The objective of the study was to evaluate the impact of the cardiac cycle on ultrasound measurements of abdominal aortic aneurysm (AAA) diameters.......The objective of the study was to evaluate the impact of the cardiac cycle on ultrasound measurements of abdominal aortic aneurysm (AAA) diameters....

  1. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  2. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  3. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  4. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  5. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people

    NARCIS (Netherlands)

    Pluijm, S.M.F.; Graafmans, W.C.; Bouter, L.M.; Lips, P.T.A.M.

    1999-01-01

    In this prospective study we investigated the predictive value of quantitative ultrasound (QUS) measurements and other potential predictors of osteoporotic fractures in the elderly. During a I-year period, 710 participants (132 men and 578 women), aged 70 years and older (mean age ± SD: 82.8 ± 5.9),

  6. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  7. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  8. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  9. Liner velocity, current, and symmetry measurements on the 32 MA flux compression generator experiment ALT-1

    CERN Document Server

    Clark, D A; Rodríguez, G; Tabaka, L J

    2001-01-01

    Summary form only given, as follows. A flux compression generator based pulse power system, designed, built, and fielded by a Russian team at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF), was used to successfully drive an aluminum liner to velocities greater than 10 km/sec. The experiment objective was to demonstrate performance of a precision liner implosion at Atlas current of 30 MA or greater. Diagnostics to measure liner performance were an essential part of the experiment. An experimental team from Los Alamos National Laboratory (LANL) provided a suite of diagnostics to measure liner performance. Three diagnostics were fielded. 1. a velocity interferometer (VISAR) to continuously measure the liner inner surface velocity from throughout the entire range of travel. 2. Two Faraday rotation devices to measure liner current during the implosion. 3. Sixteen fiber optic impact pins to record liner impact time and provide axial and azimuthal symmetry information. All diagnostics...

  10. An ultrasound mini-balance for measurement of therapy level ultrasound

    International Nuclear Information System (INIS)

    Sutton, Yvonne; McBride, Karne; Pye, Stephen

    2006-01-01

    This paper describes a cost-effective method for measuring acoustic power using a radiation force balance. The device is based around a long established balance design with a gantry arrangement fitted with an absorbing target. The notion of this balance design is that it can easily be constructed from materials that would be readily available within a clinical or industrial environment. The mini-balance was calibrated using a transfer standard against an NPL Reference balance, so a comparison of the performance between the two systems could be assessed. The measurements were completed at 1 MHz and 3 MHz and over the acoustic power range of 1 W to 15 W. The results show the acoustic power measured on the mini-balance to be within 5% of the reference measurements made on the NPL Balance. A separate systematic uncertainty budget is also presented based on studies made on the balance and on similar systems. The overall expanded uncertainty was calculated to be within 14% at 1 W level, decreasing with increasing power level to 7.4% above 5 W

  11. A comparison of portable ultrasound and fully-equipped clinical ultrasound unit in the thyroid size measurement of the Indo-Pacific bottlenose dolphin.

    Directory of Open Access Journals (Sweden)

    Brian C W Kot

    Full Text Available Measurement of thyroid size and volume is a useful clinical parameter in both human and veterinary medicine, particularly for diagnosing thyroid diseases and guiding corrective therapy. Procuring a fully-equipped clinical ultrasound unit (FCUS may be difficult in most veterinary settings. The present study evaluated the inter-equipment variability in dolphin thyroid ultrasound measurements between a portable ultrasound unit (PUS and a FCUS; for both units, repeatability was also assessed. Thyroid ultrasound examinations were performed on 15 apparently healthy bottlenose dolphins with both PUS and FCUS under identical scanning conditions. There was a high level of agreement between the two ultrasound units in dolphin thyroid measurements (ICC = 0.859-0.976. A high intra-operator repeatability in thyroid measurements was found (PUS: ICC = 0.854-0.984, FCUS: ICC = 0.709-0.954. As a conclusion, no substantial inter-equipment variability was found between PUS and FCUS in dolphin thyroid size measurements under identical scanning conditions, supporting further application of PUS for quantitative analyses of dolphin thyroid gland in both research and clinical practices at aquarium settings.

  12. A first comparison of irregularity and ion drift velocity measurements in the E-region

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2006-09-01

    Full Text Available E-region irregularity velocity measurements at large flow angles with the STARE Finland coherent VHF radar are considered in context of the ion and electron velocity data provided by the EISCAT tristatic radar system, CUTLASS Finland coherent HF radar, and IMAGE fluxgate magnetometers. The data have been collected during a special experiment on 27 March 2004 during which EISCAT was scanning between several E- and one F-region altitudes along the magnetic field line. Within the E-region, the EISCAT measurements at two altitudes of 110 and 115 km are considered while the electron velocity is inferred from the EISCAT ion velocity measurements at 278 km. The line-of-sight (l-o-s VHF velocity measured by STARE VHF los is compared to the ion and electron velocity components (Vi0 comp and Ve0 comp along the STARE l-o-s direction. The comparison with Ve0 comp for the entire event shows that the measurements exhibit large scatter and small positive correlation. The correlation with Ve0 comp was substantial in the first half of the interval under study when Ve0 comp was larger in magnitude. The comparison with Vi0 comp at 110 and 115 km shows a considerable positive correlation, with VHF velocity being typically larger (smaller in magnitude than Vi0 comp at 110 km (115 km so that VVHF los appears to be bounded by the ion velocity components at two altitudes. It is also demonstrated that the difference between VVHF los and Vi0 comp at 110 km can be treated, in the first approximation, as a linear function of the effective backscatter height heff also counted from 110 km; heff varies in the range 108–114 km due to the altitude integration effects in the scattering cross-section. Our results are consistent with the notion that VHF

  13. Simultaneous measurement of particle and fluid velocities in particle-laden flows

    International Nuclear Information System (INIS)

    Jin, D. X.; Lee, D. Y.

    2009-01-01

    For the velocity measurement in a particle-laden fluid flow, the fluid velocity and the inherently dispersed particle velocity can be analyzed by using PIV and PTV, respectively. Since the PIV result statistically represents the average displacement of all the particles in a PIV image, it is inevitable that the PIV result includes the influence of the dispersed particles' displacement if a single CCD camera is used to simultaneously measure the fluid velocity and the dispersed particle velocity. The influence of dispersed particles should be excluded before the PIV analysis in order to evaluate the fluid velocity accurately. In this study, the optimum replacement brightness of dispersed particles to minimize the false influence of dispersed particles on the PIV analysis was theoretically derived. Simulation results show that the modification of dispersed particle brightness can significantly reduce the PIV error caused by the dispersed particles. This modification method was also verified in the analysis of an actual experimental case of the particle-laden fluid flow in a triangular grooved channel

  14. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  15. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  16. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  17. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  18. Pulmonary branch arterial flow can be measured with cine MR velocity mapping

    International Nuclear Information System (INIS)

    Caputo, G.R.; Kondo, C.; Masui, T.; Foster, E.; Geraci, S.J.; O'Sullivan, M.; Higgins, C.B.

    1990-01-01

    This paper assesses the capability of cine MR phase velocity mapping (CVM) to measure main, right-sided, and left-sided pulmonary arterial (PA) blood flow. The authors examined a constant-flow phantom and nine healthy volunteers with use of 1.5-T MR imaging system (GE Signa) with phase velocity cine sequences. CVM correctly measured constant-flow phantom velocities (range, 20-190 cm/sec; r = .998, SEE = 4.2 cm/sec), and velocity with use of angulated planes to section the phantom tube perpendicularly. CVM peak systolic main PA velocity (79 cm/sec ± 10) correlated well with Doppler US measurements (80 cm/sec ± 7). CVM main PA flow correlated well with conventional cine MR LV stroke volume measurements (r = .98, SEE = 4.8 mL). Left and right PA flow on the angulated planes were 29 mL ± 7 and 34 mL ± 10, respectively

  19. Helioseismic measurements in the solar envelope using group velocities of surface waves

    Science.gov (United States)

    Vorontsov, S. V.; Baturin, V. A.; Ayukov, S. V.; Gryaznov, V. K.

    2014-07-01

    At intermediate- and high-degree l, solar p and f modes can be considered as surface waves. Using variational principle, we derive an integral expression for the group velocities of the surface waves in terms of adiabatic eigenfunctions of normal modes, and address the benefits of using group-velocity measurements as a supplementary diagnostic tool in solar seismology. The principal advantage of using group velocities, when compared with direct analysis of the oscillation frequencies, comes from their smaller sensitivity to the uncertainties in the near-photospheric layers. We address some numerical examples where group velocities are used to reveal inconsistencies between the solar models and the seismic data. Further, we implement the group-velocity measurements to the calibration of the specific entropy, helium abundance Y, and heavy-element abundance Z in the adiabatically stratified part of the solar convective envelope, using different recent versions of the equation of state. The results are in close agreement with our earlier measurements based on more sophisticated analysis of the solar oscillation frequencies. These results bring further support to the downward revision of the solar heavy-element abundances in recent spectroscopic measurements.

  20. On-line velocity measurements using phase probes at the SuperHILAC

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs

  1. Development of Autonomous Boat-Type Robot for Automated Velocity Measurement in Straight Natural River

    Science.gov (United States)

    Sanjou, Michio; Nagasaka, Tsuyoshi

    2017-11-01

    The present study describes an automated system to measure the river flow velocity. A combination of the camera-tracking system and the Proportional/Integral/Derivative (PID) control could enable the boat-type robot to remain in position against the mainstream; this results in reasonable evaluation of the mean velocity by a duty ratio which corresponds to rotation speed of the screw propeller. A laser range finder module was installed to measure the local water depth. Reliable laboratory experiments with the prototype boat robot and electromagnetic velocimetry were conducted to obtain a calibration curve that connects the duty ratio and mean current velocity. The remaining accuracy in the target point was also examined quantitatively. The fluctuation in the spanwise direction is within half of the robot length. It was therefore found that the robot remains well within the target region. We used two-dimensional navigation tests to guarantee that the prototype moved smoothly to the target points and successfully measured the streamwise velocity profiles across the mainstream. Moreover, the present robot was found to move successfully not only in the laboratory flume but also in a small natural river. The robot could move smoothly from the starting point near the operator's site toward the target point where the velocity is measured, and it could evaluate the cross-sectional discharge.

  2. Measuring the diameter of rising gas bubbles by means of the ultrasound transit time technique

    Energy Technology Data Exchange (ETDEWEB)

    Richter, T., E-mail: Thomas.Richter6@tu-dresden.de; Eckert, K., E-mail: Kerstin.Eckert@tu-dresden.de; Yang, X.; Odenbach, S.

    2015-09-15

    Highlights: • Ultrasound transit time technique (UTTT) is applied to the zig-zag raise of gas bubble. • Comparison of bubble diameter and tilt, measured by UTTT, with high-speed imaging. • Uncertainty in the determination of the bubble diameter by UTTT is less than 7%. • UTTT is able to measure dynamic changes in bubble size in opaque liquids and vessels. • UTTT can be applied to liquid metal loops. - Abstract: This study presents ultrasound transit time technique (UTTT) measurements of the diameter variations of single argon bubbles rising in a zig-zag trajectory in water. Simultaneous size measurements with a high-speed camera show that UTTT resolves both the apparent diameter and the tilt of the bubble axis with an accuracy of better than 7%. This qualifies UTTT for the measurement of bubble sizes in opaque liquids, such as liquid metals, or vessels.

  3. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  4. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    Science.gov (United States)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  5. Trajectory and velocity measurement of a particle in spray by digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  6. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  7. Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The gray of two images of a same particle taken by a digital camera with different exposure times is different too. Based on the gray difference of particle images in a double-exposed photo and autocorrelation processing of digital images,this paper proposes a method for measuring particle velocities and sizes simultaneously. This paper also introduces the theoretical foundation of this method,the process of particle imaging and image processing,and the simultaneous measurement of velocity and size of a low speed flow field with 35 μm and 75 μm standard particles. The graphical measurement results can really reflect the flow characteristics of the flow field. In addition,although the measured velocity and size histograms of these two kinds of standard particles are slightly wider than the theoretical ones,they are all still similar to the normal distribution,and the peak velocities and diameters of the histograms are consistent with the default values. Therefore,this measurement method is capable of providing moderate measurement accuracy,and it can be further developed for high-speed flow field measurements.

  8. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...... that these traditional risk scores have underestimated the complicated impact of age and blood pressure on arterial stiffness and cardiovascular risk....

  9. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    Science.gov (United States)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  10. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... is a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels. Multimodal...

  11. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    International Nuclear Information System (INIS)

    Krauter, N; Stefani, F

    2017-01-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation. (paper)

  12. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats.

    Science.gov (United States)

    Lorenzetti, Silvio; Lamparter, Thomas; Lüthy, Fabian

    2017-12-06

    The velocity of a barbell can provide important insights on the performance of athletes during strength training. The aim of this work was to assess the validity and reliably of four simple measurement devices that were compared to 3D motion capture measurements during squatting. Nine participants were assessed when performing 2 × 5 traditional squats with a weight of 70% of the 1 repetition maximum and ballistic squats with a weight of 25 kg. Simultaneously, data was recorded from three linear position transducers (T-FORCE, Tendo Power and GymAware), an accelerometer based system (Myotest) and a 3D motion capture system (Vicon) as the Gold Standard. Correlations between the simple measurement devices and 3D motion capture of the mean and the maximal velocity of the barbell, as well as the time to maximal velocity, were calculated. The correlations during traditional squats were significant and very high (r = 0.932, 0.990, p squats and was less accurate. All the linear position transducers were able to assess squat performance, particularly during traditional squats and especially in terms of mean velocity and time to maximal velocity.

  13. On the Measurement of the Velocity of Light Emitted by an Ultrarelativistic Source

    Science.gov (United States)

    Kupryaev, N. V.

    2015-01-01

    By analytical calculations it has been shown that in papers on the measurement of the velocity of light published in 2011 in the journals Uspekhi Fizicheskikh Nauk [Physics-Uspekhi] and Pis'ma v ZhETF [JRTP Letters], in actual fact the velocity of a light pulse from a relativistic clot of electrons was not measured. All that was done was to compare the velocity of light emitted by an ultrarelativistic source with the velocity of light from a fixed source, i.e., both in the first and second variants (one independent quantity was compared with another), in essence, it was simply postulated. In the first variant a glass plate was used as the fixed light source, and in the second variants, a synchrotron pulse was used as the reference signal. The velocity of light was calculated using a calculated time based on the postulate of the special theory of relativity (STR) on the invariance of the velocity of light. This, of course, contradicts the Newton-Ritz hypothesis on ballistic addition of velocities, but at the present time this idea is not taken seriously. Practically none of the serious contemporary critics of STR, apart, of course, from amateurs, holds this point of view. The result cannot be considered as a direct experimental confirmation of the second postulate of Einstein's special theory of relativity, i.e., its main part, which speaks of the constancy of the velocity of light in all inertial reference frames, but only of that part which speaks of the independence of the velocity of light on motion of the source. Moreover, this same result stands as equal proof of the so-called theory of the luminiferous ether, which held sway up to the creation of the special theory of relativity and which has now been revived, i.e., it does not distinguish between these two theories. It is fundamentally impossible in principle to measure the velocity of light by the proposed method, it is only possible to postulate it.

  14. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  15. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    Science.gov (United States)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  16. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-02-15

    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  17. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  18. Measurement of Aortic Pulse Wave Velocity With a Connected Bathroom Scale.

    Science.gov (United States)

    Campo, David; Khettab, Hakim; Yu, Roger; Genain, Nicolas; Edouard, Paul; Buard, Nadine; Boutouyrie, Pierre

    2017-09-01

    Measurement of arterial stiffness should be more available. Our aim was to show that aortic pulse wave velocity can be reliably measured with a bathroom scale combining the principles of ballistocardiography (BCG) and impedance plethysmography on a single foot. The calibration of the bathroom scale was conducted on a group of 106 individuals. The aortic pulse wave velocity was measured with the SphygmoCor in the supine position. Three consecutive measurements were then performed on the Withings scale in the standing position. This aorta-leg pulse transit time (alPTT) was then converted into a velocity with the additional input of the height of the person. Agreement between the SphygmoCor and the bathroom scale so calibrated is assessed on a separate group of 86 individuals, following the same protocol. The bias is 0.25 m·s-1 and the SE 1.39 m·s-1. This agreement with Sphygmocor is "acceptable" according to the ARTERY classification. The alPTT correlated well with cfPTT with (Spearman) R = 0.73 in pooled population (cal 0.79, val 0.66). The aorta-leg pulse wave velocity correlated with carotid-femoral pulse wave velocity with R = 0.76 (cal 0.80, val 0.70). Estimation of the aortic pulse wave velocity is feasible with a bathroom scale. Further investigations are needed to improve the repeatability of measurements and to test their accuracy in different populations and conditions. © The Author 2017. Published by Oxford University Press on behalf of American Journal of Hypertension.

  19. Runoff velocity behaviour on smooth pavement and paving blocks surfaces measured by a tilted plot

    Directory of Open Access Journals (Sweden)

    Sedyowati Laksni

    2017-06-01

    Full Text Available Paving blocks have been widely known as an alternative technology for reducing runoff discharge due to their infiltration performance and capability of retarding the flow. Surface configuration of the different paving blocks types and the openings area play important role in decreasing the runoff velocity. In this study, we investigated the surface runoff velocity on two types of paving blocks layers, and a smooth pavement as comparison. The paving blocks type were rectangular blocks, which have 3.2% openings ratio and hexagonal blocks, which have 6.5% openings ratio. We used a tilted plot covering area of 2 × 6 m, equipped by a rainfall simulator to accommodate the variation of surface slope and rainfall intensity. We measured the velocity by using modification of dye tracer and buoyancy method. The data were then tabulated and graphed based on the paving types and the surface slopes. Generally, the velocity-slope relationship has demonstrated that the increase in surface slope leads to the increase in velocity. In this study, the result showed that slope and rainfall intensity simultaneously influenced the velocity (F = 19.91 > Ftable = 5.14; P < 0.05. However, the findings of this study showed a weak relationship between the changes of surface slope and the changes of runoff velocity on the rectangular blocks (R2 = 0.38. The greater slope did not always invariably lead to the greater runoff velocity. It was likely that there was other predictor variable that was not identified before, and need to be further investigated.

  20. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    Science.gov (United States)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  1. MR velocity mapping measurement of renal artery blood flow in patients with impaired kidney function

    DEFF Research Database (Denmark)

    Cortsen, M; Petersen, L.J.; Stahlberg, F

    1996-01-01

    Renal blood flow (RBF) was measured in 9 patients with chronic impaired kidney function using MR velocity mapping and compared to PAH clearance and 99mTc-DTPA scintigraphy. An image plane suitable for flow measurement perpendicular to the renal arteries was chosen from 2-dimensional MR angiography....... MR velocity mapping was performed in both renal arteries using an ECG-triggered gradient echo pulse sequence previously validated in normal volunteers. Effective renal plasma flow was calculated from the clearance rate of PAH during constant infusion and the split of renal function was evaluated...... by 99mTc-DTPA scintigraphy. A reduction of RBF was found, and there was a significant correlation between PAH clearance multiplied by 1/(1-hematocrit) and RBF determined by MR velocity mapping. Furthermore, a significant correlation between the distribution of renal function and the percent distribution...

  2. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  3. Agreement between anatomic and ultrasound measurements of femoral trochlear depth

    DEFF Research Database (Denmark)

    Miles, James Edward; Westrup, Ulrik; Eriksen, Thomas

    and ultrasonographic measurements of trochlear depth using the red fox hind limb as a canine surrogate, dividing the trochlea into five regions from the origin of the caudal cruciate ligament to the proximal aspect of the trochlea. We found reasonable agreement between anatomic and ultrasonographic measurements...

  4. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations.

  5. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    International Nuclear Information System (INIS)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo

    2014-01-01

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations

  6. Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography

    DEFF Research Database (Denmark)

    Salewski, M.; Nocente, M.; Jacobsen, A.S.

    2018-01-01

    Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non...... framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors....

  7. Validation of an ultrasound dilution technology for cardiac output measurement and shunt detection in infants and children.

    Science.gov (United States)

    Lindberg, Lars; Johansson, Sune; Perez-de-Sa, Valeria

    2014-02-01

    To validate cardiac output measurements by ultrasound dilution technology (COstatus monitor) against those obtained by a transit-time ultrasound technology with a perivascular flow probe and to investigate ultrasound dilution ability to estimate pulmonary to systemic blood flow ratio in children. Prospective observational clinical trial. Pediatric cardiac operating theater in a university hospital. In 21 children (6.1 ± 2.6 kg, mean ± SD) undergoing heart surgery, cardiac output was simultaneously recorded by ultrasound dilution (extracorporeal arteriovenous loop connected to existing arterial and central venous catheters) and a transit-time ultrasound probe applied to the ascending aorta, and when possible, the main pulmonary artery. The pulmonary to systemic blood flow ratio estimated from ultrasound dilution curve analysis was compared with that estimated from transit-time ultrasound technology. Bland-Altman analysis of the whole cohort (90 pairs, before and after surgery) showed a bias between transit-time ultrasound (1.01 ± 0.47 L/min) and ultrasound dilution technology (1.03 ± 0.51 L/min) of -0.02 L/min, limits of agreement -0.3 to 0.3 L/min, and percentage error of 31%. In children with no residual shunts, the bias was -0.04 L/min, limits of agreement -0.28 to 0.2 L/min, and percentage error 19%. The pooled co efficient of variation was for the whole cohort 3.5% (transit-time ultrasound) and 6.3% (ultrasound dilution), and in children without shunt, it was 2.9% (transit-time ultrasound) and 4% (ultrasound dilution), respectively. Ultrasound dilution identified the presence of shunts (pulmonary to systemic blood flow ≠ 1) with a sensitivity of 100% and a specificity of 92%. Mean pulmonary to systemic blood flow ratio by transit-time ultrasound was 2.6 ± 1.0 and by ultrasound dilution 2.2 ± 0.7 (not significant). The COstatus monitor is a reliable technique to measure cardiac output in children with high sensitivity and specificity for detecting the

  8. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  9. A finite element solution to conjugated heat transfer in tissue using magnetic resonance angiography to measure the in vitro velocity field

    Science.gov (United States)

    Dutton, Andrew William

    1993-12-01

    A combined numerical and experimental system for tissue heat transfer analysis was developed. The goal was to develop an integrated set of tools for studying the problem of providing accurate temperature estimation for use in hyperthermia treatment planning in a clinical environment. The completed system combines (1) Magnetic Resonance Angiography (MRA) to non-destructively measure the velocity field in situ, (2) the Streamwise Upwind Petrov-Galerkin finite element solution to the 3D steady state convective energy equation (CEE), (3) a medical image based automatic 3D mesh generator, and (4) a Gaussian type estimator to determine unknown thermal model parameters such as thermal conductivity, blood perfusion, and blood velocities from measured temperature data. The system was capable of using any combination of three thermal models (1) the Convective Energy Equation (CEE), (2) the Bioheat Transfer Equation (BHTE), and (3) the Effective Thermal Conductivity Equation (ETCE) Incorporation of the theoretically correct CEE was a significant theoretical advance over approximate models made possible by the use of MRA to directly measure the 3D velocity field in situ. Experiments were carried out in a perfused alcohol fixed canine liver with hyperthermia induced through scanned focused ultrasound Velocity fields were measured using Phase Contrast Angiography. The complete system was then used to (1) develop a 3D finite element model based upon user traced outlines over a series of MR images of the liver and (2) simulate temperatures at steady state using the CEE, BHTE, and ETCE thermal models in conjunction with the gauss estimator. Results of using the system on an in vitro liver preparation indicate the need for improved accuracy in the MRA scans and accurate spatial registration between the thermocouple junctions, the measured velocity field, and the scanned ultrasound power No individual thermal model was able to meet the desired accuracy of 0.5 deg C, the resolution

  10. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung [Severance Children' s Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  11. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    International Nuclear Information System (INIS)

    Shon, Beom Seok; Kim, Myung Joon; Han, Sang Won; Im, Young Jae; Lee, Mi Jung

    2014-01-01

    To measure shear wave velocities (SWVs) by acoustic radiation force impulse (ARFI) ultrasound elastography in normal kidneys and in hydronephrotic kidneys in young children and to compare SWVs between the hydronephrosis grades. This study was approved by an institutional review board, and informed consent was obtained from the parents of all the children included. Children under the age of 24 months were prospectively enrolled. Hydronephrosis grade was evaluated on ultrasonography, and three valid ARFI measurements were attempted using a high-frequency transducer for both kidneys. Hydronephrosis was graded from 0 to 4, and high-grade hydronephrosis was defined as grades 3 and 4. Fifty-one children underwent ARFI measurements, and three valid measurements for both kidneys were obtained in 96% (49/51) of the patients. Nineteen children (38.8%) had no hydronephrosis. Twenty-three children (46.9%) had unilateral hydronephrosis, and seven children (14.3%) had bilateral hydronephrosis. Seven children had ureteropelvic junction obstruction (UPJO). Median SWVs in kidneys with high-grade hydronephrosis (2.02 m/sec) were higher than those in normal kidneys (1.75 m/sec; P=0.027). However, the presence of UPJO did not influence the median SWVs in hydronephrotic kidneys (P=0.362). Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  12. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  13. AMH MEASUREMENT VERSUS OVARIAN ULTRASOUND IN THE DIAGNOSIS OF POLYCYSTIC OVARY SYNDROME IN DIFFERENT PHENOTYPES.

    Science.gov (United States)

    Carmina, Enrico; Campagna, Anna M; Fruzzetti, Franca; Lobo, Rogerio A

    2016-03-01

    This study was designed to assess the value of serum anti-Müllerian hormone (AMH) in the diagnosis of polycystic ovary syndrome (PCOS) in various phenotypes and to assess ovarian ultrasound parameters. We performed a retrospective matched controlled study of 113 females with various PCOS phenotypes and 47 matched controls. The diagnostic utility of AMH measurement and ovarian ultrasound were compared. Using receiver operating characteristic (ROC) curve analyses, the threshold for AMH (>4.7 ng/mL) and ultrasound parameters (follicle number per ovary [FNPO] >22 and ovarian volume [OV] >8 cc) were established. In the entire cohort, AMH had a low sensitivity of 79%; while FNPO and OV were 93% and 68%, respectively. Specificities ranged from 85 to 96%. In classic anovulatory PCOS, AMH exhibited a sensitivity of 91%, and for FNPO and OV the corresponding sensitivities were 92% and 72%. In the ovulatory phenotype, AMH sensitivity was only 50%, while FNPO and OV were 95% and 50%, respectively. In the nonhyperandrogenic phenotype, the sensitivity of AMH was 53% while those for FNPO and OV were 93% and 67%. AMH does not appear to be helpful for all subjects with PCOS but may be of some value in those who are anovulatory. However, FNPO was highly sensitive in all phenotypes, and was the single best criterion assessed for all subjects, suggesting the important role of ultrasound.

  14. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    Science.gov (United States)

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  15. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  16. Flow velocity measurement by using zero-crossing polarity cross correlation method

    International Nuclear Information System (INIS)

    Xu Chengji; Lu Jinming; Xia Hong

    1993-01-01

    Using the designed correlation metering system and a high accurate hot-wire anemometer as a calibration device, the experimental study of correlation method in a tunnel was carried out. The velocity measurement of gas flow by using zero-crossing polarity cross correlation method was realized and the experimental results has been analysed

  17. A simple measurement method of molecular relaxation in a gas by reconstructing acoustic velocity dispersion

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Zhang, Xiangqun; Li, Caiyun

    2018-01-01

    Recently, a decomposition method of acoustic relaxation absorption spectra was used to capture the entire molecular multimode relaxation process of gas. In this method, the acoustic attenuation and phase velocity were measured jointly based on the relaxation absorption spectra. However, fast and accurate measurements of the acoustic attenuation remain challenging. In this paper, we present a method of capturing the molecular relaxation process by only measuring acoustic velocity, without the necessity of obtaining acoustic absorption. The method is based on the fact that the frequency-dependent velocity dispersion of a multi-relaxation process in a gas is the serial connection of the dispersions of interior single-relaxation processes. Thus, one can capture the relaxation times and relaxation strengths of N decomposed single-relaxation dispersions to reconstruct the entire multi-relaxation dispersion using the measurements of acoustic velocity at 2N  +  1 frequencies. The reconstructed dispersion spectra are in good agreement with experimental data for various gases and mixtures. The simulations also demonstrate the robustness of our reconstructive method.

  18. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...

  19. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  20. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  1. Recovery of Stokes waves from velocity measurements on an axis of symmetry

    International Nuclear Information System (INIS)

    Matioc, Bogdan-Vasile

    2015-01-01

    We provide a new method to recover the profile of Stokes waves, and more generally of waves with smooth vorticity, from measurements of the horizontal velocity component on a vertical axis of symmetry of the wave surface. Although we consider periodic waves only, the extension to solitary waves is straightforward. (paper)

  2. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available In this paper we report on the laboratory investigations of breaking water waves. Measurements of the water levels and instantaneous fluid velocities were conducted in water waves breaking on a sloping beach within a glass flume. Instantaneous water...

  3. Velocity field measurements in an evaporating sessile droplet by means of micro-PIV technique

    Directory of Open Access Journals (Sweden)

    Yagodnitsyna Anna

    2016-01-01

    Full Text Available Velocity fields are measured in evaporating sessile droplets on two substrates with different contact angles and contact angle hysteresis using micro resolution particle image velocimetry technique. Different flow patterns are observed in different stages of droplet evaporation: a flow with vortices and a radial flow. Flow structure is found to be similar for droplets on different substrates.

  4. Galileo, measurement of the velocity of light, and the reaction times.

    Science.gov (United States)

    Foschi, Renato; Leone, Matteo

    2009-01-01

    According to the commonly accepted view, Galileo Galilei devised in 1638 an experiment that seemed able to show that the velocity of light is finite. An analysis of archival material shows that two decades later members of the Florence scientific society Accademia del Cimento followed Galileo guidelines by actually attempting to measure the velocity of light and suggesting improvements. This analysis also reveals a fundamental difference between Galileo's and Florence academy's methodologies and that Galileo's experiment was, in some respects, a pioneering work affecting also the history of the psychology of perception.

  5. A 4-spot time-of-flight anemometer for small centrifugal compressor velocity measurements

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1992-01-01

    The application of laser anemometry techniques in turbomachinery facilities is a challenging dilemma requiring an anemometer system with special qualities. Here, we describe the use of a novel laser anemometry technique applied to a small 4.5 kg/s, 4:1 pressure ratio centrifugal compressor. Sample velocity profiles across the blade pitch are presented for a single location along the rotor. The results of the intra-blade passage velocity measurements will ultimately be used to verify CFD 3-D viscous code predictions.

  6. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    Science.gov (United States)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  7. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  8. Automated 3D ultrasound measurement of the angle of progression in labor.

    Science.gov (United States)

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  9. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  10. Point Measurements of Fermi Velocities by a Time-of-Flight Method

    DEFF Research Database (Denmark)

    Falk, David S.; Henningsen, J. O.; Skriver, Hans Lomholt

    1972-01-01

    The present paper describes in detail a new method of obtaining information about the Fermi velocity of electrons in metals, point by point, along certain contours on the Fermi surface. It is based on transmission of microwaves through thin metal slabs in the presence of a static magnetic field...... applied parallel to the surface. The electrons carry the signal across the slab and arrive at the second surface with a phase delay which is measured relative to a reference signal; the velocities are derived by analyzing the magnetic field dependence of the phase delay. For silver we have in this way...... obtained one component of the velocity along half the circumference of the centrally symmetric orbit for B→∥[100]. The results are in agreement with current models for the Fermi surface. For B→∥[011], the electrons involved are not moving in a symmetry plane of the Fermi surface. In such cases one cannot...

  11. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  12. PIV measurements of velocities and accelerations under breaking waves on a slope

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Carstensen, Stefan; Christensen, Erik Damgaard

    2017-01-01

    waves. In this study, we have investigated the wave kinematics under steep and breaking waves on a laboratory beach with a slope of 1/25. The velocity field was measured by use of Particle Image Velocimetry (PIV) at a sample rate of 96Hz. The high sample rate allowed for the accelerations...... to be determined directly from the sampled velocities. It was found that both velocities and accelerations differ from the ones predicted from common wave theories such as streamfunction theory. This was especially evident at the top part of the wave close to the surface. This was not surprising, since...... the breaking event is a highly non-linear process. The results presented here may facilitate computations of the impact force on offshore structures and furthermore be used for validation of CFD models while altogether shedding light on the mechanisms behind breaking waves....

  13. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  14. Development of three-dimensional phasic-velocity distribution measurement in a large-diameter pipe

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2s. (author)

  15. The spatial filtering method for solid particle velocity measurement based on an electrostatic sensor

    International Nuclear Information System (INIS)

    Xu, Chuanlong; Tang, Guanghua; Zhou, Bin; Wang, Shimin

    2009-01-01

    The spatial filtering method for particle velocity measurement has the advantages of simplicity of the measurement system and convenience of data processing. In this paper, the relationship between solid particles mean velocity in a pneumatic pipeline and the power spectrum of the output signal of an electrostatic sensor was mathematically modeled. The effects of the length of the sensor, the thickness of the dielectric pipe and its length on the spatial filtering characteristics of the sensor were also investigated using the finite element method. As for the roughness of and the difficult determination of the peak frequency f max of the power spectrum characteristics of the output signal of the sensor, a wavelet analysis based filtering method was applied to smooth the curve, which can accurately determine the peak frequency f max . Finally, experiments were performed on a pilot dense phase pneumatic conveying rig at high pressure to test the performance of the velocity measurement system. The experimental results show that the system repeatability is within ±4% over a gas superficial velocity range of 8.63–18.62 m s −1 for a particle concentration range of 0.067–0.130 m 3 m −3

  16. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  17. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

    Science.gov (United States)

    Li, Mu; Zhang, Shuai; Zhang, Hongping; Zhang, Gongmu; Wang, Feng; Zhao, Jianheng; Sun, Chengwei; Jeanloz, Raymond

    2018-05-01

    We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ˜7 g /cm3 , but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ ˜1 .3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ˜0. 25 - 0 .65 TPa , where SiO2 is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ˜0. 65 - 1 .0 TPa , consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.

  18. High-magnification velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phil; Fernandez, Erik; Ali, Mohd; Alvi, Farrukh

    2014-11-01

    The Resonance-Enhanced Microjet (REM) actuator developed at our laboratory produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet flowing into a cylindrical cavity with a single orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1 mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and 2-component particle image velocimetry. The challenges of these measurements at such small scales and supersonic velocities are discussed. The results clearly show that the microactuator produces supersonic pulsed jets with velocities exceeding 400 m/s. This is the first direct measurement of the velocity field and its temporal evolution produced by such actuators. Comparisons are made between the flow visualizations, velocity field measurements, and simulations using Implicit LES for a similar microactuator. With high, unsteady momentum output, this type of microactuator has potential in a range of flow control applications.

  19. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  20. LOCAL VELOCITY PROFILES MEASURED BY PIV IN AN VESSEL AGITATED BY RUSHTON TURBINE

    Directory of Open Access Journals (Sweden)

    Radek Šulc

    2014-12-01

    Full Text Available The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV. The experiments were carried out in a fully baffled cylindrical flat bottom vessel 300 mm in inner diameter. The tank was agitated by a Rushton turbine 100 mm in diameter. The velocity fields were measured for three impeller rotation speeds 300 rpm, 450 rpm and 600 rpm and the corresponding Reynolds numbers in the range 50 000 < Re < 100 000, which means that the fully-developed turbulent flow was reached. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller rotational speed. The velocity profiles were averaged, and were expressed by Chebyshev polynomials of the 1st order. Although the experimentally investigated area was relatively far from the impeller, and it was located in upward flow to the impeller, no state of local isotropy was found. The ratio of the axial rms fluctuation velocity to the radial component was found to be in the range from 0.523 to 0.768. The axial turbulence intensity was found to be in the range from 0.293 to 0.667, which corresponds to a high turbulence intensity.

  1. A generalized formulation for noise-based seismic velocity change measurements

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  2. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  3. In-situ measurements of seismic velocities in the San Francisco Bay Region; part III

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Roth, Edward F.

    1977-01-01

    Seismic wave velocities (compressional and shear) are important parameters for estimating the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. In the current program seismic velocities have been measured at 59 locations 1n the San Francisco Bay Region. This report is the third in a series of Open-File Reports and describes the in-situ velocity measurements at locations 35-59. At each location seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill cuttings, undisturbed (cored) samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the sites. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. There is a variety of geologic and seismic data available in the San Francisco Bay Region for use 1n developing the general zoning techniques which can then be applied to other areas. Shear wave velocities 1n near-surface geologic materials are of especial interest for engineering seismology and seismic zonation studies, yet in general, they are difficult to measure because of contamination by compressional waves. A comparison of various in-situ techniques by Warrick (1974) establishes the reliability of the method utilizing a "horizontal traction" source for sites underlain by bay mud and alluvium. Gibbs, and others (1975a) present data from 12 holes and establishes the reliability of the method for sites underlain by a variety of different rock units and suggest extending the measurements to

  4. Neutrino velocity measurement with the OPERA experiment in the CNGS beam

    International Nuclear Information System (INIS)

    Brunetti, G.

    2011-05-01

    The thesis concerns the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam. There are different theoretical models that allow for Lorentz violating effects which can be investigated with measurements on terrestrial neutrino beams. The MINOS experiment published in 2007 a measure on the muon neutrinos over a distance of 730 km finding a deviation with respect to the expected time of flight of 126 ns with a statistical error of 32 ns and a systematic error of 64 ns. The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in the detector due to the higher energy beam and the much more sophisticated timing system explicitly upgraded in view of the neutrino velocity measurement. This system is composed by atomic cesium clocks and GPS receivers operating in 'common view mode'. Thanks to this system a time-transfer between the two sites with a precision at the level of 1 ns is possible. Moreover, a Fast Waveform Digitizer was installed along the proton beam line at CERN in order to measure the internal time structure of the proton pulses that are sent to the CNGS target. The result on the neutrino velocity is the most precise measurement so far with terrestrial neutrino beams: the neutrino time of flight was determined with a statistical uncertainty of about 10 ns and a systematic uncertainty smaller than 20 nano-seconds. (author)

  5. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  6. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  7. Central Corneal Thickness Measurement by Ultrasound versus Orbscan II

    Directory of Open Access Journals (Sweden)

    Amir Faramarzi

    2008-12-01

    Full Text Available

    PURPOSE: To compare Orbscan II and ultrasonic pachymetry for measurement of central corneal thickness (CCT in eyes scheduled for keratorefractive surgery. METHODS: CCT was measured using Orbscan II (Bausch & Lomb, USA and then by ultrasonic pachymetry (Tomey SP-3000, Tomey Ltd, Japan in 100 eyes of 100 patients with no history of ocular surgery scheduled for excimer laser refractive surgery. RESULTS: Mean CCT was 544.7±35.5 (range 453-637 µm by ultrasonic pachymetry versus 546.9±41.6 (range 435-648 µm measured by Orbscan II applying an acoustic factor of 0.92 (P=0.14. The standard deviation of measurements was greater with Orbscan pachymetry but the difference was not statistically significant. CONCLUSION: CCT measurements by Orbscan II (applying an acoustic factor and by ultrasonic pachymetry are not significantly different; however, when CCT readings by Orbscan II are in the lower range, it is advisable to recheck the measurements using ultrasonic pachymetry.

  1. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  2. Comparison of central corneal thickness measurements with the galilei dual scheimpflug analyzer and ultrasound pachymetry

    International Nuclear Information System (INIS)

    Dildar, M.T.; Saeed, M.K.; Ali, S.; Yaqub, M.A.

    2017-01-01

    To determine the correlation between mean central corneal thickness taken with Galilei dual Scheimpflug Analyzer and Applanation Ultrasound Pachymetry. Study Design: Descriptive cross sectional study. Place and Duration of Study: Armed Forces Institute of Ophthalmology Rawalpindi, from Jul 2013 to Jan 2014. Material and Methods: Central corneal thickness was measured in 100 eyes of 50 patients. First three readings were taken with Galilei dual Scheimpflug analyzer, with a gap of 1 minute. Then three readings were taken with ultrasound pachymetry after applying topical 0.5% proparacaine (Alcain). The mean of the three readings was used for the analysis. Results: For right eye the mean central corneal thickness measured by the Galilei dual Scheimpflug analyzer and Ultrasound pachymetry was 544.06 mu m +- 27.36 and 546.88 +-m +- 27.71 respectively, and for left eye it was 544.72mu m +- 25.47 and 546.52+- m +- 26.15 respectively. There was a strong and positive correlation between the two instruments (r=0.969, p=0.000 for right eye and r=0.956, p=0.000 for left eye). Conclusions: The pachymetry readings with GSA showed strong and positive correlation with those of US pachymetry. So GSA may be considered as an alternative to US Pachymetry, thus avoiding operator-dependent errors, patient discomfort and other disadvantages. (author)

  3. Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys

    Science.gov (United States)

    Mittal, Avirukt; de Bernardis, Francesco; Niemack, Michael D.

    2018-02-01

    Galaxy cluster velocity correlations and mass distributions are sensitive probes of cosmology and the growth of structure. Upcoming microwave surveys will enable extraction of velocities and temperatures from many individual clusters for the first time. We forecast constraints on peculiar velocities, electron temperatures, and optical depths of galaxy clusters obtainable with upcoming multi-frequency measurements of the kinematic, thermal, and relativistic Sunyaev-Zeldovich effects. The forecasted constraints are compared for different measurement configurations with frequency bands between 90 GHz and 1 THz, and for different survey strategies for the 6-meter CCAT-prime telescope. We study methods for improving cluster constraints by removing emission from dusty star forming galaxies, and by using X-ray temperature priors from eROSITA. Cluster constraints are forecast for several model cluster masses. A sensitivity optimization for seven frequency bands is presented for a CCAT-prime first light instrument and a next generation instrument that takes advantage of the large optical throughput of CCAT-prime. We find that CCAT-prime observations are expected to enable measurement and separation of the SZ effects to characterize the velocity, temperature, and optical depth of individual massive clusters (~1015 Msolar). Submillimeter measurements are shown to play an important role in separating these components from dusty galaxy contamination. Using a modular instrument configuration with similar optical throughput for each detector array, we develop a rule of thumb for the number of detector arrays desired at each frequency to optimize extraction of these signals. Our results are relevant for a future "Stage IV" cosmic microwave background survey, which could enable galaxy cluster measurements over a larger range of masses and redshifts than will be accessible by other experiments.

  4. Double-energy double-velocity measurement system for fission fragments and its application

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    1987-10-01

    A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233 U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)

  5. New developments in velocity profile measurement and pipe wall wear monitoring for hydrotransport lines

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Maron, R.J. [CiDRA Minerals Processing Inc., Wallingford, CT (United States); Fernald, M.; Bailey, T. [CiDRA Corporate Services, Wallingford, CT (United States); Van der Spek, A. [ZDOOR, Rotterdam (Netherlands)

    2009-07-01

    Sonar array flow measurement technology was initially developed a decade ago with the goal of non-invasively measuring multi-phase flows in the petroleum industry. The same technology was later adapted to the mineral processing industry where it has been rapidly adopted. The specific sensor technology, based on piezoelectric film sensors, provides unique measurement capabilities, including the ability to non-invasively measure localized strains in the walls of pipes. Combined with sonar array processing algorithms, an axial array of such sensors can measure flow velocities within a pipe. The sensors are useful for monitoring and managing slurry flow in horizontal pipes since they provide real-time velocity profiles measurement. The information is useful in determining the approach and onset of solid deposition on the bottom of the pipe. The sensors also provide a non-invasive measurement of pipe wear on slurry lines. Such measurements are currently made by hand-held portable ultrasonic thickness gages. The shortfalls associated with this manual method are overcome with a set of permanently or semi-permanently installed transducers clamped onto the outside of the pipe, where sensors measure the thickness of the pipe. This system and approach results in better repeatability and accuracy compared to manual methods. It also decreases inspection labor costs and pipe access requirements. It was concluded that the potential impact on personnel safety and environmental savings will be significant. 3 refs., 20 figs.

  6. Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets.

    Science.gov (United States)

    Onofri, F; Bergougnoux, L; Firpo, J L; Misguich-Ripault, J

    1999-07-20

    The principle of an optical technique for simultaneous velocity, size, and concentration in suspension measurements of spherical droplets and cylindrical jets is proposed. This technique is based on phase Doppler anemometry working in the dual burst technique configuration. The particle size and velocity are deduced from the reflected signal phase and frequency, whereas the amplitude ratio between the refracted and the reflected signals is used for measuring the concentration of small scatterers inside the particles. Numerical simulations, based on geometrical optics and a Monte Carlo model, and an experimental validation test on cylindrical jets made of various suspensions, are used to validate the principle of the proposed technique. It is believed that this new technique could be useful in investigating processes in which liquid suspensions are sprayed for surface coating, drying, or combustion applications.

  7. Application of advanced one sided stress wave velocity measurement in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovices, J. S.; Achenbach, J. D.

    1997-01-01

    It is of interest to reliably measure the velocity of stress waves in concrete. At present, reliable measurement is not possible for dispersive and attenuating materials such as concrete when access to only one surface of the structure is available, such as in the case of pavement structures. In this paper, a new method for one-sided stress wave velocity determination in concrete is applied to investigate the effects of composition, age and moisture content. This method uses a controlled impact as a stress wave source and two sensitive receivers mounted on the same surface as the impact sites. The novel aspect of the technique is the data collection system which automatically determines the arrival of the generated longitudinal and surface wave arrivals. A conventional ultrasonic through transmission method is used to compare with the results determined by the one-sided method.

  8. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  9. Measurement of fluid velocity development behind a circular cylinder using particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Goharzadeh, Afshin; Molki, Arman

    2015-01-01

    In this paper we present a non-intrusive experimental approach for obtaining a two-dimensional velocity distribution around a 22 mm diameter circular cylinder mounted in a water tunnel. Measurements were performed for a constant Reynolds number of 7670 using a commercial standard particle image velocimetry (PIV) system. Different flow patterns generated behind the circular cylinder are discussed. Both instantaneous and time-averaged velocity distributions with corresponding streamlines are obtained. Key concepts in fluid mechanics, such as contra-rotating vortices, von Kármán vortex street, and laminar-turbulent flow, are discussed. In addition, brief historical information pertaining to the development of flow measurement techniques—in particular, PIV—is described. (paper)

  10. Flow visualization and velocity measurement in a small-scale open channel using an electron microscope

    International Nuclear Information System (INIS)

    Yasuda, K; Sogo, M; Iwamoto, Y

    2013-01-01

    The present note describes a method for use in conjunction with a scanning electron microscope (SEM) that has been developed to visualize a liquid flow under a high-level vacuum and to measure a velocity field in a small-scale flow through an open channel. In general, liquid cannot be observed via a SEM, because liquid evaporates under the high-vacuum environment of the SEM. As such, ionic liquid and room temperature molten salt having a vapor pressure of nearly zero is used in the present study. We use ionic liquid containing Au-coated tracer particles to visualize a small-scale flow under a SEM. Furthermore, the velocity distribution in the open channel is obtained by particle tracking velocimetry measurement and a parabolic profile is confirmed. (technical design note)

  11. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  12. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    2002-09-01

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  13. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.

    Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  14. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  15. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  16. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  17. Estimating the accuracy of optic nerve sheath diameter measurement using a pocket-sized, handheld ultrasound on a simulation model.

    Science.gov (United States)

    Johnson, Garrett G R J; Zeiler, Frederick A; Unger, Bertram; Hansen, Gregory; Karakitsos, Dimitrios; Gillman, Lawrence M

    2016-12-01

    Ultrasound measurement of optic nerve sheath diameter (ONSD) appears to be a promising, rapid, non-invasive bedside tool for identification of elevated intra-cranial pressure. With improvements in ultrasound technology, machines are becoming smaller; however, it is unclear if these ultra-portable handheld units have the resolution to make these measurements precisely. In this study, we estimate the accuracy of ONSD measurement in a pocket-sized ultrasound unit. Utilizing a locally developed, previously validated model of the eye, ONSD was measured by two expert observers, three times with two machines and on five models with different optic nerve sheath sizes. A pocket ultrasound (Vscan, GE Healthcare) and a standard portable ultrasound (M-Turbo, SonoSite) were used to measure the models. Data was analyzed by Bland-Altman plot and intra-class correlation coefficient (ICC). The ICC between raters for the SonoSite was 0.878, and for the Vscan was 0.826. The between-machine agreement ICC was 0.752. Bland-Altman agreement analysis between the two ultrasound methods showed an even spread across the range of sheath sizes, and that the Vscan tended to read on average 0.33 mm higher than the SonoSite for each measurement, with a standard deviation of 0.65 mm. Accurate ONSD measurement may be possible utilizing pocket-sized, handheld ultrasound devices despite their small screen size, lower resolution, and lower probe frequencies. Further study in human subjects is warranted for all newer handheld ultrasound models as they become available on the market.

  18. Measurements of gas velocity in supersonic flow using a laser beam

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.; Santos, R. dos

    1982-01-01

    A study of measurements of supersonic velocities in a wind tunnel using a laser beam was performed. Techniques using lasers are most suitable because they do not disturb the gas flow. This work presents the technique entitled as fringe technique. It works using interference patterns due to two perpendicular laser beams crossing the sample (i.e. the gas flow). Experimental results are compared with other usual techniques. (R.S.)

  19. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes.

    Science.gov (United States)

    Austin, Daniel; Hayes, Tamara L; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given.

  20. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    Science.gov (United States)

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  1. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  2. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  3. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    Science.gov (United States)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  4. The velocity measurement by LDV at the simulated plate fuel assembly

    International Nuclear Information System (INIS)

    Tae Sung Ha

    2001-01-01

    For a more accurate safety analysis for McMaster Nuclear Reactor (MNR), local velocity measurements in a mock-up of the 18-plate fuel assembly are conducted over the range of M=2.0kg/s to 5.0kg/s (u=0.59m/s to 1.48m/s). To enable the measurement of the mass flow distribution through the channels by Laser Doppler Velocimeter(LDV), the curved fuel plate assembly is modified to flat fuel plates. The experimental result shows that the velocity profile is fairly symmetric for the 1st channel to the 17th subchannel at its center. The velocity in the peripheral area is slightly decreased while that directly above the circular pipe is correspondingly increased due to the effect of blockage by the exit endfitting. The mass flow rate fraction is fairly well distributed from the 1st to the 9th channels; at the outmost channels (1st and 3rd subchannels) the flow is approximately 95-97% of the average channel flow and at the central channels (4th and 8th subchannels) the flow is about 102-105% of the average channel mass flow rate. It is shown that the measured mass flow distribution is consistent with the results of the numerical calculation except 1st and 17th channels. (author)

  5. Evaluation and accuracy of the local velocity data measurements in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Kysela Bohuš

    2014-03-01

    Full Text Available Velocity measurements of the flow field in an agitated vessel are necessary for the improvement and better understanding of the mixing processes. The obtained results are used for the calculations of the impeller pumping capacity, comparison of the power consumption etc. We performed various measurements of the local velocities in an agitated vessel final results of which should be processed for several purposes so it was necessary to make an analysis of the obtained data suitability and their quality. Analysed velocity data were obtained from the LDA (Laser Doppler Anemometry and PIV (Particle Image Velocimetry measurements performed on a standard equipment where the flat bottomed vessel with four baffles was agitated by the six-blade Rushton turbine. The results from both used methods were compared. The frequency analyses were examined as well as the dependency of the data rates, time series lengths etc. The demands for the data processed in the form of the ensemble-averaged results were also established.

  6. Procedures, analysis, and comparison of groundwater velocity measurement methods for unconfined aquifers

    International Nuclear Information System (INIS)

    Kearl, P.M.; Dexter, J.J.; Price, J.E.

    1988-09-01

    Six methods for determining the average linear velocity of ground- water were tested at two separate field sites. The methods tested include bail tests, pumping tests, wave propagation, tracer tests, Geoflo Meter/reg sign/, and borehole dilution. This report presents procedures for performing field tests and compares the results of each method on the basis of application, cost, and accuracy. Comparisons of methods to determine the ground-water velocity at two field sites show certain methods yield similar results while other methods measure significantly different values. The literature clearly supports the reliability of pumping tests for determining hydraulic conductivity. Results of this investigation support this finding. Pumping tests, however, are limited because they measure an average hydraulic conductivity which is only representative of the aquifer within the radius of influence. Bail tests are easy and inexpensive to perform. If the tests are conducted on the majority of wells at a hazardous waste site, then the heterogeneity of the site aquifer can be assessed. However, comparisons of bail-test results with pumping-test and tracer-test results indicate that the accuracy of the method is questionable. Consequently, the principal recommendation of this investigation, based on cost and reliability of the ground-water velocity measurement methods, is that bail tests should be performed on all or a majority of monitoring wells at a site to determine the ''relative'' hydraulic conductivities

  7. Intra and interobserver variability of intrapartum transperineal ultrasound measurements with contraction and pushing.

    Science.gov (United States)

    Sainz, José A; Fernández-Palacín, Ana; Borrero, Carlota; Aquise, Adriana; Ramos, Zenaida; García-Mejido, José A

    2018-04-01

    The aim of this study was to evaluate the inter- and intraobserver correlation of the different intrapartum-transperineal-ultrasound-parameters(ITU) (angle of progression (AoP), progression-distance (PD), head-direction (HD), midline-angle (MLA) and head-perineum distance (HPD)) with contraction and pushing. We evaluated 28 nulliparous women at full dilatation under epidural analgesia. We performed a transperineal ultrasound evaluating AoP and PD in the longitudinal plane, and MLA and HPD in the transverse plane. Interclass correlation coefficients (ICC) with 95% CIs and Bland-Altman analysis were used to assess intra- and interobserver measurement's repeatability. The ICC of the ITU for the same observer was adequate for all the parameters (p pushing under epidural analgesia. Impact statement What is already known on this subject: The intrapartum transperineal ultrasound parameters can be used with contraction and pushing under epidural analgesia. What the results of this study add to what we know: ITU may be used to evaluate the difficulty of instrumental delivery/to evaluate the difficulty of instrumentation in vaginal operative deliveries and this study concludes that ITU is reproducible during uterine contraction with pushing. What the implications are of these findings for clinical practice and/or further research: Therefore, ITU could be used without difficulty with an adequate intra- and interobserver correlation for the prediction of instrumentation difficulty in operative vaginal deliveries.

  8. Ultrasound-assisted extraction for total sulphur measurement in mine tailings

    International Nuclear Information System (INIS)

    Khan, Adnan Hossain; Shang, Julie Q.; Alam, Raquibul

    2012-01-01

    Highlights: ► We develop a total sulphur measuring procedure of mine tailings. ► Ultrasound is used in the sample pre-treatment process. ► Full factorial design is applied to identify the best level of effecting factors. - Abstract: A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2 3 ) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80 °C temperature and 1 ml of HNO 3 :1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2 3 full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO™-CNS method.

  9. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    Science.gov (United States)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  10. Aerosol deposition velocities on the Pacific and Atlantic oceans calculated from 7Be measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Silker, W.B.

    1979-01-01

    The concentrations of 7 Be were measured in Pacific and Atlantic ocean water for past several years to determine the deposition velocity of aerosol particles on the ocean surface. Beryllium-7 is produced at a relatively constant rate in the atmosphere by spallation reactions of cosmic rays with atmospheric nitrogen and oxygen. Immediately after its formation 7 Be becomes attached to aerosol particles, and therefore can serve as tracers of the subsequent behavior of these particles. Isopleths of 7 Be surface water concentration, 7 Be inventory in the ocean, and deposition velocity have been prepared for the Pacific Ocean from 30 0 S to 60 0 N and for the Atlantic Ocean from 10 0 N to 55 0 N. The concentrations, inventories and deposition velocities tended to be higher in regions where precipitation was high, and generally increased with latitude. The average flux of 7 Be across the ocean surface was calculated to be 0.027 atoms cm -2 sec -1 which is probably not significantly greater than the worldwide average 7 Be flux across land and ocean surfaces of 0.022 atoms cm -2 sec -1 calculated by Lal and Peters. The average deposition velocity was calculated to be 0.80 cm sec -1 . This value may be 10 to 30% too low, since it was calculated using atmospheric 7 Be concentrations which were measured at continental stations. Measurements of atmospheric 7 Be concentrations at ocean stations suggest that the concentrations at the continental stations averaged 10 to 30% higher than the concentrations over the ocean

  11. Aerosol deposition velocities on the Pacific and Atlantic oceans calculated from 7Be measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Silker, W.B.

    1980-01-01

    The concentrations of 7 Be have been measured in Pacific and Atlantic ocean water for the past several years to determine the deposition velocity of aerosol particles on the ocean surface. 7 Be is produced at a relatively constant rate in the atmosphere by spallation reactions of cosmic rays with atmospheric nitrogen and oxygen. Immediately after its formation 7 Be becomes attached to aerosol particles, and therefore can serve as tracers of the subsequent behavior of these particles. Isopleths of 7 Be surface water concentrations, 7 Be inventory in the ocean, and deposition velocity have been prepared for the Pacific Ocean from 30 0 S to 60 0 N and for the Atlantic Ocean from 10 0 N to 55 0 N. The concentrations, inventories and deposition velocities tended to be higher in regions where precipitation was high, and generally increased with latitude. The average flux of 7 Be across the ocean surface was calculated to be 0.027 atoms cm -2 s -1 which is probably not significantly greater than the worldwide average 7 Be flux across land and ocean surfaces of 0.022 atoms cm -2 s -1 calculated by Lal and Peters. The average deposition velocity was calculated to be 0.80 cm s -1 . This value may be 10-50% too low, since it was calculated using atmospheric 7 Be concentrations which were measured at continental stations. Measurements of atmospheric 7 Be concentrations at ocean stations suggest that the concentrations at the continental stations averaged 10-50% higher than the concentrations over the ocean. (orig.)

  12. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    International Nuclear Information System (INIS)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-01-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td 10 Ω·m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function of reduced electric field from 190 to 211 Td. The results were concordant, within the experimental errors, with the values simulated by the Imonte (version 4.5) code and the data recently obtained by our group. (author)

  13. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    Science.gov (United States)

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  14. Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve.

    Science.gov (United States)

    Zafar, Haroon; Sharif, Faisal; Leahy, Martin J

    2014-12-01

    The main objective of this study was to assess the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography (FD-OCT). A correlation between fractional flow reserve (FFR) and FD-OCT derived blood flow velocity is also included in this study. A total of 20 coronary stenoses in 15 patients were assessed consecutively by quantitative coronary angiography (QCA), FFR and FD-OCT. A percutaneous coronary intervention (PCI) optimization system was used in this study which combines wireless FFR measurement and FD-OCT imaging in one platform. Stenoses were labelled severe if FFR ≤ 0.8. Blood flow rate and velocity in each stenosis segment were derived from the volumetric analysis of the FD-OCT pull back images. The FFR value was ≤ 0.80 in 5 stenoses (25%). The mean blood flow rate in severe coronary stenosis ( n  = 5) was 2.54 ± 0.55 ml/s as compared to 4.81 ± 1.95 ml/s in stenosis with FFR > 0.8 ( n  = 15). A good and significant correlation between FFR and FD-OCT blood flow velocity in coronary artery stenosis ( r  = 0.74, p  < 0.001) was found. The assessment of stenosis severity using FD-OCT derived blood flow rate and velocity has the ability to overcome many limitations of QCA and intravascular ultrasound (IVUS).

  15. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...

  16. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Science.gov (United States)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  17. CSF flow: Correlation between signal void and CSF velocity measured by gated velocity phase-encoded MR imaging

    International Nuclear Information System (INIS)

    Mark, A.S.; Feinberg, D.A.

    1986-01-01

    The direction of the cerebrospinal fluid (CSF) flow in the foramen of Monro (FOM) and aqueduct was determined in 15 normal volunteers (5 of whom had also been studied with gated spin-echo sequences) using a cardiac-gated Fourier transform velocity imaging technique (VMR). The VMR showed that the periodic pattern of flow void seen in the aqueduct and FOM on the gated spin-echo images was due to antegrade CSF flow from the lateral ventricles into the third ventricle and aqueduct during systole and retrograde flow from the aqueduct into the third ventricle and lateral ventricles during late diastole. These findings could not be explained if the CSF pulsations originated in the third ventricle, as had been previously proposed, and suggest the lateral ventricles play an important role in the pulsatile motion of CSF

  18. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    Science.gov (United States)

    Cheng, David; Yoshinaka, Akio

    2014-11-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  19. Velocity and size distribution measurement of suspension droplets using PDPA technique

    Science.gov (United States)

    Amiri, Shahin; Akbarnozari, Ali; Moreau, Christian; Dolatabadi, Ali

    2015-11-01

    The creation of fine and uniform droplets from a bulk of liquid is a vital process in a variety of engineering applications, such as atomization in suspension plasma spray (SPS) in which the submicron coating materials are injected to the plasma gas through the suspension droplets. The size and velocity of these droplets has a great impact on the interaction of the suspension with the gas flow emanating from a plasma torch and can consequently affect the mechanical and chemical properties of the resultant coatings. In the current study, an aqueous suspension of small glass particles (2-8 μm) was atomized by utilizing an effervescent atomizer of 1 mm orifice diameter which involves bubbling gas (air) directly into the liquid stream. The gas to liquid ratio (GLR) was kept constant at 6% throughout this study. The mass concentration of glass particles varied in the range between 0.5 to 5% in order to investigate the effect of suspension viscosity and surface tension on the droplet characteristics, such as velocity and size distributions. These characteristics were simultaneously measured by using a non-intrusive optical technique, Phase Doppler Particle Anemometry (PDPA), which is based on the light signal scattered from the droplets moving in a measurement volume. The velocity and size distribution of suspension droplets were finally compared to those of distilled water under identical conditions. The results showed a different atomization behaviors due to the reduction in surface tension of the suspension spray.

  20. In-situ measurements of seismic velocities in the San Francisco Bay region...part II

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.

    1976-01-01

    Seismic wave velocities (compressional and shear) are important parameters for determining the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. Currently a program is in progress to measure seismic velocities in the San Francisco Bay region at an estimated 150 sites. At each site seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill hole cuttings, undisturbed samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the site. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. The broad data base available in the San Francisco Bay region suggests using the area as a pilot area for the development of general techniques applicable to other areas.

  1. Steady and Unsteady Velocity Measurements in a Small Turbocharger Turbine with Computational Validation

    Science.gov (United States)

    Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.

    2006-07-01

    The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to

  2. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  3. Supplement to procedures, analysis, and comparison of groundwater velocity measurement methods for unconfined aquifers

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Kearl, P.M.

    1988-09-01

    This report is a supplement to Procedures, Analysis, and Comparison of Groundwater Velocity Measurement Methods for Unconfined Aquifers and provides computer program descriptions, type curves, and calculations for the analysis of field data in determining groundwater velocity in unconfined aquifers. The computer programs analyze bail or slug tests, pumping tests, Geoflo Meter data, and borehole dilution data. Appendix A is a description of the code, instructions for using the code, an example data file, and the calculated results to allow checking the code after installation on the user's computer. Calculations, development of formulas, and correction factors for the various programs are presented in Appendices B through F. Appendix G provides a procedure for calculating transmissivity and specific yield for pumping tests performed in unconfined aquifers

  4. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    Science.gov (United States)

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  5. Pulse wave velocity 24-hour monitoring with one-site measurements by oscillometry

    Directory of Open Access Journals (Sweden)

    Posokhov IN

    2013-02-01

    Full Text Available Igor N PosokhovHemodynamic Laboratory Ltd, Nizhniy Novgorod, RussiaAbstract: This review describes issues for the estimation of pulse wave velocity (PWV under ambulatory conditions using oscillometric systems. The difference between the principles of measuring the PWV by the standard method and by oscillometry is shown, and information on device validation studies is summarized. It was concluded that currently oscillometry is a method that is very convenient to use in the 24-hour monitoring of the PWV, is relatively accurate, and is reasonably comfortable for the patient. Several indices with the same principles as those in the analysis of blood pressure in ambulatory monitoring of blood pressure, namely the assessment of load, variability, and circadian rhythm, are proposed.Keywords: pulse wave velocity, 24-hour monitoring, oscillometry

  6. Crustal composition in the Hidaka Metamorphic Belt estimated from seismic velocity by laboratory measurements

    Science.gov (United States)

    Yamauchi, K.; Ishikawa, M.; Sato, H.; Iwasaki, T.; Toyoshima, T.

    2015-12-01

    To understand the dynamics of the lithosphere in subduction systems, the knowledge of rock composition is significant. However, rock composition of the overriding plate is still poorly understood. To estimate rock composition of the lithosphere, it is an effective method to compare the elastic wave velocities measured under the high pressure and temperature condition with the seismic velocities obtained by active source experiment and earthquake observation. Due to an arc-arc collision in central Hokkaido, middle to lower crust is exposed along the Hidaka Metamorphic Belt (HMB), providing exceptional opportunities to study crust composition of an island arc. Across the HMB, P-wave velocity model has been constructed by refraction/wide-angle reflection seismic profiling (Iwasaki et al., 2004). Furthermore, because of the interpretation of the crustal structure (Ito, 2000), we can follow a continuous pass from the surface to the middle-lower crust. We corrected representative rock samples from HMB and measured ultrasonic P-wave (Vp) and S-wave velocities (Vs) under the pressure up to 1.0 GPa in a temperature range from 25 to 400 °C. For example, the Vp values measured at 25 °C and 0.5 GPa are 5.88 km/s for the granite (74.29 wt.% SiO2), 6.02-6.34 km/s for the tonalites (66.31-68.92 wt.% SiO2), 6.34 km/s for the gneiss (64.69 wt.% SiO2), 6.41-7.05 km/s for the amphibolites (50.06-51.13 wt.% SiO2), and 7.42 km/s for the mafic granulite (50.94 wt.% SiO2). And, Vp of tonalites showed a correlation with SiO2 (wt.%). Comparing with the velocity profiles across the HMB (Iwasaki et al., 2004), we estimate that the lower to middle crust consists of amphibolite and tonalite, and the estimated acoustic impedance contrast between them suggests an existence of a clear reflective boundary, which accords well to the obtained seismic reflection profile (Iwasaki et al., 2014). And, we can obtain the same tendency from comparing measured Vp/Vs ratio and Vp/Vs ratio structure model

  7. The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy

    Science.gov (United States)

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Robotham, Aaron S. G.; Driver, Simon P.

    2018-04-01

    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high-velocity Planetary Nebulae, establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galactocentric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40 km s-1 at a galactocentric distance of 15 kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8 ± 0.1 × 1012 M⊙ and 240 ± 10 kpc, respectively. Our M31 mass is on the low side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H I constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass-halo-mass and the dark matter halo concentration-virial mass correlation, and finding it to be an outlier to this relation.

  8. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  9. Measurement of the drift velocities of electrons and holes in high-ohmic silicon

    International Nuclear Information System (INIS)

    Scharf, Christian

    2014-02-01

    Measurements of the drift velocities of electrons and holes as a function of the electric field and the temperature in high-ohmic silicon of crystal orientation are presented. Significant differences between our results and literature values are observed. A new parametrization of the mobility is introduced. Current transients of n-type pad diodes, generated by fast laser pulses, were investigated in order to determine the drift velocity of electrons and holes separately. Two diodes of high-ohmic silicon (1.5 kΩcm and 5.5 kΩcm) from different manufacturers were investigated as cross check. The drift velocities were determined at electric fields ranging from 5 kV/cm to 50 kV/cm at temperatures ranging from 233 K to 333 K. The mobility parameters were obtained by fitting a simulation of charge drift in silicon to the measurements. Using the convolution theorem the response function of the read-out circuit was determined with the Fourier transforms of the measurement and the simulation. The simulated transient current pulses with the new mobility parametrization are consistent with the measured ones for the temperature and electric field range investigated here. Additionally, the mobility results from the fit are consistent with the mobility determined using the simpler time-of-flight method in the field range where this method is applicable. However, our measurements show a difference of up to 14 % to the values by Canali et al. (1971). The difference to the mobility parametrization by Jacoboni et al. (1977) is up to 24 % while this parametrization is widely used for simulations of the direction due to the lack of data for silicon.

  10. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    Science.gov (United States)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  11. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    International Nuclear Information System (INIS)

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading

  12. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    Science.gov (United States)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  13. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    Science.gov (United States)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  14. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  15. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Babu-Narayan Sonya V

    2009-01-01

    Full Text Available Abstract Background Pulmonary regurgitation is a common and clinically important residual lesion after repair of tetralogy of Fallot. Cardiovascular magnetic resonance (CMR phase contrast velocity mapping is widely used for measurement of pulmonary regurgitant fraction. Breath-hold acquisitions, usually acquired during held expiration, are more convenient than the non-breath-hold approach, but we hypothesized that breath-holding might affect the amount of pulmonary regurgitation. Methods Forty-three adult patients with a previous repair of tetralogy of Fallot and residual pulmonary regurgitation were investigated with CMR. In each, pulmonary regurgitant fraction was measured from velocity maps transecting the pulmonary trunk, acquired during held expiration, held inspiration, by non-breath-hold acquisition, and also from the difference of right and left ventricular stroke volume measurements. Results Pulmonary regurgitant fraction was lower when measured by velocity mapping in held expiration compared with held inspiration, non-breath-hold or stroke volume difference (30.8 vs. 37.0, 35.6, 35.4%, p = 0.00017, 0.0035, 0.026. The regurgitant volume was lower in held expiration than in held inspiration (41.9 vs. 48.3, p = 0.0018. Pulmonary forward flow volume was larger during held expiration than during non-breath-hold (132 vs. 124 ml, p = 0.0024. Conclusion Pulmonary regurgitant fraction was significantly lower in held expiration compared with held inspiration, free breathing and stroke volume difference. Altered airway pressure could be a contributory factor. This information is relevant if breath-hold acquisition is to be substituted for non-breath-hold in the investigation of patients with a view to re-intervention.

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. help ... end of their bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment ... caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment planning. detect ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ...

  19. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  20. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.

    Science.gov (United States)

    Khosla, Sid; Oren, Liran; Ying, Jun; Gutmark, Ephraim

    2014-04-01

    Current theories regarding the mechanisms of phonation are based on assumptions about the aerodynamics between the vocal folds during the closing phase of vocal fold vibration. However, many of these fundamental assumptions have never been validated in a tissue model. In this study, the main objective was to determine the aerodynamics (velocity fields) and the geometry of the medial surface of the vocal folds during the closing phase of vibration. The main hypothesis is that intraglottal vortices are produced during vocal fold closing when the glottal duct has a divergent shape and that these vortices are associated with negative pressures. Experiments using seven excised canine larynges. The particle imaging velocimetry (PIV) method was used to determine the velocity fields at low, mid-, and high subglottal pressures for each larynx. Modifications were made to previously described PIV methodology to allow the measurement of both the intraglottal velocity fields and the position of the medial aspects of the vocal fold. At relatively low subglottal pressures, little to no intraglottal vortices were seen. At mid- and high subglottal pressures, the flow separation vortices occurred and produced maximum negative pressures, relative to atmospheric, of -2.6 to -14.6 cm H2 O. Possible physiological and surgical implications are discussed. Intraglottal vortices produce significant negative pressures at mid- and high subglottal pressures. These vortices may be important in increasing maximum flow declination rate and acoustic intensity. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Automatic discrimination of bubbles and slugs in two-phase gas-liquid flow and measurement of the respective velocities

    International Nuclear Information System (INIS)

    Fitremann, J.M.; Guilpin, C.; Postaire, J.

    1976-01-01

    The measurement of the interface velocity in a two-phase gas-liquid flow is a difficult problem, owing to the dispersion of the velocity components of individual bubbles, gas-slugs, droplets, waves, etc. An entirely automatic method is presented, it gives the velocity of slugs and bubbles independently, by discrimination of local phase probe signals into a 'slug' signal and a 'bubble' signal feeding a shape-recognition program. Both discriminated void fractions are also calculated by the apparatus [fr

  2. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

    CERN Document Server

    Adam, T.; Aleksandrov, A.; Altinok, O.; Alvarez Sanchez, P.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Dhahbi, A.Ben; Bertolin, A.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; Colosimo, G.; Crespi, M.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Declais, Y.; del Amo Sanchez, P.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Ereditato, A.; Esposito, L.S.; Favier, J.; Ferber, T.; Fini, R.A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Giovannozzi, M.; Girerd, C.; Goldberg, J.; Gollnitz, C.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, A.M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Enikeev, R.; Hierholzer, M.; Hollnagel, A.; Ieva, M.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Jones, M.; Juget, F.; Kamiscioglu, M.; Kawada, J.; Kim, S.H.; Kimura, M.; Kiritsis, E.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Mazzoni, A.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Missiaen, D.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Nitti, F.; Ogawa, S.; Okateva, N.; Olchevsky, A.; Palamara, O.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, Laura; Pennacchio, E.; Pessard, H.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Riguzzi, F.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Sahnoun, Z.; Schembri, A.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; N.T. Tran,i; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2012-01-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement is based on high-statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An early arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (60.7 \\pm 6.9 (stat.) \\pm 7.4 (sys.)) ns was measured. This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light (v-c)/c = (2.48 \\pm 0.28 (stat.) \\pm 0.30 (sys.)) \\times 10-5.

  3. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  4. Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Michael J.; Elkins, Christopher J.; Eaton, John K. [Stanford University, Department of Mechanical Engineering, Stanford, CA (United States)

    2011-08-15

    The 3D velocity and concentration fields have been measured for flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. The velocity field was measured using conventional magnetic resonance velocimetry, and the concentration distribution was measured with a refined magnetic resonance concentration technique that yields experimental uncertainties for the concentration between 5 and 6%. All experiments were performed in water. A separation bubble behind the slot lip entrains coolant and promotes rapid turbulent mixing at the upper edge of the coolant jet. Vortices from inside the slot feed channel and on the upper sides of the lands rapidly distort the initially rectangular shape of the coolant stream and sweep mainstream flow toward the airfoil surface. The vortices also prevent any coolant from reaching the upper surfaces of the land. At the trailing edge, a second separation region exists in the blunt trailing edge wake. The flow forms suction side streaks behind the land tips, as well as streaks behind the slot centers on the pressure side. The peak coolant concentrations in the streaks remain above 25% through the end of the measurement domain, over 30 slot heights downstream. (orig.)

  5. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    Science.gov (United States)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  6. Development of a single well dilution probe for groundwater velocity measurements

    International Nuclear Information System (INIS)

    Jain, S.K.; Santra, A.B.; Kulkarni, U.P.; Rao, S.M.

    1982-01-01

    The paper describes the development and design of a single well dilution probe for the measurement of groundwater velocities at different sections of the borehole. In this probe, the radioactive tracer is introduced in the measuring volume by dissolving a gelatine capsule containing the tracer. The continuous mixing of the tracer solution is achieved by a specially designed magnetic stirrer. To prevent vertical flows, the measuring volume is sealed off in the bore-hole at the top and bottom by inflator rubber tubes which are inflated by compressed air from the ground surface. The concentration of the gamma tracer solution is measured 'insitu' by a NaI crystal scintillation detector incorporated in the probe. (author)

  7. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  8. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  9. Measurement of one-way velocity of light and light-year

    Science.gov (United States)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance / interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration). Furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. In this report two methods of clock synchronization to solve this problem were proposed: The arriving-time difference of longitudinal-transverse wave (Ts - Tp) or ordinary-extraordinary light (Te - To) is measured by single clock at one end of a dual-speed transmission-line, the signal transmission-delay (from sending-end time Tx to receiving-end time Tp or To) calculated with wave-speed ratio is: (Tp -Tx) = (Ts -Tp) / ((Vp / Vs) - 1) or: (To -Tx) = (Te - To) / ((Vo / Ve ) - 1), where (Vp / Vs) = (E / k) 1/2 is Yang's / shear elastic-modulus ratio obtained by comparing two strains at same stress, (Vo / Ve) = (ne / no) is extraordinary/ordinary light refractive-index ratio obtained by comparing two deflection-angles. Then, two clocks at transmission-line two ends can be synchronized directly to measure the one-way velocity of light and light-year, which work as one earthquakestation with single clock measures first-shake-time and the distance to epicenter. The readings Na and Nb of two counters Ca and Cb with distance L are transferred into a computer C by two leads with transmission-delay Tac and Tbc respectively. The computer progressing subtraction operation exports steady value: (Nb - Na) = f (Ta - Tb ) + f (Tac - Tbc ), where f is the frequency of light-wave always passing Ca and Cb, Ta and Tb are the count-start time of Ca and Cb respectively. From the transmission-delay possess the spatial translational and rotational invariability, the computer exports steady value

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  13. Intra and interobserver variability of renal allograft ultrasound volume and resistive index measurements

    International Nuclear Information System (INIS)

    Mancini, Marcello; Liuzzi, Raffaele; Daniele, Stefania; Raffio, Teresa; Salvatore, Marco; Sabbatini, Massimo; Cianciaruso, Bruno; Ferrara, Liberato Aldo

    2005-01-01

    Purpose: Aim of the presents study was to evaluate the repeatability and reproducibility of the Doppler Resistive Index (R.I.) and the Ultrasound renal volume measurement in renal transplants. Materials and methods: Twenty -six consecutive patients (18 men, 8 women) mean age of 42,8±12,4 years (M±SD)(range 22-65 years) were studied twice by each of two trained sonographers using a color Doppler ultrasound scanner. Twelve of them had a normal allograft function (defined as stable serum creatinine levels ≤123,76 μmol/L), whilst the remaining 14 had decreased allograft function (serum creatinine 132.6-265.2 μmol/L). Results were given as mean of 6 measurements performed at upper, middle and lower pole of the kidney. Intra- and interobserver variability was assessed by the repeatability coefficient and coefficient of variation (CV). Results: Regarding Resistive Index measurement, repeatability coefficient was between 0.04 and 0.06 and the coefficient of variation was [it

  14. Ultrasound imaging measurement of submerged topography in the muddy water physical model

    International Nuclear Information System (INIS)

    Xiao, Xiongwu; Guo, Bingxuan; Li, Deren; Zhang, Peng; Zang, Yu-fu; Zou, Xianjian; Liu, Jian-chen

    2015-01-01

    The real-time, accurate measurement of submerged topography is vital for the analysis of riverbed erosion and deposition. This paper describes a novel method of measuring submerged topography in the B-scan image obtained using an ultrasound imaging device. Results show the distribution of gray values in the image has a process of mutation. This mutation process can be used to adaptively track the topographic lines between riverbed and water, based on the continuity of topography in the horizontal direction. The extracted topographic lines, of one pixel width, are processed by a wavelet filtering method. Compared with the actual topography, the measurement accuracy is within 1 mm. It is suitable for the real-time measurement and analysis of all current model topographies with the advantage of good self-adaptation. In particular, it is visible and intuitive for muddy water in the movable-bed model experiment. (paper)

  15. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  16. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari

    2018-01-01

    We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from: https://github.com/Hamzeh-Sadeghi/GSpecDisp

  17. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    Science.gov (United States)

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  18. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    Science.gov (United States)

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  19. WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819

    International Nuclear Information System (INIS)

    Tabetha Hole, K.; Geller, Aaron M.; Mathieu, Robert D.; Meibom, Soeren; Platais, Imants; Latham, David W.

    2009-01-01

    We present the current results from our ongoing radial-velocity (RV) survey of the intermediate-age (2.4 Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry, we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11 ≤V≤ 16.5 and an approximate mass range of 1.1-1.6 M sun . Our sample covers a 23 arcminute (13 pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4 km s -1 for most narrow-lined stars. We use our RV data to calculate membership probabilities for stars with ≥3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster. Using our single cluster members, we find a cluster average RV of 2.34 ± 0.05 km s -1 . We use our kinematic cluster members to construct a cleaned color-magnitude diagram from which we identify rich giant, subgiant, and blue straggler populations and a well defined red clump. The cluster displays a morphology near the cluster turnoff clearly indicative of core convective overshoot. Finally, we discuss a few stars of note, one of which is a short-period red-clump binary that we suggest may be the product of a dynamical encounter.

  20. Remote measurement of surface-water velocity using infrared videography and PIV: a proof-of-concept for Alaskan rivers

    Science.gov (United States)

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.; Conaway, Jeffrey S.

    2017-01-01

    Thermal cameras with high sensitivity to medium and long wavelengths can resolve features at the surface of flowing water arising from turbulent mixing. Images acquired by these cameras can be processed with particle image velocimetry (PIV) to compute surface velocities based on the displacement of thermal features as they advect with the flow. We conducted a series of field measurements to test this methodology for remote sensing of surface velocities in rivers. We positioned an infrared video camera at multiple stations across bridges that spanned five rivers in Alaska. Simultaneous non-contact measurements of surface velocity were collected with a radar gun. In situ velocity profiles were collected with Acoustic Doppler Current Profilers (ADCP). Infrared image time series were collected at a frequency of 10Hz for a one-minute duration at a number of stations spaced across each bridge. Commercial PIV software used a cross-correlation algorithm to calculate pixel displacements between successive frames, which were then scaled to produce surface velocities. A blanking distance below the ADCP prevents a direct measurement of the surface velocity. However, we estimated surface velocity from the ADCP measurements using a program that normalizes each ADCP transect and combines those normalized transects to compute a mean measurement profile. The program can fit a power law to the profile and in so doing provides a velocity index, the ratio between the depth-averaged and surface velocity. For the rivers in this study, the velocity index ranged from 0.82 – 0.92. Average radar and extrapolated ADCP surface velocities were in good agreement with average infrared PIV calculations.

  1. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...... solutions of the same ionic strength. Saturation with a solution that contained divalent ions caused a major shift on the distribution of the relaxation time. The changes were probably due to precipitats forming extra internal surface in the sample. Sonic velocities were relatively low in the MgCl2 solution...

  2. Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Svendsen, Gustav Winther; Hiller, Jochen

    2013-01-01

    that friction materials which are untypical for brake applications, like thermoplastics and fibre composites, can offer superior performance in terms of braking torque, wear resistance and cost than typical brake linings. In this paper coefficient of friction measurements for various thermoplastic and fibre......Friction materials for typical brake applications are normally designed considering thermal stability as the major performance criterion. There are, however, brake applications with very limited sliding velocities, where the generated heat is insignificant. In such cases it is possible...... in order to interpret the changes of friction observed during the running-in phase....

  3. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño

    2013-01-01

    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required...... specifications. Using a fibre-feed, solar light could be fed to the spectrograph and we carried out a 1-week observing campaign in June 2012 to evaluate its performance for measuring precision radial velocities. In this work we present the first results of this campaign by comparing the sensitivity of the SONG...

  4. On the Flow Measurements and Velocity Vector Analysis Using Five-Hole Pitot Tubes

    OpenAIRE

    NISHIMURA, Hideaki; 西村, 英明

    1981-01-01

    Five-hole pitot tubes are widely used to determine directions and magnitudes of velocities in three-dimensional flow fields, because of their simplicity in handling and their reliability. This paper describes a method of reducing data obtained from five-hole pitot tube measurments with the aid of a few sets of calibration data. By using mini-computers, pitch and yaw angles and Mach numbers of flows can be computed simultaneously by this method with reasonable accuracy in the range of the pito...

  5. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  6. Pulse Wave Velocity Measuring System using Virtual Instrumentation on Mobile Device

    Directory of Open Access Journals (Sweden)

    Razvan Alin Ciobotariu

    2013-03-01

    Full Text Available Virtual instrumentation is a concept that permits customizable modular software measurement and the development of the user-defined tools for control, process and visualization of data, creating versatile systems, using modular programming, intuitive and easy to use. In this paper we investigate a possibility of using virtual instrumentation in the development of two physiological parameters monitoring system, in order to assess a cardiovascular parameter, the Pulse Wave Velocity (PWV. We choose to monitor this parameter due to major incidence and impact of cardiovascular diseases (CVD.

  7. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Directory of Open Access Journals (Sweden)

    Sang Cheol Lee

    2016-12-01

    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  8. Digital signal processing for velocity measurements in dynamical material's behaviour studies

    International Nuclear Information System (INIS)

    Devlaminck, Julien; Luc, Jerome; Chanal, Pierre-Yves

    2014-01-01

    In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach- Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine. (authors)

  9. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Science.gov (United States)

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-01-01

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  10. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  11. A method for measuring the velocity flow field in the vicinity of a moving cascade

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.

    1977-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required pressure ratios, highly loaded centrifugal compressors are built. The paper deals with a method of measuring the flow field in the vicinity of a moving impeller or cascade with hot wires. The relative flow pattern induced ahead of a cascade or impeller or the rotating wakes behind a moving cascade (which is important for loss evaluation) could be now measured with the help of a single hot wire. The wire should be rotated about the axis of the probe for 3 different inclinations with respect to the approaching flow. The method has been used for measuring the flow field in the vicinity of the inducer of a highly loaded centrifugal compressor. The results and the accuracy of the method are discussed and the mean values have been compared with the theoretically estimated velocities. (orig.) [de

  12. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    International Nuclear Information System (INIS)

    Shuai, P.; Xu, X.; Zhang, Y.H.; Xu, H.S.; Litvinov, Yu. A.; Wang, M.

    2016-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  13. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Reamer, Courtney B.; Mohler, Emile R. [Department of Medicine, Division of Cardiovascular Medicine, Section of Vascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  14. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2010-07-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td <= E/N <= 200 Td), there are insufficient data available in literature for this gas. In our experimental apparatus, electrons are liberated from an aluminum cathode (40mm diameter) due to the incidence of a nitrogen laser beam (MNL202-LD LTB) and are accelerated by the applied electric field toward the anode, made of a high resistivity glass (2 x 10{sup 10} {Omega}{center_dot}m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function

  15. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    Science.gov (United States)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  16. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    Science.gov (United States)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  17. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    Science.gov (United States)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  18. Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal

    International Nuclear Information System (INIS)

    Voloshinov, V. B.; Lemyaskina, E. A.

    1996-01-01

    The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)

  19. 3D Flow reconstruction using ultrasound PIV

    Science.gov (United States)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  20. Ultrasound-assisted extraction for total sulphur measurement in mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Adnan Hossain, E-mail: ad_li2@yahoo.com [Department of Civil and Environmental Engineering, University of Western Ontario (Canada); Shang, Julie Q.; Alam, Raquibul [Department of Civil and Environmental Engineering, University of Western Ontario (Canada)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We develop a total sulphur measuring procedure of mine tailings. Black-Right-Pointing-Pointer Ultrasound is used in the sample pre-treatment process. Black-Right-Pointing-Pointer Full factorial design is applied to identify the best level of effecting factors. - Abstract: A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2{sup 3}) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80 Degree-Sign C temperature and 1 ml of HNO{sub 3}:1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2{sup 3} full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO Trade-Mark-Sign -CNS method.

  1. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  2. Density and velocity measurements of a sheath plasma from MPD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  3. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity

    International Nuclear Information System (INIS)

    Ayranci, Erol; Sahin, Melike

    2008-01-01

    Densities and sound velocities of ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weight 200, 300, 400, 550, 600, 1000, 1450, 3350, 8000, and 10,000 at (288.15, 298.15, and 308.15) K were measured with high precision vibrating tube densimeter and sound velocity measuring device. They were used to evaluate apparent molar volumes, V o , and apparent molar isentropic compressibilities, K ΦS . Infinite dilution values of these parameters, V o 0 , and K ΦS 0 , were obtained from their plot as a function of molality. The variations of V o 0 , and K ΦS 0 , with the number of repeating units in PEGs and with temperature were examined. Comparison of the experimentally obtained data was made with the available literature data and also with some values predicted according to group additivity approach. The results were interpreted in terms of hydration and conformational effects of PEGs in water. A correlation was also examined between V o 0 or K ΦS 0 values of PEGs in water and equilibrium moisture contents of PEGs as well as the water vapor permeabilities (WVP) of edible films containing PEGs

  4. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  5. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    Science.gov (United States)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  6. Relationship between hemodynamic changes of portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    CHENG Xiaofei

    2014-11-01

    Full Text Available ObjectiveTo explore the relationship between hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis. MethodsA total of 192 patients with hepatitis B cirrhosis who were admitted to our hospital from March 2010 to December 2013, as well as 100 healthy persons, were recruited. The mean portal vein blood flow velocity (PVVmean, hepatic artery pulsatility index (HAPI, and hepatic artery resistance index (HARI were measured by color Doppler ultrasound. FibroScan was also carried out. All data were statistically analyzed using SPSS 13.0. Continuous data were expressed as mean±SD and compared between groups by t-test. ResultsThe HAPI, HARI, and FibroScan value of the patient group were 1.56±024, 0.73±0.05, and 25.38±7.73, respectively, significantly higher than those of the control group (1.36±0.14, 0.65±0.07, and 7.8±3.6 (P<0.05; the PVVmean of the patient group was 14.43±1.86, significantly lower than that of the control group (17.35±0.56 (P<0.05. FibroScan value was positively correlated with HAPI and HARI (r1=0.59, r2=0.66, P<0.001, but negatively correlated with PVVmean (r=-0.64, P<0.001. ConclusionThe liver stiffness assessed by FibroScan and the hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound are vitally important for evaluating the severity of liver cirrhosis.

  7. Intra- and interobserver reliability of quantitative ultrasound measurement of the plantar fascia.

    Science.gov (United States)

    Rathleff, Michael Skovdal; Moelgaard, Carsten; Lykkegaard Olesen, Jens

    2011-01-01

    To determine intra- and interobserver reliability and measurement precision of sonographic assessment of plantar fascia thickness when using one, the mean of two, or the mean of three measurements. Two experienced observers scanned 20 healthy subjects twice with 60 minutes between test and retest. A GE LOGIQe ultrasound scanner was used in the study. The built-in software in the scanner was used to measure the thickness of the plantar fascia (PF). Reliability was calculated using intraclass correlation coefficient (ICC) and limits of agreement (LOA). Intraobserver reliability (ICC) using one measurement was 0.50 for one observer and 0.52 for the other, and using the mean of three measurements intraobserver reliability increased up to 0.77 and 0.67, respectively. Interobserver reliability (ICC) when using one measurement was 0.62 and increased to 0.82 when using the average of three measurements. LOA showed that when using the average of three measurements, LOA decreased to 0.6 mm, corresponding to 17.5% of the mean thickness of the PF. The results showed that reliability increases when using the mean of three measurements compared with one. Limits of agreement based on intratester reliability shows that changes in thickness that are larger than 0.6 mm can be considered actual changes in thickness and not a result of measurement error. Copyright © 2011 Wiley Periodicals, Inc.

  8. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Kern, H.; Svitek, Tomáš; Ivankina, T.

    2014-01-01

    Roč. 231, June (2014), s. 1-15 ISSN 0031-9201 R&D Projects: GA MŠk LH13102; GA ČR(CZ) GAP104/12/0915; GA ČR GA13-13967S Institutional support: RVO:67985831 Keywords : 3D-velocity calculation * measured and calculated elastic properties * neutron diffraction * seismic anisotropy * velocity measurements Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.895, year: 2014

  9. Vector Velocity Imaging Using Cross-Correlation and Virtual Sources

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    . Using the RASMUS experimental ultrasound scanner, measurements have been carried out in a water tank using a 7~MHz transducer. A 6~mm tube contained the flow and a Danfoss, MAG~3000, magnetic flow meter measured the volume flow. The tube has a parabolic flow profile with a peak velocity of 0.29~m...

  10. Sound velocity and equation-of-state measurements in high pressure fluid and solid helium

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1979-01-01

    A piston--cylinder apparatus was used to obtain P, V, T, and simultaneous values of longitudinal sound velocity in helium fluid throughout the ranges 75 to 300 0 K and 3 to 20 kbar. Some 670 data sets were obtained for the fluid and used in a double-process least-squares fit to an equation of state of the Benedict type. Additional measurements extended across the melting line into the solid phase at pressures up to 18 kbar. Measurements of the compressibility are compared with those obtained by Stewart along the 4 0 K isotherm up to 20 kbar. We discuss the use of helium as a pressure medium in high-pressure diamond anvil cells. Essentially no data are given

  11. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    International Nuclear Information System (INIS)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-01-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  12. Reliability of Phase Velocity Measurements of Flexural Acoustic Waves in the Human Tibia In-Vivo.

    Science.gov (United States)

    Vogl, Florian; Schnüriger, Karin; Gerber, Hans; Taylor, William R

    2016-01-01

    Axial-transmission acoustics have shown to be a promising technique to measure individual bone properties and detect bone pathologies. With the ultimate goal being the in-vivo application of such systems, quantification of the key aspects governing the reliability is crucial to bring this method towards clinical use. This work presents a systematic reliability study quantifying the sources of variability and their magnitudes of in-vivo measurements using axial-transmission acoustics. 42 healthy subjects were measured by an experienced operator twice per week, over a four-month period, resulting in over 150000 wave measurements. In a complementary study to assess the influence of different operators performing the measurements, 10 novice operators were trained, and each measured 5 subjects on a single occasion, using the same measurement protocol as in the first part of the study. The estimated standard error for the measurement protocol used to collect the study data was ∼ 17 m/s (∼ 4% of the grand mean) and the index of dependability, as a measure of reliability, was Φ = 0.81. It was shown that the method is suitable for multi-operator use and that the reliability can be improved efficiently by additional measurements with device repositioning, while additional measurements without repositioning cannot improve the reliability substantially. Phase velocity values were found to be significantly higher in males than in females (p < 10-5) and an intra-class correlation coefficient of r = 0.70 was found between the legs of each subject. The high reliability of this non-invasive approach and its intrinsic sensitivity to mechanical properties opens perspectives for the rapid and inexpensive clinical assessment of bone pathologies, as well as for monitoring programmes without any radiation exposure for the patient.

  13. What is the value of ultrasound soft tissue measurements in the prediction of abnormal fetal growth?

    LENUS (Irish Health Repository)

    Farah, N

    2012-02-01

    Abnormal fetal growth increases the complications of pregnancy not only for the baby but also for the mother. Growth abnormalities also have lifelong consequences. These babies are at increased risk of insulin resistance, diabetes and hypertension later in life. It is important to identify these babies antenatally to optimise their clinical care. Although used extensively antenatally to monitor fetal growth, ultrasound has its limitations. Despite the use of more than 50 different formulae to estimate fetal weight, their performance has been poor at the extremes of fetal weight. Over the past 20 years there has been emerging interest in studying fetal soft tissue measurements to improve detection of growth abnormalities. This review paper outlines the value of soft tissue measurements in identifying fetal growth abnormalities, in estimating fetal weight and in managing diabetes mellitus in pregnancy.

  14. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    Science.gov (United States)

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  15. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  16. A method for measuring the electron drift velocity in working gas using a Frisch-grid ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui, E-mail: guohuizhang@pku.edu.cn

    2016-12-21

    A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH{sub 4}, Ar + 3.5% CO{sub 2} and Kr + 2.7% CO{sub 2} gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.

  17. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  18. The Contradiction Between the Measurement Theory of Quantum Mechanics and the Theory that the Velocity of Any Particle Can Not be Larger than the Velocity of Light

    Science.gov (United States)

    Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.

    1996-01-01

    By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.

  19. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    Science.gov (United States)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  20. EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions

    International Nuclear Information System (INIS)

    Perraut, S.; Brekke, A.; Hubert, D.

    1984-01-01

    Substantial increases of the ion temperature can be observed at high latitudes as a consequence of strong convection electric fields. We have measured, with EISCAT, three independent components of the ion velocity vector and temperature in the same scattering volume, at about 300 km. During periods of strong variations in ion velocity (consequently of the E-field), the ion temperatures derived at the 3 sites are different. This difference, which appears to be systematic for the two experiments studied, can be interpreted in terms of different ion temperature perpendicular and parallel to the magnetic field, i.e. Tsub(i perpendicular) greater than Tsub(i parallel). Assuming that a bi-Maxwellian distribution is present for convection electric field strengths as large as 50 mV m -1 , one obtains an anisotropy factor of approximately 1.5. It also appears that resonant charge exchange is the dominant collision process. During the evening sector events studied, the electron density was decreasing, whereas the electron temperature was generally increasing. Such events are strongly related to variations in the magnetic H component detected on the ground. (author)