WorldWideScience

Sample records for ultrasound signal detection

  1. Unpowered wireless transmission of ultrasound signals

    International Nuclear Information System (INIS)

    Huang, H; Paramo, D; Deshmukh, S

    2011-01-01

    This paper presents a wireless ultrasound sensing system that uses frequency conversion to convert the ultrasound signal to a microwave signal and transmit it directly without digitization. Constructed from a few passive microwave components, the sensor is able to sense, modulate, and transmit the full waveform of ultrasound signals wirelessly without requiring any local power source. The principle of operation of the unpowered wireless ultrasound sensor is described first, and this is followed by a detailed description of the implementation of the sensor and the sensor interrogation unit using commercially available antennas and microwave components. Validation of the sensing system using an ultrasound pitch–catch system and the power analysis model of the system are also presented

  2. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  3. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    Science.gov (United States)

    Volz, Kevin R.

    performed while targeting three early inflammatory markers (P-selectin, VCAM-1, ICAM-1). Imaging protocols and outcome measures of previous TCEUS investigations of inflammation were replicated to aid in comparisons of outcomes. Signal intensity data was used to generate time intensity curves for qualitative and quantitative analysis of contrast agent temporal behavior. A proof of principle study established preclinical evidence to support the ability of TCEUS to detect acute neural inflammation. Substantial increases in signal intensities were observed while targeting inflammatory markers compared to controls. Further investigations consisted of examining molecular ultrasound sensitivity, and were accomplished by examining targeted contrast agent dosing parameters, and the ability of TCEUS to longitudinally evaluate neural inflammation. Qualitative analysis of TCEUS imaging performed with both administered doses revealed marked increases in signal intensities during acute inflammation, where inflammatory marker expression was presumably at its highest. This was in comparison to measures obtained in the absence of, and during, chronic inflammation. This research contributes much needed empirical evidence to the molecular ultrasound body of literature, and represents the first steps towards advancing this TCEUS application to clinical practice. Future studies are necessary to further these findings and effectively build upon this evidence. Increasing evidence of TCEUS use for the detection of neural inflammation will aid in its eventual clinical translation, where it will likely have a positive impact on patient care.

  4. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    Science.gov (United States)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  5. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  6. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  7. Detection of Fatigue Damage by Using High Frequency Nonlinear Laser Ultrasonic Signals

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Cheong, Yong Moo; Cha, Byung Heon

    2012-01-01

    The detection of fatigue damage for the components of a nuclear power plant is one of key techniques to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Laser ultrasound has attracted attention as a noncontact testing technique. Especially, laser ultrasonic signal has wide band frequency spectrum which can provide more accurate information for a testing material. The conventional linear ultrasonic technique is sensitive to gross defects or opened cracks whereas it is less sensitive to evenly distributed micro-cracks or degradation. An alternative technique to overcome this limitation is nonlinear ultrasound. The principal difference between linear and nonlinear technique is that in the latter the existence and characteristics of defects are often related to an acoustic signal whose frequency differs from that of the input signal. This is related to the radiation and propagation of finite amplitude, especially high power, ultrasound and its interaction with discontinuities, such as cracks, interfaces and voids. Since material failure or degradation is usually preceded by some kind of nonlinear mechanical behavior before significant plastic deformation or material damage occurs. The presence of nonlinear terms in the wave equation causes intense acoustic waves to generate new waves at frequencies which are multiples of the initial sound wave frequency. The nonlinear effect can exert a strong effect on the

  8. Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging

    Science.gov (United States)

    Olson, Emilia S.; Orozco, Jahir; Wu, Zhe; Malone, Christopher D.; Yi, Boemha; Gao, Wei; Eghtedari, Mohammad; Wang, Joseph; Mattrey, Robert F.

    2013-01-01

    We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H2O2) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H2O2 to move – 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H2O2 concentration needed for microbubble detection, explore alternate designs to detect the H2O2 produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H2O2. Best results were achieved with a 400–500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10–100 µm was achieved when assays were done in plasma. Using this design, we detected the H2O2 produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H2O2 produced by inflammatory mediators. PMID:23958028

  9. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  10. Low power laser generated ultrasound: Signal processing for time domain data acquisition

    International Nuclear Information System (INIS)

    Cleary, A; Thursby, G; McKee, C; Armstrong, I; Culshaw, B; Veres, I; Pierce, S G

    2011-01-01

    The use of low power modulated laser diode systems has previously been established as a suitable method for non-destructive laser generation of ultrasound. Using a quasi-continuous optical excitation amplified by an erbium-doped fibre amplifier (EDFA) allows flexible generation of ultrasonic waves, offering control of further parameters such as the frequency content or signal shape. In addition, pseudo-random binary sequences (PRBS) can be used to improve the detected impulse response. Here we compare two sequences, the m-sequence and the Golay code, and discuss the advantages and practical limits of their application with laser diode based optical excitation of ultrasound.

  11. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    Science.gov (United States)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  12. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  13. colour-flow ultrasound in the detection of penetrating vascular

    African Journals Online (AJOL)

    To determine the sensitivity of colour-flow ultrasound in the detection of penetrating vascular injuries of ... Colour-flow ultrasound is sensitive in detecting vascular injuries and is suitable as a screening .... injury, ultrasound appears to be sensitive in detecting these lesions. However there is a risk of missing more central.

  14. Detection of Doppler Microembolic Signals Using High Order Statistics

    Directory of Open Access Journals (Sweden)

    Maroun Geryes

    2016-01-01

    Full Text Available Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of microemboli. The most common standard detection is achieved through the Doppler energy signal and depends on an empirically set constant threshold. On the other hand, in the past few years, higher order statistics have been an extensive field of research as they represent descriptive statistics that can be used to detect signal outliers. In this study, we propose new types of microembolic detectors based on the windowed calculation of the third moment skewness and fourth moment kurtosis of the energy signal. During energy embolus-free periods the distribution of the energy is not altered and the skewness and kurtosis signals do not exhibit any peak values. In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis signals exhibit peaks, corresponding to the latter emboli. Applied on real signals, the detection of microemboli through the skewness and kurtosis signals outperformed the detection through standard methods. The sensitivities and specificities reached 78% and 91% and 80% and 90% for the skewness and kurtosis detectors, respectively.

  15. Ultrasound detection of nonpalpable mammographically occult malignancy

    International Nuclear Information System (INIS)

    Simpson, W.L.; Hermann, G.; Rausch, D.R.; Sherman, J.; Feig, S.A.; Bleiweiss, I.J.; Jaffer, S.

    2008-01-01

    To evaluate the prevalence of occult malignancy with screening breast ultrasound. All ultrasound-guided core needle breast biopsies performed between January 1, 1999, and June 30, 2001, were retrospectively reviewed. Lesions were identified during screening breast ultrasound in high-risk women with no mammographic or palpable abnormality in either breast, a unilateral mammographic or palpable abnormality in the contralateral breast, or a unilateral mammographic or palpable abnormality in a different quadrant of the same breast. All ultrasound-detected lesions were histologically verified. Six hundred and fifty-two women with a mean age of 49 years underwent 698 biopsies during the study period. Three hundred and forty-nine of these lesions were detected at screening breast ultrasound. Out of 349, 11 (3.2%) had a mammographically and clinically occult malignancy. Nine cancers were found in women with no mammographic or palpable abnormality. Two cancers were found in the same breast as the mammographic or palpable abnormality. None were found in the breast contralateral to a palpable or mammographic abnormality. Screening breast ultrasound of high-risk women has a similar detection rate for occult carcinoma as screening mammography, but has a low positive predictive value in cases where biopsy is performed. (author)

  16. Data fusion of ultrasound and GPR signals for analysis of historic walls

    International Nuclear Information System (INIS)

    Salazar, A; Gosalbez, J; Safont, G; Vergara, L

    2012-01-01

    This paper presents an application of ultrasounds and ground-penetrating radar (GPR) for analysis of historic walls. The objectives are to characterize the deformation of a historic wall under different levels of load weights and to obtain an enhanced image of the wall. A new method that fuses data from ultrasound and GPR traces is proposed which is based on order statistics digital filters. Application results are presented for non destructive testing (NDT) of two replicates of historic ashlars' masonry walls: the first one homogeneous and the second one containing controlled defects such as cracks and nooks. The walls are measured separately using ultrasounds and GPR at different load steps. Time and frequency parameters extracted from the signals and different B-Scans for each of the NDT techniques are obtained. After this, a new fused representation is obtained, which results demonstrate the improvement of characterization and defect detection in historic walls using data fusion.

  17. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection.

    Science.gov (United States)

    Ruan, Haowen; Mather, Melissa L; Morgan, Stephen P

    2013-07-01

    A method that uses digital heterodyne holography reconstruction to extract scattered light modulated by a single-cycle ultrasound (US) burst is demonstrated and analyzed. An US burst is used to shift the pulsed laser frequency by a series of discrete harmonic frequencies which are then locked on a CCD. The analysis demonstrates that the unmodulated light's contribution to the detected signal can be canceled by appropriate selection of the pulse repetition frequency. It is also shown that the modulated signal can be maximized by selecting a pulse sequence which consists of a pulse followed by its inverted counterpart. The system is used to image a 12 mm thick chicken breast with 2 mm wide optically absorbing objects embedded at the midplane. Furthermore, the method can be revised to detect the nonlinear US modulated signal by locking at the second harmonic US frequency.

  18. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    Science.gov (United States)

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (pultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  19. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    Science.gov (United States)

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Therapeutic Ultrasound Bypasses Canonical Syndecan-4 Signaling to Activate Rac1*S⃞

    Science.gov (United States)

    Mahoney, Claire M.; Morgan, Mark R.; Harrison, Andrew; Humphries, Martin J.; Bass, Mark D.

    2009-01-01

    The application of pulsed, low intensity ultrasound is emerging as a potent therapy for the treatment of complex bone fractures and tissue damage. Ultrasonic stimuli accelerate fracture healing by up to 40% and enhance tendon and ligament healing by promoting cell proliferation, migration, and matrix synthesis through an unresolved mechanism. Ultrasound treatment also induces closure of nonunion fractures, at a success rate (85% of cases) similar to that of surgical intervention (68-96%) while avoiding the complications associated with surgery. The regulation of cell adhesion necessary for wound healing depends on cooperative engagement of the extracellular matrix receptors, integrin and syndecan, as exemplified by the wound healing defects observed in syndecan- and integrin-knock-out mice. This report distinguishes the influence of ultrasound on signals downstream of the prototypic fibronectin receptors, α5β1 integrin and syndecan-4, which cooperate to regulate Rac1 and RhoA. Ultrasonic stimulation fails to activate integrins or induce cell spreading on poor, electrostatic ligands. By contrast, ultrasound treatment overcomes the necessity of engagement or expression of syndecan-4 during the process of focal adhesion formation, which normally requires simultaneous engagement of both receptors. Ultrasound exerts an influence downstream of syndecan-4 and PKCα to specifically activate Rac1, itself a critical regulator of tissue repair, and to a lesser extent RhoA. The ability of ultrasound to bypass syndecan-4 signaling, which is known to facilitate efficient tissue repair, explains the reduction in healing times observed in ultrasound-treated patients. By substituting for one of the key axes of adhesion-dependent signaling, ultrasound therapy has considerable potential as a clinical technique. PMID:19147498

  1. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    Science.gov (United States)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNRe., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  2. Detection of a Surface-Breaking Crack by Using the Surface Wave of a Laser Ultrasound

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a high spatial resolution and a wide-band spectrum. Also it provides absolute measurements of the moving distance and can be applied to the hard-to access locations with curved or rough surfaces like a nuclear power plant. Several laser ultrasonic techniques are applied for the detection of micro cracks in a nuclear power plant. Also, laser ultrasonic techniques are used to measure the grain size of materials and to detect cracks in railroads and aircrafts. Though the laser ultrasonic inspection system is widely applicable, it is comparatively expensive and it provides a low signal-to-noise ratio when compared to the conventional piezoelectric transducers. Many studies have been carried out to improve the system performance. One of the widely used measurement devices of a ultrasound is the Confocal Fabry-Perot Interferometer(CFPI) with a dynamic stabilizer. The dynamic stabilizer improves the stability of the CFPI by adaptively maintaining the optimum working status at the measuring time of the CFPI. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. We have fabricated a laser ultrasonic inspection system on an optical table by using a pulse laser, a CFPI with a dynamic stabilizer and a computer. The computer acquires the laser ultrasound by using a high speed A/D converter with a sampling rate of 1000 MHz. The dynamic stabilizer stabilizes the CFPI by adaptively maintaining it at an optimum status when the laser ultrasound is generated. The computer processes the ultrasonic signal in real time to extract the depth information of a surface-breaking crack. We extracted the depth information from the peak-to-valley values in the time domain and also from the center frequencies of the spectrum in the frequency domain

  3. Doppler ultrasound monitoring technology.

    Science.gov (United States)

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  4. In-Process Detection of Weld Defects Using Laser-Based Ultrasound

    International Nuclear Information System (INIS)

    Bacher, G.D.; Kercel, S.W.; Kisner, R.A.; Klein, M.B.; Pouet, B.

    1999-01-01

    Laser-based ultrasonic (LBU) measurement shows great promise for on-line monitoring of weld quality in tailor-welded blanks. Tailor-welded blanks are steel blanks made from plates of differing thickness and/or properties butt-welded together; they are used in automobile manufacturing to produce body, frame, and closure panels. LBU uses a pulsed laser to generate the ultrasound and a continuous wave (CW) laser interferometer to detect the ultrasound at the point of interrogation to perform ultrasonic inspection. LBU enables in-process measurements since there is no sensor contact or near-contact with the workpiece. The authors are using laser-generated plate (Lamb) waves to propagate from one plate into the weld nugget as a means of detecting defects. This paper reports the results of the investigation of a number of inspection architectures based on processing of signals from selected plate waves, which are either reflected from or transmitted through the weld zone. Bayesian parameter estimation and wavelet analysis (both continuous and discrete) have shown that the LBU time-series signal is readily separable into components that provide distinguishing features which describe weld quality. The authors anticipate that, in an on-line industrial application, these measurements can be implemented just downstream from the weld cell. Then the weld quality data can be fed back to control critical weld parameters or alert the operator of a problem requiring maintenance. Internal weld defects and deviations from the desired surface profile can then be corrected before defective parts are produced

  5. Does endoscopic ultrasound improve detection of locally recurrent anal squamous-cell cancer?

    Science.gov (United States)

    Peterson, Carrie Y; Weiser, Martin R; Paty, Philip B; Guillem, Jose G; Nash, Garrett M; Garcia-Aguilar, Julio; Patil, Sujata; Temple, Larissa K

    2015-02-01

    Evaluating patients for recurrent anal cancer after primary treatment can be difficult owing to distorted anatomy and scarring. Many institutions incorporate endoscopic ultrasound to improve detection, but the effectiveness is unknown. The aim of this study is to compare the effectiveness of digital rectal examination and endoscopic ultrasound in detecting locally recurrent disease during routine follow-up of patients with anal cancer. This study is a retrospective, single-institution review. This study was conducted at an oncologic tertiary referral center. Included were 175 patients with nonmetastatic anal squamous-cell cancer, without persistent disease after primary chemoradiotherapy, who had at least 1 posttreatment ultrasound and examination by a colorectal surgeon. The primary outcomes measured were the first modality to detect local recurrence, concordance, crude cancer detection rate, sensitivity, specificity, and predictive value. Eight hundred fifty-five endoscopic ultrasounds and 873 digital rectal examinations were performed during 35 months median follow-up. Overall, ultrasound detected 7 (0.8%) mesorectal and 32 (3.7%) anal canal abnormalities; digital examination detected 69 (7.9%) anal canal abnormalities. Locally recurrent disease was found on biopsy in 8 patients, all detected first or only with digital examination. Four patients did not have an ultrasound at the time of diagnosis of recurrence. The concordance of ultrasound and digital examination in detecting recurrent disease was fair at 0.37 (SE, 0.08; 95% CI, 0.21-0.54), and there was no difference in crude cancer detection rate, sensitivity, specificity, and negative or positive predictive values. The heterogeneity of follow-up timing and examinations is not standardized in this study but is reflective of general practice. Endoscopic ultrasound did not provide any advantage over digital rectal examination in identifying locally recurrent anal cancer, and should not be recommended for

  6. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    Science.gov (United States)

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  7. Detecting changes in ultrasound backscattered statistics by using Nakagami parameters: Comparisons of moment-based and maximum likelihood estimators.

    Science.gov (United States)

    Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang

    2017-05-01

    The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Use of modulated excitation signals in ultrasound. Part I: Basic concepts and expected benefits

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    This paper, the first from a series of three papers on the application of coded excitation signals in medical ultrasound, discusses the basic principles and ultrasound-related problems of pulse compression. The concepts of signal modulation and matched filtering are given, and a simple model...... of attenuation relates the matched filter response with the ambiguity function, known from radar. Based on this analysis and the properties of the ambiguity function, the selection of coded waveforms suitable for ultrasound imaging is discussed. It is shown that linear frequency modulation (FM) signals have...... that in the case of linear FM signals, a SNR improvement of 12 to 18 dB can be expected for large imaging depths in attenuating media, without any depth-dependent filter compensation. In contrast, nonlinear FM modulation and binary codes are shown to give a SNR improvement of only 4 to 9 dB when processed...

  9. Automated Breast Ultrasound Lesions Detection using Convolutional Neural Networks.

    Science.gov (United States)

    Yap, Moi Hoon; Pons, Gerard; Marti, Joan; Ganau, Sergi; Sentis, Melcior; Zwiggelaar, Reyer; Davison, Adrian K; Marti, Robert

    2017-08-07

    Breast lesion detection using ultrasound imaging is considered an important step of Computer-Aided Diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e. Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.

  10. Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Mehrmohammadi, Mohammad; Qu Min; Sokolov, Konstantin V; Emelianov, Stanislav Y; Ma, Li L; Johnston, Keith P; Romanovicz, Dwight K

    2011-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.

  11. Optical detection of ultrasound from optically rough surfaces using a custom CMOS sensor

    International Nuclear Information System (INIS)

    Achamfuo-Yeboah, S O; Light, R A; Sharpies, S D

    2015-01-01

    The optical detection of ultrasound from optically rough surfaces is severely limited when using a conventional interferometric or optical beam deflection (OBD) setup because the detected light is speckled. This means that complicated and expensive setups are required to detect ultrasound optically on rough surfaces. We present a CMOS integrated circuit that can detect laser ultrasound in the presence of speckle. The detector circuit is based on the simple knife edge detector. It is self-adapting and is fast, inxepensive, compact and robust. The CMOS circuit is implemented as a widefield array of 32×32 pixels. At each pixel the received light is compared with an adjacent pixel in order to determine the local light gradient. The result of this comparison is stored and used to connect each pixel to the positive or negative gradient output as appropriate (similar to a balanced knife edge detector). The perturbation of the surface due to ultrasound preserves the speckle distribution whilst deflecting it. The spatial disturbance of the speckle pattern due to the ultrasound is detected by considering each pair of pixels as a knife edge detector. The sensor can adapt itself to match the received optical speckle pattern in less than 0.1 μs, and then detect the ultrasound within 0.5 μs of adaptation. This makes it possible to repeatedly detect ultrasound from optically rough surfaces very quickly. The detector is capable of independent operation controlled by a local microcontroller, or it may be connected to a computer for more sophisticated configuration and control. We present the theory of its operation and discuss results validating the concept and operation of the device. We also present preliminary results from an improved design which grants a higher bandwidth, allowing for optical detection of higher frequency ultrasound

  12. Emergency ultrasound in the detection of pediatric long-bone fractures.

    Science.gov (United States)

    Barata, Isabel; Spencer, Robert; Suppiah, Ara; Raio, Christopher; Ward, Mary Frances; Sama, Andrew

    2012-11-01

    Long-bone fractures represent one of the most commonly sustained injuries following trauma and account for nearly 4% of emergency department visits in the United States each year. These fractures are associated with a significant risk of bleeding and neurovascular compromise. Delays in their identification and treatment can lead to loss of limb and even death. Although emergency physicians currently rely predominantly on radiography for the examination of long-bone injuries, emergency ultrasound has several advantages over radiography and may be useful in the identification of long-bone fractures. Ultrasound is rapid, noninvasive, and cost-effective. Unlike radiography, ultrasound does not expose children to ionizing radiation, which has been linked to cancer. The goal of this study was to assess the agreement between emergency physicians' and radiologists' final assessments of suspected long-bone fractures using emergency ultrasound and radiography, respectively, in the pediatric population. This is a prospective study involving a convenience sample of pediatric patients (fracture. Suspected fractures were characterized by swelling, erythema, and localized pain. Patients who had a history of fracture, extremity deformity, orthopedic hardware in the traumatized area, or an open fracture were excluded from this study. Each investigator received limited, focused training in the use of ultrasonography for fracture identification and localization. This training consisted of a brief didactic session and video review of normal and fractured long-bones. A total of 53 subjects (mean age, 10.2 [SD, 3.8] years; 56.6% were male) were enrolled, which corresponded to 98 ultrasound examinations. Sixty-nine scans (70.4%) involved bones of the upper extremity, and 29 (29.6%) the lower extremity. Radiography identified a total of 43 fractures. The sensitivity and specificity of ultrasound in the detection of long-bone fractures were 95.3% (95% confidence interval [CI], 82

  13. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  14. Evaluation of ultrasound techniques for brain injury detection

    Science.gov (United States)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  15. Intrauterine photoacoustic and ultrasound imaging probe

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  16. Power Doppler signal calibration between ultrasound machines by use of a capillary-flow phantom for pannus vascularity in rheumatoid finger joints: a basic study.

    Science.gov (United States)

    Sakano, Ryosuke; Kamishima, Tamotsu; Nishida, Mutsumi; Horie, Tatsunori

    2015-01-01

    Ultrasound allows the detection and grading of inflammation in rheumatology. Despite these advantages of ultrasound in the management of rheumatoid patients, it is well known that there are significant machine-to-machine disagreements regarding signal quantification. In this study, we tried to calibrate the power Doppler (PD) signal of two models of ultrasound machines by using a capillary-flow phantom. After flow velocity analysis in the perfusion cartridge at various injection rates (0.1-0.5 ml/s), we measured the signal count in the perfusion cartridge at various injection rates and pulse repetition frequencies (PRFs) by using PD, perfusing an ultrasound micro-bubble contrast agent diluted with normal saline simulating human blood. By use of the data from two models of ultrasound machines, Aplio 500 (Toshiba) and Avius (Hitachi Aloka), the quantitative PD (QPD) index [the summation of the colored pixels in a 1 cm × 1 cm rectangular region of interest (ROI)] was calculated via Image J (internet free software). We found a positive correlation between the injection rate and the flow velocity. In Aplio 500 and Avius, we found negative correlations between the PRF and the QPD index when the flow velocity was constant, and a positive correlation between flow velocity and the QPD index at constant PRF. The equation for the relationship of the PRF between Aplio 500 and Avius was: y = 0.023x + 0.36 [y = PRF of Avius (kHz), x = PRF of Aplio 500 (kHz)]. Our results suggested that the signal calibration of various models of ultrasound machines is possible by adjustment of the PRF setting.

  17. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    Science.gov (United States)

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  18. Bedside Ultrasound in the Emergency Department to Detect Hydronephrosis for the Evaluation of Suspected Ureteric Colic.

    Science.gov (United States)

    Shrestha, R; Shakya, R M; Khan A, A

    2016-01-01

    Background Renal colic is a common emergency department presentation. Hydronephrosis is indirect sign of urinary obstruction which may be due to obstructing ureteric calculus and can be detected easily by bedside ultrasound with minimal training. Objective To compare the accuracy of detection of hydronephrosis performed by the emergency physician with that of radiologist's in suspected renal colic cases. Method This was a prospective observational study performed over a period of 6 months. Patients >8 years with provisional diagnosis of renal colic with both the bedside ultrasound and the formal ultrasound performed were included. Presence of hydronephrosis in both ultrasounds and size and location of ureteric stone if present in formal ultrasound was recorded. The accuracy of the emergency physician detection of hydronephrosis was determined using the scan reported by the radiologists as the "gold standard" as computed tomography was unavailable. Statistical analysis was executed using SPSS 17.0. Result Among the 111 included patients, 56.7% had ureteric stone detected in formal ultrasound. The overall sensitivity, specificity, positive predictive value and negative predictive value of bedside ultrasound performed by emergency physician for detection of hydronephrosis with that of formal ultrasound performed by radiologist was 90.8%., 78.3%, 85.5% and 85.7% respectively. Bedside ultrasound and formal ultrasound both detected hydronephrosis more often in patients with larger stones and the difference was statistically significant (p=.000). Conclusion Bedside ultrasound can be potentially used as an important tool in detecting clinically significant hydronephrosis in emergency to evaluate suspected ureteric colic. Focused training in ultrasound could greatly improve the emergency management of these patients.

  19. Detection of vascularity in wrist tenosynovitis: power doppler ultrasound compared with contrast-enhanced grey-scale ultrasound.

    Science.gov (United States)

    Klauser, Andrea S; Franz, Magdalena; Arora, Rohit; Feuchtner, Gudrun M; Gruber, Johann; Schirmer, Michael; Jaschke, Werner R; Gabl, Markus F

    2010-01-01

    We sought to assess vascularity in wrist tenosynovitis by using power Doppler ultrasound (PDUS) and to compare detection of intra- and peritendinous vascularity with that of contrast-enhanced grey-scale ultrasound (CEUS). Twenty-six tendons of 24 patients (nine men, 15 women; mean age ± SD, 54.4 ± 11.8 years) with a clinical diagnosis of tenosynovitis were examined with B-mode ultrasonography, PDUS, and CEUS by using a second-generation contrast agent, SonoVue (Bracco Diagnostics, Milan, Italy) and a low-mechanical-index ultrasound technique. Thickness of synovitis, extent of vascularized pannus, intensity of peritendinous vascularisation, and detection of intratendinous vessels was incorporated in a 3-score grading system (grade 0 to 2). Interobserver variability was calculated. With CEUS, a significantly greater extent of vascularity could be detected than by using PDUS (P < 0.001). In terms of peri- and intratendinous vessels, CEUS was significantly more sensitive in the detection of vascularization compared with PDUS (P < 0.001). No significant correlation between synovial thickening and extent of vascularity could be found (P = 0.089 to 0.097). Interobserver reliability was calculated to be excellent when evaluating the grading score (κ = 0.811 to 1.00). CEUS is a promising tool to detect tendon vascularity with higher sensitivity than PDUS by improved detection of intra- and peritendinous vascularity.

  20. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound

    International Nuclear Information System (INIS)

    Oh, Junghwan; Feldman, Marc D; Kim, Jeehyun; Condit, Chris; Emelianov, Stanislav; Milner, Thomas E

    2006-01-01

    The purpose of this study was to demonstrate the magneto-motive ultrasonic detection of superparamagnetic iron oxide (SPIO) nanoparticles as a marker of macrophage recruitment in tissue. The capability of ultrasound to detect SPIO nanoparticles (core diameter ∼20 nm) taken up by murine liver macrophages was investigated. Eight mice were sacrificed two days after the intravenous administration of four SPIO doses (1.5, 1.0, 0.5, and 0.1 mmol Fe/kg body weight). In the iron-laden livers, ultrasound Doppler measurements showed a frequency shift in response to an applied time-varying magnetic field. M-mode scan and colour power Doppler images of the iron-laden livers also demonstrated nanoparticle movement under focused magnetic field excitation. In the livers of two saline injected control mice, no movement was observed using any ultrasound imaging modes. The results of our experiments indicate that ultrasound imaging of magneto-motive excitation is a candidate imaging modality to identify tissue-based macrophages containing SPIO nanoparticles

  1. Role of ultrasound in detection of ectopic pregnancy: our experience

    International Nuclear Information System (INIS)

    Moshin, H.; Khan, M.N.; Jadun, C.K.; Tanveer-ul-Jaq

    2001-01-01

    Objective: To determine the efficacy of ultrasound in detection of ectopic pregnancy. Design: It was an observational and prospective study. The study was conducted from January, 2000 in the Radiology Department of the Agha Khan University Hospital, Karachi. Subjects and Methods: Four hundred patients were referred for sonography with a query of ectopic pregnancy. Most of the patients had clinical symptoms of vaginal bleeding and lower abdominal pain with history of missed periods. For the evaluation biphasic ultrasound was performed that included suprapubic and trans vaginal ultrasound. After analyzing internal architecture prospective sonographic diagnosis was made. Results: The most common site of ectopic pregnancy was fallopian tubes. Positive diagnosis was made in 96.3% cases and negative diagnosis in 4.7% cases in our study. Conclusion: Efficacy of ultrasound was found to be 96.4% in the detection of ectopic pregnancy and hence plays a very important role in early diagnosis of ectopic pregnancy. (author)

  2. Intrauterine photoacoustic and ultrasound imaging probe.

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Incidentally detection of non-palpable testicular nodules at scrotal ultrasound: What is new?

    Directory of Open Access Journals (Sweden)

    Massimo Valentino

    2014-12-01

    Full Text Available The increased use of ultrasound in patients with urological and andrological symptoms has given an higher detection of intra-testicular nodules. Most of these lesions are hypoechoic and their interpretation is often equivocal. Recently, new ultrasound techniques have been developed alongside of B-mode and color-Doppler ultrasound. Although not completely standardized, contrast-enhanced ultrasound (CEUS and tissue elastography (TE, added to traditional ultrasonography, can provide useful information about the correct interpretation of incidentally detected non-palpable testicular nodules. The purpose of this review article is to illustrate these new techniques in the patient management.

  4. Lung ultrasound accurately detects pneumothorax in a preterm newborn lamb model.

    Science.gov (United States)

    Blank, Douglas A; Hooper, Stuart B; Binder-Heschl, Corinna; Kluckow, Martin; Gill, Andrew W; LaRosa, Domenic A; Inocencio, Ishmael M; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie A; Davis, Peter G; Polglase, Graeme R

    2016-06-01

    Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  5. Ultrasound Imaging Methods for Breast Cancer Detection

    NARCIS (Netherlands)

    Ozmen, N.

    2014-01-01

    The main focus of this thesis is on modeling acoustic wavefield propagation and implementing imaging algorithms for breast cancer detection using ultrasound. As a starting point, we use an integral equation formulation, which can be used to solve both the forward and inverse problems. This thesis

  6. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    Science.gov (United States)

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  7. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    ultrasound presents design methods of linear FM signals and mismatched filters, in order to meet the higher demands on resolution in ultrasound imaging. It is shown that for the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces....... The method is evaluated first for resolution performance and axial sidelobes through simulations with the program Field II. A coded excitation ultrasound imaging system based on a commercial scanner and a 4 MHz probe driven by coded sequences is presented and used for the clinical evaluation of the coded...... excitation/compression scheme. The clinical images show a significant improvement in penetration depth and contrast, while they preserve both axial and lateral resolution. At the maximum acquisition depth of 15 cm, there is an improvement of more than 10 dB in the signal-to-noise ratio of the images...

  8. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  9. Bedside ultrasound reliability in locating catheter and detecting complications

    Directory of Open Access Journals (Sweden)

    Payman Moharamzadeh

    2016-10-01

    Full Text Available Introduction: Central venous catheterization is one of the most common medical procedures and is associated with such complications as misplacement and pneumothorax. Chest X-ray is among good ways for evaluation of these complications. However, due to patient’s excessive exposure to radiation, time consumption and low diagnostic value in detecting pneumothorax in the supine patient, the present study intends to examine bedside ultrasound diagnostic value in locating tip of the catheter and pneumothorax. Materials and methods: In the present cross-sectional study, all referred patients requiring central venous catheterization were examined. Central venous catheterization was performed by a trained emergency medicine specialist, and the location of catheter and the presence of pneumothorax were examined and compared using two modalities of ultrasound and x-ray (as the reference standard. Sensitivity, specificity, and positive and negative predicting values were reported. Results: A total of 200 non-trauma patients were included in the study (58% men. Cohen’s Kappa consistency coefficients for catheterization and diagnosis of pneumothorax were found as 0.49 (95% CI: 0.43-0.55, 0.89 (P<0.001, (95% CI: 97.8-100, respectively. Also, ultrasound sensitivity and specificity in diagnosing pneumothorax were 75% (95% CI: 35.6-95.5, and 100% (95% CI: 97.6-100, respectively. Conclusion: The present study results showed low diagnostic value of ultrasound in determining catheter location and in detecting pneumothorax. With knowledge of previous studies, the search still on this field.   Keywords: Central venous catheterization; complications; bedside ultrasound; radiography;

  10. Detection of cavernous transformation of the portal vein by contrast-enhanced ultrasound.

    Science.gov (United States)

    Hwang, Misun; Thimm, Matthew A; Guerrerio, Anthony L

    2018-06-01

    Cavernous transformation of the portal vein can be missed on color Doppler exam or arterial phase cross-sectional imaging due to their slow flow and delayed enhancement. Contrast-enhanced ultrasound (CEUS) offers many advantages over other imaging techniques and can be used to successfully detect cavernous transformations of the portal vein. A 10-month-old female was followed for repeat episodes of hematemesis. Computed tomography angiography (CTA) and magnetic resonance arteriogram (MRA) and portal venography were performed. Color Doppler exam of the portal vein was performed followed by administration of Lumason, a microbubble US contrast agent. Magnetic resonance arteriogram, CTA, and color Doppler exam at the time of initial presentation was unremarkable without obvious vascular malformation within the limits of motion degraded exam. At 8-month follow-up, esophagogastroduodenoscopy revealed a vascular malformation in the distal esophagus which was sclerosed. At 6 month after sclerosis of the lesion, portal venography revealed occlusion of the portal vein with extensive collateralization. Color Doppler revealed subtle hyperarterialization and periportal collaterals. CEUS following color Doppler exam demonstrated extensive enhancement of periportal collaterals. Repeat color Doppler after contrast administration demonstrated extensive Doppler signal in the collateral vessels, suggestive of cavernous transformation. We describe a case of cavernous transformation of the portal vein missed on initial color Doppler, CTA and MRA, but detected with contrast-enhanced ultrasound technique.

  11. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  12. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    Science.gov (United States)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  13. Visual detectability of elastic contrast in real-time ultrasound images

    Science.gov (United States)

    Miller, Naomi R.; Bamber, Jeffery C.; Doyley, Marvin M.; Leach, Martin O.

    1997-04-01

    Elasticity imaging (EI) has recently been proposed as a technique for imaging the mechanical properties of soft tissue. However, dynamic features, known as compressibility and mobility, are already employed to distinguish between different tissue types in ultrasound breast examination. This method, which involves the subjective interpretation of tissue motion seen in real-time B-mode images during palpation, is hereafter referred to as differential motion imaging (DMI). The purpose of this study was to develop the methodology required to perform a series of perception experiments to measure elastic lesion detectability by means of DMI and to obtain preliminary results for elastic contrast thresholds for different lesion sizes. Simulated sequences of real-time B-scans of tissue moving in response to an applied force were generated. A two-alternative forced choice (2-AFC) experiment was conducted and the measured contrast thresholds were compared with published results for lesions detected by EI. Although the trained observer was found to be quite skilled at the task of differential motion perception, it would appear that lesion detectability is improved when motion information is detected by computer processing and converted to gray scale before presentation to the observer. In particular, for lesions containing fewer than eight speckle cells, a signal detection rate of 100% could not be achieved even when the elastic contrast was very high.

  14. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.

  15. Fetal movement detection: comparison of the Toitu actograph with ultrasound from 20 weeks gestation.

    Science.gov (United States)

    DiPietro, J A; Costigan, K A; Pressman, E K

    1999-01-01

    This study evaluates the validity of Doppler-detected fetal movement by a commercially available monitor and investigates whether characteristics of maternal body habitus and the intrauterine environment affect its performance. Fetal movement was evaluated in normal pregnancies using both ultrasound visualization and a fetal actocardiograph (Toitu MT320; Tofa Medical Inc., Malvern, PA). Data were collected for 32 min on 34 fetuses stratified by gestational age (20-25 weeks; 28-32 weeks; 35-39 weeks). Fetal and maternal characteristics were recorded. Comparisons between ultrasound-detected trunk and limb movements and actograph records were conducted based both on 10-s time intervals and on detection of individual movements. Time-based comparisons indicated agreement between ultrasound and actograph 94.7% of the time; this association rose to 98% when movements of less than 1 s duration were excluded. Individual movements observed on ultrasound were detected by the actograph 91% of the time, and 97% of the time when brief, isolated movements were excluded. The overall kappa value for agreement was 0.88. The actograph was reliable in detecting periods of quiescence as well as activity. These findings did not vary by gestational age. The number of movements detected by the actograph, but not the single-transducer ultrasound, significantly increased over gestation. Maternal age, parity, weight, height, or body mass index were not consistently associated with actograph validity. Characteristics of the uterine environment, including placenta location, fetal presentation, and amniotic fluid volume also did not affect results. The Toitu actograph accurately detects fetal movement and quiescence from as early as 20 weeks gestation and has utility in both clinical and research settings. Actographs are most useful for providing objective and quantifiable measures of fetal activity level, including number and duration of movements, while visualization through ultrasound is

  16. Ultrasound strain imaging using Barker code

    Science.gov (United States)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  17. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  18. The Role of Breast Ultrasound in Early Cancer Detection

    Directory of Open Access Journals (Sweden)

    Huay-Ben Pan

    2016-12-01

    Full Text Available Ultrasonography (US is currently considered the first-line examination in the detection and characterization of breast lesions including the evaluation of breast cancer. Yet only few single-center cohort studies analyzing breast US in the framework of screening could be identified. In spite of mammography consider as the primary method for screening especially the noteworthy ability of microcalcifications detection. US is good in mass or mass- like lesion detection, especially in the dense breast population that proved by the study of ACRIN 6666. A lobular hypoechoic area; lesion with ductal extension and dilatation; and a hypoechoic nodular lesion with a dilated lactiferous duct leading to the retroareolar region, that were the common ultrasound findings in Ductal carcinoma in situ (DCIS and probably related to nuclear grade of cancer. Computer programs have been developed and approved for use in clinical practice, the application including CAD (computer aided/assisted detection/diagnosis, ABUS (automated breast US, elastography and microbubbles in contrast-enhanced ultrasound. Furthermore the standardized scanning; improving with computer technology implementation and familiar to the picture of DCIS is necessary for progress the competence of early breast cancer detection.

  19. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    Science.gov (United States)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  20. Beacon signal in transcranial color coded ultrasound: A sign for brain death

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Topçuoğlu

    2014-04-01

    Full Text Available A widely under-recognized brain-death confirming transcranial ultrasonography pattern resembling the red-blue beacon signal was demonstrated. Familiarity to this distinct and characteristic ultrasonic pattern seems to be important in the perspective of point-of-care neurological ultrasound use and knobology.

  1. Ultrasound detection of placenta accreta in the first trimester of pregnancy.

    Science.gov (United States)

    Rahimi-Sharbaf, Fatemeh; Jamal, Ashraf; Mesdaghinia, Elaheh; Abedzadeh-Kalahroudi, Masoumeh; Niroomanesh, Shirin; Atoof, Fatemeh

    2014-06-01

    Placenta accreta is considered a life-threatening condition and the main cause of maternal mortality. Prenatal diagnosis of placenta accreta usually is made by clinical presentation, imaging studies like ultrasound and MRI in the second and third trimester. To determine accuracy of ultrasound findings for placenta accreta in the first trimester of pregnancy. In a longitudinal study 323 high risk patients for placenta accreta were assessed. The eligible women were examined by vaginal and abdominal ultrasound for gestational sac and placental localization and they were followed up until the end of pregnancy. The ultrasound findings were compared with histopathological examinations as a gold standard. The sensitivity, specificity, positive and negative predictive value of ultrasound were estimated for the first trimester and compared with other 2 trimesters in the case of repeated ultrasound examination. Ultrasound examinations in the first trimester revealed that 28 cases had the findings in favor of placenta accreta which ultimately was confirmed in 7 cases. The ultrasound sensitivity and specificity for detecting placenta accreta in the first trimester was 41% [95% CI: 16.2-62.7] and 88% [95% CI: 88.2-94.6] respectively. Ultrasound screening for placenta accreta in the first trimester of pregnancy could not achieve the high sensitivity as second and third trimester of pregnancy.

  2. Massive hydrothorax with malpositioned central venous catheter – Ultrasound detection

    Directory of Open Access Journals (Sweden)

    Neha Hasija

    2016-04-01

    Full Text Available Radioimaging is the gold standard for confirmation of the position of central venous catheter as well as its related complications. Use of ultrasound has been proven in guiding central venous cannulations, and it can also be used in detecting related complications. We report a case of a 2 year old child with hydrothorax causing desaturation due to malpositioned central venous catheter diagnosed by ultrasound in the delay for getting a radiograph.

  3. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  4. Rejection of crosstalk and noise by a quasi balanced CFPI for remote ultrasound detection

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, B; Berer, T; Hornhuber, C; Burgholzer, P, E-mail: bernhard.reitinger@recendt.at [Research Center for Non Destructive Testing GmbH (Recendt), Hafenstrasse 47-51, 4020 Linz (Austria)

    2011-01-01

    In this paper we show the benefits of a quasi balanced fringe hopping CFPI (confocal Fabry-Perot interferometer) with broadband CMRR (common mode rejection ratio) for remote ultrasound detection. Ultrasonic information in general lies in the phase modulation of laser light which in this case is demodulated by using the CFPI at a certain working point on a fringe. By hopping from the positive to the negative slope on the same fringe the detected ultrasonic signals are inverted. In contrary interference signals like crosstalk from the generation, ghosts, or noise correlated to pulse laser excitation are not influenced and hence get rejected by subtracting the signals from both slopes. Hence, a minimum of two measurements is needed for common mode rejection. The fringe hopping from the positive to the negative slope is done by changing the distance of the CFPI mirrors with a precise piezoelectric-stack and a fast high resolution digital controller. As only one photo-detector with a transimpedance-amplifier is needed a high CMRR can be accomplished which is not affected by the symmetry of the fringe but only by pulse to pulse energy fluctuations of the generation laser. We show that with fringe hopping and averaging the signal to noise ratio increases much faster than with averaging without fringe hopping. This is due to the correlation of the quasi-noise with the generation cycle.

  5. Ultrasound call detection in capybara

    Directory of Open Access Journals (Sweden)

    Selene S.C. Nogueira

    2012-07-01

    Full Text Available The vocal repertoire of some animal species has been considered a non-invasive tool to predict distress reactivity. In rats ultrasound emissions were reported as distress indicator. Capybaras[ vocal repertoire was reported recently and seems to have ultrasound calls, but this has not yet been confirmed. Thus, in order to check if a poor state of welfare was linked to ultrasound calls in the capybara vocal repertoire, the aim of this study was to track the presence of ultrasound emissions in 11 animals under three conditions: 1 unrestrained; 2 intermediately restrained, and 3 highly restrained. The ultrasound track identified frequencies in the range of 31.8±3.5 kHz in adults and 33.2±8.5 kHz in juveniles. These ultrasound frequencies occurred only when animals were highly restrained, physically restrained or injured during handling. We concluded that these calls with ultrasound components are related to pain and restraint because they did not occur when animals were free of restraint. Thus we suggest that this vocalization may be used as an additional tool to assess capybaras[ welfare.

  6. Ultrasound-guided wire localization of lesions detected on ...

    African Journals Online (AJOL)

    Background: Wire localization for planned surgical treatment in the management of breast cancer is underutilized in our environment. The objective of this study is to assess the role of ultrasound-guided wire localization of breast masses detected on screening mammography and its impact on biopsy and breast ...

  7. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  8. A passive wireless ultrasound pitch–catch system

    International Nuclear Information System (INIS)

    Zahedi, F; Yao, J; Huang, H

    2015-01-01

    This paper exploits amplitude modulation and demodulation to achieve a passive wireless ultrasound pitch–catch system consisting of a wireless interrogator and a combination of a wireless actuator and a sensor mounted on a structure. The wireless interrogator operates in two modes, i.e. the generation and sensing modes. At the generation mode, the interrogator transmits two microwave signals; one is amplitude modulated with the ultrasound excitation signal while the other is a continuous-wave carrier signal. Once received by the wireless actuator, the amplitude modulated signal is demodulated using the carrier signal to recover the ultrasound excitation signal, which is then supplied to a piezoelectric wafer actuator for ultrasound generation. Subsequently, the interrogator is switched to the sensing mode by transmitting a carrier signal with a different frequency. Once received by the wireless sensor, this carrier signal is modulated with the ultrasound sensing signal acquired by the piezoelectric wafer sensor to produce an amplitude modulated microwave signal, which can then be wirelessly transmitted and demodulated by the interrogator to recover the original ultrasound sensing signal. The principle and implementation of the wireless ultrasound pitch–catch system as well as the data processing of the wirelessly received sensing signal are described. Experiment results validating wireless ultrasound generation and sensing from a distance of 0.5 m are presented. (paper)

  9. Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan.

    Science.gov (United States)

    Nagarsheth, Khanjan; Kurek, Stanley

    2011-04-01

    Pneumothorax after trauma can be a life threatening injury and its care requires expeditious and accurate diagnosis and possible intervention. We performed a prospective, single blinded study with convenience sampling at a Level I trauma center comparing thoracic ultrasound with chest X-ray and CT scan in the detection of traumatic pneumothorax. Trauma patients that received a thoracic ultrasound, chest X-ray, and chest CT scan were included in the study. The chest X-rays were read by a radiologist who was blinded to the thoracic ultrasound results. Then both were compared with CT scan results. One hundred and twenty-five patients had a thoracic ultrasound performed in the 24-month period. Forty-six patients were excluded from the study due to lack of either a chest X-ray or chest CT scan. Of the remaining 79 patients there were 22 positive pneumothorax found by CT and of those 18 (82%) were found on ultrasound and 7 (32%) were found on chest X-ray. The sensitivity of thoracic ultrasound was found to be 81.8 per cent and the specificity was found to be 100 per cent. The sensitivity of chest X-ray was found to be 31.8 per cent and again the specificity was found to be 100 per cent. The negative predictive value of thoracic ultrasound for pneumothorax was 0.934 and the negative predictive value for chest X-ray for pneumothorax was found to be 0.792. We advocate the use of chest ultrasound for detection of pneumothorax in trauma patients.

  10. Ultrasound findings and histological features of ductal carcinoma in situ detected by ultrasound examination alone

    OpenAIRE

    Izumori, Ayumi; Takebe, Koji; Sato, Akira

    2009-01-01

    Background With the increasing use of high-resolution ultrasound (US) examination, many breast carcinomas that cannot be identified by mammography (MMG) alone have been detected. Many of these carcinomas are ductal carcinoma in situ (DCIS) and small-sized invasive carcinomas. Until date, DCISs have often been described as palpable masses with calcifications on MMG, but what are the characteristics of DCISs that are detectable by US alone? Methods One hundred fifty cases with DCIS that we expe...

  11. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  12. Noninvasive Label-Free Detection of Micrometastases in the Lymphatics with Ultrasound-Guided Photoacoustic Imaging

    Science.gov (United States)

    2015-10-01

    imaging can be used to guide dissection. We have also successfully integrated a programmable ultrasound machine ( Verasonics Vantage ) and tunable pulsed...Mobile HE) with the programmable ultrasound machine ( Verasonics Vantage ). We have synchronized the signals to enable interleaved acquisition of US...transducer (L11-4v, Verasonics Inc.) and build a housing which effectively couples fiber optic light delivery. o What opportunities for training and

  13. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum

    International Nuclear Information System (INIS)

    Wille, M-L; Langton, C M; Zapf, M; Ruiter, N V; Gemmeke, H

    2015-01-01

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity. (note)

  14. Importance of diastolic velocities in the detection of celiac and mesenteric artery disease by duplex ultrasound

    DEFF Research Database (Denmark)

    Perko, M J; Just, S; Schroeder, T V

    1997-01-01

    To assess the predictive value of ultrasound duplex scanning in the detection of superior mesenteric artery (SMA) and celiac artery (CA) occlusive disease.......To assess the predictive value of ultrasound duplex scanning in the detection of superior mesenteric artery (SMA) and celiac artery (CA) occlusive disease....

  15. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    Science.gov (United States)

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis. Copyright © 2016 World Federation for

  16. Statistical theory of signal detection

    CERN Document Server

    Helstrom, Carl Wilhelm; Costrell, L; Kandiah, K

    1968-01-01

    Statistical Theory of Signal Detection, Second Edition provides an elementary introduction to the theory of statistical testing of hypotheses that is related to the detection of signals in radar and communications technology. This book presents a comprehensive survey of digital communication systems. Organized into 11 chapters, this edition begins with an overview of the theory of signal detection and the typical detection problem. This text then examines the goals of the detection system, which are defined through an analogy with the testing of statistical hypotheses. Other chapters consider

  17. "Utilizing" signal detection theory.

    Science.gov (United States)

    Lynn, Spencer K; Barrett, Lisa Feldman

    2014-09-01

    What do inferring what a person is thinking or feeling, judging a defendant's guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, for which different responses are appropriate) and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial, we show how incorporating the economic concept of utility allows signal detection theory to serve as a model of optimal decision making, going beyond its common use as an analytic method. This utility approach to signal detection theory clarifies otherwise enigmatic influences of perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (an inverse relationship between bias magnitude and sensitivity optimizes utility). A "utilized" signal detection theory offers the possibility of expanding the phenomena that can be understood within a decision-making framework. © The Author(s) 2014.

  18. Low-frequency quantitative ultrasound imaging of cell death in vivo

    International Nuclear Information System (INIS)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.; Papanicolau, Naum; Tadayyon, Hadi; Lee, Justin; Zubovits, Judit; Sadeghian, Alireza; Karshafian, Raffi; Al-Mahrouki, Azza; Giles, Anoja; Kolios, Michael C.

    2013-01-01

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r 2 = 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in

  19. Low-frequency quantitative ultrasound imaging of cell death in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J. [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Papanicolau, Naum; Tadayyon, Hadi [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lee, Justin [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Zubovits, Judit [Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Sadeghian, Alireza [Department of Computer Science, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Karshafian, Raffi [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Al-Mahrouki, Azza; Giles, Anoja [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Kolios, Michael C. [Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2013-08-15

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency

  20. Signal detection

    International Nuclear Information System (INIS)

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  1. Signal analysis for failure detection

    International Nuclear Information System (INIS)

    Parpaglione, M.C.; Perez, L.V.; Rubio, D.A.; Czibener, D.; D'Attellis, C.E.; Brudny, P.I.; Ruzzante, J.E.

    1994-01-01

    Several methods for analysis of acoustic emission signals are presented. They are mainly oriented to detection of changes in noisy signals and characterization of higher amplitude discrete pulses or bursts. The aim was to relate changes and events with failure, crack or wear in materials, being the final goal to obtain automatic means of detecting such changes and/or events. Performance evaluation was made using both simulated and laboratory test signals. The methods being presented are the following: 1. Application of the Hopfield Neural Network (NN) model for classifying faults in pipes and detecting wear of a bearing. 2. Application of the Kohonnen and Back Propagation Neural Network model for the same problem. 3. Application of Kalman filtering to determine time occurrence of bursts. 4. Application of a bank of Kalman filters (KF) for failure detection in pipes. 5. Study of amplitude distribution of signals for detecting changes in their shape. 6. Application of the entropy distance to measure differences between signals. (author). 10 refs, 11 figs

  2. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Ultrasonic signal analysis according to laser ultrasound generation position for the detection of delamination in composites

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung Min; Choi In Young; Kim, Seong Jong; Kang, Young June [Chonbuk National University, Jeonju (Korea, Republic of); Lee, Gil Dong [GP Inc., Daejeon (Korea, Republic of)

    2015-11-15

    Carbon-fiber-reinforced plastic should be inspected in the fabrication process to enhance quality by preventing defects, such as delamination and voids. Conventional ultrasonic evaluation methods cannot be applied during the fabrication process because they require contact measurement by a transducer. Thus, an optical method using a laser was employed in this study for non-contact ultrasonic evaluation. Ultrasonic signals were generated by a pulsed laser and received by using a laser interferometer. First, an ultrasonic signal was generated from the back side of a material sample with artificial internal defects in the composite. The ultrasonic signal directed through the interior of the specimen was then detected at the front side. After determining the locations of the internal defects, the defects were quantitatively evaluated from the front side of the composite by using ultrasonic signal generation and reception.

  4. Verification and compensation of respiratory motion using an ultrasound imaging system

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-01-01

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm

  5. Ultrasound compared with computed tomography and pancreatic arteriography in the detection of endocrine tumours of the pancreas

    International Nuclear Information System (INIS)

    Paeivaensalo, M.; Maekaeraeinen, H.; Siniluoto, T.; Staahlberg, M.; Jalovaara, P.; Oulu Univ. Central Hospital

    1989-01-01

    We have evaluated ultrasound, computed tomography and arteriographic findings in 15 patients with 17 endocrine pancreatic tumours having a mean diameter of 2.3 cm (range 1-7 cm). All patients underwent computed tomography, and all but one ultrasound and arteriography. Ultrasound was the initial investigation in 11 patients, and identified 10 of the 16 tumours present in 14 patients. Two tumours were found at ultrasound reexamination after having been identified by other radiological methods. Computed tomography revealed 8 out of 17 tumours, while arteriography identified 8 out of 16 tumours. Computed tomography was the initial investigation in 4 patients,and identified one tumour. In only 4 patients were tumours not detected by any of the imaging methods. The sensitivities of ultrasound, computed tomography and arteriography in the detection of pancreatic tumours were 62.5% (95% confidence interval 50.4-74.6%), 47.1% (95% confidence interval 35.0-59.2%), and 50.0% (95% confidence interval 37.5-62.5%), respectively. Ultrasound was thus more accurate than computed tomography or arteriography in detecting endocrine pancreatic tumours, and should be the initial radiological investigation. (orig.)

  6. Fatigue crack detection on structural steel members by using ultrasound excited thermography

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Robin Marc

    2015-07-01

    In the field of non-destructive testing (NDT), ultrasound excited thermography has been recognised as a promising technique that was successfully applied to metals, fibre composites and many more engineering materials in order to detect cracks, delaminations and other types of internal flaws. Dating back to the late 1970s, the idea of high-frequency vibration excitation of structural members combined with monitoring the surface temperature by means of infrared thermography aims at the localised energy dissipation at defect regions and its thermal detection. The purpose of this thesis is to investigate the potential use of ultrasound excited thermography for detecting surface breaking fatigue cracks in thick-walled components relevant to steel construction. The presented research is motivated by a lack of fast and imaging crack detection methods in the field and the growing acceptance and technological progress of active thermography techniques. After introducing the concept of ultrasound excited thermography or vibrothermography, its current state of the art is described by means of a comprehensive literature review focusing on research activities towards crack detection on metals. Owing to the interdisciplinarity of the test method, all relevant technical subdisciplines from the excitation of plate vibrations via potential heat generation mechanisms and heat transfer to infrared thermography are outlined. The experimental work starts with the manufacture and fatigue loading of suitable plate specimens made from low-carbon steel S355, mostly in the high cycle fatigue regime, to generate throughthickness cracks with specified depths. Using a modified high-power ultrasonic welding generator, basic dependencies of the defect heating on frequency, coupling location and excitation duration are clarified at first. Besides of an estimation of realistic detection limits depending on the plate thickness, main issues such as the relation between vibration intensity and

  7. Fatigue crack detection on structural steel members by using ultrasound excited thermography

    International Nuclear Information System (INIS)

    Plum, Robin Marc

    2015-01-01

    In the field of non-destructive testing (NDT), ultrasound excited thermography has been recognised as a promising technique that was successfully applied to metals, fibre composites and many more engineering materials in order to detect cracks, delaminations and other types of internal flaws. Dating back to the late 1970s, the idea of high-frequency vibration excitation of structural members combined with monitoring the surface temperature by means of infrared thermography aims at the localised energy dissipation at defect regions and its thermal detection. The purpose of this thesis is to investigate the potential use of ultrasound excited thermography for detecting surface breaking fatigue cracks in thick-walled components relevant to steel construction. The presented research is motivated by a lack of fast and imaging crack detection methods in the field and the growing acceptance and technological progress of active thermography techniques. After introducing the concept of ultrasound excited thermography or vibrothermography, its current state of the art is described by means of a comprehensive literature review focusing on research activities towards crack detection on metals. Owing to the interdisciplinarity of the test method, all relevant technical subdisciplines from the excitation of plate vibrations via potential heat generation mechanisms and heat transfer to infrared thermography are outlined. The experimental work starts with the manufacture and fatigue loading of suitable plate specimens made from low-carbon steel S355, mostly in the high cycle fatigue regime, to generate throughthickness cracks with specified depths. Using a modified high-power ultrasonic welding generator, basic dependencies of the defect heating on frequency, coupling location and excitation duration are clarified at first. Besides of an estimation of realistic detection limits depending on the plate thickness, main issues such as the relation between vibration intensity and

  8. Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized....... The signal-to-noise-ratio can in this way be optimized. The waveform design is based on least squares optimization. A desired amplitude spectrum is chosen, hereafter the phase spectrum is chosen, so that the instantaneous frequency takes on the form of a third order polynomial. The finite energy waveform...

  9. A procedure to detect flaws inside large size marble blocks by ultrasound

    OpenAIRE

    Bramanti, Mauro; Bozzi, Edoardo

    1999-01-01

    In stone and marble industry there is considerable interest in the possibility of using ultrasound diagnostic techniques for non-destructive testing of large size blocks in order to detect internal flaws such as faults, cracks and fissures. In this paper some preliminary measurements are reported in order to acquire basic knowledge of the fundamental properties of ultrasound, such as propagation velocity and attenuation, in the media here considered. We then outline a particular diagnostic pr...

  10. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    Science.gov (United States)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  11. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  12. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.

    Science.gov (United States)

    May, Philip C; Kreider, Wayne; Maxwell, Adam D; Wang, Yak-Nam; Cunitz, Bryan W; Blomgren, Philip M; Johnson, Cynthia D; Park, Joshua S H; Bailey, Michael R; Lee, Donghoon; Harper, Jonathan D; Sorensen, Mathew D

    2017-08-01

    Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.

  13. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  14. Study on the Micro Crack Detection in Joints by Using Ultrasound Infrared Thermography

    International Nuclear Information System (INIS)

    Park, Hee Sang; Choi, Man Yong; Park, Jeong Hak; Lee, Seung Seok; Huh, Yong Hak; Lee, Bo Young; Jae Seong

    2012-01-01

    This study detected SCC defects of dissimilar metal welded(STS304 and SA106 Gr. b) pipes using the ultrasonic infrared thermography method and the lock-in image treatment method among infrared thermography method. The infrared excitement equipment has 250 Watt of output and 20 kHz of frequency. By using the ultrasound infrared thermography method, the internal defects of dissimilar metal weld joints of pipes used at nuclear power plants could get detected. By an actual PT test, it was observed that the cracks inside the pipe existed not as a single crack but rather as a multiple cracks within a certain area and generated a hot spot image of a broad area on the thermography image. In addition, UT technology could not easily defects detected by the width of 10 μm fine hair cracks. but, ultrasound infrared thermography technique was defect detected

  15. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  16. Multigradient Field Active Contour for Multilayer Detection of Ultrasound Rectal Wall Image

    National Research Council Canada - National Science Library

    Xiao, Di

    2001-01-01

    .... One of the aims is to apply this technique for multilayer boundary detection of ultrasound rectal wall image, which is important in colorectal clinical diagnosis for rectal tumor staging The core...

  17. “UTILIZING” SIGNAL DETECTION THEORY

    Science.gov (United States)

    Lynn, Spencer K.; Barrett, Lisa Feldman

    2014-01-01

    What do inferring what a person is thinking or feeling, deciding to report a symptom to your doctor, judging a defendant’s guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, which engender different appropriate responses), and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial we show how, by incorporating the economic concept of utility, signal detection theory serves as a model of optimal decision making, beyond its common use as an analytic method. This utility approach to signal detection theory highlights potentially enigmatic influences of perceptual uncertainty on measures of decision-making performance (accuracy and optimality) and on behavior (a functional relationship between bias and sensitivity). A “utilized” signal detection theory offers the possibility of expanding the phenomena that can be understood within a decision-making framework. PMID:25097061

  18. Dynamic programming in parallel boundary detection with application to ultrasound intima-media segmentation.

    Science.gov (United States)

    Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin

    2013-12-01

    Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  20. On the potential of ultrasound elastography for pressure ulcer early detection.

    OpenAIRE

    Deprez , Jean-François; Brusseau , Elisabeth; Fromageau , Jérémie; Cloutier , Guy; Basset , Olivier

    2011-01-01

    International audience; PURPOSE: Pressure ulcers are areas of soft tissue breakdown induced by a sustained mechanical stress that damages the skin and underlying tissues. They represent a considerable burden to the society in terms of health care and cost. Yet, techniques for prevention and detection of pressure ulcers still remain very limited. In this article, the authors investigated the potential of ultrasound elastography for pressure ulcer early detection. Elastography is an imaging tec...

  1. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    Science.gov (United States)

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  2. Relative ultrasound energy measurement circuit

    OpenAIRE

    Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker

    2005-01-01

    A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...

  3. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  4. Predicting the outcome of pregnancy in threatened abortion using ultrasound in detecting the viability of foetus.

    Science.gov (United States)

    Gabriel, R

    1992-06-01

    Between December 1990 and May 1991 in Malaysia, clinicians at the Sultanah Aminah Hospital in Johor Bahru screened 200 women with a diagnosis of threatened miscarriage with ultrasound to determine whether ultrasound could evaluate the viability of the fetus and thus the outcome of pregnancy in cases of threatened abortion. A fetal heartbeat was absent in 65% of cases with the remaining 35% of cases having a fetal heartbeat. Nonviability of the fetus or an abnormal or very early pregnancy may have accounted for an absent fetal heartbeat. The pregnancy of 46% of cases continued while 41% experienced spontaneous abortion. Just 6.2% of cases with a fetal heartbeat suffered from spontaneous abortion compared with 69.7% of those without a fetal heartbeat. 93.8% of cases with a fetal heartbeat continued their pregnancies compared with 30.3% of those without a fetal heartbeat. Inability of ultrasound to detect fetal heartbeats during early pregnancy probably accounted for the somewhat high percentage of those without a fetal heartbeat who continued their pregnancies. Among patients with a fetal heartbeat, the number of pregnancies that continued. Ultrasound detected 13% abnormal pregnancies (i.e., molar pregnancy or ectopic pregnancy). Surgery on these cases confirmed the ultrasound findings. These results showed that ultrasound should be used in every case of threatened miscarriage and that a fetal heartbeat does indicate the viability of the fetus.

  5. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  6. The diagnosis value of color doppler ultrasound in evaluating small renal carcinoma

    International Nuclear Information System (INIS)

    Chen Gaiyi

    2009-01-01

    Objective: To characterize the ultrasound and color doppler imaging of small renal carcinoma. Methods: Ultrasound and color doppler images by convex-probe and high frequency-probe of 24 patients with renal carcinoma confirmed by surgery and histology were analyzed retrospectively. Tumor echo, halo, internal blood flow and peripheral tumor blood flow were observed. Results: Tumor echo in 9 lesions was hyper-echo, in 4 was iso-echoic, in 10 was hypo-echo, and in 1 was echoless. Halo was detected in 9 tumors, and small cyst was detected in 5 tumors. By using the convex-probe, peripheral and internal blood flow signal in 24 tumors were observed. Spot blood follow was detected in 6 tumors, half-circularity blood follow in 18 tumors and no circularity blood follow. Detection rate of internal blood flow was 20.83%. By using the high frequency-probe in 21 tumors, spot blood was detected in 1 tumor, half-circularity blood follow in 14 tumors, circularity blood follow in 6 tumors. Detection rate of internal blood flow was 90.48%. It was not satisfied for high frequency-probe in 3 patients because of obesity. Accordance of the diagnosis by high frequency-probe ultrasound was 90.48% and 91.67% by CT (P > 0.05). Conclusion: Detection of renal carcinoma is sensitive by ultrasound. The high frequency-probe is significant sensitive to detect blood follow in renal carcinoma and is helpful to correct diagnosis of renal carcinoma. (authors)

  7. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available The present study was designed to determine the underlying mechanism of low-intensity pulsed ultrasound (LIPUS induced alveolar bone remodeling and the role of BMP-2 expression in a rat orthodontic tooth movement model. Orthodontic appliances were placed between the homonymy upper first molars and the upper central incisors in rats under general anesthesia, followed by daily 20-min LIPUS or sham LIPUS treatment beginning at day 0. Tooth movement distances and molecular changes were evaluated at each observation point. In vitro and in vivo studies were conducted to detect HGF (Hepatocyte growth factor/Runx2/BMP-2 signaling pathways and receptor activator of NFκB ligand (RANKL expression by quantitative real time PCR (qRT-PCR, Western blot and immunohistochemistry. At day 3, LIPUS had no effect on the rat orthodontic tooth movement distance and BMP-2-induced alveolar bone remodeling. However, beginning at day 5 and for the following time points, LIPUS significantly increased orthodontic tooth movement distance and BMP-2 signaling pathway and RANKL expression compared with the control group. The qRT-PCR and Western blot data in vitro and in vivo to study BMP-2 expression were consistent with the immunohistochemistry observations. The present study demonstrates that LIPUS promotes alveolar bone remodeling by stimulating the HGF/Runx2/BMP-2 signaling pathway and RANKL expression in a rat orthodontic tooth movement model, and LIPUS increased BMP-2 expression via Runx2 regulation.

  8. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    International Nuclear Information System (INIS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-01-01

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components

  9. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    Science.gov (United States)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  10. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  13. Spectral integration in binaural signal detection

    NARCIS (Netherlands)

    Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    1997-01-01

    For both monaural and binaural masking, the spectral content of the masker and of the signal to be detected are important stimulus properties influencing the detection process. It is generally accepted that the auditory system separates the incoming signals in several frequency bands. It is not

  14. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  15. Detection of an occult hepatocellular carcinoma using ultrasound with liver-specific microbubbles

    International Nuclear Information System (INIS)

    Harvey, Christopher J.; Lim, Adrian K.P.; Blomley, Martin J.K.; Cosgrove, David O.; Taylor-Robinson, Simon D.; Gedroyc, Wladyslaw M.W.

    2002-01-01

    The radiological surveillance of cirrhosis to detect the development of hepatocellular carcinoma (HCC) is problematic because no highly sensitive and specific imaging investigation is available. Ultrasound is typically the first modality used but is less accurate than other imaging modalities. We report the first case of a patient with cirrhosis in whom US imaging with liver-specific microbubbles detected an HCC prior to its detection by MR. The use of liver-specific microbubble US contrast agents is an exciting development in the detection of HCC in chronic liver disease and may help to rectify some of the shortcomings of US. (orig.)

  16. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  17. Working Group 3: Greenhouse signal detection

    International Nuclear Information System (INIS)

    Barnett, T.; Ellsaesser, H.; Groisman, P.Ya.; Grotch, S.; Jenkins, G.; Karoly, D.; Riches, M.; Santer, B.; Schoenwiese, C.; Vinnikov, K.; Zwiers, F.

    1990-01-01

    Quantitative efforts to detect the greenhouse-gas signal (GHG) in nature are in their infancy. The reasons for this state of affairs are numerous. It is only in the last few years that GCMs have advanced to the point where their simulations of GHG signals might be marginally believable. Without reasonably good a priori predictions of expected GHG signals from the models, the detection problem is moot. The observational data sets describing changes in the global climate system over the last 50-100 years needed for adequate detection studies have also only come into existence in the last five years. Finally, no coherent, generally-agreed-on detection strategy has been developed by the scientific community interested in the GHG problem. The lack of adequate model predictions and observational sets are largely responsible for this latter condition. The rudimentary detection efforts that have been conducted have generally been based on recognizing the fingerprint of GHG signals in the oceans and atmosphere. GCM results for 1 x 2 x CO 2 equilibrium runs have been used to search for GHG effects induced in tropospheric air and ocean surface temperature fields since the early 1900s. No significant effect has been found

  18. Optimization of Contrast-to-Tissue Ratio by Adaptation of Transmitted Ternary Signal in Ultrasound Pulse Inversion Imaging

    Directory of Open Access Journals (Sweden)

    Sébastien Ménigot

    2013-01-01

    Full Text Available Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.

  19. Signal anomaly detection and characterization

    International Nuclear Information System (INIS)

    Morgenstern, V.M.; Upadhyaya, B.R.; Gloeckler, O.

    1988-08-01

    As part of a comprehensive signal validation system, we have developed a signal anomaly detector, without specifically establishing the cause of the anomaly. A signal recorded from process instrumentation is said to have an anomaly, if during steady-state operation, the deviation in the level of the signal, its root-mean-square (RMS) value, or its statistical distribution changes by a preset value. This deviation could be an unacceptable increase or a decrease in the quantity being monitored. An anomaly in a signal may be characterized by wideband or single-frequency noise, bias error, pulse-type error, nonsymmetric behavior, or a change in the signal bandwidth. Various signatures can be easily computed from data samples and compared against specified threshold values. We want to point out that in real processes, pulses can appear with different time widths, and at different rates of change of the signal. Thus, in characterizing an anomaly as a pulse-type, the fastest pulse width is constrained by the signal sampling interval. For example, if a signal is sampled at 100 Hz, we will not be able to detect pulses occurring at kHz rates. Discussion with utility and Combustion Engineering personnel indicated that it is not practical to detect pulses having a narrow time width. 9 refs., 11 figs., 8 tabs

  20. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    Science.gov (United States)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  1. Accuracy of Daily Lung Ultrasound for the Detection of Pulmonary Edema Following Subarachnoid Hemorrhage.

    Science.gov (United States)

    Williamson, Craig A; Co, Ivan; Pandey, Aditya S; Gregory Thompson, B; Rajajee, Venkatakrishna

    2016-04-01

    Early detection of pulmonary edema is vital to appropriate fluid management following subarachnoid hemorrhage (SAH). Lung ultrasound (LUS) has been shown to accurately identify pulmonary edema in patients with acute respiratory failure (ARF). Our objective was to determine the accuracy of daily screening LUS for the detection of pulmonary edema following SAH. Screening LUS was performed in conjunction with daily transcranial doppler for SAH patients within the delayed cerebral ischemia (DCI) risk period in our neuroICU. We reviewed records of SAH patients admitted 7/2012-5/2014 who underwent bilateral LUS on at least 5 consecutive days. Ultrasound videos were reviewed by an investigator blinded to the final diagnosis. "B+ lines" were defined as ≥3 B-lines on LUS. Two other investigators blinded to ultrasound results determined whether pulmonary edema with ARF (PE-ARF) was present during the period of evaluation on the basis of independent chart review, with a fourth investigator performing adjudication in the event of disagreement. The diagnostic accuracy of B+ lines for the detection of PE-ARF and RPE was determined. Of 59 patients meeting criteria for inclusion, 21 (36%) had PE-ARF and 26 (44%) had B+ lines. Kappa for inter-rater agreement was 0.821 (p pulmonary edema following SAH and may assist with fluid titration during the risk period for DCI.

  2. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  3. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.

    Science.gov (United States)

    Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi

    2014-11-01

    A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.

  4. Signal classification for acoustic neutrino detection

    International Nuclear Information System (INIS)

    Neff, M.; Anton, G.; Enzenhöfer, A.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.; Richardt, C.

    2012-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of 1% is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  5. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    International Nuclear Information System (INIS)

    Drukker, Karen; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-01

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V ® ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation

  6. Toward multimodal signal detection of adverse drug reactions.

    Science.gov (United States)

    Harpaz, Rave; DuMouchel, William; Schuemie, Martijn; Bodenreider, Olivier; Friedman, Carol; Horvitz, Eric; Ripple, Anna; Sorbello, Alfred; White, Ryen W; Winnenburg, Rainer; Shah, Nigam H

    2017-12-01

    Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation. Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates. Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark. The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Discrimination between Newly Formed and Aged Thrombi Using Empirical Mode Decomposition of Ultrasound B-Scan Image

    Directory of Open Access Journals (Sweden)

    Jui Fang

    2015-01-01

    Full Text Available Ultrasound imaging is a first-line diagnostic method for screening the thrombus. During thrombus aging, the proportion of red blood cells (RBCs in the thrombus decreases and therefore the signal intensity of B-scan can be used to detect the thrombus age. To avoid the effect of system gain on the measurements, this study proposed using the empirical mode decomposition (EMD of ultrasound image as a strategy to classify newly formed and aged thrombi. Porcine blood samples were used for the in vitro induction of fresh and aged thrombi (at hematocrits of 40%. Each thrombus was imaged using an ultrasound scanner at different gains (15, 20, and 30 dB. Then, EMD of ultrasound signals was performed to obtain the first and second intrinsic mode functions (IMFs, which were further used to calculate the IMF-based echogenicity ratio (IER. The results showed that the performance of using signal amplitude of B-scan to reflect the thrombus age depends on gain. However, the IER is less affected by the gain in discriminating between fresh and aged thrombi. In the future, ultrasound B-scan combined with the EMD may be used to identify the thrombus age for the establishment of thrombolytic treatment planning.

  8. Ultrasound contrast agents: An overview

    International Nuclear Information System (INIS)

    Cosgrove, David

    2006-01-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI < 0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  9. System and Method for Multi-Wavelength Optical Signal Detection

    Science.gov (United States)

    McGlone, Thomas D. (Inventor)

    2017-01-01

    The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.

  10. Estimation of urinary flow velocity in models of obstructed and unobstructed urethras by decorrelation of ultrasound radiofrequency signals

    NARCIS (Netherlands)

    Arif, M.; Idzenga, T.; Mastrigt, R. van; Korte, C.L. de

    2014-01-01

    The feasibility of estimating urinary flow velocity from the decorrelation of radiofrequency (RF) signals was investigated in soft tissue-mimicking models of obstructed and unobstructed urethras. The decorrelation was studied in the near field, focal zone and far field of the ultrasound beam.

  11. Transabdominal Ultrasound Colonography for Detection of Colorectal Neoplasms: Initial Clinical Experience.

    Science.gov (United States)

    Liu, Jin-Ya; Chen, Li-Da; Xu, Jian-Bo; Wu, Hui; Ye, Jin-Ning; Zhang, Xin-Hua; Xie, Xiao-Yan; Wang, Wei; Lu, Ming-De

    2017-10-01

    We investigated the feasibility of using ultrasound colonography (USC) to visualize the healthy colon and rectum and detect colorectal polyps. Eight healthy volunteers underwent USC after standard bowel preparation. The feasibility and image quality of USC in different segments were evaluated. Then, USC was conducted on eight patients with known colonic neoplasms using colonoscopy as the reference standard. For volunteers, USC examinations were successfully performed on four (50.0%) ascending, three (37.5%) transverse and eight (100%) descending colons, as well as all sigmoid colons and rectums. One of four (25.0%) ascending, two of eight (25.0%) descending and all sigmoid colons and rectums were well visualized and free of artifacts. For patients, colonoscopy revealed that eight patients had 17 neoplasms in the distal sigmoid colon and rectum, which included 3 lesions ≤5 mm, 3 lesions 6-9 mm and 11 lesions ≥10 mm. USC visualized 12 of 17 (70.6%) neoplasms. Lesion detection by USC was 0% (0/3), 33.3% (1/3) and 100% (11/11) for neoplasms ≤5, 6-9 mm and ≥10 mm in size. USC can visualize the sigmoid colon and rectum well and detect distal sigmoid and rectal neoplasms ≥10 mm in diameter. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  13. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  14. MRI screening-detected breast lesions in high-risk young women: the value of targeted second-look ultrasound and imaging-guided biopsy.

    Science.gov (United States)

    Peter, P; Dhillon, R; Bose, S; Bourke, A

    2016-10-01

    To analyse the value of targeted second-look ultrasound and imaging-guided biopsy in high-risk young women eligible for screening magnetic resonance imaging (MRI) in a tertiary referral centre in Perth, Western Australia. A retrospective analysis of eligible high-risk young women who underwent screening breast MRI and targeted second-look ultrasound between June 2012 and June 2014 was performed with review of data. Over a 2-year period, 139 women underwent high-risk screening MRI. Of these, 30 women (with a total of 45 lesions) were recalled for targeted second-look ultrasound. Thirty-four MRI-detected lesions were identified on targeted ultrasound with 19 of them proceeding to ultrasound-guided biopsy, while the remaining 15 lesions were considered benign on ultrasound, were not biopsied, and were stable on follow-up imaging 12 months later. One lesion proceeded to an MRI-guided biopsy to confirm a benign result. Of the 11 lesions not seen on ultrasound, nine underwent MRI biopsy, one proceeded directly to hook wire localisation and excision, and one did not return for biopsy and was lost to follow-up. The overall biopsy rate was 14.4%. The cancer detection rate was 1.4%. The results of this study indicate that targeted second-look ultrasound and ultrasound-guided biopsy is a cost-effective and time-efficient approach for MRI-detected lesions in young women at high risk of developing breast cancer. MRI-guided biopsy should be considered for ultrasonographically occult suspicious lesions as there is a low, but definite, risk of cancer. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    Science.gov (United States)

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  16. Contrast-enhanced ultrasound features of hepatocellular carcinoma not detected during the screening procedure.

    Science.gov (United States)

    Dong, Yi; Wang, Wen-Ping; Mao, Feng; Dietrich, Christoph

    2017-08-01

    Aim  The aim of this retrospective study is to report on the characteristics of contrast-enhanced ultrasound (CEUS) of primarily not detected hepatocellular carcinoma (HCC) during the screening procedure of patients at risk. Methods  Sixty-four patients with a finally solitary and histologically proven HCC not detected HCC during the screening procedure were retrospectively analyzed. Most of HCC lesions (90.6 %, 58/64) measured < 20 mm in diameter. All HCC lesions were not detected during the initial screening procedure but suspected using contrast-enhanced magnetic resonance imaging. The final gold standard was biopsy or surgery with histological examination. Results  On CEUS, 62/64 (96.8 %) of HCC were characterized as an obviously hyperenhanced lesion in arterial phase, and 41/64 (64.1 %) of HCC were characterized as hypoenhancing lesions in the portal venous and late phases. During the arterial phase of CEUS, 96.8 % of HCC displayed homogeneous hyperenhancement. Knowing the CEUS and magnetic resonance imaging findings, 45/64 (70.3 %) could have been detected using B-mode ultrasound (BMUS). Conclusion  BMUS as a screening procedure is generally accepted. Contrast-enhanced imaging modalities have improved detection and characterization of HCC. Homogeneous hyperenhancement during the arterial phase and mild washout are indicative for HCC in liver cirrhosis. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Signal processing for passive detection and classification of underwater acoustic signals

    Science.gov (United States)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  18. Soleus muscle injury: sensitivity of ultrasound patterns

    Energy Technology Data Exchange (ETDEWEB)

    Balius, Ramon [Sport Catalan Council, Generalitat de Catalunya, Barcelona (Spain); Clinica CMI Diagonal, Barcelona (Spain); Rodas, Gil [F.C. Barcelona Medical Services, Barcelona (Spain); Pedret, Carles [Clinica CMI Diagonal, Barcelona (Spain); Clinica Mapfre de Medicina del Tenis, Sports Medicine and Imaging Department, Barcelona (Spain); Centre de Diagnostic per Imatge de Tarragona, Tarragona (Spain); Capdevila, Lluis [Universitat Autonoma de Barcelona, Laboratory of Sport Psychology, Barcelona (Spain); Alomar, Xavier [Clinica Creu Blanca, Barcelona (Spain); Bong, David A. [Instituto Poal de Reumatologia, Barcelona (Spain)

    2014-06-15

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  19. Soleus muscle injury: sensitivity of ultrasound patterns.

    Science.gov (United States)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluís; Alomar, Xavier; Bong, David A

    2014-06-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the "gold standard." In MRI studies, 24 cases (43.7%) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3%) and in the anterior aponeurosis (AMF) in 9 (16.4%). Thirty-one cases (56.3%) were musculotendinous injuries, with 9 cases (16.4%) in the medial aponeurosis (MMT), 11 cases (20%) in the lateral aponeurosis (LMT), and 11 cases (20%) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2% of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area.

  20. Soleus muscle injury: sensitivity of ultrasound patterns

    International Nuclear Information System (INIS)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluis; Alomar, Xavier; Bong, David A.

    2014-01-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  1. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    Science.gov (United States)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  2. Contrast-enhanced ultrasound vs multidetector-computed tomography for detecting liver metastases in colorectal cancer: a prospective, blinded, patient-by-patient analysis

    DEFF Research Database (Denmark)

    Rafaelsen, S R; Jakobsen, A

    2011-01-01

    This study compared the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and multidetector-computed tomography (MDCT) in the detection of liver metastases in patients with colorectal cancer.......This study compared the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and multidetector-computed tomography (MDCT) in the detection of liver metastases in patients with colorectal cancer....

  3. Wireless ultrasound-powered biotelemetry for implants.

    Science.gov (United States)

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  4. Optical Coherence Tomography Analysis of Attenuated Plaques Detected by Intravascular Ultrasound in Patients with Acute Coronary Syndromes

    Directory of Open Access Journals (Sweden)

    Takashi Kubo

    2011-01-01

    Full Text Available Background. Recent intravascular ultrasound (IVUS studies have demonstrated that hypoechoic plaque with deep ultrasound attenuation despite absence of bright calcium is common in acute coronary syndrome. Such “attenuated plaque” may be an IVUS characteristic of unstable lesion. Methods. We used optical coherence tomography (OCT in 104 patients with unstable angina to compare lesion characteristics between IVUS-detected attenuated plaque and nonattenuated plaque. Results. IVUS-detected attenuated plaque was observed in 41 (39% patients. OCT-detected lipidic plaque (88% versus 49%, <0.001, thin-cap fibroatheroma (48% versus 16%, <0.001, plaque rupture (44% versus 11%, <0.001, and intracoronary thrombus (54% versus 17%, <0.001 were more often seen in IVUS-detected attenuated plaques compared with nonattenuated plaques. Conclusions. IVUS-detected attenuated plaque has many characteristics of unstable coronary lesion. The presence of attended plaque might be an important marker of lesion instability.

  5. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display.

    Science.gov (United States)

    Kirkpatrick, Andrew W; McKee, Ian; McKee, Jessica L; Ma, Irene; McBeth, Paul B; Roberts, Derek J; Wurster, Charles L; Parfitt, Robbie; Ball, Chad G; Oberg, Scott; Sevcik, William; Hamilton, Douglas R

    2016-05-01

    Remote-telementored ultrasound involves novice examiners being remotely guided by experts using informatic-technologies. However, requiring a novice to perform ultrasound is a cognitively demanding task exacerbated by unfamiliarity with ultrasound-machine controls. We incorporated a randomized evaluation of using remote control of the ultrasound functionality (knobology) within a study in which the images generated by distant naive examiners were viewed on an ultrasound graphic user interface (GUI) display viewed on laptop computers by mentors in different cities. Fire-fighters in Edmonton (101) were remotely mentored from Calgary (n = 65), Nanaimo (n = 19), and Memphis (n = 17) to examine an ultrasound phantom randomized to contain free fluid or not. Remote mentors (2 surgeons, 1 internist, and 1 ED physician) were randomly assigned to use GUI knobology control during mentoring (GUIK+/GUIK-). Remote-telementored ultrasound was feasible in all cases. Overall accuracy for fluid detection was 97% (confidence interval = 91 to 99%) with 3 false negatives (FNs). Positive/negative likelihood ratios were infinity/0.0625. One FN occurred with the GUIK+ and 2 without (GUIK-). There were no statistical test performance differences in either group (GUIK+ and GUIK-). Ultrasound-naive 1st responders can be remotely mentored with high accuracy, although providing basic remote control of the knobology did not affect outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison of CT scan and colour flow doppler ultrasound in detecting venous tumour thrombous in renal cell carcinoma

    International Nuclear Information System (INIS)

    Khan, A.R.; Anwar, K.

    2008-01-01

    Renal cell carcinoma has marked tendency to spread into renal vein, inferior vena cava and right side of heart. Extension of tumour thrombus into these veins will alter the surgical approach. We have compared the CT scan with Colour flow Doppler ultrasound in detecting venous tumour thrombus in renal vein and inferior vena cava. This cross-sectional study included 30 adult patients presenting with renal tumour. Patients of either gender were included in the study. Non probability convenience sampling was used. All patients underwent colour flow Doppler ultrasound and CT scan with contrast to asses the renal vein and inferior vena cava. The results were confirmed by intra operative findings and histopathology. The data was analyzed using SPSS version 12. Out of 30 patients, 20 (66%) were males and 10 (34%) female. The tumour was predominantly on the right side (60%), as was renal venous tumour thrombus (44%). Inferior vena cava was involved in 4 cases predominantly due to right sided tumours. The sensitivity of Doppler ultrasound in detecting renal venous tumour thrombus (88% on right and 100% on left side) was higher than CT scan (63% on right and 60% on left side). Doppler ultrasound was also superior to CT scan in detecting vena caval thrombus. The overall sensitivity of Doppler sonography was higher than CT scan in detecting tumour extension into renal veins and inferior vena cava. Therefore, it can be used as a complementary tool in equivocal cases. (author)

  7. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  8. Multiparametric ultrasound in the detection of prostate cancer: a systematic review

    OpenAIRE

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-01-01

    Purpose To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). Methods A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Results Limited research available on combining ultrasound modal...

  9. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  10. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  11. A clutter removal method for the Doppler ultrasound signal based on a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Li Peng; Xin Pengcheng; Bian Zhengzhong; Yu Gang

    2008-01-01

    Strong clutter components produced by stationary and slow-moving tissue structures render the lower frequency part of the spectrogram useless and degrade the accuracy of clinical ultrasound indices. An adaptive method based on the nonlinear forward-and-backward diffusion equation (FAB-DE) is proposed to remove strong clutter components from the contaminated Doppler signal. The clutter signal is extracted first by the FAB-DE accurately, in which the nonlinear diffusion coefficient function of the FAB-DE locally adjusts according to signal features and the diffusion adaptively switches between forward and backward mode. The present method has been validated by simulated and realistic pulse wave Doppler signals, and compared with the conventional high pass filter and the matching pursuit method. The simulation results, including spectrogram, mean velocity error, standard deviation of mean velocity and signal-to-clutter ratio of a decontaminated signal, demonstrate that the present FAB-DE method can remove clutter sufficiently and retain more low blood components simultaneously as compared with the other two methods. Results of the realistic Doppler blood signal, including spectrogram and low-frequency part of the spectrum, support the conclusion drawn from simulation cases

  12. The diagnostic test accuracy of ultrasound for the detection of lateral epicondylitis: a systematic review and meta-analysis.

    Science.gov (United States)

    Latham, S K; Smith, T O

    2014-05-01

    The purpose of this study was to determine the diagnostic test accuracy of ultrasound for the detection of lateral epicondylitis. An electronic search of databases registering published (MEDLINE, EMBASE, CINAHL, AMED, Cochrane Library, ScienceDirect) and unpublished literature was conducted to January 2013. All diagnostic accuracy studies that compared the accuracy of ultrasound (index test) with a reference standard for lateral epicondylitis were included. The methodological quality of each of the studies was appraised using the QUADAS tool. When appropriate, the pooled sensitivity and specificity analysis was conducted. Ten studies investigating 711 participants and 1077 elbows were included in this review. Ultrasound had variable sensitivity and specificity (sensitivity: 64%-100%; specificity: 36%-100%). The available literature had modest methodological quality, and was limited in terms of sample sizes and blinding between index and reference test results. There is evidence to support the use of ultrasound in the detection of lateral epicondylitis. However, its accuracy appears to be highly dependent on numerous variables, such as operator experience, equipment and stage of pathology. Judgement should be used when considering the benefit of ultrasound for use in clinical practice. Further research assessing variables such a transducer frequency independently is specifically warranted. Level II. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    Science.gov (United States)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  14. Detection of signals in noise

    CERN Document Server

    McDonough, Robert N

    1995-01-01

    The Second Edition is an updated revision to the authors highly successful and widely used introduction to the principles and application of the statistical theory of signal detection. This book emphasizes those theories that have been found to be particularly useful in practice including principles applied to detection problems encountered in digital communications, radar, and sonar.Detection processing based upon the fast Fourier transform

  15. Echo detected EPR as a tool for detecting radiation-induced defect signals in pottery

    International Nuclear Information System (INIS)

    Zoleo, Alfonso; Bortolussi, Claudia; Brustolon, Marina

    2011-01-01

    Archaeological fragments of pottery have been investigated by using CW-EPR and Echo Detected EPR (EDEPR). EDEPR allows to remove the CW-EPR dominant Fe(III) background spectrum, hiding much weaker signals potentially useful for dating purpose. EDEPR spectra attributed to a methyl radical and to feldspar defects have been recorded at room and low temperature for an Iron Age cooking ware (700 B.C.). A study on the dependence of EDEPR intensity over absorbed dose on a series of γ-irradiated brick samples (estimated age of 562 ± 140 B.C.) has confirmed the potential efficacy of the proposed method for spotting defect signals out of the strong iron background. - Highlights: → Fe(III) CW-EPR signals cover CW-EPR-detectable defects in ceramics. → Echo detected EPR gets rid of Fe(III) signals, disclosing defect signals. → Echo detected EPR detects defect signals even at relatively low doses.

  16. Simulation of ultrasound interaction with tissue

    International Nuclear Information System (INIS)

    Edee, M.K.A.; Ogulu, A.

    1995-08-01

    We model the effect of an ultrasound beam on a water phantom by considering water as an incompressible Newtonian viscous fluid. The two-dimensional flow velocities (u,v) induced in the water phantom, mimic displacement in living tissues for a phantom of unit width. The displacements depend on the ultrasound signal which is emitted and the model also predicts the nature of the signal received. 13 refs, 3 figs

  17. Ultrasound contrast agents: an overview.

    Science.gov (United States)

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MIdeveloped for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating vasospasm after subarachnoid haemorrhage). An important situation where demonstrating tissue devitalisation is important is in interstitial ablation of focal liver lesions: using microbubble contrast agents at the end of a procedure allows immediate evaluation of the

  18. Signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Ledwidge, T.J.; Black, J.L.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. (author). 6 refs, figs

  19. Resonant ultrasound spectrometer

    Science.gov (United States)

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  20. Validation of an ultrasound dilution technology for cardiac output measurement and shunt detection in infants and children.

    Science.gov (United States)

    Lindberg, Lars; Johansson, Sune; Perez-de-Sa, Valeria

    2014-02-01

    To validate cardiac output measurements by ultrasound dilution technology (COstatus monitor) against those obtained by a transit-time ultrasound technology with a perivascular flow probe and to investigate ultrasound dilution ability to estimate pulmonary to systemic blood flow ratio in children. Prospective observational clinical trial. Pediatric cardiac operating theater in a university hospital. In 21 children (6.1 ± 2.6 kg, mean ± SD) undergoing heart surgery, cardiac output was simultaneously recorded by ultrasound dilution (extracorporeal arteriovenous loop connected to existing arterial and central venous catheters) and a transit-time ultrasound probe applied to the ascending aorta, and when possible, the main pulmonary artery. The pulmonary to systemic blood flow ratio estimated from ultrasound dilution curve analysis was compared with that estimated from transit-time ultrasound technology. Bland-Altman analysis of the whole cohort (90 pairs, before and after surgery) showed a bias between transit-time ultrasound (1.01 ± 0.47 L/min) and ultrasound dilution technology (1.03 ± 0.51 L/min) of -0.02 L/min, limits of agreement -0.3 to 0.3 L/min, and percentage error of 31%. In children with no residual shunts, the bias was -0.04 L/min, limits of agreement -0.28 to 0.2 L/min, and percentage error 19%. The pooled co efficient of variation was for the whole cohort 3.5% (transit-time ultrasound) and 6.3% (ultrasound dilution), and in children without shunt, it was 2.9% (transit-time ultrasound) and 4% (ultrasound dilution), respectively. Ultrasound dilution identified the presence of shunts (pulmonary to systemic blood flow ≠ 1) with a sensitivity of 100% and a specificity of 92%. Mean pulmonary to systemic blood flow ratio by transit-time ultrasound was 2.6 ± 1.0 and by ultrasound dilution 2.2 ± 0.7 (not significant). The COstatus monitor is a reliable technique to measure cardiac output in children with high sensitivity and specificity for detecting the

  1. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit

    OpenAIRE

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-01-01

    Background The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the am...

  2. Thrombin-Activatable Microbubbles as Potential Ultrasound Contrast Agents for the Detection of Acute Thrombosis.

    Science.gov (United States)

    Lux, Jacques; Vezeridis, Alexander M; Hoyt, Kenneth; Adams, Stephen R; Armstrong, Amanda M; Sirsi, Shashank R; Mattrey, Robert F

    2017-11-01

    Acute deep vein thrombosis (DVT) is the formation of a blood clot in the deep veins of the body that can lead to fatal pulmonary embolism. Acute DVT is difficult to distinguish from chronic DVT by ultrasound (US), the imaging modality of choice, and is therefore treated aggressively with anticoagulants, which can lead to internal bleeding. Here we demonstrate that conjugating perfluorobutane-filled (PFB-filled) microbubbles (MBs) with thrombin-sensitive activatable cell-penetrating peptides (ACPPs) could lead to the development of contrast agents that detect acute thrombosis with US imaging. Successful conjugation of ACPP to PFB-filled MBs was confirmed by fluorescence microscopy and flow cytometry. Fluorescein-labeled ACPP was used to evaluate the efficiency of thrombin-triggered cleavage by measuring the mean fluorescence intensity of ACPP-labeled MBs (ACPP-MBs) before and after incubation at 37 °C with thrombin. Lastly, control MBs and ACPP-MBs were infused through a tube containing a clot, and US contrast enhancement was measured with or without the presence of a thrombin inhibitor after washing the clot with saline. With thrombin activity, 91.7 ± 14.2% of the signal was retained after ACPP-MB infusion and washing, whereas only 16.7 ± 4% of the signal was retained when infusing ACPP-MBs in the presence of hirudin, a potent thrombin inhibitor.

  3. Process Dissociation and Mixture Signal Detection Theory

    Science.gov (United States)

    DeCarlo, Lawrence T.

    2008-01-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…

  4. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-10-19

    The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.

  5. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Given, Joanne E; Loane, Maria; Luteijn, Johannes Michiel

    2016-01-01

    AIMS: To evaluate congenital anomaly (CA)-medication exposure associations produced by the new EUROmediCAT signal detection system and determine which require further investigation. METHODS: Data from 15 EUROCAT registries (1995-2011) with medication exposures at the chemical substance (5th level...

  6. Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients

    International Nuclear Information System (INIS)

    Riegger, Carolin; Heusner, Till A.; Koeninger, Angela; Kimmig, Rainer; Hartung, Verena; Bockisch, Andreas; Otterbach, Friedrich; Forsting, Michael; Antoch, Gerald

    2012-01-01

    Background. FDG-PET/CT is increasingly being used for breast cancer staging. Its diagnostic accuracy in comparison to ultrasound as the standard non-invasive imaging modality for the evaluation of axillary lymph nodes has yet not been evaluated. Purpose. To retrospectively compare the diagnostic value of full-dose, intravenously contrast-enhanced FDG-PET/CT and ultrasound for the detection of lymph node metastases in breast cancer patients. Material and Methods. Ninety patients (one patient with a bilateral carcinoma) (89 women, one man; mean age, 55.5 ± 16.6 years) suffering from primary breast cancer underwent whole-body FDG-PET/CT and axillary ultrasound. The ipsilateral axillary fossa (n = 91) was evaluated for metastatic spread. The sensitivity, specificity, the positive predictive value (PPV), negative predictive value (NPV), and accuracy of both methods were calculated. The sensitivity and accuracy were statistically compared using the McNemar Test (P <0.05). Analyses were made on a patient basis. The number of patients with extra-axillary locoregional lymph node metastases exclusively detected by FDG-PET/CT was evaluated. For axillary lymph node metastases histopathology served as the reference standard. Results. The sensitivity, specificity, PPV, NPV, and accuracy of FDG-PET/CT for the detection of axillary lymph node metastases were 54%, 89%, 77%, 74%, and 75%, respectively. For ultrasound it was 38%, 78%, 54%, 65%, and 62%, respectively. FDG-PET/CT was significantly more accurate than ultrasound for the detection of axillary lymph node metastases (P = 0.019). There was no statistically significant difference between the sensitivity of both modalities (P = 0.0578). FDG-PET/CT detected extra-axillary locoregional lymph node metastases in seven patients (8%) that had not been detected by another imaging modality. Conclusion. Though more accurate compared to ultrasound for evaluating the axillary lymph node status FDG-PET/CT is only as sensitive as

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  8. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    Science.gov (United States)

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  9. Ultrasound and MR imaging of diabetic mastopathy

    International Nuclear Information System (INIS)

    Wong, K.T.; Tse, G.M.K.; Yang, W.T.

    2002-01-01

    AIM: To review the imaging findings of diabetic mastopathy, and document the colour flow ultrasound and MR imaging features in this benign condition. MATERIALS AND METHODS: Diabetic mastopathy was clinically and histologically diagnosed in eight lesions in six women. All six women underwent conventional mammography and high frequency grey-scale ultrasound. Colour flow ultrasound was performed additionally in six lesions in four women and MR imaging in four lesions in three women before biopsy. The imaging findings were reviewed and correlated with final histological diagnosis. RESULTS: Mammography showed regional asymmetric increased opacity with ill-defined margins in all lesions. A heterogeneously hypoechoic mass with ill-defined margins was identified on high frequency grey-scale ultrasound in all lesions. Marked posterior acoustic shadowing was present in seven of eight (88%) lesions. Six lesions interrogated with colour flow ultrasound showed absence of Doppler signal. MR imaging in three women revealed non-specific stromal enhancement. CONCLUSION: Diabetic mastopathy shows absence of Doppler signal on colour flow ultrasound and non-specific stromal enhancement on MR imaging. Wong K.T. et al. (2002)

  10. Radiologists' Performance for Detecting Lesions and the Interobserver Variability of Automated Whole Breast Ultrasound

    International Nuclear Information System (INIS)

    Kim, Sung Hun; Kang, Bong Joo; Choi, Byung Gil; Choi, Jae Jung; Lee, Ji Hye; Song, Byung Joo; Choe, Byung Joo; Park, Sarah; Kim, Hyunbin

    2013-01-01

    To compare the detection performance of the automated whole breast ultrasound (AWUS) with that of the hand-held breast ultrasound (HHUS) and to evaluate the interobserver variability in the interpretation of the AWUS. AWUS was performed in 38 breast cancer patients. A total of 66 lesions were included: 38 breast cancers, 12 additional malignancies and 16 benign lesions. Three breast radiologists independently reviewed the AWUS data and analyzed the breast lesions according to the BI-RADS classification. The detection rate of malignancies was 98.0% for HHUS and 90.0%, 88.0% and 96.0% for the three readers of the AWUS. The sensitivity and the specificity were 98.0% and 62.5% in HHUS, 90.0% and 87.5% for reader 1, 88.0% and 81.3% for reader 2, and 96.0% and 93.8% for reader 3, in AWUS. There was no significant difference in the radiologists' detection performance, sensitivity and specificity (p > 0.05) between the two modalities. The interobserver agreement was fair to good for the ultrasonographic features, categorization, size, and the location of breast masses. AWUS is thought to be useful for detecting breast lesions. In comparison with HHUS, AWUS shows no significant difference in the detection rate, sensitivity and the specificity, with high degrees of interobserver agreement

  11. Radiologists' Performance for Detecting Lesions and the Interobserver Variability of Automated Whole Breast Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hun; Kang, Bong Joo; Choi, Byung Gil; Choi, Jae Jung; Lee, Ji Hye [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Song, Byung Joo; Choe, Byung Joo [Department of General Surgery, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Park, Sarah [Department of Internal Medicine, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kim, Hyunbin [CMC Clinical Research Coordinating Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2013-07-01

    To compare the detection performance of the automated whole breast ultrasound (AWUS) with that of the hand-held breast ultrasound (HHUS) and to evaluate the interobserver variability in the interpretation of the AWUS. AWUS was performed in 38 breast cancer patients. A total of 66 lesions were included: 38 breast cancers, 12 additional malignancies and 16 benign lesions. Three breast radiologists independently reviewed the AWUS data and analyzed the breast lesions according to the BI-RADS classification. The detection rate of malignancies was 98.0% for HHUS and 90.0%, 88.0% and 96.0% for the three readers of the AWUS. The sensitivity and the specificity were 98.0% and 62.5% in HHUS, 90.0% and 87.5% for reader 1, 88.0% and 81.3% for reader 2, and 96.0% and 93.8% for reader 3, in AWUS. There was no significant difference in the radiologists' detection performance, sensitivity and specificity (p > 0.05) between the two modalities. The interobserver agreement was fair to good for the ultrasonographic features, categorization, size, and the location of breast masses. AWUS is thought to be useful for detecting breast lesions. In comparison with HHUS, AWUS shows no significant difference in the detection rate, sensitivity and the specificity, with high degrees of interobserver agreement.

  12. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  15. Generation and coherent detection of QPSK signal using a novel method of digital signal processing

    Science.gov (United States)

    Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui

    2018-02-01

    We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.

  16. Detection of Asymptomatic Renal Calcifications in Astronauts Using a Novel Ultrasound Protocol

    Science.gov (United States)

    Garcia, Kathleen; Sargsyan, Ashot; Reyes, David; Locke, James

    2017-01-01

    Ultrasound (US) specifically looking for asymptomatic renal calcifications that may be renal stones is typically not done in the terrestrial setting. Standard abdominal US without a renal focus may discover incidental, mineralized renal material (MRM); however punctate solid areas of MRM is less than 3 mm are usually considered subclinical. Detecting these early calcifications before they become symptomatic renal stones is critical to prevent adverse medical and mission outcomes during spaceflight.

  17. Performance of chest ultrasound in pediatric pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Claes, Anne-Sophie, E-mail: anso.claes@gmail.com [Departement of Radiology, Pediatric and Thoracic Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Clapuyt, Philippe, E-mail: philippe.clapuyt@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Menten, Renaud, E-mail: renaud.menten@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Michoux, Nicolas, E-mail: nicolas.michoux@uclouvain.be [Departement of Radiology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Dumitriu, Dana, E-mail: dana.dumitriu@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium)

    2017-03-15

    Highlights: • Prospective comparison between chest X-ray and thoracic ultrasound for the detection of pneumonia in children. • Good correlation between X-ray and ultrasound for the detection and localization of pneumonia. • Thoracic ultrasound has an excellent negative predictive value (99%) for pediatric pneumonia. • Ultrasound may be used as a non-ionizing alternative to X-ray to exclude pneumonia in children. - Abstract: Objective: The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. Materials and methods: From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. Results: 143 children (mean age 3 years; limits between 8 days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4 mm; for consolidations visible on both techniques the mean size was 26 mm (p < 0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Conclusion: Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus

  18. Performance of chest ultrasound in pediatric pneumonia

    International Nuclear Information System (INIS)

    Claes, Anne-Sophie; Clapuyt, Philippe; Menten, Renaud; Michoux, Nicolas; Dumitriu, Dana

    2017-01-01

    Highlights: • Prospective comparison between chest X-ray and thoracic ultrasound for the detection of pneumonia in children. • Good correlation between X-ray and ultrasound for the detection and localization of pneumonia. • Thoracic ultrasound has an excellent negative predictive value (99%) for pediatric pneumonia. • Ultrasound may be used as a non-ionizing alternative to X-ray to exclude pneumonia in children. - Abstract: Objective: The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. Materials and methods: From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. Results: 143 children (mean age 3 years; limits between 8 days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4 mm; for consolidations visible on both techniques the mean size was 26 mm (p < 0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Conclusion: Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus

  19. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  20. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  1. Ultrasound-guided core biopsy: an effective method of detecting axillary nodal metastases.

    LENUS (Irish Health Repository)

    Solon, Jacqueline G

    2012-02-01

    BACKGROUND: Axillary nodal status is an important prognostic predictor in patients with breast cancer. This study evaluated the sensitivity and specificity of ultrasound-guided core biopsy (Ax US-CB) at detecting axillary nodal metastases in patients with primary breast cancer, thereby determining how often sentinel lymph node biopsy could be avoided in node positive patients. STUDY DESIGN: Records of patients presenting to a breast unit between January 2007 and June 2010 were reviewed retrospectively. Patients who underwent axillary ultrasonography with or without preoperative core biopsy were identified. Sensitivity, specificity, positive predictive value, and negative predictive value for ultrasonography and percutaneous biopsy were evaluated. RESULTS: Records of 718 patients were reviewed, with 445 fulfilling inclusion criteria. Forty-seven percent (n = 210\\/445) had nodal metastases, with 110 detected by Ax US-CB (sensitivity 52.4%, specificity 100%, positive predictive value 100%, negative predictive value 70.1%). Axillary ultrasonography without biopsy had sensitivity and specificity of 54.3% and 97%, respectively. Lymphovascular invasion was an independent predictor of nodal metastases (sensitivity 60.8%, specificity 80%). Ultrasound-guided core biopsy detected more than half of all nodal metastases, sparing more than one-quarter of all breast cancer patients an unnecessary sentinel lymph node biopsy. CONCLUSIONS: Axillary ultrasonography, when combined with core biopsy, is a valuable component of the management of patients with primary breast cancer. Its ability to definitively identify nodal metastases before surgical intervention can greatly facilitate a patient\\'s preoperative integrated treatment plan. In this regard, we believe our study adds considerably to the increasing data, which indicate the benefit of Ax US-CB in the preoperative detection of nodal metastases.

  2. Subliminal stimulation and somatosensory signal detection.

    Science.gov (United States)

    Ferrè, Elisa Raffaella; Sahani, Maneesh; Haggard, Patrick

    2016-10-01

    Only a small fraction of sensory signals is consciously perceived. The brain's perceptual systems may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus reserving cortical capacity and conscious awareness for significant stimuli. Here we provide a new view of these mechanisms based on signal detection theory, and gain control. We demonstrated that subliminal somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, largely due to increased false alarm rates. By delivering the subliminal somatosensory stimulus and the to-be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads across the sensory surface. In addition, subliminal somatosensory stimulation tended to produce an increased probability of responding "yes", whether the somatosensory stimulus was present or not. Our results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further small inputs. This gain control may be automatic, and may precede discriminative classification of inputs into signals or noise. Crucially, we found that subliminal inputs influenced false alarm rates only on blocks where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent. Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the current context, with the presence of supraliminal stimuli having an important role in the criterion-setting process. These findings clarify the cognitive mechanisms that reserve conscious perception for salient and important signals. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Value of Ultrasound in Detecting Urinary Tract Anomalies After First Febrile Urinary Tract Infection in Children.

    Science.gov (United States)

    Ghobrial, Emad E; Abdelaziz, Doaa M; Sheba, Maha F; Abdel-Azeem, Yasser S

    2016-05-01

    Background Urinary tract infection (UTI) is an infection that affects part of the urinary tract. Ultrasound is a noninvasive test that can demonstrate the size and shape of kidneys, presence of dilatation of the ureters, and the existence of anatomic abnormalities. The aim of the study is to estimate the value of ultrasound in detecting urinary tract anomalies after first attack of UTI. Methods This study was conducted at the Nephrology Clinic, New Children's Hospital, Faculty of Medicine, Cairo University, from August 2012 to March 2013, and included 30 children who presented with first attack of acute febrile UTI. All patients were subjected to urine analysis, urine culture and sensitivity, serum creatinine, complete blood count, and imaging in the form of renal ultrasound, voiding cysto-urethrography, and renal scan. Results All the patients had fever with a mean of 38.96°C ± 0.44°C and the mean duration of illness was 6.23 ± 5.64 days. Nineteen patients (63.3%) had an ultrasound abnormality. The commonest abnormalities were kidney stones (15.8%). Only 2 patients who had abnormal ultrasound had also vesicoureteric reflux on cystourethrography. Sensitivity of ultrasound was 66.7%, specificity was 37.5%, positive predictive value was 21.1%, negative predictive value was 81.8%, and total accuracy was 43.33%. Conclusion We concluded that ultrasound alone was not of much value in diagnosing and putting a plan of first attack of febrile UTI. It is recommended that combined investigations are the best way to confirm diagnosis of urinary tract anomalies. © The Author(s) 2015.

  4. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study

    Energy Technology Data Exchange (ETDEWEB)

    Roos, A.-M., E-mail: annemarie.roos@gmail.com [Department of Obstetrics and Gynaecology, Mayday University Hospital, Croydon (United Kingdom); Abdool, Z. [Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria (South Africa); Sultan, A.H.; Thakar, R. [Department of Obstetrics and Gynaecology, Mayday University Hospital, Croydon (United Kingdom)

    2011-07-15

    Aim: To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. Materials and methods: One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B and K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. Results: On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Conclusion: Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect.

  5. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study

    International Nuclear Information System (INIS)

    Roos, A.-M.; Abdool, Z.; Sultan, A.H.; Thakar, R.

    2011-01-01

    Aim: To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. Materials and methods: One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B and K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. Results: On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Conclusion: Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect.

  6. Detection of Transient Signals in Doppler Spectra

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Signal processing is used to detect transient signals in the presence of noise. Two embodiments are disclosed. In both embodiments, the time series from a remote...

  7. Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.

    Science.gov (United States)

    Sabherwal, Pooja; Singh, Latika; Agrawal, Monika

    2018-03-30

    In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.

  8. Development of Flexible Capacitive Ultrasound Transducers and the Use of Ultrasound for Bone Repair

    Science.gov (United States)

    Wentzell, Scott A.

    Ultrasound is a widely applicable technique for therapy in the biomedical arena. However, conventional ultrasound transducers are not conducive for non-planar surfaces. Therefore, we developed flexible transducers capable of performing ultrasound and evaluated their use in biomedical applications. Flexible capacitive ultrasound transducers based on micrometer-thick dielectric tapes were developed and fabricated. These transducers were able to be made by hand at low-cost while still demonstrating good tolerances in center operating frequency. Intensities of up to 120 mW/cm2 were recorded and operation was dependent upon the applied AC and DC voltages along with the thickness of the dielectric insulation. These capacitive ultrasound transducers were used to stimulate MC3T3-E1 murine osteoblast cells to investigate the effects of low-frequency ultrasound on osteogenic gene expression and anabolic signaling pathways. After stimulation by 94.5 kHz continuous wave ultrasound for 20 minutes, significant increases in the activation of the Wnt signaling pathway and concentration of intracellular calcium were observed. Daily stimulation by ultrasound showed a trend of increased osteogenic gene expression across the phases of matrix deposition, maturation and calcification by osteoblasts. Finally, the heating of osteoblasts for stimulating osteoclastogenic responses was investigated. The application of increased temperatures of 42 and 47 degrees Celsius for 5 minutes showed significant increases in the RANKL/OPG ratio in media conditioned by osteoblasts. However, the altered RANKL/OPG ratio was not able to generate increases in osteoclastogenesis for RAW 264.7 murine macrophage cells culture in the condition media. This was possibly due to high overall osteoprotegerin expression, or unwanted inducement of M1 and M2 macrophage activation in the cell population. The overall work of this thesis demonstrates the development of novel capacitive transducers. These conformable

  9. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect the ... in which needles are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound ...

  11. Detection of weak optical signals with a laser amplifier

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2006-01-01

    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  12. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  13. Validation of a novel duplex ultrasound objective structured assessment of technical skills (DUOSATS) for arterial stenosis detection.

    Science.gov (United States)

    Jaffer, U; Singh, P; Pandey, V A; Aslam, M; Standfield, N J

    2014-01-01

    Duplex ultrasound facilitates bedside diagnosis and hence timely patient care. Its uptake has been hampered by training and accreditation issues. We have developed an assessment tool for Duplex arterial stenosis measurement for both simulator and patient based training. A novel assessment tool: duplex ultrasound assessment of technical skills was developed. A modified duplex ultrasound assessment of technical skills was used for simulator training. Novice, intermediate experience and expert users of duplex ultrasound were invited to participate. Participants viewed an instructional video and were allowed ample time to familiarize with the equipment. Participants' attempts were recorded and independently assessed by four experts using the modified duplex ultrasound assessment of technical skills. 'Global' assessment was also done on a four point Likert scale. Content, construct and concurrent validity as well as reliability were evaluated. Content and construct validity as well as reliability were demonstrated. The simulator had good satisfaction rating from participants: median 4; range 3-5. Receiver operator characteristic analysis has established a cut point of 22/ 34 and 25/ 40 were most appropriate for simulator and patient based assessment respectively. We have validated a novel assessment tool for duplex arterial stenosis detection. Further work is underway to establish transference validity of simulator training to improved skill in scanning patients. We have developed and validated duplex ultrasound assessment of technical skills for simulator training.

  14. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  15. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity

    International Nuclear Information System (INIS)

    McDannold, N; Vykhodtseva, N; Hynynen, K

    2006-01-01

    Acoustic emission was monitored during focused ultrasound exposures in conjunction with an ultrasound contrast agent (Optison (registered) ) in order to determine if cavitation activity is associated with the induction of blood-brain barrier disruption (BBBD). Thirty-four locations were sonicated (frequency: 260 kHz) at targets 10 mm deep in rabbit brain (N = 9). The sonications were applied at peak pressure amplitudes ranging from 0.11 to 0.57 MPa (burst length: 10 ms; repetition frequency of 1 Hz; duration: 20 s). Acoustic emission was recorded with a focused passive cavitation detector. This emission was recorded at each location during sonications with and without Optison (registered) . Detectable wideband acoustic emission was observed only at 0.40 and 0.57 MPa. BBBD was observed in contrast MRI after sonication at 0.29-0.57 MPa. The appearance of small regions of extravasated erythrocytes appeared to be associated with this wideband emission signal. The results thus suggest that BBBD resulting from focused ultrasound pulses in the presence of Optison (registered) can occur without indicators for inertial cavitation in vivo, wideband emission and extravasation. If inertial cavitation is not responsible for the BBBD, other ultrasound/microbubble interactions are likely the source. A significant increase in the emission signal due to Optison (registered) at the second and third harmonics of the ultrasound driving frequency was found to correlate with BBBD and might be useful as an online method to indicate when the disruption occurs

  16. Detection of Noise in Composite Step Signal Pattern by Visualizing Signal Waveforms

    Directory of Open Access Journals (Sweden)

    Chaman Verma

    2018-03-01

    Full Text Available The Step Composite Signals is the combination of vital informative signals that are compressed and coded to produce a predefined test image on a display device. It carries the desired sequence of information from source to destination. This information may be transmitted as digital signal, video information or data signal required as an input for the destination module. For testing of display panels, Composite Test Signals are the most important attribute of test signal transmission system. In the current research paper we present an approach for the noise detection in Composite Step Signal by analysing Composite Step Signal waveforms. The analysis of the signal waveforms reveals that the noise affected components of the signal and subsequently noise reduction process is initiated which targets noisy signal component only. Thus the quality of signal is not compromised during noise reduction process.

  17. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout

    Science.gov (United States)

    Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.

    2014-01-01

    Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427

  18. Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.

    Science.gov (United States)

    Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P

    2012-11-27

    Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study.

    Science.gov (United States)

    Roos, A-M; Abdool, Z; Sultan, A H; Thakar, R

    2011-07-01

    To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B&K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Microphone detected ionacoustic signal from metals

    International Nuclear Information System (INIS)

    Dioszeghy, T.; Szoekefalvi-Nagy, Z.; Biro, T.

    1986-12-01

    An experimental system for studying the radiation-induced acoustic signal generated by a modulated 2 MeV He + ion beam in metals is described. For detection, a closed cell on the rear side of the copper or aluminium sample, a half-inch condenser microphone, and a lock-in amplifier were employed. The signal was found to be proportional to beam current and particle energy, and inversely proportional to cell length. A decrease of the signal magnitude and an increase of the phase delay with increasing modulation frequency and sample thickness were also observed. (author)

  2. The singular value filter: a general filter design strategy for PCA-based signal separation in medical ultrasound imaging.

    Science.gov (United States)

    Mauldin, F William; Lin, Dan; Hossack, John A

    2011-11-01

    A general filtering method, called the singular value filter (SVF), is presented as a framework for principal component analysis (PCA) based filter design in medical ultrasound imaging. The SVF approach operates by projecting the original data onto a new set of bases determined from PCA using singular value decomposition (SVD). The shape of the SVF weighting function, which relates the singular value spectrum of the input data to the filtering coefficients assigned to each basis function, is designed in accordance with a signal model and statistical assumptions regarding the underlying source signals. In this paper, we applied SVF for the specific application of clutter artifact rejection in diagnostic ultrasound imaging. SVF was compared to a conventional PCA-based filtering technique, which we refer to as the blind source separation (BSS) method, as well as a simple frequency-based finite impulse response (FIR) filter used as a baseline for comparison. The performance of each filter was quantified in simulated lesion images as well as experimental cardiac ultrasound data. SVF was demonstrated in both simulation and experimental results, over a wide range of imaging conditions, to outperform the BSS and FIR filtering methods in terms of contrast-to-noise ratio (CNR) and motion tracking performance. In experimental mouse heart data, SVF provided excellent artifact suppression with an average CNR improvement of 1.8 dB with over 40% reduction in displacement tracking error. It was further demonstrated from simulation and experimental results that SVF provided superior clutter rejection, as reflected in larger CNR values, when filtering was achieved using complex pulse-echo received data and non-binary filter coefficients.

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  4. Model-based ultrasound temperature visualization during and following HIFU exposure.

    Science.gov (United States)

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Signal anomaly detection using modified CUSUM [cumulative sum] method

    International Nuclear Information System (INIS)

    Morgenstern, V.; Upadhyaya, B.R.; Benedetti, M.

    1988-01-01

    An important aspect of detection of anomalies in signals is the identification of changes in signal behavior caused by noise, jumps, changes in band-width, sudden pulses and signal bias. A methodology is developed to identify, isolate and characterize these anomalies using a modification of the cumulative sum (CUSUM) approach. The new algorithm performs anomaly detection at three levels and is implemented on a general purpose computer. 7 refs., 4 figs

  6. MICROSLEEPS AND THEIR DETECTION FROM THE BIOLOGICAL SIGNALS

    Directory of Open Access Journals (Sweden)

    Martin Holub

    2017-12-01

    Full Text Available Microsleeps (MS are a frequently discussed topic due to their fatal consequences. Their detection is necessary for the purpose of sleep laboratories, where they provide an option for the quantifying rate of sleep deprivation level and objective evaluation of subjective sleepiness. Many studies are dealing with this topic for automotive usage to design a fatigue countermeasure device. We made a research of recent attitude to the development of the automated MS detection methods. We created an overview of several MS detection approaches based on the measurement of biological signals. We also summarized the changes in EEG, EOG and ECG signals, which have been published over the last few years. The reproducible changes in the entire EEG spectrum, primarily with the increased activity of delta and theta, were noticed during a transition to fatigue. There were observed changes of blinking rate and reduction of eye movements during the fatigue tasks. MS correspond with variations in the autonomic regulation of the cardiovascular function, which can be quantified by HRV parameters. The decrease in HR, VLF, and LF/HF before falling asleep was revealed. EEG signal, especially its slow wave activity, considered to be the most predictive and reliable for the level of alertness. In spite of the detection from EEG signal is the most common method, EOG based approaches can also be very efficient and more driver-friendly. Besides, the signal processing in the time domain can improve the detection accuracy of the short events like MS.

  7. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    Science.gov (United States)

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  8. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing

    International Nuclear Information System (INIS)

    Bargatin, I.; Myers, E.B.; Arlett, J.; Gudlewski, B.; Roukes, M.L.

    2005-01-01

    We have developed a method of measuring rf-range resonance properties of nanoelectromechanical systems (NEMS) with integrated piezoresistive strain detectors serving as signal downmixers. The technique takes advantage of the high strain sensitivity of semiconductor-based piezoresistors, while overcoming the problem of rf signal attenuation due to a high source impedance. Our technique also greatly reduces the effect of the cross-talk between the detector and actuator circuits. We achieve thermomechanical noise detection of cantilever resonance modes up to 71 MHz at room temperature, demonstrating that downmixed piezoresistive signal detection is a viable high-sensitivity method of displacement detection in high-frequency NEMS

  9. Apoptosis induced by low-intensity ultrasound in vitro: Alteration of protein profile and potential molecular mechanism

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  10. Signal modulation in cold-dark-matter detection

    International Nuclear Information System (INIS)

    Freese, K.; Frieman, J.; Gould, A.

    1988-01-01

    If weakly interacting massive particles (WIMP's) are the dark matter in the galactic halo, they may be detected in low-background ionization detectors now operating or with low-temperature devices under development. In detecting WIMP's of low mass or WIMP's with spin-dependent nuclear interactions (e.g., photinos), a principal technical difficulty appears to be achieving very low thresholds (approx. < keV) in large (∼ kg) detectors with low background noise. We present an analytic treatment of WIMP detection and show that the seasonal modulation of the signal can be used to detect WIMP's even at low-signal-to-background levels and thus without the necessity of going to very-low-energy thresholds. As a result, the prospects for detecting a variety of cold-dark-matter candidates may be closer at hand than previously thought. We discuss in detail the detector characteristics required for a number of WIMP candidates, and carefully work out expected event rates for several present and proposed detectors

  11. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population.

    Science.gov (United States)

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Molinari, Filippo; Zieleźnik, Witold; Bardales, Ricardo H; Witkowska, Agnieszka; Suri, Jasjit S

    2014-02-01

    Computer-aided diagnostic (CAD) techniques aid physicians in better diagnosis of diseases by extracting objective and accurate diagnostic information from medical data. Hashimoto thyroiditis is the most common type of inflammation of the thyroid gland. The inflammation changes the structure of the thyroid tissue, and these changes are reflected as echogenic changes on ultrasound images. In this work, we propose a novel CAD system (a class of systems called ThyroScan) that extracts textural features from a thyroid sonogram and uses them to aid in the detection of Hashimoto thyroiditis. In this paradigm, we extracted grayscale features based on stationary wavelet transform from 232 normal and 294 Hashimoto thyroiditis-affected thyroid ultrasound images obtained from a Polish population. Significant features were selected using a Student t test. The resulting feature vectors were used to build and evaluate the following 4 classifiers using a 10-fold stratified cross-validation technique: support vector machine, decision tree, fuzzy classifier, and K-nearest neighbor. Using 7 significant features that characterized the textural changes in the images, the fuzzy classifier had the highest classification accuracy of 84.6%, sensitivity of 82.8%, specificity of 87.0%, and a positive predictive value of 88.9%. The proposed ThyroScan CAD system uses novel features to noninvasively detect the presence of Hashimoto thyroiditis on ultrasound images. Compared to manual interpretations of ultrasound images, the CAD system offers a more objective interpretation of the nature of the thyroid. The preliminary results presented in this work indicate the possibility of using such a CAD system in a clinical setting after evaluating it with larger databases in multicenter clinical trials.

  12. Automatic Smoker Detection from Telephone Speech Signals

    DEFF Research Database (Denmark)

    Poorjam, Amir Hossein; Hesaraki, Soheila; Safavi, Saeid

    2017-01-01

    This paper proposes an automatic smoking habit detection from spontaneous telephone speech signals. In this method, each utterance is modeled using i-vector and non-negative factor analysis (NFA) frameworks, which yield low-dimensional representation of utterances by applying factor analysis...... method is evaluated on telephone speech signals of speakers whose smoking habits are known drawn from the National Institute of Standards and Technology (NIST) 2008 and 2010 Speaker Recognition Evaluation databases. Experimental results over 1194 utterances show the effectiveness of the proposed approach...... for the automatic smoking habit detection task....

  13. Ultrasound generation with high power and coil only EMAT concepts.

    Science.gov (United States)

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. MRI monitoring of focused ultrasound sonications near metallic hardware.

    Science.gov (United States)

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. A signal detection theory analysis of an unconscious perception effect.

    Science.gov (United States)

    Haase, S J; Theios, J; Jenison, R

    1999-07-01

    The independent observation model (Macmillan & Creelman, 1991) is fitted to detection-identification data collected under conditions of heavy masking. The model accurately predicts a quantitative relationship between stimulus detection and stimulus identification over a wide range of detection performance. This model can also be used to offer a signal detection interpretation of the common finding of above-chance identification following a missed signal. While our finding is not a new one, the stimuli used in this experiment (redundant three-letter strings) differ slightly from those used in traditional signal detection work. Also, the stimuli were presented very briefly and heavily masked, conditions typical in the study of unconscious perception effects.

  16. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  17. DETECTION OF POTENTIAL TRANSIT SIGNALS IN 16 QUARTERS OF KEPLER MISSION DATA

    International Nuclear Information System (INIS)

    Tenenbaum, Peter; Jenkins, Jon M.; Seader, Shawn; Burke, Christopher J.; Christiansen, Jessie L.; Rowe, Jason F.; Caldwell, Douglas A.; Clarke, Bruce D.; Coughlin, Jeffrey L.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Haas, Michael R.; Henze, Christopher E.; Hunter, Roger C.; Sanderfer, Dwight T.; Campbell, Jennifer R.; Girouard, Forrest R.

    2014-01-01

    We present the results of a search for potential transit signals in 4 yr of photometry data acquired by the Kepler mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6542 signals were detected on 3223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed

  18. DETECTION OF POTENTIAL TRANSIT SIGNALS IN 16 QUARTERS OF KEPLER MISSION DATA

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, Peter; Jenkins, Jon M.; Seader, Shawn; Burke, Christopher J.; Christiansen, Jessie L.; Rowe, Jason F.; Caldwell, Douglas A.; Clarke, Bruce D.; Coughlin, Jeffrey L.; Li, Jie; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94305 (United States); Haas, Michael R.; Henze, Christopher E.; Hunter, Roger C.; Sanderfer, Dwight T. [NASA Ames Research Center, Moffett Field, CA 94305 (United States); Campbell, Jennifer R.; Girouard, Forrest R., E-mail: peter.tenenbaum@nasa.gov [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94305 (United States); and others

    2014-03-01

    We present the results of a search for potential transit signals in 4 yr of photometry data acquired by the Kepler mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6542 signals were detected on 3223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.

  19. Detection of oscillatory components in noise signals and its application to fast detection of sodium boiling in LMFBR's

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1975-09-01

    In general, the surveillance of technical plants is performed by observating the mean value of measured signals. In this method not all information included in these signals is used. On the other hand - for example in a reactor - disturbances are possible which generate small oscillatory components in the measured signals. In general, these oscillatory components do not influence the mean value of the signals and consequently do not activate the conventional control system; however they can be found by analysis of the signal's noise component. For the detection of these oscillatory signals the observation of the frequency spectra of the noise signals is particularly advantageous because they produce peaks at the oscillation frequencies. In this paper a new detection system for the fast detection of suddenly appearing peaks in the frequency spectra of noise signals is presented. The prototype of a compact detection unit was developed which continuously computes the power spectral density (PSD) of noise signals and simultaneously supervises the PSD for peaks in the relevant frequency range. The detection method is not affected by the frequency dependance of the PSD and is applicable to any noise signal. General criteria were developed to enable the determination of the optimal detection system and its sensitivity. The upper limits of false alarm rate and detection time were taken into account. The detection criteria are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical results were confirmed in a number of experiments; special experimental and theoretical parameter studies were done for the optimal detection of sodium boiling in LMFBR's. Computations based on these results showed that local and integral sodium boiling can be detected in a wide core range of SNR 300 by observing fluctuations of the neutron flux. In this connection it is important to point out that no additional core instrumentation is necessary because the

  20. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  1. Standards of the Polish Ultrasound Society – update. Ultrasound examination of thyroid gland and ultrasound-guided thyroid biopsy

    Directory of Open Access Journals (Sweden)

    Anna Trzebińska

    2014-03-01

    Full Text Available Ultrasonography is a primary imaging technique in patients with suspected thyroid disease. It allows to assess the location, size and echostructures of the thyroid gland as well as detect focal lesions, along with indication of their size, echogenicity, echostructure and vascularity. Based on these features, ultrasound examination allows to predict abnormal focal lesions for biopsy and monitor the biopsy needle track. This paper presents the standards of thyroid ultrasound examination regarding ultrasound apparatus technical requirements, scanning techniques, readings, measurements, and the description of the examination. It discusses the ultrasound features of increased malignancy risk in focal lesions (nodules found in the thyroid gland. It presents indications for fine needle aspiration biopsy of the thyroid gland for the visibility of single nodules (focal lesions and numerous lesions as well as discusses contraindications for thyroid biopsy. It describes the biopsy technique, possible complications and rules for post-biopsy monitoring of benign lesions. The paper is an update of the Standards of the Polish Ultrasound Society issued in 2011. It has been prepared on the basis of current literature, taking into account the information contained in the following publications: Thyroid ultrasound examination and Recommendations of the Polish Ultrasound Society for the performance of the FNAB of the thyroid.

  2. The application of signal detection theory to optics

    Science.gov (United States)

    Helstrom, C. W.

    1972-01-01

    The role of measurements of noncommuting quantum observables is considered in the detection of signals and estimation of signal parameters by quantum receivers. The restoration of images focused on a photosensitive surface is discussed for data as numbers of photoelectrons ejected from various parts of the surface. The detection of an image formed on a photosensitive surface in the presence of background illumination for similar data is also considered.

  3. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  4. Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound

    Science.gov (United States)

    Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.

    2018-04-01

    Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.

  5. Signal Detection with Criterion Noise: Applications to Recognition Memory

    Science.gov (United States)

    Benjamin, Aaron S.; Diaz, Michael; Wee, Serena

    2009-01-01

    A tacit but fundamental assumption of the theory of signal detection is that criterion placement is a noise-free process. This article challenges that assumption on theoretical and empirical grounds and presents the noisy decision theory of signal detection (ND-TSD). Generalized equations for the isosensitivity function and for measures of…

  6. Windowed time-reversal music technique for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  7. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-03-06

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  8. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  9. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    International Nuclear Information System (INIS)

    Mu Linfeng; Zhang Wendong; He Changde; Zhang Rui; Song Jinlong; Xue Chenyang

    2015-01-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. (paper)

  10. Evaluation of ultrasound inspection of steel H K-40 tubes used in oil processing plant furnaces; Avaliacao da inspecao ultra-sonica de tubos de aco HK-40 usado em fornos de plantas de processamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Staszczak, Eduardo Jose; Rebello, Joao Marcos Alcoforado; Riguera, Glaucio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Ensaios Nao-Destrutivos; Martins, Marcus Vinicius M.; Carneval, Ricardo de Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-06-01

    The ultra-sound inspection is usually an alternative to the techniques used for the inspection of tubes of steel H K-40. Even so up to now it was not very analyzed it remains so much to real potentiality of the technique in what it refers to the minimum size of discontinuities for its detection with relationship to the characterization of the size of discontinuities and the respective ultra-sound signal. This work besides reviewing fundamental aspects of the problems of inspection of these tubes tries to relate the form of the ultra-sound signal with the size of the found discontinuities. (author)

  11. Modelling of polysomnographic respiratory measurements for artefact detection and signal restoration

    International Nuclear Information System (INIS)

    Rathnayake, S I; Abeyratne, U R; Hukins, C; Duce, B

    2008-01-01

    Polysomnography (PSG), which incorporates measures of sleep with measures of EEG arousal, air flow, respiratory movement and oxygenation, is universally regarded as the reference standard in diagnosing sleep-related respiratory diseases such as obstructive sleep apnoea syndrome. Over 15 channels of physiological signals are measured from a subject undergoing a typical overnight PSG session. The signals often suffer from data losses, interferences and artefacts. In a typical sleep scoring session, artefact-corrupted signal segments are visually detected and removed from further consideration. This is a highly time-consuming process, and subjective judgement is required for the job. During typical sleep scoring sessions, the target is the detection of segments of diagnostic interest, and signal restoration is not utilized for distorted segments. In this paper, we propose a novel framework for artefact detection and signal restoration based on the redundancy among respiratory flow signals. We focus on the air flow (thermistor sensors) and nasal pressure signals which are clinically significant in detecting respiratory disturbances. The method treats the respiratory system and other organs that provide respiratory-related inputs/outputs to it (e.g., cardiovascular, brain) as a possibly nonlinear coupled-dynamical system, and uses the celebrated Takens embedding theorem as the theoretical basis for signal prediction. Nonlinear prediction across time (self-prediction) and signals (cross-prediction) provides us with a mechanism to detect artefacts as unexplained deviations. In addition to detection, the proposed method carries the potential to correct certain classes of artefacts and restore the signal. In this study, we categorize commonly occurring artefacts and distortions in air flow and nasal pressure measurements into several groups and explore the efficacy of the proposed technique in detecting/recovering them. The results we obtained from a database of clinical

  12. Imaging of plantar fascia disorders: findings on plain radiography, ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Draghi, Ferdinando; Gitto, Salvatore; Bortolotto, Chandra; Draghi, Anna Guja; Ori Belometti, Gioia

    2017-02-01

    Plantar fascia (PF) disorders commonly cause heel pain and disability in the general population. Imaging is often required to confirm diagnosis. This review article aims to provide simple and systematic guidelines for imaging assessment of PF disease, focussing on key findings detectable on plain radiography, ultrasound and magnetic resonance imaging (MRI). Sonographic characteristics of plantar fasciitis include PF thickening, loss of fibrillar structure, perifascial collections, calcifications and hyperaemia on Doppler imaging. Thickening and signal changes in the PF as well as oedema of adjacent soft tissues and bone marrow can be assessed on MRI. Radiographic findings of plantar fasciitis include PF thickening, cortical irregularities and abnormalities in the fat pad located deep below the PF. Plantar fibromatosis appears as well-demarcated, nodular thickenings that are iso-hypoechoic on ultrasound and show low-signal intensity on MRI. PF tears present with partial or complete fibre interruption on both ultrasound and MRI. Imaging description of further PF disorders, including xanthoma, diabetic fascial disease, foreign-body reactions and plantar infections, is detailed in the main text. Ultrasound and MRI should be considered as first- and second-line modalities for assessment of PF disorders, respectively. Indirect findings of PF disease can be ruled out on plain radiography. Teaching Points • PF disorders commonly cause heel pain and disability in the general population.• Imaging is often required to confirm diagnosis or reveal concomitant injuries.• Ultrasound and MRI respectively represent the first- and second-line modalities for diagnosis.• Indirect findings of PF disease can be ruled out on plain radiography.

  13. Synthesis of Laboratory Ultrasound Contrast Agents

    Directory of Open Access Journals (Sweden)

    Jaemin Oh

    2013-10-01

    Full Text Available Ultrasound Contrast Agents (UCAs were developed to maximize reflection contrast so that organs can be seen clearly in ultrasound imaging. UCAs increase the signal to noise ratio (SNR by linear and non-linear mechanisms and thus help more accurately visualize the internal organs and blood vessels. However, the UCAs on the market are not only expensive, but are also not optimized for use in various therapeutic research applications such as ultrasound-aided drug delivery. The UCAs fabricated in this study utilize conventional lipid and albumin for shell formation and perfluorobutane as the internal gas. The shape and density of the UCA bubbles were verified by optical microscopy and Cryo SEM, and compared to those of the commercially available UCAs, Definity® and Sonovue®. The size distribution and characteristics of the reflected signal were also analyzed using a particle size analyzer and ultrasound imaging equipment. Our experiments indicate that UCAs composed of spherical microbubbles, the majority of which were smaller than 1 um, were successfully synthesized. Microbubbles 10 um or larger were also identified when different shell characteristics and filters were used. These laboratory UCAs can be used for research in both diagnoses and therapies.

  14. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  15. The value of ultrasound with ultrasound-guided fine-needle aspiration biopsy compared to computed tomography in the detection of regional metastases in the clinically negative neck

    International Nuclear Information System (INIS)

    Takes, Robert P.; Righi, Paul; Meeuwis, Cees A.; Manni, Johannes J.; Knegt, Paul; Marres, Henri A.M.; Spoelstra, Hubert A.A.; Boer, Maarten F. de; Mey, Andel G.L. van der; Bruaset, I.; Ball, Valerie; Weisberger, Edward; Radpour, Shokri; Kruyt, Rene H.; Joosten, Frank B.M.; Lameris, Johan S.; Oostayen, Jacques A. van; Kopecky, Kenyon; Caldemeyer, Karen; Henzen-Logmans, Sonja C.; Wiersma-van Tilburg, J.M.; Bosman, Fred T.; Krieken, J. Han J.M. van; Hermans, Jo; Baatenburg de Jong, Robert J.

    1998-01-01

    Purpose: Head and neck oncologists have not reached consensus regarding the role of contemporary imaging techniques in the evaluation of the clinically negative neck in patients with head and neck squamous cell carcinoma (HNSCC). The purpose of the present study was to compare the accuracy of ultrasound with guided fine-needle aspiration biopsy (UGFNAB) and computed tomography (CT) in detecting lymph node metastasis in the clinically negative neck. Methods and Materials: Sixty-four neck sides of patients with HNSCC were examined preoperatively by ultrasound/UGFNAB and CT at one of five participating tertiary care medical centers. The findings were correlated with the results of histopathologic examination of the neck specimen. Results: Ultrasound with guided fine-needle aspiration biopsy was characterized by a sensitivity of 48%, specificity of 100%, and overall accuracy of 79%. Three cases had nondiagnostic aspirations using UGFNAB and were excluded. CT demonstrated a sensitivity of 54%, specificity of 92%, and overall accuracy of 77%. UGFNAB detected two additional metastases not visualized on CT, whereas CT detected no metastases not seen on UGFNAB. The results of UGFNAB were similar between the participating centers. Conclusions: Approximately one half of the clinically occult nodal metastases in our patient group were identified by both CT and UGFNAB. Overall, UGFNAB and CT demonstrated comparable accuracy. The sensitivity of CT was slightly better than UGFNAB, but the latter remained characterized by a superior specificity. The results of CT and UGFNAB did not appear to be supplementary. The choice of imaging modality for staging of the clinically negative neck depends on tumor site, T-stage, and experience and preference of the head and neck oncologist. If CT is required for staging of the primary tumor, additional staging of the neck by UGFNAB does not provide significant additional value

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. help ... end of their bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment planning. detect ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  19. Not all ultrasounds are created equal: general sonography versus musculoskeletal sonography in the detection of rotator cuff tears

    Science.gov (United States)

    Cole, Brandi; Twibill, Kristen; Lam, Patrick; Hackett, Lisa

    2016-01-01

    Background This cross-sectional analytic diagnostic accuracy study was designed to compare the accuracy of ultrasound performed by general sonographers in local radiology practices with ultrasound performed by an experienced musculoskeletal sonographer for the detection of rotator cuff tears. Methods In total, 238 patients undergoing arthroscopy who had previously had an ultrasound performed by both a general sonographer and a specialist musculoskeletal sonographer made up the study cohort. Accuracy of diagnosis was compared with the findings at arthroscopy. Results When analyzed as all tears versus no tears, musculoskeletal sonography had an accuracy of 97%, a sensitivity of 97% and a specificity of 95%, whereas general sonography had an accuracy of 91%, a sensitivity of 91% and a specificity of 86%. When the partial tears were split with those ≥ 50% thickness in the tear group and those tear group, musculoskeletal sonography had an accuracy of 97%, a sensitivity of 97% and a specificity of 100% and general sonography had an accuracy of 85%, a sensitivity of 84% and a specificity of 87%. Conclusions Ultrasound in the hands of an experienced musculoskeletal sonographer is highly accurate for the diagnosis of rotator cuff tears. General sonography has improved subsequent to earlier studies but remains inferior to an ultrasound performed by a musculoskeletal sonographer. PMID:27660657

  20. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  1. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    Science.gov (United States)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  2. Compressive Detection Using Sub-Nyquist Radars for Sparse Signals

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2016-01-01

    Full Text Available This paper investigates the compression detection problem using sub-Nyquist radars, which is well suited to the scenario of high bandwidths in real-time processing because it would significantly reduce the computational burden and save power consumption and computation time. A compressive generalized likelihood ratio test (GLRT detector for sparse signals is proposed for sub-Nyquist radars without ever reconstructing the signal involved. The performance of the compressive GLRT detector is analyzed and the theoretical bounds are presented. The compressive GLRT detection performance of sub-Nyquist radars is also compared to the traditional GLRT detection performance of conventional radars, which employ traditional analog-to-digital conversion (ADC at Nyquist sampling rates. Simulation results demonstrate that the former can perform almost as well as the latter with a very small fraction of the number of measurements required by traditional detection in relatively high signal-to-noise ratio (SNR cases.

  3. Emergency Department Ultrasound Is not a Sensitive Detector of Solid Organ Injury

    Directory of Open Access Journals (Sweden)

    Kendall, John L

    2009-02-01

    Full Text Available Objective: To estimate the sensitivity and specificity of emergency department (ED ultrasound for the detection of solid organ injury following blunt abdominal trauma.Methods: A prospective cohort study performed in the ED of an urban Level I trauma center on patients who sustained blunt abdominal trauma. Following initial standard trauma evaluation, patients underwent a secondary ultrasound examination performed specifically to identify injury to the liver or spleen, followed by computed tomography (CT scan of the abdomen. Ultrasound examinations were performed by emergency medicine residents or attending physicians experienced in the use of ultrasound for detecting hemoperitoneum. Ultrasonographers prospectively determined the presence or absence of liver or spleen injury. CT findings were used as the criterion standard to evaluate the ultrasound results.Results: From July 1998 through June 1999, 152 patients underwent secondary ultrasound examination and CT. Of the 152 patients, nine (6% had liver injuries and 10 (7% had spleen injuries. Ultrasound correctly detected only one of the liver injuries for a sensitivity of 11% (95% CI: 0%-48% and a specificity of 98% (95% CI: 94%-100%. Ultrasound correctly detected eight spleen injuries for a sensitivity of 80% (95% CI: 44%-98% and a specificity of 99% (95% CI: 95%-100%.Conclusion: Emergency ultrasound is not sensitive or specific for detecting liver or spleen injuries following blunt abdominal trauma.[WestJEM. 2009;10:1-5.

  4. Spectral Correlation of Multicarrier Modulated Signals and Its Application for Signal Detection

    Directory of Open Access Journals (Sweden)

    Zhang Haijian

    2010-01-01

    Full Text Available Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM signals: conventional OFDM and filter bank based multicarrier (FBMC signals. The spectral correlation characterization of MCM signal can be described by a special linear periodic time-variant (LPTV system. Using this LPTV description, we have derived the explicit theoretical formulas of nonconjugate and conjugate cyclic autocorrelation function (CAF and spectral correlation function (SCF for OFDM and FBMC signals. According to theoretical spectral analysis, Cyclostationary Signatures (CS are artificially embedded into MCM signal and a low-complexity signature detector is, therefore, presented for detecting MCM signal. Theoretical analysis and simulation results demonstrate the efficiency and robustness of this CS detector compared to traditionary energy detector.

  5. The erroneous signals of detection theory.

    Science.gov (United States)

    Trimmer, Pete C; Ehlman, Sean M; McNamara, John M; Sih, Andrew

    2017-10-25

    Signal detection theory has influenced the behavioural sciences for over 50 years. The theory provides a simple equation that indicates numerous 'intuitive' results; e.g. prey should be more prone to take evasive action (in response to an ambiguous cue) if predators are more common. Here, we use analytical and computational models to show that, in numerous biological scenarios, the standard results of signal detection theory do not apply; more predators can result in prey being less responsive to such cues. The standard results need not apply when the probability of danger pertains not just to the present, but also to future decisions. We identify how responses to risk should depend on background mortality and autocorrelation, and that predictions in relation to animal welfare can also be reversed from the standard theory. © 2017 The Author(s).

  6. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  7. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  8. [Ultrasound of the urinary system].

    Science.gov (United States)

    Segura-Grau, A; Herzog, R; Díaz-Rodriguez, N; Segura-Cabral, J M

    2016-09-01

    Ultrasound techniques are able to provide a fairly complete examination of the urinary system, achieving a high sensitivity in relevant-pathology detection, especially in the kidney, bladder and prostate. Early detection of pathologies such as tumors or urinary tract obstructions, sometimes even before their clinical manifestation, has improved their management and prognosis in many cases. This, added to its low cost and harmlessness, makes ultrasound ideal for early approaches and follow-up of a wide number of urinary system pathologies. In this article, the ultrasound characteristics of the main urinary system pathologies that can be diagnosed by this technique, are reviewed. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Enhancement of bone shadow region using local phase-based ultrasound transmission maps.

    Science.gov (United States)

    Hacihaliloglu, Ilker

    2017-06-01

    Ultrasound is increasingly being employed in different orthopedic procedures as an imaging modality for real-time guidance. Nevertheless, low signal-to-noise-ratio and different imaging artifacts continue to hamper the success of ultrasound-based procedures. Bone shadow region is an important feature indicating the presence of bone/tissue interface in the acquired ultrasound data. Enhancement and automatic detection of this region could improve the sensitivity of ultrasound for imaging bone and result in improved guidance for various orthopedic procedures. In this work, a method is introduced for the enhancement of bone shadow regions from B-mode ultrasound data. The method is based on the combination of three different image phase features: local phase tensor, local weighted mean phase angle, and local phase energy. The combined local phase image features are used as an input to an [Formula: see text] norm-based contextual regularization method which emphasizes uncertainty in the shadow regions. The enhanced bone shadow images are automatically segmented and compared against expert segmentation. Qualitative and quantitative validation was performed on 100 in vivo US scans obtained from five subjects by scanning femur and vertebrae bones. Validation against expert segmentation achieved a mean dice similarity coefficient of 0.88. The encouraging results obtained in this initial study suggest that the proposed method is promising enough for further evaluation. The calculated bone shadow maps could be incorporated into different ultrasound bone segmentation and registration approaches as an additional feature.

  10. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  11. Detection of rotator cuff tears: the value of MRI following ultrasound

    International Nuclear Information System (INIS)

    Rutten, Matthieu J.C.M.; Spaargaren, Gert-Jan; Jager, Gerrit J.; Loon, Ton van; Waal Malefijt, Maarten C. de; Kiemeney, Lambertus A.L.M.

    2010-01-01

    To evaluate the need for additional magnetic resonance imaging (MRI) following ultrasound (US) in patients with shoulder pain and/or disability and to compare the accuracy of both techniques for the detection of partial-thickness and full-thickness rotator cuff tears (RCT). In 4 years, 5,216 patients underwent US by experienced musculoskeletal radiologists. Retrospectively, patient records were evaluated if MRI and surgery were performed within 5 months of US. US and MRI findings were classified into intact cuff, partial-thickness and full-thickness RCT, and were correlated with surgical findings. Additional MR imaging was performed in 275 (5.2%) patients. Sixty-eight patients underwent surgery within 5 months. US and MRI correctly depicted 21 (95%) and 22 (100%) of the 22 full-thickness tears, and 8 (89%) and 6 (67%) of the 9 partial-thickness tears, respectively. The differences in performance of US and MRI were not statistically significant (p = 0.15). MRI following routine shoulder US was requested in only 5.2% of the patients. The additional value of MRI was in detecting intra-articular lesions. In patients who underwent surgery, US and MRI yielded comparably high sensitivity for detecting full-thickness RCT. US performed better in detecting partial-thickness tears, although the difference was not significant. (orig.)

  12. Detection of rotator cuff tears: the value of MRI following ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, Matthieu J.C.M.; Spaargaren, Gert-Jan; Jager, Gerrit J. [Jeroen Bosch Ziekenhuis, Department of Radiology, NL' s-Hertogenbosch (Netherlands); Loon, Ton van [Jeroen Bosch Ziekenhuis, Department of Orthopedic Surgery, NL' s-Hertogenbosch (Netherlands); Waal Malefijt, Maarten C. de [Radboud University Nijmegen Medical Centre, Department of Orthopedic Surgery, Nijmegen (Netherlands); Kiemeney, Lambertus A.L.M. [Radboud University Nijmegen Medical Centre, Department of Epidemiology and Biostatistics and HTA, Geert Grooteplein Noord 21, P.O. Box 9101, Nijmegen (Netherlands)

    2010-02-15

    To evaluate the need for additional magnetic resonance imaging (MRI) following ultrasound (US) in patients with shoulder pain and/or disability and to compare the accuracy of both techniques for the detection of partial-thickness and full-thickness rotator cuff tears (RCT). In 4 years, 5,216 patients underwent US by experienced musculoskeletal radiologists. Retrospectively, patient records were evaluated if MRI and surgery were performed within 5 months of US. US and MRI findings were classified into intact cuff, partial-thickness and full-thickness RCT, and were correlated with surgical findings. Additional MR imaging was performed in 275 (5.2%) patients. Sixty-eight patients underwent surgery within 5 months. US and MRI correctly depicted 21 (95%) and 22 (100%) of the 22 full-thickness tears, and 8 (89%) and 6 (67%) of the 9 partial-thickness tears, respectively. The differences in performance of US and MRI were not statistically significant (p = 0.15). MRI following routine shoulder US was requested in only 5.2% of the patients. The additional value of MRI was in detecting intra-articular lesions. In patients who underwent surgery, US and MRI yielded comparably high sensitivity for detecting full-thickness RCT. US performed better in detecting partial-thickness tears, although the difference was not significant. (orig.)

  13. Velocity Estimation in Medical Ultrasound [Life Sciences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Villagómez Hoyos, Carlos Armando; Holbek, Simon

    2017-01-01

    This article describes the application of signal processing in medical ultrasound velocity estimation. Special emphasis is on the relation among acquisition methods, signal processing, and estimators employed. The description spans from current clinical systems for one-and two-dimensional (1-D an...

  14. Blinded Comparison between an In-Air Reverberation Method and an Electronic Probe Tester in the Detection of Ultrasound Probe Faults.

    Science.gov (United States)

    Dudley, Nicholas J; Woolley, Darren J

    2017-12-01

    The aim of this study was to perform a blinded trial, comparing the results of a visual inspection of the in-air reverberation pattern with the results of an electronic probe tester in detecting ultrasound probe faults. Sixty-two probes were tested. A total of 28 faults were found, 3 only by in-air reverberation assessment and 2 only by the electronic probe tester. The electronic probe tester provided additional information regarding the location of the fault in 74% of the cases in which both methods detected a fault. It is possible to detect the majority of probe faults by visual inspection and in-air reverberation assessment. The latter provides an excellent first-line test, easily performed on a daily basis by equipment users. An electronic probe tester is required if detailed evaluation of faults is necessary. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. All rights reserved.

  15. Ultrasound Detection of Parathyroid Hyperplasia and Correlation with Clinical and Laboratory Findings in Patients with Chronic Kidney Disease

    International Nuclear Information System (INIS)

    Restrepo Valencia, Cesar Augusto; Santacruz Pacheco, David; Castillo Pinilla, Campo Elias; Chacon Cardona, Jose Arnoby

    2011-01-01

    Objective: To determine whether there is any correlation between parathyroid hyperplasia, as detected by high-resolution ultrasound, and clinical and laboratory variables in patients with hyperparathyroidism secondary to stage-5 chronic kidney disease (CKD) on hemodialysis. Design: Descriptive. Location: RTS Ltda. Renal Unit in Caldas, Santa Sofia Hospital and Children's Hospital. Patients: All patients, 18 years of age, with stage- 5 CKD who were on dialysis therapy (hemodialysis or peritoneal dialysis), and with PTH levels greater than 400 pg/ml. Methods: After giving their written consent to participate in the study, all patients underwent high-resolution thyroid and parathyroid ultrasound (Phillips Team Enviisor CHD -12 MHz transducer) performed by a medical specialist in radiology. Variables such as etiology, duration of the CKD, time on dialysis therapy, type of dialysis, presence of symptoms related to hyperparathyroidism (bone pain, fractures, pruritus), and laboratory variables like an intact PTH, calcium, phosphorus, calcium x phosphorus, and alkaline phosphatase were analyzed in order to determine if there was a significant correlation between the variables and the detection of parathyroid hyperplasia documented by high resolution ultrasound. Results: Of 403 patients evaluated, 92 met the inclusion criteria, 86 were scanned and 6 were excluded. In these patients, the most common cause of CKD was hypertensive nephrosclerosis. Thirty-seven patients were on peritoneal dialysis and 49 on hemodialysis, with an average time on dialysis of 61.4 +- 36.6 months. The average levels of PTH in pg/mL were 829,465 +- 473,631. The most prevalent clinical symptom was bone pain, found in 52.2% of patients. Ultrasound showed enlarged parathyroid glands in 30 patients (34.88%), with single-gland hyperplasia in 23 (26.74%), two-gland hyperplasia in 4 (4.65%) and three-gland hyperplasia in 3 (3.48%). The correlation between laboratory variables and the presence of

  16. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

    Science.gov (United States)

    Chen, Xucai; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2016-02-01

    Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Advanced detection strategies for ultrasound contrast agents

    NARCIS (Netherlands)

    J.M.G. Borsboom (Jerome)

    2005-01-01

    markdownabstract__Abstract__ Ultrasound contrast agent was discovered serendipitously by Gramiak and Shah in I968 when they injected indocyanine green dye into the heart and observed increased echogenicity of the blood containing the dye. Small cavitation bubbles that were formed upon

  18. A Fast Detection Algorithm for the X-Ray Pulsar Signal

    Directory of Open Access Journals (Sweden)

    Hao Liang

    2017-01-01

    Full Text Available The detection of the X-ray pulsar signal is important for the autonomous navigation system using X-ray pulsars. In the condition of short observation time and limited number of photons for detection, the noise does not obey the Gaussian distribution. This fact has been little considered extant. In this paper, the model of the X-ray pulsar signal is rebuilt as the nonhomogeneous Poisson distribution and, in the condition of a fixed false alarm rate, a fast detection algorithm based on maximizing the detection probability is proposed. Simulation results show the effectiveness of the proposed detection algorithm.

  19. Novel Automatic Detection of Pleura and B-lines (Comet-Tail Artifacts) on In-Vivo Lung Ultrasound Scans

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse

    2016-01-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without...

  20. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Luteijn, Johannes Michiel; Morris, Joan K; Garne, Ester

    2016-01-01

    AIMS: Information about medication safety in pregnancy is inadequate. We aimed to develop a signal detection methodology to routinely identify unusual associations between medications and congenital anomalies using data collected by 15 European congenital anomaly registries. METHODS: EUROmedi...... for 40 385 medication anomaly combinations in the data. Simes multiple testing procedure with a 50% false discovery rate (FDR) identified associations least likely to be due to chance and those associations with more than two cases with the exposure and the anomaly were selected for further investigation...

  1. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    Science.gov (United States)

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  2. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  3. A new ultrasonic signal amplification method for detection of bacteria

    Science.gov (United States)

    Kant Shukla, Shiva; Resa López, Pablo; Sierra Sánchez, Carlos; Urréjola, José; Segura, Luis Elvira

    2012-10-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml-1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.

  4. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    Shukla, Shiva Kant; López, Pablo Resa; Sánchez, Carlos Sierra; Segura, Luis Elvira; Urréjola, José

    2012-01-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 10 5 cells ml −1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  5. Signal Detection Framework Using Semantic Text Mining Techniques

    Science.gov (United States)

    Sudarsan, Sithu D.

    2009-01-01

    Signal detection is a challenging task for regulatory and intelligence agencies. Subject matter experts in those agencies analyze documents, generally containing narrative text in a time bound manner for signals by identification, evaluation and confirmation, leading to follow-up action e.g., recalling a defective product or public advisory for…

  6. Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.

    Science.gov (United States)

    Ze Wang; Chi Man Wong; Feng Wan

    2017-07-01

    An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.

  7. Contrast enhanced ultrasound of sentinel lymph nodes

    Directory of Open Access Journals (Sweden)

    XinWu Cui

    2013-03-01

    Full Text Available Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient’s prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node.

  8. Anticoagulant therapy for venous thromboembolism detected by Doppler ultrasound in patients with metastatic colorectal cancer receiving bevacizumab

    Directory of Open Access Journals (Sweden)

    Suenaga M

    2015-01-01

    Full Text Available Mitsukuni Suenaga, Nobuyuki Mizunuma, Eiji Shinozaki, Satoshi Matsusaka, Masato Ozaka, Mariko Ogura, Keisho Chin, Toshiharu Yamaguchi Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan Background: Doppler ultrasound imaging is useful for management of venous thromboembolism associated with a subclavicular implantable central venous access system in patients receiving bevacizumab (Bev. We investigated the efficacy and safety of our anticoagulant regimen based on Doppler findings.Methods: Patients aged ≤75 years with metastatic colorectal cancer, no history of thromboembolism, and no prior use of Bev received chemotherapy plus Bev. Doppler ultrasound imaging of the deep venous system to detect thrombosis was performed after the first course of Bev and repeated after the third course in patients with asymptomatic thrombosis. Indications for anticoagulant therapy in patients with asymptomatic thrombosis were as follows: enlarging thrombus (E, thrombus >40 mm in diameter (S, thrombus involving the superior vena cava (C, and decreased blood flow (V.Results: Among 79 patients enrolled in this study, asymptomatic thrombosis was detected in 56 patients (70.9% by Doppler ultrasound imaging after the first course of Bev and there was no thrombus in 23 patients (29.1%. Of these 56 patients, 11 (19.6% received anticoagulant therapy with warfarin, including eight after the first course and three after follow-up imaging. S + V was observed in four of 11 patients (36.4%, as well as V in two (18.2%, S + V + C in one (9.1%, E + S + V in one (9.1%, E + C in one (9.1%, E in one (9.1%, and C in one (9.1%. All patients resumed chemotherapy, including seven who resumed Bev. Improvement or stabilization of thrombi was achieved in ten patients (90.9%. Only one patient had symptomatic thromboembolism. Mild bleeding due to anticoagulant therapy occurred in six patients (54.5%, but there were no treatment

  9. Operational NDT simulator, towards human factors integration in simulated probability of detection

    Science.gov (United States)

    Rodat, Damien; Guibert, Frank; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    In the aeronautic industry, the performance demonstration of Non-Destructive Testing (NDT) procedures relies on Probability Of Detection (POD) analyses. This statistical approach measures the ability of the procedure to detect a flaw with regard to one of its characteristic dimensions. The inspection chain is evaluated as a whole, including equipment configuration, probe effciency but also operator manipulations. Traditionally, a POD study requires an expensive campaign during which several operators apply the procedure on a large set of representative samples. Recently, new perspectives for the POD estimation have been introduced using NDT simulation to generate data. However, these approaches do not offer straightforward solutions to take the operator into account. The simulation of human factors, including cognitive aspects, often raises questions. To address these diffculties, we propose a concept of operational NDT simulator [1]. This work presents the first steps in the implementation of such simulator for ultrasound phased array inspection of composite parts containing Flat Bottom Holes (FBHs). The final system will look like a classical ultrasound testing equipment with a single exception: the displayed signals will be synthesized. Our hardware (ultrasound acquisition card, 3D position tracker) and software (position analysis, inspection scenario, synchronization, simulations) environments are developed as a bench to test the meta-modeling techniques able to provide fast-simulated realistic ultra-sound signals. The results presented here are obtained by on-the-fly merging of real and simulated signals. They confirm the feasibility of our approach: the replacement of real signals by purely simulated ones has been unnoticed by operators. We believe this simulator is a great prospect for POD evaluation including human factors, and may also find applications for training or procedure set-up.

  10. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  11. Detectability of CO2 Flux Signals by a Space-Based Lidar Mission

    Science.gov (United States)

    Hammerling, Dorit M.; Kawa, S. Randolph; Schaefer, Kevin; Doney, Scott; Michalak, Anna M.

    2015-01-01

    Satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for improving our quantitative understanding of the carbon cycle. Prospective observations include those from space-based lidar such as the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. Here we explore the ability of such a mission to detect regional changes in CO2 fluxes. We investigate these using three prototypical case studies, namely the thawing of permafrost in the Northern High Latitudes, the shifting of fossil fuel emissions from Europe to China, and changes in the source-sink characteristics of the Southern Ocean. These three scenarios were used to design signal detection studies to investigate the ability to detect the unfolding of these scenarios compared to a baseline scenario. Results indicate that the ASCENDS mission could detect the types of signals investigated in this study, with the caveat that the study is based on some simplifying assumptions. The permafrost thawing flux perturbation is readily detectable at a high level of significance. The fossil fuel emission detectability is directly related to the strength of the signal and the level of measurement noise. For a nominal (lower) fossil fuel emission signal, only the idealized noise-free instrument test case produces a clearly detectable signal, while experiments with more realistic noise levels capture the signal only in the higher (exaggerated) signal case. For the Southern Ocean scenario, differences due to the natural variability in the ENSO climatic mode are primarily detectable as a zonal increase.

  12. Ultrasound imaging with a micromotor; Micromotor ni yoru choonpa imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, O.; Salimuzzaman, M.; Matani, A.; Chihara, K. [Nara Institute of Science and Technology, Nara (Japan); Asao, M. [Osaka National Hospital, Osaka (Japan)

    1998-03-01

    This paper describes a new ultrasound intravascular imaging system. In this system, an ultrasound probe consists of a micromotor, an ultrasound reflecting mirror attached with the micromotor and an ultrasound transducer. Ultrasound is scanned radially by a micromotor instead of a rotation transmitting wire and the rotation of the micromotor is performed and controlled by an external magnetic field. This ultrasound imaging system with a micromotor was applied to observe the inside of blood vessels through in vitro experiments. The preliminary results suggest that this system has the sufficient ability to define the blood vessel morphology and that the simple image processing enhances signal-to-noise ratio of the reconstructed image. 12 refs., 5 figs.

  13. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection

    International Nuclear Information System (INIS)

    Zelst, J.C.M. van; Tan, T.; Platel, B.; Jong, M. de; Steenbakkers, A.; Mourits, M.; Grivegnee, A.; Borelli, C.; Karssemeijer, N.; Mann, R.M.

    2017-01-01

    Objective: To investigate the effect of dedicated Computer Aided Detection (CAD) software for automated breast ultrasound (ABUS) on the performance of radiologists screening for breast cancer. Methods: 90 ABUS views of 90 patients were randomly selected from a multi-institutional archive of cases collected between 2010 and 2013. This dataset included normal cases (n = 40) with >1 year of follow up, benign (n = 30) lesions that were either biopsied or remained stable, and malignant lesions (n = 20). Six readers evaluated all cases with and without CAD in two sessions. CAD-software included conventional CAD-marks and an intelligent minimum intensity projection of the breast tissue. Readers reported using a likelihood-of-malignancy scale from 0 to 100. Alternative free-response ROC analysis was used to measure the performance. Results: Without CAD, the average area-under-the-curve (AUC) of the readers was 0.77 and significantly improved with CAD to 0.84 (p = 0.001). Sensitivity of all readers improved (range 5.2–10.6%) by using CAD but specificity decreased in four out of six readers (range 1.4–5.7%). No significant difference was observed in the AUC between experienced radiologists and residents both with and without CAD. Conclusions: Dedicated CAD-software for ABUS has the potential to improve the cancer detection rates of radiologists screening for breast cancer.

  14. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection

    Energy Technology Data Exchange (ETDEWEB)

    Zelst, J.C.M. van, E-mail: Jan.vanZelst@radboudumc.nl [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Tan, T.; Platel, B. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Jong, M. de [Jeroen Bosch Medical Centre, Department of Radiology, ‘s-Hertogenbosch (Netherlands); Steenbakkers, A. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Mourits, M. [Jeroen Bosch Medical Centre, Department of Radiology, ‘s-Hertogenbosch (Netherlands); Grivegnee, A. [Jules Bordet Institute, Department of Radiology, Brussels (Belgium); Borelli, C. [Catholic University of the Sacred Heart, Department of Radiological Sciences, Rome (Italy); Karssemeijer, N.; Mann, R.M. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands)

    2017-04-15

    Objective: To investigate the effect of dedicated Computer Aided Detection (CAD) software for automated breast ultrasound (ABUS) on the performance of radiologists screening for breast cancer. Methods: 90 ABUS views of 90 patients were randomly selected from a multi-institutional archive of cases collected between 2010 and 2013. This dataset included normal cases (n = 40) with >1 year of follow up, benign (n = 30) lesions that were either biopsied or remained stable, and malignant lesions (n = 20). Six readers evaluated all cases with and without CAD in two sessions. CAD-software included conventional CAD-marks and an intelligent minimum intensity projection of the breast tissue. Readers reported using a likelihood-of-malignancy scale from 0 to 100. Alternative free-response ROC analysis was used to measure the performance. Results: Without CAD, the average area-under-the-curve (AUC) of the readers was 0.77 and significantly improved with CAD to 0.84 (p = 0.001). Sensitivity of all readers improved (range 5.2–10.6%) by using CAD but specificity decreased in four out of six readers (range 1.4–5.7%). No significant difference was observed in the AUC between experienced radiologists and residents both with and without CAD. Conclusions: Dedicated CAD-software for ABUS has the potential to improve the cancer detection rates of radiologists screening for breast cancer.

  15. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  16. Reconstructions in ultrasound modulated optical tomography

    KAUST Repository

    Allmaras, Moritz; Bangerth, Wolfgang

    2011-01-01

    We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.

  17. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...

  18. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, T; Bamber, J; Harris, E [The Institute of Cancer Research & Royal Marsden, Sutton and London (United Kingdom)

    2015-06-15

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation template matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion

  19. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  20. Continuous emotion detection using EEG signals and facial expressions

    NARCIS (Netherlands)

    Soleymani, Mohammad; Asghari-Esfeden, Sadjad; Pantic, Maja; Fu, Yun

    Emotions play an important role in how we select and consume multimedia. Recent advances on affect detection are focused on detecting emotions continuously. In this paper, for the first time, we continuously detect valence from electroencephalogram (EEG) signals and facial expressions in response to

  1. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  2. Initial Experience of Tomosynthesis-Guided Vacuum-Assisted Biopsies of Tomosynthesis-Detected (2D Mammography and Ultrasound Occult) Architectural Distortions.

    Science.gov (United States)

    Patel, Bhavika K; Covington, Matthew; Pizzitola, Victor J; Lorans, Roxanne; Giurescu, Marina; Eversman, William; Lewin, John

    2018-03-23

    As experience and aptitude in digital breast tomosynthesis (DBT) have increased, radiologists are seeing more areas of architectural distortion (AD) on DBT images compared with standard 2D mammograms. The purpose of this study is to report our experience using tomosynthesis-guided vacuum-assisted biopsies (VABs) for ADs that were occult at 2D mammography and ultrasound and to analyze the positive predictive value for malignancy. We performed a retrospective review of 34 DBT-detected ADs that were occult at mammography and ultrasound. We found a positive predictive value of 26% (nine malignancies in 34 lesions). Eight of the malignancies were invasive and one was ductal carcinoma in situ. The invasive cancers were grade 1 (4/8; 50%), grade 2 (2/8; 25%), or grade 3 (1/8; 13%); information about one invasive cancer was not available. The mean size of the invasive cancers at pathologic examination was 7.5 mm (range, 6-30 mm). Tomosynthesis-guided VAB is a feasible method to sample ADs that are occult at 2D mammography and ultrasound. Tomosynthesis-guided VAB is a minimally invasive method that detected a significant number of carcinomas, most of which were grade 1 cancers. Further studies are needed.

  3. Transverse comparisons between ultrasound and radionuclide parameters in children with presumed antenatally detected pelvi-ureteric junction obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Hong Phuoc; Janssen, Francoise; Hall, Michelle; Ismaili, Khalid [Universite Libre de Bruxelles (ULB), Department of Pediatric Nephrology, Hopital Universitaire des Enfants Reine Fabiola, Brussels (Belgium); Piepsz, Amy [Hopital Universitaire Saint-Pierre, Department of Radioisotopes, Ghent (Belgium); Khelif, Karim; Collier, Frank [Universite Libre de Bruxelles (ULB), Department of Pediatric Urology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium); Man, Kathia de [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium); Damry, Nash [Universite Libre de Bruxelles (ULB), Department of Pediatric Radiology, Hopital Universitaire des Enfants Reine Fabiola, Brussel (Belgium)

    2015-05-01

    The main criteria used for deciding on surgery in children with presumed antenatally detected pelviureteric junction obstruction (PPUJO) are the level of hydronephrosis (ultrasonography), the level of differential renal function (DRF) and the quality of renal drainage after a furosemide challenge (renography), the importance of each factor being far from generally agreed. Can we predict, on the basis of ultrasound parameters, the patient in whom radionuclide renography can be avoided? We retrospectively analysed the medical charts of 81 consecutive children with presumed unilateral PPUJO detected antenatally. Ultrasound and renographic studies performed at the same time were compared. Anteroposterior pelvic diameter (APD) and calyceal size were both divided into three levels of dilatation. Parenchymal thickness was considered either normal or significantly decreased. Acquisition of renograms under furosemide stimulation provided quantification of DRF, quality of renal drainage and cortical transit. The percentages of patients with low DRF and poor drainage were significantly higher among those with major hydronephrosis, severe calyceal dilatation or parenchymal thinning. Moreover, impaired cortical transit, which is a major risk factor for functional decline, was seen more frequently among those with very severe calyceal dilatation. However, none of the structural parameters obtained by ultrasound examination was able to predict whether the level of renal function or the quality of drainage was normal or abnormal. Alternatively, an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness were associated with a low probability of decreased renal function or poor renal drainage. In the management strategy of patients with prenatally detected PPUJO, nuclear medicine examinations may be postponed in those with an APD <30 mm, a calyceal dilatation of <10 mm and a normal parenchymal thickness. On the contrary, precise estimation of DRF and renal

  4. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  5. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods.

    Science.gov (United States)

    Conversano, Francesco; Soloperto, Giulia; Greco, Antonio; Ragusa, Andrea; Casciaro, Ernesto; Chiriacò, Fernanda; Demitri, Christian; Gigli, Giuseppe; Maffezzoli, Alfonso; Casciaro, Sergio

    2012-01-01

    To evaluate the diagnostic performance of gold nanorod (GNR)-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety. The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25-200 pM) and different sample volumes (50-200 μL) were exposed to pulsed laser irradiation. GNR-emitted optoacoustic signals were acquired either by a couple of single-element ultrasound probes or by an echographic transducer. Off-line analysis included: (a) quantitative evaluation of the relationships between GNR concentration, sample volume, phantom geometry, and amplitude of optoacoustic signals propagating along different directions; (b) echographic detection of "optoacoustic spots," analyzing their intensity, spatial distribution, and clinical exploitability. MTT measurements performed on two different cell lines were also used to quantify biocompatibility of the synthesized GNRs in the adopted doses. Laser irradiation at 30 mJ/cm(2) for 20 seconds resulted in the best compromise among the requirements of effectiveness, safety, and nanoparticle stability. Amplitude of GNR-emitted optoacoustic pulses was proportional to both sample volume and concentration along each considered propagation direction for all the tested boundary conditions, providing an experimental confirmation of isotropic optoacoustic emission. Average intensity of echographically detected spots showed similar behavior, emphasizing the presence of an "ideal" GNR concentration (100 pM) that optimized optoacoustic effectiveness. The tested GNRs also exhibited high biocompatibility over the entire considered

  6. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    Science.gov (United States)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  7. Breast ultrasound tomography with total-variation regularization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT

    2009-01-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.

  8. Prospective Evaluation of Thoracic Ultrasound in the Detection of Pneumothorax

    Science.gov (United States)

    Schwarz, K. W.; Hamilton, D. R.; Kirkpatrick, A. W.; Billica, R. D.; Williams, D. R.; Diebel, L. N.; Sargysan, A. E.; Dulchavsky, S. A.

    2000-01-01

    Introduction: Pneumothorax (PTX) occurs commonly in trauma patients and is confirmed by examination and radiography. Thoracic ultrasound (VIS) has been suggested as an alternative method for rapidly diagnosing PTX when X-ray is unavailable as in rural, military, or space flight settings; however, its accuracy and specificity are not known. Methods: We evaluated the accuracy of thoracic U/S detection of PTX compared to radiography in stable, emergency patients with a high suspicion of PTX at a Level-l trauma center over a 6-month period. Following University and NASA Institutional Review Board approval, informed consent was obtained from patients with penetrating or blunt chest trauma, or with a history consistent with PTX. Whenever possible, the presence or absence of the " lung sliding" sign or the "comet tail" artifact were determined by U/S in both hemithoraces by residents instructed in thoracic U/S before standard radiologic verification of PTX. Results were recorded on data sheets for comparison to standard radiography. Results: Thoracic VIS had a 94% sensitivity; two PTX could not be reliably diagnosed due to subcutaneous air; the true negative rate was 100%. In one patient, the VIS exam was positive while X ray did not confirm PTX; a follow-up film 1 hour later demonstrated a small PTX. The average time for bilateral thoracic VIS examination was 2 to 3 minutes. Conclusions: Thoracic ultrasound reliably diagnoses pneumothorax. Presence of the "lung sliding" sign conclusively excludes pneumothorax. Expansion of the FAST examination to include the thorax should be investigated.

  9. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.

    Science.gov (United States)

    Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E

    2010-02-16

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.

  10. Factors influencing the examinations by means of ultrasounds

    International Nuclear Information System (INIS)

    Brocco, M.

    1988-01-01

    The reliability of ultrasound examination can be influenced by many variables: the pulse generator and receiver, the material under examination, size, type, position and orientation of a defect inside the material. The results of a study aiming at evaluating the amplitude of the response signals as a means to size defects are exposed. The conclusions have been drawn considering the influence that a defect and an ultrasound system have on the power absorbed. The results show that the orientation, the geometry and the band width of the ultrasound system

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and ... of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  14. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  15. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  16. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  17. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    International Nuclear Information System (INIS)

    McCarthy, C.L.; Wilson, D.J.; Coltman, T.P.

    2008-01-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  18. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  19. Modeling of ultrasound propagation through contrast agents

    NARCIS (Netherlands)

    Grootens, J.J.F.A.H.; Mischi, M.; Böhmer, M.; Korsten, H.; Aarts, R.M.; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc

    2008-01-01

    In the past years many advances have been made in the detection of ultrasound contrast agents (UCA) by exploiting their nonlinear behavior. However, little attention has been paid to the nonlinear distortion of ultrasound (US) waves propagating through contrast media. The aim of this study is to

  20. Role of ultrasound in rotator cuff tears

    International Nuclear Information System (INIS)

    Siddiqi, H.A.; Mirza, T.

    2010-01-01

    The study was designed to evaluate the efficacy of ultrasound in rotator cuff tears and to compare it with MRI. Total number of patients was thirty. All of these were above thirty years of age and were referred by clinicians, with shoulder pain for diagnostic workup. Post operative patients were excluded. Ultrasound and Magnetic Resonance Imaging (MRI) were performed on each patient. Same operator performed ultrasound in all patients. Ultrasound (US) and Magnetic Resonance Imaging (MRI) detected equal number of full thickness tears while two partial thickness tears were missed on US. Hypoechoic defect was the most important primary sign while cortical irregularity and fluid in subacromial and subdeltroid busra were the most important secondary signs on US. US was equally effective to MRI in detection of rotator cuff tears. It should be the primary investigation because of its availability, cost effective and real time evaluation provided significant expertise is developed, as it is highly operator dependent. (author)

  1. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.

    Science.gov (United States)

    King, Daniel A; O'Brien, William D

    2011-01-01

    Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.

  2. An Alternative Method for Tilecal Signal Detection and Amplitude Estimation

    CERN Document Server

    Sotto-Maior Peralva, B; The ATLAS collaboration; Manhães de Andrade Filho, L; Manoel de Seixas, J

    2011-01-01

    The Barrel Hadronic calorimeter of ATLAS (Tilecal) is a detector used in the reconstruction of hadrons, jets, muons and missing transverse energy from the proton-proton collisions at the Large Hadron Collider (LHC). It comprises 10,000 channels in four readout partitions and each calorimeter cell is made of two readout channels for redundancy. The energy deposited by the particles produced in the collisions is read out by the several readout channels and its value is estimated by an optimal filtering algorithm, which reconstructs the amplitude and the time of the digitized signal pulse sampled every 25 ns. This work deals with signal detection and amplitude estimation for the Tilecal under low signal-to-noise ratio (SNR) conditions. It explores the applicability (at the cell level) of a Matched Filter (MF), which is known to be the optimal signal detector in terms of the SNR. Moreover, it investigates the impact of signal detection when summing both signals from the same cell before estimating the amplitude, ...

  3. Detecting impact signal in mechanical fault diagnosis under chaotic and Gaussian background noise

    Science.gov (United States)

    Hu, Jinfeng; Duan, Jie; Chen, Zhuo; Li, Huiyong; Xie, Julan; Chen, Hanwen

    2018-01-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. Traditional methods, such like stochastic resonance (SR), which using noise to enhance weak signals instead of suppressing noise, failed in chaotic background. Neural network, which use reference sequence to estimate and reconstruct the background noise, failed in white Gaussian noise. To solve these problems, a novel weak signal detection method aimed at the problem of detecting impact signal buried under heavy chaotic and Gaussian background noise is proposed. First, the proposed method obtains the virtual reference sequence by constructing the Hankel data matrix. Then an M-order optimal FIR filter is designed, which can minimize the output power of background noise and pass the weak periodic signal undistorted. Finally, detection and reconstruction of the weak periodic signal are achieved from the output SBNR (signal to background noise ratio). The simulation shows, compared with the stochastic resonance (SR) method, the proposed method can detect the weak periodic signal in chaotic noise background while stochastic resonance (SR) method cannot. Compared with the neural network method, (a) the proposed method does not need a reference sequence while neural network method needs one; (b) the proposed method can detect the weak periodic signal in white Gaussian noise background while the neural network method fails, in chaotic noise background, the proposed method can detect the weak periodic signal under a lower SBNR (about 8-17 dB lower) than the neural network method; (c) the proposed method can reconstruct the weak periodic signal precisely.

  4. Characteristics of breast cancers detected by ultrasound screening in women with negative mammograms

    International Nuclear Information System (INIS)

    Bae, Min-Sun; Han, Wonshik; Koo, Hye-Ryoung

    2011-01-01

    Screening ultrasound (US) can increase the detection of breast cancer. However, little is known about the clinicopathologic characteristics of breast cancers detected by screening US. A search of the database for patients with breast cancer yielded a dataset in 6837 women who underwent breast surgery at Seoul National University Hospital (Korea). Of 6837 women, 1047 were asymptomatic and had a non-palpable cancer. Two hundred fifty-four women with 256 cancers detected by US (US-detected cancer) and 793 women with 807 cancers detected by mammography (MG-detected cancer) were identified. The imaging, clinicopathologic, and molecular data were reviewed. Univariate and multivariate analyses were carried out. Women with US-detected cancer were younger and were more likely to undergo breast-conserving surgery and to have node-negative invasive cancer (P 2 cm in size, tumors that were ≤1 cm in size were 2.2-fold more likely to be US-detected cancers (P=0.02). Compared to the luminal A subtype tumors (estrogen receptor [ER]+, PR+, HER2-), luminal B subtype tumors (ER+, PR+, HER2+) were less likely to be in the US-detected cancer group (P<0.01). Women with dense breasts were more likely to have US-detected cancer (P<0.01) versus those with non-dense breasts. Screening US-detected cancers were less likely to be diagnosed as category 5 instead of category 4 (P<0.01). In conclusion, women with US-detected breast cancer are more likely to have small-sized invasive cancer and more likely associated with the luminal A subtype. (author)

  5. DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals.

    Science.gov (United States)

    Lawhern, Vernon; Hairston, W David; Robbins, Kay

    2013-01-01

    Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely the results agree with their own manual identification of events without requiring extensive programming knowledge or machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG) data as an additional illustration.

  6. DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals.

    Directory of Open Access Journals (Sweden)

    Vernon Lawhern

    Full Text Available Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely the results agree with their own manual identification of events without requiring extensive programming knowledge or machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG data as an additional illustration.

  7. Adaptive lesion formation using dual mode ultrasound array system

    Science.gov (United States)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  8. Value of liver elastography and abdominal ultrasound for detection of complications of allogeneic hemopoietic SCT.

    Science.gov (United States)

    Karlas, T; Weber, J; Nehring, C; Kronenberger, R; Tenckhoff, H; Mössner, J; Niederwieser, D; Tröltzsch, M; Lange, T; Keim, V

    2014-06-01

    Hepatic complications contribute to morbidity and mortality after allogeneic hemopoietic SCT. Liver Doppler ultrasound and elastography represent promising methods for pretransplant risk assessment and early detection of complications. Ultrasound (liver and spleen size, liver perfusion) and elastography (transient elastography (TE); right liver lobe acoustic radiation force impulse imaging (r-ARFI); left liver lobe ARFI (l-ARFI)) were prospectively evaluated in patients with indications for allo-SCT. Measurements were performed before and repeatedly after SCT. Results were compared with the incidence of life-threatening complications and death during the first 150 days after SCT. Of 59 included patients, 16 suffered from major complications and 9 of them died within the follow-up period. At baseline, liver and spleen size, liver perfusion, TE and r-ARFI did not differ significantly between patients with and without severe complications. In contrast, l-ARFI was significantly elevated in patients who later developed severe complications (1.58±0.30 m/s vs 1.37±0.27 m/s, P=0.030). After SCT, l-ARFI values remained elevated and TE showed increasing liver stiffness in patients with complications. The value of conventional liver ultrasound for prediction of severe SCT complications is limited. Increased values for TE and l-ARFI are associated with severe SCT complications and demand further evaluation.

  9. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review

    International Nuclear Information System (INIS)

    Nothacker, Monika; Duda, Volker; Hahn, Markus; Warm, Mathias; Degenhardt, Friedrich; Madjar, Helmut; Weinbrenner, Susanne; Albert, Ute-Susann

    2009-01-01

    Mammographic screening alone will miss a certain fraction of malignancies, as evidenced by retrospective reviews of mammograms following a subsequent screening. Mammographic breast density is a marker for increased breast cancer risk and is associated with a higher risk of interval breast cancer, i.e. cancer detected between screening tests. The purpose of this review is to estimate risks and benefits of supplemental breast ultrasound in women with negative mammographic screening with dense breast tissue. A systematic search and review of studies involving mammography and breast ultrasound for screening of breast cancer was conducted. The search was performed for the period 1/2000-8/2008 within the data source of PubMed, DARE, and Cochrane databases. Inclusion and exclusion criteria were determined prospectively, and the Oxford evidence classification system for diagnostic studies was used for evidence level. The parameters biopsy rate, positive predictive value (PPV) for biopsy, cancer yield for breast ultrasound alone, and carcinoma detection rate by breast density were extracted or constructed. The systematic search identified no randomized controlled trials or systematic reviews, six cohort studies of intermediate level of evidence (3b) were found. Only two of the studies included adequate follow-up of subjects with negative or benign findings. Supplemental breast ultrasound after negative mammographic screening permitted diagnosis of primarily invasive carcinomas in 0.32% of women in breast density type categories 2-4 of the American College of Radiology (ACR); mean tumor size for those identified was 9.9 mm, 90% with negative lymph node status. Most detected cancers occurred in mammographically dense breast ACR types 3 and 4. Biopsy rates were in the range 2.3%-4.7%, with PPV of 8.4-13.7% for those biopsied due to positive ultrasound, or about one third of the PPV of biopsies due to mammography. Limitations: The study populations included wide age ranges, and

  10. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    Science.gov (United States)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  11. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  12. Expert AE signal arrival detection

    Czech Academy of Sciences Publication Activity Database

    Chlada, Milan; Převorovský, Zdeněk

    2011-01-01

    Roč. 6, 3/4 (2011), s. 191-205 ISSN 1741-8410. [NDT in PROGRESS /4./. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274; GA ČR GA101/07/1518 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * signal arrival detection Subject RIV: BI - Acoustics http://www.inderscience.com/search/index.php?mainAction=search& action =record&rec_id=43215&prevQuery=&ps=10&m=or

  13. “UTILIZING” SIGNAL DETECTION THEORY

    OpenAIRE

    Lynn, Spencer K.; Barrett, Lisa Feldman

    2014-01-01

    What do inferring what a person is thinking or feeling, deciding to report a symptom to your doctor, judging a defendant’s guilt, and navigating a dimly lit room have in common? They involve perceptual uncertainty (e.g., a scowling face might indicate anger or concentration, which engender different appropriate responses), and behavioral risk (e.g., a cost to making the wrong response). Signal detection theory describes these types of decisions. In this tutorial we show how, by incorporating ...

  14. Advanced radar detection schemes under mismatched signal models

    CERN Document Server

    Bandiera, Francesco

    2009-01-01

    Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal

  15. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  16. Automatic detection of service initiation signals used in bars

    Directory of Open Access Journals (Sweden)

    Sebastian eLoth

    2013-08-01

    Full Text Available Recognising the intention of others is important in all social interactions, especially in the service domain. Enabling a bartending robot to serve customers is particularly challenging as the system has to recognise the social signals produced by customers and respond appropriately. Detecting whether a customer would like to order is essential for the service encounter to succeed. This detection is particularly challenging in a noisy environment with multiple customers. Thus, a bartending robot has to be able to distinguish between customers intending to order, chatting with friends or just passing by. In order to study which signals customers use to initiate a service interaction in a bar, we recorded real-life customer-staff interactions in several German bars. These recordings were used to generate initial hypotheses about the signals customers produce when bidding for the attention of bar staff. Two experiments using snapshots and short video sequences then tested the validity of these hypothesised candidate signals. The results revealed that bar staff responded to a set of two non-verbal signals: first, customers position themselves directly at the bar counter and, secondly, they look at a member of staff. Both signals were necessary and, when occurring together, sufficient. The participants also showed a strong agreement about when these cues occurred in the videos. Finally, a signal detection analysis revealed that ignoring a potential order is deemed worse than erroneously inviting customers to order. We conclude that a these two easily recognisable actions are sufficient for recognising the intention of customers to initiate a service interaction, but other actions such as gestures and speech were not necessary, and b the use of reaction time experiments using natural materials is feasible and provides ecologically valid results.

  17. Automatic detection of service initiation signals used in bars.

    Science.gov (United States)

    Loth, Sebastian; Huth, Kerstin; De Ruiter, Jan P

    2013-01-01

    Recognizing the intention of others is important in all social interactions, especially in the service domain. Enabling a bartending robot to serve customers is particularly challenging as the system has to recognize the social signals produced by customers and respond appropriately. Detecting whether a customer would like to order is essential for the service encounter to succeed. This detection is particularly challenging in a noisy environment with multiple customers. Thus, a bartending robot has to be able to distinguish between customers intending to order, chatting with friends or just passing by. In order to study which signals customers use to initiate a service interaction in a bar, we recorded real-life customer-staff interactions in several German bars. These recordings were used to generate initial hypotheses about the signals customers produce when bidding for the attention of bar staff. Two experiments using snapshots and short video sequences then tested the validity of these hypothesized candidate signals. The results revealed that bar staff responded to a set of two non-verbal signals: first, customers position themselves directly at the bar counter and, secondly, they look at a member of staff. Both signals were necessary and, when occurring together, sufficient. The participants also showed a strong agreement about when these cues occurred in the videos. Finally, a signal detection analysis revealed that ignoring a potential order is deemed worse than erroneously inviting customers to order. We conclude that (a) these two easily recognizable actions are sufficient for recognizing the intention of customers to initiate a service interaction, but other actions such as gestures and speech were not necessary, and (b) the use of reaction time experiments using natural materials is feasible and provides ecologically valid results.

  18. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    National Research Council Canada - National Science Library

    Nolte, Loren

    2002-01-01

    The hypothesis is that one can use signal detection theory to improve the performance in detecting tumors in the breast by using this theory to develop task-oriented information processing techniques...

  19. Is MSAFP still a useful test for detecting open neural tube defects and ventral wall defects in the era of first-trimester and early second-trimester fetal anatomical ultrasounds?

    Science.gov (United States)

    Roman, Ashley S; Gupta, Simi; Fox, Nathan S; Saltzman, Daniel; Klauser, Chad K; Rebarber, Andrei

    2015-01-01

    To evaluate whether maternal serum α-fetoprotein (MSAFP) improves the detection rate for open neural tube defects (ONTDs) and ventral wall defects (VWD) in patients undergoing first-trimester and early second-trimester fetal anatomical survey. A cohort of women undergoing screening between 2005 and 2012 was identified. All patients were offered an ultrasound at between 11 weeks and 13 weeks and 6 days of gestational age for nuchal translucency/fetal anatomy followed by an early second-trimester ultrasound at between 15 weeks and 17 weeks and 6 days of gestational age for fetal anatomy and MSAFP screening. All cases of ONTD and VWD were identified via query of billing and reporting software. Sensitivity and specificity for detection of ONTD/VWD were calculated, and groups were compared using the Fisher exact test, with p met the criteria for inclusion. Overall, 15 cases of ONTD and 17 cases of VWD were identified; 100% of cases were diagnosed by ultrasound prior to 18 weeks' gestation; none were diagnosed via MSAFP screening (p < 0.001). First-trimester and early second-trimester ultrasound had 100% sensitivity and 100% specificity for diagnosing ONTD/VWD. Ultrasound for fetal anatomy during the first and early second trimester detected 100% of ONTD/VWD in our population. MSAFP is not useful as a screening tool for ONTD and VWD in the setting of this ultrasound screening protocol. © 2014 S. Karger AG, Basel.

  20. Detection of weak transitions in signal dynamics using recurrence time statistics

    International Nuclear Information System (INIS)

    Gao, J.B.; Cao Yinhe; Gu Lingyun; Harris, J.G.; Principe, J.C.

    2003-01-01

    Signal detection in noisy and nonstationary environments is very challenging. In this Letter, we study why the two types of recurrence times [Phys. Rev. Lett. 83 (1999) 3178] may be very useful for detecting weak transitions in signal dynamics. We particularly emphasize that the recurrence times of the second type may be more powerful in detecting transitions with very low energy. These features are illustrated by studying a number of speech signals with fricatives and plosives. We have also shown that the recurrence times of the first type, nevertheless, has the distinguished feature of being more robust to the noise level and less sensitive to the parameter change of the algorithm. Since throughout our study, we have not explored any features unique to the speech signals, the results shown here may indicate that these tools may be useful in many different applications

  1. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.

    Science.gov (United States)

    Baumgartner, Christian F; Kamnitsas, Konstantinos; Matthew, Jacqueline; Fletcher, Tara P; Smith, Sandra; Koch, Lisa M; Kainz, Bernhard; Rueckert, Daniel

    2017-11-01

    Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

  2. BURAR: Detection and signal processing capabilities

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2004-01-01

    Since July 2002, a new seismic monitoring station, the Bucovina Seismic Array (BURAR), has been installed in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. At present, the seismic data are continuously recorded by BURAR and transmitted in real-time to the Romanian National Data Centre (ROM N DC), at Bucharest and to the National Data Center of USA, in Florida. The statistical analysis for the seismic information gathered at ROM N DC by the BURAR in the August 2002 - December 2003 time interval points out a much better efficiency of the BURAR system in detecting teleseismic events and local events occurred in the N-NE part of Romanian territory, in comparison with the actual Romanian Telemetered Network. Furthermore, the BURAR monitoring system has proven to be an important source of reliable data for NIEP efforts in elaborating of the seismic bulletins. Signal processing capability of the system provides useful information in order to improve the location of the local seismic events, using the array beamforming facility. This method increases significantly the signal-to-noise ratio of the seismic signal by summing up the coherent signals from the array components. In this way, eventual source nucleation phases can be detected. At the same time, using the slowness and backazimuth estimations by f-k analysis, locations for the seismic events can be performed based only on the information recorded by the BURAR array, acting like a single seismic station recording system. Additionally, f-k analysis techniques are useful in the local site effects estimation and interpretation of the local geological structure. (authors)

  3. System and method for detection of dispersed broadband signals

    Science.gov (United States)

    Qian, S.; Dunham, M.E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

  4. Detecting failed elements on phased array ultrasound transducers using the Edinburgh Pipe Phantom

    Science.gov (United States)

    Inglis, Scott; Pye, Stephen D

    2016-01-01

    Aims Imaging faults with ultrasound transducers are common. Failed elements on linear and curvilinear array transducers can usually be detected with a simple image uniformity or ‘paperclip’ test. However, this method is less effective for phased array transducers, commonly used in cardiac imaging. The aim of this study was to assess whether the presence of failed elements could be detected through measurement of the resolution integral (R) using the Edinburgh Pipe Phantom. Methods A 128-element paediatric phased array transducer was studied. Failed elements were simulated using layered polyvinyl chloride (PVC) tape as an attenuator and measurements of resolution integral were carried out for several widths of attenuator. Results All widths of attenuator greater than 0.5 mm resulted in a significant reduction in resolution integral and low contrast penetration measurements compared to baseline (p tests to detect failed elements on phased array transducers. Particularly encouraging is the result for low contrast penetration as this is a quick and simple measurement to make and can be performed with many different test objects, thus enabling ‘in-the-field’ checks. PMID:27482276

  5. Deconvolution of In Vivo Ultrasound B-Mode Images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Stage, Bjarne; Mathorne, Jan

    1993-01-01

    An algorithm for deconvolution of medical ultrasound images is presented. The procedure involves estimation of the basic one-dimensional ultrasound pulse, determining the ratio of the covariance of the noise to the covariance of the reflection signal, and finally deconvolution of the rf signal from...... the transducer. Using pulse and covariance estimators makes the approach self-calibrating, as all parameters for the procedure are estimated from the patient under investigation. An example of use on a clinical, in-vivo image is given. A 2 × 2 cm region of the portal vein in a liver is deconvolved. An increase...... in axial resolution by a factor of 2.4 is obtained. The procedure can also be applied to whole images, when it is ensured that the rf signal is properly measured. A method for doing that is outlined....

  6. Extraction of ECG signal with adaptive filter for hearth abnormalities detection

    Science.gov (United States)

    Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti

    2018-04-01

    This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.

  7. Ultrasound extraction and thin layer chromatography-flame ionization detection analysis of the lipid fraction in marine mucilage samples.

    Science.gov (United States)

    Mecozzi, M; Amici, M; Romanelli, G; Pietrantonio, E; Deluca, A

    2002-07-19

    This paper reports an analytical procedure based on ultrasound to extract lipids in marine mucilage samples. The experimental conditions of the ultrasound procedure (solvent and time) were identified by a FT-IR study performed on different standard samples of lipids and of a standard humic sample, before and after the sonication treatment. This study showed that diethyl ether was a more suitable solvent than methanol for the ultrasonic extraction of lipids from environmental samples because it allowed to minimize the possible oxidative modifications of lipids due to the acoustic cavitation phenomena. The optimized conditions were applied to the extraction of total lipid amount in marine mucilage samples and TLC-flame ionization detection analysis was used to identify the relevant lipid sub-fractions present in samples.

  8. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  9. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation.

    Science.gov (United States)

    Davidson, Brian P; Hodovan, James; Belcik, J Todd; Moccetti, Federico; Xie, Aris; Ammi, Azzdine Y; Lindner, Jonathan R

    2017-05-01

    Contrast-enhanced ultrasound (CEU) limb perfusion imaging is a promising approach for evaluating peripheral artery disease (PAD). However, low signal enhancement in skeletal muscle has necessitated high-power intermittent imaging algorithms, which are not clinically feasible. We hypothesized that CEU using a combination of intermediate power and a contrast agent resistant to inertial cavitation would allow real-time limb stress perfusion imaging. In normal volunteers, CEU of the calf skeletal muscle was performed on separate days with Sonazoid, Optison, or Definity. Progressive reduction in the ultrasound pulsing interval was used to assess the balance between signal enhancement and agent destruction at escalating mechanical indices (MI, 0.1-0.4). Real-time perfusion imaging at MI 0.1-0.4 using postdestructive replenishment kinetics was performed at rest and during 25 W plantar flexion contractile exercise. For Optison, limb perfusion imaging was unreliable at rest due to very low signal enhancement generated at all MIs and was possible during exercise-induced hyperemia only at MI 0.1 due to agent destruction at higher MIs. For Definity, signal intensity progressively increased with MI but was offset by microbubble destruction, which resulted in modest signal enhancement during CEU perfusion imaging and distortion of replenishment curves at MI ≥ 0.2. For Sonazoid, there strong signal enhancement at MI ≥ 0.2, with little destruction detected only at MI 0.4. Accordingly, high signal intensity and nondistorted perfusion imaging was possible at MI 0.2-0.3 and detected an 8.0- ± 5.7-fold flow reserve. Rest-stress limb perfusion imaging in humans with real-time CEU, which requires only seconds to perform, is possible using microbubbles with viscoelastic properties that produce strong nonlinear signal generation without destruction at intermediate acoustic pressures. Copyright © 2016 American Society of Echocardiography. All rights reserved.

  10. Small Displacement Detection of Biological Signals Using the Cyclic Frequency Method

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available A new signal processing method called the Cyclic Frequency method is proposed for small displacement detection of vital signals such as heart rate and respiration using the CW radar method. We have presented experimental results of small displacement detection to confirm the validity of the method. The displacement amplitude 2.5 mm can be detected with a propagation frequency of 24.15 GHz. We may increase the propagation frequency for smaller displacement amplitude or target velocity.

  11. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  12. Identification of threshold prostate specific antigen levels to optimize the detection of clinically significant prostate cancer by magnetic resonance imaging/ultrasound fusion guided biopsy.

    Science.gov (United States)

    Shakir, Nabeel A; George, Arvin K; Siddiqui, M Minhaj; Rothwax, Jason T; Rais-Bahrami, Soroush; Stamatakis, Lambros; Su, Daniel; Okoro, Chinonyerem; Raskolnikov, Dima; Walton-Diaz, Annerleim; Simon, Richard; Turkbey, Baris; Choyke, Peter L; Merino, Maria J; Wood, Bradford J; Pinto, Peter A

    2014-12-01

    Prostate specific antigen sensitivity increases with lower threshold values but with a corresponding decrease in specificity. Magnetic resonance imaging/ultrasound targeted biopsy detects prostate cancer more efficiently and of higher grade than standard 12-core transrectal ultrasound biopsy but the optimal population for its use is not well defined. We evaluated the performance of magnetic resonance imaging/ultrasound targeted biopsy vs 12-core biopsy across a prostate specific antigen continuum. We reviewed the records of all patients enrolled in a prospective trial who underwent 12-core transrectal ultrasound and magnetic resonance imaging/ultrasound targeted biopsies from August 2007 through February 2014. Patients were stratified by each of 4 prostate specific antigen cutoffs. The greatest Gleason score using either biopsy method was compared in and across groups as well as across the population prostate specific antigen range. Clinically significant prostate cancer was defined as Gleason 7 (4 + 3) or greater. Univariate and multivariate analyses were performed. A total of 1,003 targeted and 12-core transrectal ultrasound biopsies were performed, of which 564 diagnosed prostate cancer for a 56.2% detection rate. Targeted biopsy led to significantly more upgrading to clinically significant disease compared to 12-core biopsy. This trend increased more with increasing prostate specific antigen, specifically in patients with prostate specific antigen 4 to 10 and greater than 10 ng/ml. Prostate specific antigen 5.2 ng/ml or greater captured 90% of upgrading by targeted biopsy, corresponding to 64% of patients who underwent multiparametric magnetic resonance imaging and subsequent fusion biopsy. Conversely a greater proportion of clinically insignificant disease was detected by 12-core vs targeted biopsy overall. These differences persisted when controlling for potential confounders on multivariate analysis. Prostate cancer upgrading with targeted biopsy increases

  13. Signal detection without finite-energy limits to quantum resolution

    OpenAIRE

    Luis Aina, Alfredo

    2013-01-01

    We show that there are extremely simple signal detection schemes where the finiteness of energy resources places no limit on the resolution. On the contrary, larger resolution can be obtained with lower energy. To this end the generator of the signal-dependent transformation encoding the signal information on the probe state must be different from the energy. We show that the larger the deviation of the probe state from being the minimum-uncertainty state, the better the resolution.

  14. Bias and discriminability during emotional signal detection in melancholic depression.

    Science.gov (United States)

    Hyett, Matthew; Parker, Gordon; Breakspear, Michael

    2014-04-27

    Cognitive disturbances in depression are pernicious and so contribute strongly to the burden of the disorder. Cognitive function has been traditionally studied by challenging subjects with modality-specific psychometric tasks and analysing performance using standard analysis of variance. Whilst informative, such an approach may miss deeper perceptual and inferential mechanisms that potentially unify apparently divergent emotional and cognitive deficits. Here, we sought to elucidate basic psychophysical processes underlying the detection of emotionally salient signals across individuals with melancholic and non-melancholic depression. Sixty participants completed an Affective Go/No-Go (AGN) task across negative, positive and neutral target stimuli blocks. We employed hierarchical Bayesian signal detection theory (SDT) to model psychometric performance across three equal groups of those with melancholic depression, those with a non-melancholic depression and healthy controls. This approach estimated likely response profiles (bias) and perceptual sensitivity (discriminability). Differences in the means of these measures speak to differences in the emotional signal detection between individuals across the groups, while differences in the variance reflect the heterogeneity of the groups themselves. Melancholic participants showed significantly decreased sensitivity to positive emotional stimuli compared to those in the non-melancholic group, and also had a significantly lower discriminability than healthy controls during the detection of neutral signals. The melancholic group also showed significantly higher variability in bias to both positive and negative emotionally salient material. Disturbances of emotional signal detection in melancholic depression appear dependent on emotional context, being biased during the detection of positive stimuli, consistent with a noisier representation of neutral stimuli. The greater heterogeneity of the bias across the melancholic

  15. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    Science.gov (United States)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  16. Ultrasound elastographic techniques in focal liver lesions.

    Science.gov (United States)

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-03-07

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.

  17. Usefulness of ultrasound-guided mammotome biopsy for microcalcification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, You Me [Dankook University Hospital, Seoul (Korea, Republic of); Park, Hee Boong [Park Breast Clinic, Seoul (Korea, Republic of); Ryu, Jin Woo [Cheonan Choongmu Hospital, Cheonan (Korea, Republic of)

    2005-08-15

    To evaluate the usefulness of ultrasound-guided mammotome biopsy for microcalcification and to suggest a new approach for the localization of microcalcifications which are not detected on ultrasound. Twenty-one calcific lesions in 21 women (aged 33-56 years) underwent ultrasound-guided, vacuum-assisted, mammotome biopsy and a mean of 14 specimens per lesion were obtained. Calcification retrieval was defined as identification of calcifications on specimen radiographs. In the 13 cases of calcifications which were not detected on ultrasound imaging, mammotome biopsy was performed after localization of one or two needles at the microcalcifications under mammography-guidance. Radiographs of the specimens and histologic findings were reviewed and scheduled follow-up imaging was performed for evaluation of the complications of biopsy. Ultrasound-guided, vacuum-assisted, mammotome biopsy removed all calcifications in 21 lesions. Eight (38%) lesions showed visible calcification on the ultrasound while 13 (62%) lesions were invisible, which underwent mammotome biopsy after needle localization under mammography-guidance. Surgery revealed DCIS in 1 (4.8%) of 21 lesions, infiltrating ductal carcinoma in two (9.5%), fibroadenomas with calcifications in 6 (28.6%), fibroadenmas with adenosis in 2(9.5%), and fibrocystic change with calcifications in 10 (47.6%). Clinical significant complications did not occur on follow-up examination in any of the cases. Ultrasound-guided, vacuum-assisted, mammotome biopsy was an effective method for microcalcifications on mammogram. The results suggested that mammotome biopsy after mammogram-guided, needle localization is a good alternative method for the diagnosis of microcalcifications which are undetectable in the ultrasound images.

  18. Usefulness of ultrasound-guided mammotome biopsy for microcalcification

    International Nuclear Information System (INIS)

    Kim, You Me; Park, Hee Boong; Ryu, Jin Woo

    2005-01-01

    To evaluate the usefulness of ultrasound-guided mammotome biopsy for microcalcification and to suggest a new approach for the localization of microcalcifications which are not detected on ultrasound. Twenty-one calcific lesions in 21 women (aged 33-56 years) underwent ultrasound-guided, vacuum-assisted, mammotome biopsy and a mean of 14 specimens per lesion were obtained. Calcification retrieval was defined as identification of calcifications on specimen radiographs. In the 13 cases of calcifications which were not detected on ultrasound imaging, mammotome biopsy was performed after localization of one or two needles at the microcalcifications under mammography-guidance. Radiographs of the specimens and histologic findings were reviewed and scheduled follow-up imaging was performed for evaluation of the complications of biopsy. Ultrasound-guided, vacuum-assisted, mammotome biopsy removed all calcifications in 21 lesions. Eight (38%) lesions showed visible calcification on the ultrasound while 13 (62%) lesions were invisible, which underwent mammotome biopsy after needle localization under mammography-guidance. Surgery revealed DCIS in 1 (4.8%) of 21 lesions, infiltrating ductal carcinoma in two (9.5%), fibroadenomas with calcifications in 6 (28.6%), fibroadenmas with adenosis in 2(9.5%), and fibrocystic change with calcifications in 10 (47.6%). Clinical significant complications did not occur on follow-up examination in any of the cases. Ultrasound-guided, vacuum-assisted, mammotome biopsy was an effective method for microcalcifications on mammogram. The results suggested that mammotome biopsy after mammogram-guided, needle localization is a good alternative method for the diagnosis of microcalcifications which are undetectable in the ultrasound images

  19. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    Science.gov (United States)

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  20. Contrast-enhanced color Doppler ultrasound characteristics in hypervascular breast tumors: comparison with MRI

    International Nuclear Information System (INIS)

    Alamo, L.; Fischer, U.

    2001-01-01

    The aim of this study was to evaluate the accuracy of contrast-enhanced color Doppler ultrasound (CE-US) in comparison with contrast-enhanced MR imaging (CE-MRI) in the discrimination of hypervascularized breast tumors. An additional CE-US of the breast was preoperatively performed in 40 patients with a hypervascular breast lesion detected on CE-MRI. The presence of blood flow signals and the morphological characteristics of the vessels in the breast lesions were evaluated pre- and post-contrast administration, as well as the dynamic aspects of the Doppler signal, including time interval to maximum signal enhancement and persistence of the signal enhancement. Twenty-three carcinomas and 17 fibroadenomas were explored. Considering initial signal enhancement > 100 % after the administration of contrast material as a criterion suggesting malignancy, CE-MRI showed a sensitivity of 100 % and a specificity of 76.5 % in the detection of malignant breast tumors. Color Doppler signals were consistently demonstrated in all carcinomas and in 68.7 % of fibroadenomas after the administration of Levovist, with CE-US showing a sensitivity of 95.6 % and a specificity of 5.9 %. Neither the mean number of vessels per tumor, nor the location of vessels, the time to maximum increase of the Doppler signal or the persistence of signal enhancement showed significant differences between benign and malignant lesions. Additional CE-US does not increase the low specificity of MRI in patients with hypervascularized breast tumors. (orig.)

  1. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  2. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-01-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  3. Point-of-care Ultrasound Detection of Endophthalmitis

    Directory of Open Access Journals (Sweden)

    James Tucker

    2018-01-01

    Full Text Available History of present illness: A 59-year-old woman presented to the emergency department (ED with right eye pain. She had a history of cataract surgery in the right eye three months prior. The patient was seen at an outside ED eight days prior and reportedly had normal vision, normal eye pressures, with a large corneal ulcer and hypopyon in the anterior chamber. She was given subconjunctival injections of antibiotics and discharged with antibiotic drops. She was seen by a retina specialist the next day and had no evidence of endophthalmitis. On her second ED presentation, she had worsening right eye pain. Workup included normal intraocular pressures bilaterally and visual acuity with only light-perception in the affected eye. An ultrasound of her right eye was performed and is shown in figures 1 and 2. Significant findings: The patient’s ultrasound revealed an attached retina and a complex network of hyperechoic, mobile, membranous material in the posterior segment. Discussion: Endophthalmitis is a bacterial or fungal infection inside the vitreous and/or aqueous humors. The classic presentation is painful vision loss in a patient with recent ophthalmologic surgical intervention, an immunocompromised patient, or a septic patient. The specific bacteria or fungus causing the infection will vary depending on the reason for infection (post-surgical vs sepsis. Ultrasound findings typically include low amplitude mobile echoes, vitreous membranes, and thickening of the retina and choroid.1 Treatment for endophthalmitis includes direct, intraocular antibiotic injections by an ophthalmologist; hence, disposition for these patients would include admission for ophthalmology consultation. If there is a blood source of infection rather than a direct ocular inoculation, IV antibiotics should be initiated. Patients should also receive tetanus vaccination if tetanus status is outdated. In this case, the patient was diagnosed with endophthalmitis of the right eye

  4. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  5. Cophylogenetic signal is detectable in pollination interactions across ecological scales.

    Science.gov (United States)

    Hutchinson, Matthew C; Cagua, Edgar Fernando; Stouffer, Daniel B

    2017-10-01

    That evolutionary history can influence the way that species interact is a basic tenet of evolutionary ecology. However, when the role of evolution in determining ecological interactions is investigated, focus typically centers on just one side of the interaction. A cophylogenetic signal, the congruence of evolutionary history across both sides of an ecological interaction, extends these previous explorations and provides a more complete picture of how evolutionary patterns influence the way species interact. To date, cophylogenetic signal has most typically been studied in interactions that occur between fine taxonomic clades that show high intimacy. In this study, we took an alternative approach and made an exhaustive assessment of cophylogeny in pollination interactions. To do so, we assessed the strength of cophylogenetic signal at four distinct scales of pollination interaction: (1) across plant-pollinator associations globally, (2) in local pollination communities, (3) within the modular structure of those communities, and (4) in individual modules. We did so using a globally distributed dataset comprised of 54 pollination networks, over 4000 species, and over 12,000 interactions. Within these data, we detected cophylogenetic signal at all four scales. Cophylogenetic signal was found at the level of plant-pollinator interactions on a global scale and in the majority of pollination communities. At the scale defined by the modular structure within those communities, however, we observed a much weaker cophylogenetic signal. Cophylogenetic signal was detectable in a significant proportion of individual modules and most typically when within-module phylogenetic diversity was low. In sum, the detection of cophylogenetic signal in pollination interactions across scales provides a new dimension to the story of how past evolution shapes extant pollinator-angiosperm interactions. © 2017 by the Ecological Society of America.

  6. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    Science.gov (United States)

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  7. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods

    Directory of Open Access Journals (Sweden)

    Claus Flachenecker

    2001-06-01

    Full Text Available Various methods to determine the onset of the electromyographic activity which occurs in response to a stimulus have been discussed in the literature over the last decade. Due to the stochastic characteristic of the surface electromyogram (SEMG, onset detection is a challenging task, especially in weak SEMG responses. The performance of the onset detection methods were tested, mostly by comparing their automated onset estimations to the manually determined onsets found by well-trained SEMG examiners. But a systematic comparison between methods, which reveals the benefits and the drawbacks of each method compared to the other ones and shows the specific dependence of the detection accuracy on signal parameters, is still lacking. In this paper, several classical threshold-based approaches as well as some statistically optimized algorithms were tested on large samples of simulated SEMG data with well-known signal parameters. Rating between methods is performed by comparing their performance to that of a statistically optimal maximum likelihood estimator which serves as reference method. In addition, performance was evaluated on real SEMG data obtained in a reaction time experiment. Results indicate that detection behavior strongly depends on SEMG parameters, such as onset rise time, signal-to-noise ratio or background activity level. It is shown that some of the threshold-based signal-power-estimation procedures are very sensitive to signal parameters, whereas statistically optimized algorithms are generally more robust.

  8. Ultrasound vs. Computed Tomography for Severity of Hydronephrosis and Its Importance in Renal Colic.

    Science.gov (United States)

    Leo, Megan M; Langlois, Breanne K; Pare, Joseph R; Mitchell, Patricia; Linden, Judith; Nelson, Kerrie P; Amanti, Cristopher; Carmody, Kristin A

    2017-06-01

    Supporting an "ultrasound-first" approach to evaluating renal colic in the emergency department (ED) remains important for improving patient care and decreasing healthcare costs. Our primary objective was to compare emergency physician (EP) ultrasound to computed tomography (CT) detection of hydronephrosis severity in patients with suspected renal colic. We calculated test characteristics of hydronephrosis on EP-performed ultrasound for detecting ureteral stones or ureteral stone size >5mm. We then analyzed the association of hydronephrosis on EP-performed ultrasound, stone size >5mm, and proximal stone location with 30-day events. This was a prospective observational study of ED patients with suspected renal colic undergoing CT. Subjects had an EP-performed ultrasound evaluating for the severity of hydronephrosis. A chart review and follow-up phone call was performed. We enrolled 302 subjects who had an EP-performed ultrasound. CT and EP ultrasound results were comparable in detecting severity of hydronephrosis ( x 2 =51.7, pHydronephrosis on EP-performed ultrasound was predictive of a ureteral stone on CT (PPV 88%; LR+ 2.91), but lack of hydronephrosis did not rule it out (NPV 65%). Lack of hydronephrosis on EP-performed ultrasound makes larger stone size >5mm less likely (NPV 89%; LR- 0.39). Larger stone size > 5mm was associated with 30-day events (OR 2.30, p=0.03). Using an ultrasound-first approach to detect hydronephrosis may help physicians identify patients with renal colic. The lack of hydronephrosis on ultrasound makes the presence of a larger ureteral stone less likely. Stone size >5mm may be a useful predictor of 30-day events.

  9. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  10. Scoring ultrasound synovitis in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Terslev, Lene; Naredo, Esperanza; Aegerter, Philippe

    2017-01-01

    OBJECTIVES: To test the reliability of new ultrasound (US) definitions and quantification of synovial hypertrophy (SH) and power Doppler (PD) signal, separately and in combination, in a range of joints in patients with rheumatoid arthritis (RA) using the European League Against Rheumatisms...

  11. Ultrasound vs. Computed Tomography for Severity of Hydronephrosis and Its Importance in Renal Colic

    Directory of Open Access Journals (Sweden)

    Megan M. Leo

    2017-05-01

    Full Text Available Introduction: Supporting an “ultrasound-first” approach to evaluating renal colic in the emergency department (ED remains important for improving patient care and decreasing healthcare costs. Our primary objective was to compare emergency physician (EP ultrasound to computed tomography (CT detection of hydronephrosis severity in patients with suspected renal colic. We calculated test characteristics of hydronephrosis on EP-performed ultrasound for detecting ureteral stones or ureteral stone size >5mm. We then analyzed the association of hydronephrosis on EP-performed ultrasound, stone size >5mm, and proximal stone location with 30-day events. Methods: This was a prospective observational study of ED patients with suspected renal colic undergoing CT. Subjects had an EP-performed ultrasound evaluating for the severity of hydronephrosis. A chart review and follow-up phone call was performed. Results: We enrolled 302 subjects who had an EP-performed ultrasound. CT and EP ultrasound results were comparable in detecting severity of hydronephrosis ( x 2=51.7, p5mm less likely (NPV 89%; LR− 0.39. Larger stone size > 5mm was associated with 30-day events (OR 2.30, p=0.03. Conclusion: Using an ultrasound-first approach to detect hydronephrosis may help physicians identify patients with renal colic. The lack of hydronephrosis on ultrasound makes the presence of a larger ureteral stone less likely. Stone size >5mm may be a useful predictor of 30-day events.

  12. Ultrasound of the hand is sufficient to detect subclinical inflammation in rheumatoid arthritis remission

    DEFF Research Database (Denmark)

    Hammer, Hilde Berner; Kvien, Tore K; Terslev, Lene

    2017-01-01

    BACKGROUND: Ultrasound (US) is a sensitive method for detecting joint/tendon inflammation in patients with rheumatoid arthritis (RA). Subclinical inflammation is often found in patients with RA in composite score remission. The purpose of the present study was to explore whether US of only......-modifying anti-rheumatic drugs (bDMARDs) and after 6 months (184 patients) and 12 months (152 patients) of follow-up. They were assessed by US (greyscale [GS] and power Doppler [PD] of 36 joints and 4 tendons, scored 0-3) as well as clinical and laboratory examinations, and different disease activity composite...

  13. Detection of chaotic dynamics in human gait signals from mobile devices

    Science.gov (United States)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  14. New modalities of ultrasound-based intima-media thickness, arterial stiffness and non-coronary vascular calcifications detection to assess cardiovascular risk.

    Science.gov (United States)

    Flore, R; Ponziani, F R; Tinelli, G; Arena, V; Fonnesu, C; Nesci, A; Santoro, L; Tondi, P; Santoliquido, A

    2015-04-01

    Carotid intima-media thickness (c-IMT), arterial stiffness (AS) and vascular calcification (VC) are now considered important new markers of atherosclerosis and have been associated with increased prevalence of cardiovascular events. An accurate, reproducible and easy detection of these parameters could increase the prognostic value of the traditional cardiovascular risk factors in many subjects at low and intermediate risk. Today, c-IMT and AS can be measured by ultrasound, while cardiac computed tomography is the gold standard to quantify coronary VC, although concern about the reproducibility of the former and the safety of the latter have been raised. Nevertheless, a safe and reliable method to quantify non-coronary (i.e., peripheral) VC has not been detected yet. To review the most innovative and accurate ultrasound-based modalities of c-IMT and AS detection and to describe a novel UltraSound-Based Carotid, Aortic and Lower limbs Calcification Score (USB-CALCs, simply named CALC), allowing to quantify peripheral calcifications. Finally, to propose a system for cardiovascular risk reclassification derived from the global evaluation of "Quality Intima-Media Thickness", "Quality Arterial Stiffness", and "CALC score" in addition to the Framingham score.

  15. Stochastic model for detection of signals in noise

    OpenAIRE

    Klein, Stanley A.; Levi, Dennis M.

    2009-01-01

    Fifty years ago Birdsall, Tanner, and colleagues made rapid progress in developing signal detection theory into a powerful psychophysical tool. One of their major insights was the utility of adding external noise to the signals of interest. These methods have been enhanced in recent years by the addition of multipass and classification-image methods for opening up the black box. There remain a number of as yet unresolved issues. In particular, Birdsall developed a theorem that large amounts o...

  16. Ultrasonographic Detection of Tooth Flaws

    Science.gov (United States)

    Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.

    2010-02-01

    The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.

  17. Signal Detection, Target Tracking and Differential Geometry Applications to Statistical Inference

    National Research Council Canada - National Science Library

    Rao, C

    1997-01-01

    Signal detection and target tracking. A novel method known as polynomial rooting approach is proposed to obtain estimates of frequencies, amplitudes and noise variance of two-dimensional exponential signals...

  18. A Novel Approach of Sensitive Infrared Signal Detection for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an innovative frequency up-conversion device that will efficiently convert the infrared signals into visible/near-infrared signals to enable detection of...

  19. Inflammatory activity in Crohn disease: ultrasound findings.

    Science.gov (United States)

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  20. Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

    Science.gov (United States)

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-04-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

  1. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  2. Using the PLUM procedure of SPSS to fit unequal variance and generalized signal detection models.

    Science.gov (United States)

    DeCarlo, Lawrence T

    2003-02-01

    The recent addition of aprocedure in SPSS for the analysis of ordinal regression models offers a simple means for researchers to fit the unequal variance normal signal detection model and other extended signal detection models. The present article shows how to implement the analysis and how to interpret the SPSS output. Examples of fitting the unequal variance normal model and other generalized signal detection models are given. The approach offers a convenient means for applying signal detection theory to a variety of research.

  3. Unsupervised Event Characterization and Detection in Multichannel Signals: An EEG application

    Directory of Open Access Journals (Sweden)

    Angel Mur

    2016-04-01

    Full Text Available In this paper, we propose a new unsupervised method to automatically characterize and detect events in multichannel signals. This method is used to identify artifacts in electroencephalogram (EEG recordings of brain activity. The proposed algorithm has been evaluated and compared with a supervised method. To this end an example of the performance of the algorithm to detect artifacts is shown. The results show that although both methods obtain similar classification, the proposed method allows detecting events without training data and can also be applied in signals whose events are unknown a priori. Furthermore, the proposed method provides an optimal window whereby an optimal detection and characterization of events is found. The detection of events can be applied in real-time.

  4. Signal transduction of vitamin K3 for pancreas cancer therapy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tanahashi

    2011-10-01

    Full Text Available We characterized molecular mechanisms of vitamin K3 (VK3-induced inhibition of proliferation to evaluate VK3 effectiveness in treating advanced pancreatic cancer. A novel endoscopic drug delivery system, ultrasound injection technique, was used to study local effects of VK3. VK3 inhibited pancreas cancer cell growth by rapid phosphorylation of growth factor receptor and cellular signal factors such as extracellular signal-regulated kinase. VK3 also activated apoptosis, and apoptosis inhibitor antagonized the apoptosis pathway without inhibiting cell growth. Thiol antioxidant treatment completely abrogated VK3-induced ERK but not JNK phosphorylation or inhibition of proliferation. Non-thiol antioxidant did not affect ERK phosphorylation or growth inhibitory actions. Arylation was considered the main mechanism of VK3-induced growth inhibition through ERK activation. VK3 may lead to favorable outcomes in the treatment of pancreatic tumors. Detection of ERK phosphorylation in tissue is important to predict VK3 effect. Endoscopic ultrasound-guided fine-needle injection may be beneficial for treating pancreatic cancer with VK3.

  5. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  6. Anatomic factors affecting the use of ultrasound to predict vocal fold motion: A pilot study.

    Science.gov (United States)

    Masood, Maheer M; Huang, Benjamin; Goins, Allie; Hackman, Trevor G

    2018-04-13

    Ultrasonography is a well-established modality for visualization of head and neck anatomy. Using ultrasound to detect vocal fold mobility has been described before, but no study has evaluated factors affecting the exam reliability. The aim of the study is to determine anatomic factors influencing the reliability of ultrasound to detect vocal fold motion. Methods and materials Patients underwent ultrasound evaluation and flexible laryngoscopy to assess vocal fold motion from August 2015 to March 2016. Length, accuracy, and clarity of ultrasound examination were assessed, compared to flexible laryngoscopy. For patients with prior neck CT scan imaging, laryngeal anatomy was independently assessed by a blinded neuroradiologist. A total of 23 patients, 21 with bilateral vocal fold motion and two with unilateral paralysis, were enrolled. Vocal folds were visible in 19 patients (82%). Eight patients (42%) had good/excellent view and 11 patients (58%) had fair/difficult view. The ultrasound correctly detected absent movement of the vocal fold in the two patients with unilateral paralysis. A total of 19 patients had CT scans, and a linear correlation (r 2  = 0.65) was noted between the anterior thyroid cartilage angle measured on CT and the grade of view on ultrasound. Ultrasound was able to detect vocal fold motion in 82% of randomly screened patients. Ease of detection of vocal fold motion correlated with the anterior thyroid angle. Further studies are warranted to investigate the reproducibility of our results and how this might impact use of ultrasound for detection of vocal fold motion in the operative setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  8. Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate.

    Science.gov (United States)

    Raimondi, Francesco; Rodriguez Fanjul, Javier; Aversa, Salvatore; Chirico, Gaetano; Yousef, Nadya; De Luca, Daniele; Corsini, Iuri; Dani, Carlo; Grappone, Lidia; Orfeo, Luigi; Migliaro, Fiorella; Vallone, Gianfranco; Capasso, Letizia

    2016-08-01

    To evaluate the accuracy of lung ultrasound for the diagnosis of pneumothorax in the sudden decompensating patient. In an international, prospective study, sudden decompensation was defined as a prolonged significant desaturation (oxygen saturation pneumothorax was detected in 26 (62%). Lung ultrasound accuracy in diagnosing pneumothorax was as follows: sensitivity 100%, specificity 100%, positive predictive value 100%, and negative predictive value 100%. Clinical evaluation of pneumothorax showed sensitivity 84%, specificity 56%, positive predictive value 76%, and negative predictive value 69%. After sudden decompensation, a lung ultrasound scan was performed in an average time of 5.3 ± 5.6 minutes vs 19 ± 11.7 minutes required for a chest radiography. Emergency drainage was performed after an ultrasound scan but before radiography in 9 cases. Lung ultrasound shows high accuracy in detecting pneumothorax in the critical infant, outperforming clinical evaluation and reducing time to imaging diagnosis and drainage. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ultrasound in the evaluation of enthesitis: status and perspectives.

    LENUS (Irish Health Repository)

    Gandjbakhch, Frédérique

    2011-01-01

    An increasing number of studies have applied ultrasound to the evaluation of entheses in spondyloarthritis patients. However, no clear agreement exists on the definition of enthesitis, on the number and choice of entheses to examine and on ultrasound technique, which may all affect the results of the examination. The objectives of this study were to first determine the level of homogeneity in the ultrasound definitions for the principal lesions of enthesitis in the published literature and second, to evaluate the metric properties of ultrasound for detecting enthesitis according to the OMERACT filter.

  10. MULTISCAN--a Scandinavian multicenter second trimester obstetric ultrasound and serum screening study

    DEFF Research Database (Denmark)

    Jørgensen, F S; Valentin, L; Salvesen, K A

    1999-01-01

    AIM: To study the detection rates of second trimester ultrasound screening for neural tube defects (NTD), abdominal wall defects (AWD) and Down's syndrome (DS) in low risk populations at tertiary centers, and to compare the ultrasound screening detection rates with those that were obtainable by b...

  11. Fast optical signal not detected in awake behaving monkeys.

    Science.gov (United States)

    Radhakrishnan, Harsha; Vanduffel, Wim; Deng, Hong Ping; Ekstrom, Leeland; Boas, David A; Franceschini, Maria Angela

    2009-04-01

    While the ability of near-infrared spectroscopy (NIRS) to measure cerebral hemodynamic evoked responses (slow optical signal) is well established, its ability to measure non-invasively the 'fast optical signal' is still controversial. Here, we aim to determine the feasibility of performing NIRS measurements of the 'fast optical signal' or Event-Related Optical Signals (EROS) under optimal experimental conditions in awake behaving macaque monkeys. These monkeys were implanted with a 'recording well' to expose the dura above the primary visual cortex (V1). A custom-made optical probe was inserted and fixed into the well. The close proximity of the probe to the brain maximized the sensitivity to changes in optical properties in the cortex. Motion artifacts were minimized by physical restraint of the head. Full-field contrast-reversing checkerboard stimuli were presented to monkeys trained to perform a visual fixation task. In separate sessions, two NIRS systems (CW4 and ISS FD oximeter), which previously showed the ability to measure the fast signal in human, were used. In some sessions EEG was acquired simultaneously with the optical signal. The increased sensitivity to cortical optical changes with our experimental setup was quantified with 3D Monte Carlo simulations on a segmented MRI monkey head. Averages of thousands of stimuli in the same animal, or grand averages across the two animals and across repeated sessions, did not lead to detection of the fast optical signal using either amplitude or phase of the optical signal. Hemodynamic responses and visual evoked potentials were instead always detected with single trials or averages of a few stimuli. Based on these negative results, despite the optimal experimental conditions, we doubt the usefulness of non-invasive fast optical signal measurements with NIRS.

  12. Ultrasound detection of placenta accreta in the first trimester of pregnancy

    OpenAIRE

    Fatemeh Rahimi-Sharbaf; Ashraf Jamal; Elaheh Mesdaghinia; Masoumeh Abedzadeh- Kalahroudi; Shirin Niroomanesh; Fatemeh Atoof

    2014-01-01

    Background: Placenta accreta is considered a life-threatening condition and the main cause of maternal mortality. Prenatal diagnosis of placenta accreta usually is made by clinical presentation, imaging studies like ultrasound and MRI in the second and third trimester. Objective: To determine accuracy of ultrasound findings for placenta accreta in the first trimester of pregnancy. Materials and Methods: In a longitudinal study 323 high risk patients for placenta accreta were assessed. The eli...

  13. THE DIAGNOSTIC VALUE OF CLINICAL EXAMINATION AND ULTRASOUND STUDY OF ENTHESES FOR EARLY DETECTION OF PSORIATIC AND RHEUMATOID ARTHRITIS: REMARC STUDY

    Directory of Open Access Journals (Sweden)

    Tatiana Viktorovna Korotaeva

    2013-01-01

    Full Text Available The diagnosis of enthesitis can help in differentiating early psoriatic arthritis (ePsA from early rheumatoid arthritis (eRA.Objective. To estimate the diagnostic value of detecting enthesitis during clinical examination and ultrasound in ePsA and eRA.Subjects and methods. The trial included 36 patients with ePsA and 33 with eRA. Entheses were evaluated using the Leeds Enthesitis Index (LEI: lateral humeral epicondyle and medial femoral condyle (MFC, Achilles tendon insertion site (ATAP, and plantar fascia (PF point on the right and on the left. Enthesitis (on ultrasound presented with thickening, reduced echo density, and vascularization at Doppler energy imaging. DAS, DAS28, SDAI, CDAI, M±SD, Me [25th, 75th percentile], t-test, Fisher's exact test, χ2test, U test, and Spearman correlation coefficients (R were calculated; the value p < 0.05 was considered statistically significant.Results. Clinical examination revealed enthesitis in 41.6% of the patients with ePsA and in 39.4% of those with eRA (p >0.05. No significant differences were found between ePsA and eRA according to LEI (0.5 [0; 2] and 1 [0; 2] and to LEI+PF (1 [0; 2] and 1 [0; 2], respectively. Enthesitis of MFC and PF was significantly more frequently detected in ePsA than in eRA – 12 (33.3%/2 (6.1% and 10 (27.8%/2 (6.1% patients, respectively. In eRA versus ePsA, enthesitis of MFC was more frequently found (16 (48.4% and 8 (22.2% patients, respectively. Ultrasound revealed no significant differences between the groups in enthesitis. In ePsA, there was a significant correlation between DAS, DAS28, SDAI, CDAI, LEI, and LEI+PF.Conclusion. Enthesis ultrasound cannot differentiate ePsA from eRA. Clinical examination more frequently detects enthesitis in the knee joints in eRA and in the calcaneal region in ePsA.

  14. Ultrasound induced by CW laser cavitation bubbles

    International Nuclear Information System (INIS)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  15. Deconvolution of ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1992-01-01

    Based on physical models, it is indicated that the received pressure field in ultrasound B-mode images can be described by a convolution between a tissue reflection signal and the emitted pressure field. This result is used in a description of current image formation and in formulating a new...... processing scheme. The suggested estimator can take into account the dispersive attenuation, the temporal and spatial variation of the pulse, and the change in reflection strength and signal-to-noise ratio. Details of the algorithm and the estimation of parameters to be used are given. The performance...

  16. Characteristics on Temperature Evolution in the Metallic Specimen by Ultrasound-Excited Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. Y.; Park, J. H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kang, K. S. [Hyundai Steel Co., Dangjin (Korea, Republic of); Kim, W. T. [Kongju National University, Gongju (Korea, Republic of)

    2010-06-15

    In ultrasound-excited thermography, the injected ultrasound to an object is transformed to heat and the appearance of defects can be visualized by thermography camera. The advantage of this technology is selectively sensitive to thermally active defects. Despite the apparent simplicity of the scheme, there are a number of experimental considerations that can complicate the implementation of ultrasound excitation thermography inspection. Factors including acoustic horn location, horn-crack proximity, horn-sample coupling, and effective detection range all significantly affect the detect ability of this technology. As conclusions, the influence of coupling pressures between ultrasound exciter and specimen was analyzed, which was dominant factor in frictional heating model

  17. A comparison of ultrasound and clinical examination in the detection of flexor tenosynovitis in early arthritis

    Directory of Open Access Journals (Sweden)

    Abouqal Redouane

    2011-05-01

    Full Text Available Abstract Background Tenosynovitis is widely accepted to be common in rheumatoid arthritis (RA and postulated to be the first manifestation of RA, but its true prevalence in early disease and in particular the hand has not been firmly established. The aims of this study were first to investigate the frequency and distribution of finger flexor tenosynovitis using ultrasound in early arthritis, second to compare clinical examination with ultrasound (US using the latter as the gold standard. Methods 33 consecutive patients who had who were initially diagnosed with polyarthritis and suspected of polyarthritis and clinical suspicion of inflammatory arthritis of the hands and wrists were assessed during consecutive, routine presentations to the rheumatology outpatient clinic. We scanned a total of 165 finger tendons and subsequent comparisons were made using clinical examination. Results Flexor tenosynovitis was found in 17 patients (51.5% on ultrasound compared with 16 (48.4% of all patients on clinical examination. Most commonly damaged joint involved on US was the second finger followed by the third, fifth, and fourth. Both modalities demonstrated more pathology on the second and third metacarpophalangeal (MCP compared with the fourth and fifth MCP. A joint-by-joint comparison of US and clinical examination demonstrated that although the sensitivity, specificities and positive predictive values of clinical examination were relatively high, negative predictive value of clinical examination was low (0.23. Conclusions Our study suggest that clinical examination can be a valuable tool for detecting flexor disease in view of its high specificity and positive predictive values, but a negative clinical examination does not exclude inflammation and an US should be considered. Further work is recommended to standardize definitions and image acquisition for peritendinous inflammation for ultrasound.

  18. A web-based quantitative signal detection system on adverse drug reaction in China.

    Science.gov (United States)

    Li, Chanjuan; Xia, Jielai; Deng, Jianxiong; Chen, Wenge; Wang, Suzhen; Jiang, Jing; Chen, Guanquan

    2009-07-01

    To establish a web-based quantitative signal detection system for adverse drug reactions (ADRs) based on spontaneous reporting to the Guangdong province drug-monitoring database in China. Using Microsoft Visual Basic and Active Server Pages programming languages and SQL Server 2000, a web-based system with three software modules was programmed to perform data preparation and association detection, and to generate reports. Information component (IC), the internationally recognized measure of disproportionality for quantitative signal detection, was integrated into the system, and its capacity for signal detection was tested with ADR reports collected from 1 January 2002 to 30 June 2007 in Guangdong. A total of 2,496 associations including known signals were mined from the test database. Signals (e.g., cefradine-induced hematuria) were found early by using the IC analysis. In addition, 291 drug-ADR associations were alerted for the first time in the second quarter of 2007. The system can be used for the detection of significant associations from the Guangdong drug-monitoring database and could be an extremely useful adjunct to the expert assessment of very large numbers of spontaneously reported ADRs for the first time in China.

  19. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.

    Science.gov (United States)

    Azami, Hamed; Escudero, Javier

    2016-05-01

    Signal segmentation and spike detection are two important biomedical signal processing applications. Often, non-stationary signals must be segmented into piece-wise stationary epochs or spikes need to be found among a background of noise before being further analyzed. Permutation entropy (PE) has been proposed to evaluate the irregularity of a time series. PE is conceptually simple, structurally robust to artifacts, and computationally fast. It has been extensively used in many applications, but it has two key shortcomings. First, when a signal is symbolized using the Bandt-Pompe procedure, only the order of the amplitude values is considered and information regarding the amplitudes is discarded. Second, in the PE, the effect of equal amplitude values in each embedded vector is not addressed. To address these issues, we propose a new entropy measure based on PE: the amplitude-aware permutation entropy (AAPE). AAPE is sensitive to the changes in the amplitude, in addition to the frequency, of the signals thanks to it being more flexible than the classical PE in the quantification of the signal motifs. To demonstrate how the AAPE method can enhance the quality of the signal segmentation and spike detection, a set of synthetic and realistic synthetic neuronal signals, electroencephalograms and neuronal data are processed. We compare the performance of AAPE in these problems against state-of-the-art approaches and evaluate the significance of the differences with a repeated ANOVA with post hoc Tukey's test. In signal segmentation, the accuracy of AAPE-based method is higher than conventional segmentation methods. AAPE also leads to more robust results in the presence of noise. The spike detection results show that AAPE can detect spikes well, even when presented with single-sample spikes, unlike PE. For multi-sample spikes, the changes in AAPE are larger than in PE. We introduce a new entropy metric, AAPE, that enables us to consider amplitude information in the

  20. Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Mohamed Yaseen Jabarulla

    2018-05-01

    Full Text Available Ultrasound images are corrupted with multiplicative noise known as speckle, which reduces the effectiveness of image processing and hampers interpretation. This paper proposes a multiplicative speckle suppression technique for ultrasound liver images, based on a new signal reconstruction model known as sparse representation (SR over dictionary learning. In the proposed technique, the non-uniform multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. This is followed by pixel-based total variation (TV regularization and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD. Finally, the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled image. The simulations performed on both synthetic and clinical ultrasound images for speckle reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, the evaluation results show that the proposed method performs better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality assessment.

  1. Studies of nonlinear ultrasound propagation: safety considerations in the use of ultrasound for medical diagnosis - nonlinear propagation

    International Nuclear Information System (INIS)

    Egerton, B.; Barnett, S.; Vella, G.

    1994-01-01

    Diagnostic ultrasound is an established imaging modality without any documented harmful effects. New developments such as pulsed Doppler and intracavity investigations may result in increases in ultrasound exposures which could cause harm. Thermal mechanisms and cavitation may become relevant sources of bioeffects. The preliminary study described here investigates the distribution and amplitude of harmonics generated through nonlinear propagation of ultrasound in water. Knowledge of harmonic attenuation will help predict sites of enhanced heating and enable accurate modelling of clinical situations. This presentation is concerned with thermal safety guidelines, their relationship to a typical ultrasound beam profile for a single, medium focussed, transducer operating in water and possible sites of enhanced heating due to nonlinear propagation effects. Measurements were made of the amplitudes of the harmonics generated by the nonlinear propagation of ultrasound in water. The amplitudes of the harmonics were detected up to frequencies of 35 MHz and displayed using Fast Fourier Transform facilities within the oscilloscope. The nonlinearity parameter of the ultrasonic waveforms has been identified as an important factor in thermal effects of ultrasound interactions. The appearance of nonlinear distortion is shown to be dependant on the peak compressional pressure and distance from the ultrasound source. 20 refs., 2 figs

  2. Diagnostic Accuracy of Secondary Ultrasound Exam in Blunt Abdominal Trauma

    International Nuclear Information System (INIS)

    Rajabzadeh Kanafi, Alireza; Giti, Masoumeh; Gharavi, Mohammad Hossein; Alizadeh, Ahmad; Pourghorban, Ramin; Shekarchi, Babak

    2014-01-01

    In stable patients with blunt abdominal trauma, accurate diagnosis of visceral injuries is crucial. To determine whether repeating ultrasound exam will increase the sensitivity of focused abdominal sonography for trauma (FAST) through revealing additional free intraperitoneal fluid in patients with blunt abdominal trauma. We performed a prospective observational study by performing primary and secondary ultrasound exams in blunt abdominal trauma patients. All ultrasound exams were performed by four radiology residents who had the experience of more than 400 FAST exams. Five routine intraperitoneal spaces as well as the interloop space were examined by ultrasound in order to find free fluid. All patients who expired or were transferred to the operating room before the second exam were excluded from the study. All positive ultrasound results were compared with intra-operative and computed tomography (CT) findings and/or the clinical status of the patients. Primary ultrasound was performed in 372 patients; 61 of them did not undergo secondary ultrasound exam; thus, were excluded from the study.Three hundred eleven patients underwent both primary and secondary ultrasound exams. One hundred and two of all patients were evaluated by contrast enhanced CT scan and 31 underwent laparotomy. The sensitivity of ultrasound exam in detecting intraperitoneal fluid significantly increased from 70.7% for the primary exam to 92.7% for the secondary exam. Examining the interloop space significantly improved the sensitivity of ultrasonography in both primary (from 36.6% to 70.7%) and secondary (from 65.9% to 92.7%) exams. Performing a secondary ultrasound exam in stable blunt abdominal trauma patients and adding interloop space scan to the routine FAST exam significantly increases the sensitivity of ultrasound in detecting intraperitoneal free fluid

  3. Limiter discriminator detection of M-ary FSK signals

    Science.gov (United States)

    Fonseka, John P.

    1990-10-01

    The performance of limiter discriminator detection of M-ary FSK signals is analyzed at arbitrary modulation indices. It is shown that the error rate performance of limiter discriminator detection can be significantly improved by increasing the modulation index above 1/M. The optimum modulation index that minimizes the overall error probability is determined for the cases M = 2, 4 and 8. The analysis is carried out for wideband and bandlimited channels with Gaussian and second-order Butterworth filters. It is shown that the optimum modulation index depends on the signal/noise ratio (SNR), in a wideband channel, and on both SNR and time-bandwidth product in a bandlimited channel. Finally, it is shown that the optimum sampling instance in presence of a nonzero phase IF filter can be approximately determined by using only the worst case symbol pattern.

  4. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  5. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  6. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  7. Confidence Measurement in the Light of Signal Detection Theory

    Directory of Open Access Journals (Sweden)

    Sébastien eMassoni

    2014-12-01

    Full Text Available We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale, the Quadratic Scoring Rule (a post-wagering procedure and the Matching Probability (a generalization of the no-loss gambling method. We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory. We find that the Matching Probability provides better results in that respect. We conclude that Matching Probability is particularly well suited for studies of confidence that use Signal Detection Theory as a theoretical framework.

  8. The future perspectives in transrectal prostate ultrasound guided biopsy

    Directory of Open Access Journals (Sweden)

    Sung Il Hwang

    2014-12-01

    Full Text Available Prostate cancer is one of the most common neoplasms in men. Transrectal ultrasound (TRUS-guided systematic biopsy has a crucial role in the diagnosis of prostate cancer. However, it shows limited value with gray-scale ultrasound alone because only a small number of malignancies are visible on TRUS. Recently, new emerging technologies in TRUS-guided prostate biopsy were introduced and showed high potential in the diagnosis of prostate cancer. High echogenicity of ultrasound contrast agent reflect the increased status of angiogenesis in tumor. Molecular imaging for targeting specific biomarker can be also used using ultrasound contrast agent for detecting angiogenesis or surface biomarker of prostate cancer. The combination of TRUS-guided prostate biopsy and ultrasound contrast agents can increase the accuracy of prostate cancer diagnosis. Elastography is an emerging ultrasound technique that can provide the information regarding tissue elasticity and stiffness. Tumors are usually stiffer than the surrounding soft tissue. In two types of elastography techniques, shearwave elastography has many potential in that it can provide quantitative information on tissue elasticity. Multiparametric magnetic resonance imaging (MRI from high resolution morphologic and functional magnetic resonance (MR technique enables to detect more prostate cancers. The combination of functional techniques including apparent diffusion coefficient map from diffusion weighted imaging, dynamic contrast enhanced MR and MR spectroscopy are helpful in the localization of the prostate cancer. MR-ultrasound (US fusion image can enhance the advantages of both two modalities. With MR-US fusion image, targeted biopsy of suspicious areas on MRI is possible and fusion image guided biopsy can provide improved detection rate. In conclusion, with recent advances in multiparametric-MRI, and introduction of new US techniques such as contrast-enhanced US and elastography, TRUS-guided biopsy

  9. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  10. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  11. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    Science.gov (United States)

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave

  12. Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging

    Science.gov (United States)

    Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit

    2018-02-01

    Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.

  13. A Universal Fast Colorimetric Method for DNA Signal Detection with DNA Strand Displacement and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available DNA or gene signal detection is of great significance in many fields including medical examination, intracellular molecular monitoring, and gene disease signal diagnosis, but detection of DNA or gene signals in a low concentration with instant visual results remains a challenge. In this work, a universal fast and visual colorimetric detection method for DNA signals is proposed. Specifically, a DNA signal amplification “circuit” based on DNA strand displacement is firstly designed to amplify the target DNA signals, and then thiol modified hairpin DNA strands and gold nanoparticles are used to make signal detection results visualized in a colorimetric manner. If the target DNA signal exists, the gold nanoparticles aggregate and settle down with color changing from dark red to grey quickly; otherwise, the gold nanoparticles’ colloids remain stable in dark red. The proposed method provides a novel way to detect quickly DNA or gene signals in low concentrations with instant visual results. When applied in real-life, it may provide a universal colorimetric method for gene disease signal diagnosis.

  14. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy.

    Science.gov (United States)

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara

    2014-05-10

    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart

  15. Development Of Signal Detection For Radar Navigation System

    Directory of Open Access Journals (Sweden)

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  16. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  17. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    Science.gov (United States)

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  18. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  19. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  20. How accurate is ultrasound in evaluating palpable breast masses ...

    African Journals Online (AJOL)

    Methods: Eighty palpable breast masses were evaluated at ultrasound and information about the characteristic features of the masses was recorded. An impression about the diagnosis was made and results were correlated with histology findings. Results: The overall sensitivity of ultrasound in detecting breast lumps was ...

  1. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Elham Khanicheh

    Full Text Available BACKGROUND/OBJECTIVES: Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1 with contrast enhanced ultrasound (CEU could assess treatment effects on endothelial phenotype in early atherosclerosis. METHODS: Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day. At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MB(VCAM and control microbubbles (MB(Ctr. Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression. RESULTS: Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MB(VCAM in non-treated animals (MB(VCAM 2±0.3 vs MB(Ctr 0.7±0.2, p<0.01, but not in statin-treated animals (MB(VCAM 0.8±0.2 vs MB(Ctr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MB(VCAM signal. CONCLUSIONS: Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.

  2. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    Science.gov (United States)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  3. TU-FG-BRB-09: Thermoacoustic Range Verification with Perfect Co-Registered Overlay of Bragg Peak onto Ultrasound Image

    Energy Technology Data Exchange (ETDEWEB)

    Patch, S; Kireeff Covo, M; Jackson, A; Qadadha, Y; Campbell, K; Albright, R; Bloemhard, P; Donoghue, A; Siero, C; Gimpel, T; Small, S; Ninemire, B; Johnson, M; Phair, L [Lawrence Berkeley National Lab, Berkeley, CA (United States)

    2016-06-15

    Purpose: The potential of particle therapy has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying thermoacoustic localization of the Bragg peak onto an ultrasound image. Methods: Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the inflector of the 88″ cyclotron at Lawrence Berkeley National Lab. 2 Gy were delivered in 2 µs by a beam with peak current of 2 µA. Thermoacoustic emissions were detected by a cardiac array and Verasonics V1 ultrasound system, which also generated a grayscale ultrasound image. 1024 thermoacoustic pulses were averaged before filtering and one-way beamforming focused signal onto the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Experiments were performed with the cavity both empty and filled with olive oil. Results: In the waterbath overlays of the Bragg peak agreed with Monte Carlo simulations to within 800±170 µm. Agreement within 1.3 ± 0.2 mm was achieved in the gelatin phantom, although relative stopping powers were estimated only to first order from CT scans. Protoacoustic signals were detected after travel from the Bragg peak through 29 mm and 65 mm of phantom material when the cavity was empty and full of olive oil, respectively. Conclusion: Protoacoustic range verification is feasible with a commercial clinical ultrasound array, but at doses exceeding the clinical realm. Further optimization of both transducer array and injection line chopper is required to enable range verification within a 2 Gy dose limit, which would enable online adaptive treatment. This work was supported in part by a UWM Intramural Instrumentation Grant and by the Director, Office

  4. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  5. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  6. Consistency Analysis of Ultrasound Echoes within a Dual Symmetric Path Inspection Framework

    Directory of Open Access Journals (Sweden)

    VASILE, C.

    2015-05-01

    Full Text Available Non-destructive ultrasound inspection of metallic structures is a perpetual high-interest area of research because of its well-known benefits in industrial applications, especially from an economic point of view, where detection and localisation of defects in their most initial stages can help maintain high production capabilities for any enterprise. This paper is aimed at providing further validation regarding a new technique for detecting and localising defects in metals, the Matched Filter-based Dual Symmetric Path Inspection (MF-DSPI. This validation consists in demonstrating the consistency of the useful ultrasound echoes, within the framework of the MF-DSPI. A description of the MF-DSPI method and the related work of the authors with it are presented in this paper, along with an experimental setup used to obtain the data with which the useful echo consistency was studied. The four proposed methods are: signal envelope analysis, L2-norm criterion, correlation coefficient criterion and sliding bounding rectangle analysis. The aim of this paper is to verify the useful echo consistency (with the help of these four approaches, as the MF-DSPI method strongly relies on this feature. The results and their implications are discussed in the latter portion of this study.

  7. Broadband unidirectional ultrasound propagation

    Science.gov (United States)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  8. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2000-01-01

    There are certain shortcomings for the endpoint detection by time-waveform envelope and/or by checking the travel table (both labelled as the artificial detection method). Based on the analysis of the auto-correlation function, the notion of the distance between auto-correlation functions was quoted, and the characterizations of the noise and the signal with noise were discussed by using the distance. Then, the method of auto-adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low SNR circumstance

  9. Early detection of cerebral palsy in high-risk infants: diagnostic value of primitive and developmental reflexes as well as ultrasound

    Directory of Open Access Journals (Sweden)

    Setyo Handryastuti

    2018-03-01

    Full Text Available Background The incidence of cerebral palsy (CP has increased due to better survival of high-risk babies. A simple assessment method is needed for the early detection of CP, which can be performed by general practitioners and pediatricians in daily practice. Objectives To assess motor delay, primitive and developmental reflexes, and cerebral ultrasound abnormalities as simple methods for early detection of CP in high-risk infants. We also aimed to evaluate the ease and consistency of the methods for use in daily practice, as well as determine risk factors associated with CP. Methods A prospective cohort study was done on 150 high-risk babies starting from the age of 4 months up to 12 months. We obtained subjects’ histories of motor ability and assessed primitive reflexes and postural reactions at the ages of 4, 6, 9 and 10 months. The diagnosis of CP was established at 6 and 12 months of age. We also determined Kappa test for inter-rater reliability between pediatric residents and pediatric neurologist. Results In 88.7% of subjects, CP was detected in the first 6 months. At 4 months, positive palmar reflex, head lag, and fisting were predictive of CP at 6 months of age. Motor delay, positive palmar grasp reflex, head lag, fisting, and absent protective extension reflex at 6 months were predictive of CP at 12 months. At 9 to 10 months, motor delays, absent protective extension reflex, and negative parachute reaction were predictive of CP at 12 months. Cerebral ultrasound abnormalities were predictive of CP at 6 and 12 months of age. Kappa test result was 0.9, indicating the ease and consistency of these methods for daily medical practice. Conclusion Cerebral palsy can be detected as early as the first 6 months of life. Assessment for motor delays, physical examination for asssessing primitive and developmental reflexes, and cerebral ultrasound can be used for this purpose.

  10. Evaluation of signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Black, J.L.; Ledwidge, T.J.

    1989-01-01

    As part of the co-ordinated research programme on the detection of sodium boiling some further analysis has been performed on the data from the test loop in Karlsruhe and some preliminary analysis of the data from the BOR 60 experiment. The work on the Karlsruhe data is concerned with the search for a reliable method by which the quality of signal processing strategies may be compared. The results show that the three novel methods previously reported are all markedly superior to the mean square method which is used as a benchmark. The three novel methods are nth order differentiation in the frequency domain, the mean square prediction based on nth order conditional expectation and the nth order probability density function. A preliminary analysis on the data from the BOR 60 reactor shows that 4th order differentiation is adequate for the detection of signals derived from a pressure transducer and that the map of spurious trip probability (S) and the probability of missing an event (M) is consistent with the theoretical model proposed herein, and the suggested procedures for evaluating the quality of detection strategies. (author). 15 figs, 1 tab

  11. Resonance detection of EEG signals using two-layer wavelet analysis

    International Nuclear Information System (INIS)

    Abdallah, H. M; Odeh, F.S.

    2000-01-01

    This paper presents the hybrid quadrature mirror filter (HQMF) algorithm applied to the electroencephalogram (EEG) signal during mental activity. The information contents of this signal, i.e., its medical diagnosis, lie in its power spectral density (PSD). The HQMF algorithm is a modified technique that is based on the shape and the details of the signal. If applied efficiently, the HQMF algorithm will produce much better results than conventional wavelet methods in detecting (diagnosing) the information of the EEG signal from its PSD. This technique is applicable not only to EEG signals, but is highly recommended to compression analysis and de noising techniques. (authors). 16 refs., 9 figs

  12. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    Science.gov (United States)

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  14. BURAR: Detection and signal processing capabilities

    International Nuclear Information System (INIS)

    Ghica, Daniela; Radulian, Mircea; Popa, Mihaela

    2004-01-01

    Since July 2002, a new seismic monitoring station, the Bucovina Seismic Array (BURAR), has been installed in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by BURAR and transmitted in real-time to the Romanian National Data Centre (ROM N DC), in Bucharest and to the National Data Center of USA, in Florida. The statistical analysis for the seismic information gathered at ROM N DC by the BURAR in the August 2002 - December 2003 time interval points out a much better efficiency of the BURAR system in detecting teleseismic events and local events occurred in the N-NE part of Romanian territory, in comparison with the actual Romanian Telemetered Network. Furthermore, the BURAR monitoring system has proven to be an important source of reliable data for NIEP efforts in issuing the seismic bulletins. Signal processing capability of the system provides useful information in order to improve the location of the local seismic events, using the array beamforming procedure. This method increases significantly the signal-to-noise ratio by summing up the coherent signals from the array components. In this way, possible source nucleation phases can be detected. At the same time, using the slowness and back azimuth estimations by f-k analysis, locations for the seismic events can be established based only on the information recorded by the BURAR array, acting like a single seismic station recording system. (authors)

  15. An energy kurtosis demodulation technique for signal denoising and bearing fault detection

    International Nuclear Information System (INIS)

    Wang, Wilson; Lee, Hewen

    2013-01-01

    Rolling element bearings are commonly used in rotary machinery. Reliable bearing fault detection techniques are very useful in industries for predictive maintenance operations. Bearing fault detection still remains a very challenging task especially when defects occur on rotating bearing components because the fault-related features are non-stationary in nature. In this work, an energy kurtosis demodulation (EKD) technique is proposed for bearing fault detection especially for non-stationary signature analysis. The proposed EKD technique firstly denoises the signal by using a maximum kurtosis deconvolution filter to counteract the effect of signal transmission path so as to highlight defect-associated impulses. Next, the denoised signal is modulated over several frequency bands; a novel signature integration strategy is proposed to enhance feature characteristics. The effectiveness of the proposed EKD fault detection technique is verified by a series of experimental tests corresponding to different bearing conditions. (paper)

  16. Early detection of structual changes in random signal

    International Nuclear Information System (INIS)

    Kuroda, Yoshiteru; Yokota, Katsuhiro

    1981-01-01

    Early detection of structual changes in observed random signal is very important from the point of system diagnosis. In this paper, the following procedures are applied to this problem and the results are compared. (1) auto-regressive model to random signal to calculate the prediction error, i.e., the defference between observed and predicted values. (2) auto-regressive method to caluculate the sum of the prediction error. (3) a method is based on AIC (Akaike Information Criterion). Simulation is made of these procedures, indicating their merits and demerits as a diagostic tools. (author)

  17. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  18. Clinical utility of carotid and transcranial ultrasound in cerebrovascular diseases

    Directory of Open Access Journals (Sweden)

    Figueiredo L

    2014-08-01

    Full Text Available Lívia Figueiredo, Viviane F Zétola, Marcos C Lange Neurology Division, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil Abstract: Carotid and transcranial (CTU ultrasound is a useful tool in a number of clinical settings, particularly in cerebrovascular diseases. CTU is the only method that provides real-time determination of velocity and the spectral waveform of blood flow in the extracranial and basal intracranial arteries, and is effective in the detection of stenosis and occlusion. When transcranial ultrasound is considered, CTU is the only method that allows visualization of microembolic signals in the intracranial arteries. CTU makes a rapid differential diagnosis possible, improving therapeutic decision-making in acute stroke and determining the risk of recurrence and prognosis based on its findings. It is also the standard of care in children with sickle cell disease, when selecting patients for chronic blood transfusion, and for reducing the risk of ischemic stroke in these patients. CTU has some advantages, ie, relative simplicity in terms of interpretation and performance, and affordability, noninvasiveness, and portability. The main concern with ultrasound is that it is an operator-dependent tool and requires a high level of expertise and knowledge of three-dimensional cerebrovascular anatomy for correct interpretation of sonograms. The most significant limitation of intracranial evaluation by transcranial ultrasound is the absence of a suitable bone window in approximately 10% of patients. This paper gives an overview of the current utility and importance of CTU in the prevention and evaluation of ischemic cerebrovascular disease. Keywords: transcranial Doppler ultrasonography, Doppler ultrasonography duplex, cerebrovascular disorders, stroke

  19. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  20. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  1. A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors

    Directory of Open Access Journals (Sweden)

    Hengwei Li

    2007-02-01

    Full Text Available In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR. We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT. Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that th

  2. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.

    Science.gov (United States)

    Huang, Qinghua; Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

  3. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    Directory of Open Access Journals (Sweden)

    Qinghua Huang

    2018-01-01

    Full Text Available The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... are used to sample cells from organs for laboratory testing help detect the presence and cause of ... extract sample cells from an abnormal area for laboratory testing. Ultrasound may also be used to guide ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... can be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect ... biopsies, in which needles are used to extract sample cells from an abnormal area for laboratory testing. ...

  6. Transrectal ultrasound and needle biopsy of the prostate

    Directory of Open Access Journals (Sweden)

    Tomaž Smrkolj

    2016-01-01

    Full Text Available In the last 25 years widespread use of prostatic specific antigen caused a stage migration of prostate cancer towards localized disease at diagnosis, which resulted in transrectal ultrasound biopsy to become standard in clinical practice. Transrectal ultrasound examination of the prostate is used to diagnose benign prostatic diseases, e.g. benign prostatic enlargement, prostatitis, prostatic and seminal vesicle cysts. It is also important in detection of obstructive causes of male infertility. Transrectal ultrasound examination is performed most often in needle biopsy for prostate cancer diagnosis. Besides guiding systematic tissue core biopsy, characteristic ultrasound changes enables target biopsies of suspect areas. The article describes indications, contraindications, antibiotic prophylaxis, various biopsy templates and complications of the needle biopsy. Experience with transrectal ultrasound guided biopsy at Department of urology at University medical center in Ljubljana is presented.

  7. The Automated Breast Volume Scanner (ABVS: initial experiences in lesion detection compared with conventional handheld B-mode ultrasound: a pilot study of 50 cases

    Directory of Open Access Journals (Sweden)

    Wojcinski S

    2011-10-01

    Full Text Available Sebastian Wojcinski1, Andre Farrokh1, Ursula Hille2, Jakub Wiskirchen3, Samuel Gyapong1, Amr A Soliman1,4, Friedrich Degenhardt1, Peter Hillemanns21Department of OB/GYN, Franziskus Hospital, Bielefeld, Germany; 2Department of OB/GYN, Hannover Medical School, Hannover, Germany; 3Department of Radiology, Franziskus Hospital, Bielefeld, Germany; 4Department of OB/GYN, Faculty of Medicine, University of Alexandria, Alexandria, EgyptAbstract: The idea of an automated whole breast ultrasound was developed three decades ago. We present our initial experiences with the latest technical advance in this technique, the automated breast volume scanner (ABVS ACUSON S2000TM. Volume data sets were collected from 50 patients and a database containing 23 women with no detectable lesions in conventional ultrasound (BI-RADS®-US 1, 13 women with clearly benign lesions (BI-RADS®-US 2, and 14 women with known breast cancer (BI-RADS®-US 5 was created. An independent examiner evaluated the ABVS data on a separate workstation without any prior knowledge of the patients’ histories. The diagnostic accuracy for the experimental ABVS was 66.0% (95% confidence interval [CI]: 52.9–79.1. The independent examiner detected all breast cancers in the volume data resulting in a calculated sensitivity of 100% in the described setting (95% CI: 73.2%–100%. After the ABVS examination, there were a high number of requests for second-look ultrasounds in 47% (95% CI: 30.9–63.5 of the healthy women (with either a clearly benign lesion or no breast lesions at all in conventional handheld ultrasound. Therefore, the specificity remained at 52.8% (95% CI: 35.7–69.2. When comparing the concordance of the ABVS with the gold standard (conventional handheld ultrasound, Cohen’s Kappa value as an estimation of the inter-rater reliability was κ = 0.37, indicating fair agreement. In conclusion, the ABVS must still be regarded as an experimental technique for breast ultrasound, which

  8. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2015-08-01

    Full Text Available Stochastic resonance (SR has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR. Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  9. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    Science.gov (United States)

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  10. Anomalous Signal Detection in ELF Band Electromagnetic Wave using Multi-layer Neural Network with Wavelet Decomposition

    Science.gov (United States)

    Itai, Akitoshi; Yasukawa, Hiroshi; Takumi, Ichi; Hata, Masayasu

    It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.

  11. Automatic Emboli Detection System for the Artificial Heart

    Science.gov (United States)

    Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.

    In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.

  12. Breast Microcalcification Detection Using Super-Resolution Ultrasound Image Reconstruction

    Science.gov (United States)

    2010-09-01

    tissues. These differences in mechanical properties result in ultrasound scattering. Because the sizes of breast microcalcifications are smaller than...2006). [4] Karssemeijer, N., Bluekens, A. M., Beijerinck, D., Deurenberg, J. J., Beekman, M., Visser, R., van Engen , R., Bartels- Kortland, A., and

  13. Automatic detection of kidney in 3D pediatric ultrasound images using deep neural networks

    Science.gov (United States)

    Tabrizi, Pooneh R.; Mansoor, Awais; Biggs, Elijah; Jago, James; Linguraru, Marius George

    2018-02-01

    Ultrasound (US) imaging is the routine and safe diagnostic modality for detecting pediatric urology problems, such as hydronephrosis in the kidney. Hydronephrosis is the swelling of one or both kidneys because of the build-up of urine. Early detection of hydronephrosis can lead to a substantial improvement in kidney health outcomes. Generally, US imaging is a challenging modality for the evaluation of pediatric kidneys with different shape, size, and texture characteristics. The aim of this study is to present an automatic detection method to help kidney analysis in pediatric 3DUS images. The method localizes the kidney based on its minimum volume oriented bounding box) using deep neural networks. Separate deep neural networks are trained to estimate the kidney position, orientation, and scale, making the method computationally efficient by avoiding full parameter training. The performance of the method was evaluated using a dataset of 45 kidneys (18 normal and 27 diseased kidneys diagnosed with hydronephrosis) through the leave-one-out cross validation method. Quantitative results show the proposed detection method could extract the kidney position, orientation, and scale ratio with root mean square values of 1.3 +/- 0.9 mm, 6.34 +/- 4.32 degrees, and 1.73 +/- 0.04, respectively. This method could be helpful in automating kidney segmentation for routine clinical evaluation.

  14. Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range.

    Science.gov (United States)

    Conversano, Francesco; Pisani, Paola; Casciaro, Ernesto; Di Paola, Marco; Leporatti, Stefano; Franchini, Roberto; Quarta, Alessandra; Gigli, Giuseppe; Casciaro, Sergio

    2016-04-11

    Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 10 10 part/mL, equivalent to 0.25-3.00 mg/mL) were dispersed in custom-designed tissue-mimicking phantoms and imaged through a clinically-available echographic device at a conventional ultrasound diagnostic frequency (10 MHz). The most effective response (sensitivity = 60%, specificity = 95%), was found at a concentration of 33 × 10 10 part/mL (1.5 mg/mL), representing a kind of best compromise between the need of enough particles to introduce detectable spectral modifications in the backscattered signal and the necessity to avoid the losses of spectral peculiarity associated to higher HNT concentrations. Based on theoretical considerations and quantitative comparisons with literature-available results, this concentration could also represent an optimal concentration level for the automatic echographic detection of different solid nanoparticles when employing a similar ultrasound frequency. Future dedicated studies will assess the actual clinical usefulness of the proposed approach and the potential of HNTs for effective theranostic applications.

  15. Dual-Process Theory and Signal-Detection Theory of Recognition Memory

    Science.gov (United States)

    Wixted, John T.

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…

  16. Teaching enthesis ultrasound: experience of an ultrasound training workshop.

    Science.gov (United States)

    Miguel, Cláudia; De Miguel, Eugenio; Batlle-Gualda, Enrique; Rejón, Eduardo; Lojo, Leticia

    2012-12-01

    To evaluate a standardised enthesis ultrasound training method, a workshop was conducted to train rheumatologists on enthesis ultrasound. After a theoretical session about ultrasound elementary enthesis lesions (changes in tendon architecture/thickness, bone proliferation/erosion, bursitis or Doppler signal), a reading exercise of 28 entheses' ultrasonographic images (plantar fasciae, Achilles, origin and insertion of patellar tendon) was completed. Participants scored through an electronic multiple-choice device with six possible lesions in each enthesis. To assess the adequacy and efficacy of the workshop, we explored the following: (1) subjective outcomes: a 12-item structured satisfaction questionnaire (graded 1-5 using Likert scale) and (2) objective outcomes of reliability: sensitivity (Se), specificity (Sp) and percentage of correctly classified cases (CC). Forty-nine participants attended the workshop. The satisfaction questionnaire demonstrated a 4.7 mean global value. The inter-reader Kappa reliability coefficient was moderate for the plantar fascia (0.47), Achilles tendon (0.47), and distal patellar tendons (0.50) and good for the proximal patellar tendon (0.63). The whole group means comparing to teachers' consensus were as follows: (a) plantar fascia: Se, 73.2%; Sp, 87.7%; CC, 83.3%; (b) Achilles: Se, 66.9%; Sp, 85.0%; CC, 79.5%; (c) distal patellar tendon: Se, 74.6%; Sp, 85.3%; CC, 82.1%; and (d) proximal patellar tendon: Se, 82.2%; Sp, 90.6%; CC, 88%. The proposed learning method seemed to be simple, easily performed, effective and well accepted by the target audience.

  17. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  18. An attempt to detect the greenhouse-gas signal in a transient GCM simulation

    International Nuclear Information System (INIS)

    Barnett, T.P.

    1990-01-01

    Results from the GISS model forced by transient greenhouse-gas (GHG) increases are used to demonstrate methods of detecting the theoretically predicted GHG signal. The signal predicted to occur in the surface temperature of the world's ocean since 1958 is not found in the observations but this is not surprising since the signal was small in the first place. The main result of the study is to demonstrate many of the key issues/difficulties that attend the detection problem

  19. Determination of free cisplatin in medium by differential pulse polarography after ultrasound and cisplatin treatment of a cancer cell culture

    International Nuclear Information System (INIS)

    Bernard, Vladan; Skorpikova, Jirina; Mornstein, Vojtech; Fojt, Lukas

    2011-01-01

    The in vitro study was carried out for detection of the cisplatin in free form and in culture medium, depending on various conditions of sonodynamic human ovarian cancer cells A2780 treatment by differential pulse polarography (DPP). For sonodynamic treatment, we used cisplatin alone and combined cisplatin/ultrasound treatments. The ultrasound exposure intensity of 1.0 and 2.0 Wcm 2 in far field for incubation periods 1, 24 and 48 h was used. The parameters of DPP measurements were - 1 s drop time, 5 mV.s -1 voltage scan rate, 50 mV modulation amplitude and negative scanning direction; platinum wire served as counter electrode and Ag|AgCl|3 M KCI as reference electrode. The results showed the dependence of free platinum quantities in culture medium on incubation time and treatment protocol. We found difference in concentration of free cisplatin between conventional application of cisplatin and sonodynamic treatment. The sonodynamic combined treatment of cisplatin and ultrasound field showed a higher cisplatin content in the culture medium than cisplatin treatment alone; a difference of 20% was observed for incubation time 48 h. The results also showed the influence of a time sequence of ultrasound and cytostatics in the sonodynamic treatment. The highest amount of free cisplatin in the solution was found for primary application of cisplatin and the subsequent ultrasound exposure. The quantity of free cisplatin increased with time, namely for time intervals 1-24 h. There was no difference between the DPP signal of cisplatin in reaction mixture containing cells in small quantities and micro-filtered mixture without cells. Thus, the DPP method is suitable for the detection and quantification of free cisplatin in the culture medium of cell suspension. Ultrasound field can be important factor during cytostatic therapy. (author)

  20. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  1. Pipeline Defects Detection Using MFL Signals and Self Quotient Image

    International Nuclear Information System (INIS)

    Kim, Min Ho; Choi, Doo Hyun; Rho, Yong Woo

    2010-01-01

    Defects positioning of underground gas pipelines using MFL(magnetic flux leakage) inspection which is one of non-destructive evaluation techniques is proposed in this paper. MFL signals acquired from MFL PIG(pipeline inspection gauge) have nonlinearity and distortion caused by various extemal disturbances. SQI(self quotient image), a compensation technique for nonlinearity and distortion of MFL signal, is used to correct positioning of pipeline defects. Through the experiments using artificial defects carved in the KOGAS pipeline simulation facility, it is found that the performance of proposed defect detection is greatly improved compared to that of the conventional DCT(discrete cosine transform) coefficients based detection

  2. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.

    Science.gov (United States)

    Datta, Saurabh; Coussios, Constantin-C; Ammi, Azzdine Y; Mast, T Douglas; de Courten-Myers, Gabrielle M; Holland, Christy K

    2008-09-01

    Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity, was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity. A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment.

  3. Multilevel electrochemical signal detections of metalloprotein heterolayers for bioelectronic device

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Ho; Yoo, Si-Youl; Lee, Taek [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Lee, Hun Joo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-01-31

    In the present study, we investigated the simultaneous detection of multilevel electrochemical signals from various metalloprotein heterolayers for the bioelectronic devices. A layer-by-layer assembly method based on simple electrostatic interaction was introduced to form protein bilayers. The gold substrate was modified with poly (ethylene glycol) thiol acid as the precursor, which introduced negative charges to the surface. Based on the isoelectric point, net-charge controlled metalloproteins by pH adjustment were sequentially immobilized on this negatively charged substrate. The degree of protein immobilization on the gold substrate was confirmed by surface plasmon resonance spectroscopy, and the surface topology changes due to the protein immobilization were confirmed by atomic force microscopy. Redox signals in the protein layers were measured by cyclic voltammetry. As a result, various redox signals generated from different metalloproteins on a single electrode were monitored. This proposed method for the detection of multi-level electrochemical signals can be directly applied to bioelectronic devices that store multi-information in a single electrode. - Highlights: • We fabricated heterolayers composed of various metalloproteins. • Metalloproteins were immobilized by layer-by-layer assembly. • The degree of immobilization was controlled by the net charge of metalloproteins. • Various redox signals generated from heterolayers were well monitored.

  4. Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner

    Science.gov (United States)

    Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna

    2018-02-01

    Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.

  5. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  7. Comparison the percentage of detection of periarthritis in patients with rheumatoid arthritis using clinical examination or ultrasound methods

    OpenAIRE

    Hadi Karimzadeh; Zahra Seyedbonakdar; Maryam Mousavi; Mehdi Karami

    2016-01-01

    Background: This study aimed to compare the percentage of detection of periarthritis in patients with rheumatoid arthritis using clinical examination and ultrasound methods. Materials and Methods: This study is a cross-sectional study which was conducted in Al-Zahra Hospital (Isfahan, Iran) during 2014?2015. In our study, ninety patients were selected based on the American College of Rheumatology 2010 criteria. All patients were examined by a rheumatologist to find the existence of effusion, ...

  8. The OMERACT ultrasound task force--status and perspectives

    DEFF Research Database (Denmark)

    Naredo, Esperanza; Wakefield, Richard J; Iagnocco, Annamaria

    2011-01-01

    - and interobserver reliability exercise; and (5) Delphi definition exercise in hand osteoarthritis, and reliability exercises. Study conclusions were discussed, and a future research agenda was approved, notably further validation of an OMERACT ultrasound global synovitis score (GLOSS) in RA, emphasizing......This article reports the most recent work of the Outcome Measures in Rheumatology (OMERACT) Ultrasound Task Force, and highlights the future research priorities discussed at the OMERACT 10 meeting. Results of the following studies were presented: (1) intra- and interobserver reliability...... of ultrasound detecting and scoring synovitis in different joints of patients with rheumatoid arthritis (RA); (2) systematic review of previous ultrasound scoring systems of synovitis in RA; (3) enthesitis systematic review and Delphi definition exercise in spondyloarthritis enthesitis; (4) enthesitis intra...

  9. Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system

    Science.gov (United States)

    Nuster, Robert; Paltauf, Guenther

    2017-07-01

    CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.

  10. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K., E-mail: kathryn.taylor@addenbrookes.nhs.uk [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); O' Keeffe, S.; Britton, P.D.; Wallis, M.G. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); Treece, G.M.; Housden, J. [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Parashar, D.; Bond, S. [Cambridge Cancer Trials Centre, Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge (United Kingdom); Cambridge Hub in Trials Methodology Research, MRC Biostatics Unit, University Forvie Site, Cambridge (United Kingdom); Sinnatamby, R. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom)

    2011-11-15

    Aims: To compare the performance of ultrasound elastography with conventional ultrasound in the assessment of axillary lymph nodes in suspected breast cancer and whether ultrasound elastography as an adjunct to conventional ultrasound can increase the sensitivity of conventional ultrasound used alone. Materials and methods: Fifty symptomatic women with a sonographic suspicion for breast cancer underwent ultrasound elastography of the ipsilateral axilla concurrent with conventional ultrasound being performed as part of triple assessment. Elastograms were visually scored, strain measurements calculated and node area and perimeter measurements taken. Theoretical biopsy cut points were selected. The sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV) were calculated and receiver operating characteristic (ROC) analysis was performed and compared for elastograms and conventional ultrasound images with surgical histology as the reference standard. Results: The mean age of the women was 57 years. Twenty-nine out of 50 of the nodes were histologically negative on surgical histology and 21 were positive. The sensitivity, specificity, PPV, and NPV for conventional ultrasound were 76, 78, 70, and 81%, respectively; 90, 86, 83, and 93%, respectively, for visual ultrasound elastography; and for strain scoring, 100, 48, 58 and 100%, respectively. There was no significant difference between any of the node measurements Conclusions: Initial experience with ultrasound elastography of axillary lymph nodes, showed that it is more sensitive than conventional ultrasound in detecting abnormal nodes in the axilla in cases of suspected breast cancer. The specificity remained acceptable and ultrasound elastography used as an adjunct to conventional ultrasound has the potential to improve the performance of conventional ultrasound alone.

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  12. Ultrasound-triggered drug release from vibrating microbubbles

    NARCIS (Netherlands)

    Y. Luan (Ying)

    2014-01-01

    markdownabstract__Abstract__ Diagnostic medical ultrasound may have a slightly longer history than what you expected. Its root dates back to 1930s and 1940s, when Theodore Dussik, a psychiatrist and neurologist, and his brother Friederich used a 1.5 MHz source to record signal variations after

  13. Self-demodulation effect on subharmonic response of ultrasound contrast agent

    Science.gov (United States)

    Daeichin, V.; Faez, T.; Needles, A.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.

    2012-03-01

    In this work the use of the self-demodulation (S-D) signal as a mean of microbubble excitation at the subharmonic (SH) frequency to enhance the SH emission of ultrasound contrast agent (UCA) is studied. SH emission from the UCA is of interest since it is produced only by the UCA and is free of the artifacts produced in harmonic imaging modes. The S-D wave is a low-frequency signal produced by nonlinear propagation of an ultrasound wave in the medium. Single element transducer experiments and numerical simulations were conducted at 10 MHz to study the effect of the S-D signal on the SH response of the UCA by modifying the envelope of the excitation bursts. For 6 and 20 transmitted cycles, the SH response is increased up to 25 dB and 22 dB because of the S-D stimulation for a burst with a rectangular envelope compared with a Gaussian envelope burst. Such optimized excitations were used in an array-based micro-ultrasound system (Vevo 2100, VisualSonics Inc., Toronto, ON, Canada) at 18 MHz for in vitro validation of SH imaging. This study suggests that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA and real-time SH imaging is feasible with shorter transmit burst (6- cycle) and low acoustic pressure (~150 KPa) at high frequencies (>15 MHz).

  14. Fault detection of a spur gear using vibration signal with multivariable statistical parameters

    Directory of Open Access Journals (Sweden)

    Songpon Klinchaeam

    2014-10-01

    Full Text Available This paper presents a condition monitoring technique of a spur gear fault detection using vibration signal analysis based on time domain. Vibration signals were acquired from gearboxes and used to simulate various faults on spur gear tooth. In this study, vibration signals were applied to monitor a normal and various fault conditions of a spur gear such as normal, scuffing defect, crack defect and broken tooth. The statistical parameters of vibration signal were used to compare and evaluate the value of fault condition. This technique can be applied to set alarm limit of the signal condition based on statistical parameter such as variance, kurtosis, rms and crest factor. These parameters can be used to set as a boundary decision of signal condition. From the results, the vibration signal analysis with single statistical parameter is unclear to predict fault of the spur gears. The using at least two statistical parameters can be clearly used to separate in every case of fault detection. The boundary decision of statistical parameter with the 99.7% certainty ( 3   from 300 referenced dataset and detected the testing condition with 99.7% ( 3   accuracy and had an error of less than 0.3 % using 50 testing dataset.

  15. Evaluation of Advanced Signal Processing Techniques to Improve Detection and Identification of Embedded Defects

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baba, Justin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    , or an improvement in contrast over conventional SAFT reconstructed images. This report documents our efforts in four fronts: 1) Comparative study between traditional SAFT and FBD SAFT for concrete specimen with and without Alkali-Silica Reaction (ASR) damage, 2) improvement of our Model-Based Iterative Reconstruction (MBIR) for thick reinforced concrete [5], 3) development of a universal framework for sharing, reconstruction, and visualization of ultrasound NDE datasets, and 4) application of machine learning techniques for automated detection of ASR inside concrete. Our comparative study between FBD and traditional SAFT reconstruction images shows a clear difference between images of ASR and non-ASR specimens. In particular, the left first harmonic shows an increased contrast and sensitivity to ASR damage. For MBIR, we show the superiority of model-based techniques over delay and sum techniques such as SAFT. Improvements include elimination of artifacts caused by direct arrival signals, and increased contrast and Signal to Noise Ratio. For the universal framework, we document a format for data storage based on the HDF5 file format, and also propose a modular Graphic User Interface (GUI) for easy customization of data conversion, reconstruction, and visualization routines. Finally, two techniques for ASR automated detection are presented. The first technique is based on an analysis of the frequency content using Hilbert Transform Indicator (HTI) and the second technique employees Artificial Neural Network (ANN) techniques for training and classification of ultrasound data as ASR or non-ASR damaged classes. The ANN technique shows great potential with classification accuracy above 95%. These approaches are extensible to the detection of additional reinforced, thick concrete defects and damage.

  16. Weak signal detection: A discrete window of opportunity for ...

    African Journals Online (AJOL)

    weak signal detection' as a potential opportunity to fill this void. Method: Combining futures and complexity theory, we reflect on two pilot case studies that involved the Archetype Extraction technique and the SenseMakerw CollectorTM tool.

  17. A Detection Algorithm for the BOC Signal Based on Quadrature Channel Correlation

    Directory of Open Access Journals (Sweden)

    Bo Qian

    2018-01-01

    Full Text Available In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis of the multiple autocorrelation peaks. The simulation results show that the interference of the carrier wave component is eliminated and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation. The BOC signal can be detected effectively when the SNR is greater than −12 dB. The detection ability can be improved further by increasing the number of sampling points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  19. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  20. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2-CREB-Trx-1 Signaling.

    Science.gov (United States)

    Zhao, Lu; Feng, Yi; Hu, Hong; Shi, Aiwei; Zhang, Lei; Wan, Mingxi

    2016-12-01

    Enhancing the action of nerve growth factor (NGF) is a potential therapeutic approach to neural regeneration. To facilitate neural regeneration, we investigated whether combining low-intensity pulsed ultrasound (LIPUS) and NGF could promote neurite outgrowth, an essential process in neural regeneration. In the present study, PC12 cells were subjected to a combination of LIPUS (1 MHz, 30 or 50 mW/cm 2 , 20% duty cycle and 100-Hz pulse repetition frequency, 10 min every other day) and NGF (50 ng/mL) treatment, and then neurite outgrowth was compared. Our findings indicated that the combined treatment with LIPUS (50 mW/cm 2 ) and NGF (50 ng/mL) promotes neurite outgrowth that is comparable to that achieved by NGF (100 ng/mL) treatment alone. LIPUS significantly increased NGF-induced neurite length, but not neurite branching. These effects were attributed to the enhancing effects of LIPUS on NGF-induced phosphorylation of ERK1/2 and CREB and the expression of thioredoxin (Trx-1). Furthermore, blockage of stretch-activated ion channels with Gd 3+ suppressed the stimulating effects of LIPUS on NGF-induced neurite outgrowth and the downstream signaling activation. Taken together, our findings suggest that LIPUS enhances NGF-induced neurite outgrowth through mechanotransduction-mediated signaling of the ERK1/2-CREB-Trx-1 pathway. The combination of LIPUS and NGF could potentially be used for the treatment of nerve injury and neurodegenerative diseases. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Ultrasound-detected bone erosion is a relapse risk factor after discontinuation of biologic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis whose ultrasound power Doppler synovitis activity and clinical disease activity are well controlled.

    Science.gov (United States)

    Kawashiri, Shin-Ya; Fujikawa, Keita; Nishino, Ayako; Okada, Akitomo; Aramaki, Toshiyuki; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Mizokami, Akinari; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Aoyagi, Kiyoshi; Maeda, Takahiro; Kawakami, Atsushi

    2017-05-25

    In the present study, we explored the risk factors for relapse after discontinuation of biologic disease-modifying antirheumatic drug (bDMARD) therapy in patients with rheumatoid arthritis (RA) whose ultrasound power Doppler (PD) synovitis activity and clinical disease activity were well controlled. In this observational study in clinical practice, the inclusion criteria were based on ultrasound disease activity and clinical disease activity, set as low or remission (Disease Activity Score in 28 joints based on erythrocyte sedimentation rate Ultrasound was performed in 22 joints of bilateral hands at discontinuation for evaluating synovitis severity and presence of bone erosion. Patients with a maximum PD score ≤1 in each joint were enrolled. Forty patients with RA were consecutively recruited (November 2010-March 2015) and discontinued bDMARD therapy. Variables at the initiation and discontinuation of bDMARD therapy that were predictive of relapse during the 12 months after discontinuation were assessed. The median patient age was 54.5 years, and the median disease duration was 3.5 years. Nineteen (47.5%) patients relapsed during the 12 months after the discontinuation of bDMARD therapy. Logistic regression analysis revealed that only the presence of bone erosion detected by ultrasound at discontinuation was predictive of relapse (OR 8.35, 95% CI 1.78-53.2, p = 0.006). No clinical characteristics or serologic biomarkers were significantly different between the relapse and nonrelapse patients. The ultrasound synovitis scores did not differ significantly between the groups. Our findings are the first evidence that ultrasound bone erosion may be a relapse risk factor after the discontinuation of bDMARD therapy in patients with RA whose PD synovitis activity and clinical disease activity are well controlled.

  2. Recent advances of ultrasound imaging in dentistry--a review of the literature.

    Science.gov (United States)

    Marotti, Juliana; Heger, Stefan; Tinschert, Joachim; Tortamano, Pedro; Chuembou, Fabrice; Radermacher, Klaus; Wolfart, Stefan

    2013-06-01

    Ultrasonography as an imaging modality in dentistry has been extensively explored in recent years due to several advantages that diagnostic ultrasound provides. It is a non-invasive, inexpensive, painless method and unlike X-ray, it does not cause harmful ionizing radiation. Ultrasound has a promising future as a diagnostic imaging tool in all specialties in dentistry, for both hard and soft tissue detection. The aim of this review is to provide the scientific community and clinicians with an overview of the most recent advances of ultrasound imaging in dentistry. The use of ultrasound is described and discussed in the fields of dental scanning, caries detection, dental fractures, soft tissue and periapical lesions, maxillofacial fractures, periodontal bony defects, gingival and muscle thickness, temporomandibular disorders, and implant dentistry. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Contrast-Enhanced Ultrasound and Near-Infrared Spectroscopy of the Neonatal Bowel: Novel, Bedside, Noninvasive, and Radiation-Free Imaging for Early Detection of Necrotizing Enterocolitis.

    Science.gov (United States)

    Al-Hamad, Suzanne; Hackam, David J; Goldstein, Seth D; Huisman, Thierry A G M; Darge, Kassa; Hwang, Misun

    2018-05-31

    Despite extensive research and improvements in the field of neonatal care, the morbidity and mortality associated with necrotizing enterocolitis (NEC) have remained unchanged over the past three decades. Early detection of ischemia and necrotic bowel is vital in improving morbidity and mortality associated with NEC; however, strategies for predicting and preventing NEC are lacking. Contrast-enhanced ultrasound (CEUS) and near-infrared spectroscopy (NIRS) are novel techniques in pediatrics that have been proven as safe modalities. CEUS has benefits over conventional ultrasound (US) by its improved real-time evaluation of the micro- and macrovascularities of normally and abnormally perfused tissue. US has been implemented as a useful adjunct to X-ray for earlier evaluation of NEC. NIRS is another noninvasive technique that has shown promise in improving early detection of NEC. The purpose of this article is to review the current understanding of changes in bowel perfusion in NEC, discuss the accuracy of abdominal US in detecting NEC, and explain how the use of CEUS and NIRS will enhance the precise and early detection of altered/pathological bowel wall perfusion in the initial development and course of NEC. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. The influence of ultrasound on ionizing radiation effects, 3

    International Nuclear Information System (INIS)

    Ishigaki, Takeo; Fujita, Katsuzo; Sakuma, Sadayuki

    1976-01-01

    The effects of simultaneous administration of ionizing radiation ( 60 Co gamma-rays) and ultrasound (1 MHz, 3 W/cm 2 ) on normal tissues of the auricules and kidneys, of rabbits were examined. Irreversible damages of the auricules were obtained with simultaneous irradiation of 690 R of 60 Co gamma-rays and exposure to ultrasound for 15 minutes, but with only irradiation of 2760 R of 60 Co gamma-rays or only administration of ultrasound for 60 minutes, damages were reversible. In 5 of 6 kidneys, interstitial nephritis was demonstrated histopathologically after simultaneous administration of 200 R of 60 Co gamma-rays and ultrasound for 5 minutes. However, with each alone (600 R of 60 Co gamma-rays and ultrasound for 60 minutes) no detectable changes were found. The results obtained from these experiments suggest that the effect of simultaneous irradiation with 60 Co gamma-rays and exposure to ultrasound on normal tissues may be synergistic and that ultrasound may potentiate the effects of 60 Co gamma-rays. (Evans, J.)

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  6. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Arrowood, Lloyd F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2018-03-15

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusion strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.

  7. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    Science.gov (United States)

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  8. Detection and Classification of Whale Acoustic Signals

    Science.gov (United States)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  9. Real-time bicycle detection at signalized intersections using thermal imaging technology

    Science.gov (United States)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  10. A comparison of the accuracy of ultrasound and computed tomography in common diagnoses causing acute abdominal pain

    Energy Technology Data Exchange (ETDEWEB)

    Randen, Adrienne van; Stoker, Jaap [Academic Medical Centre, Department of Radiology (suite G1-227), Amsterdam (Netherlands); Lameris, Wytze; Boermeester, Marja A. [Academic Medical Center, Department of Surgery, Amsterdam (Netherlands); Es, H.W. van; Heesewijk, Hans P.M. van [St Antonius Hospital, Department of Radiology, Nieuwegein (Netherlands); Ramshorst, Bert van [St Antonius Hospital, Department of Surgery, Nieuwegein (Netherlands); Hove, Wim ten [Gelre Hospitals, Department of Radiology, Apeldoorn (Netherlands); Bouma, Willem H. [Gelre Hospitals, Department of Surgery, Apeldoorn (Netherlands); Leeuwen, Maarten S. van [University Medical Centre, Department of Radiology, Utrecht (Netherlands); Keulen, Esteban M. van [Tergooi Hospitals, Department of Radiology, Hilversum (Netherlands); Bossuyt, Patrick M. [Academic Medical Center, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam (Netherlands)

    2011-07-15

    Head-to-head comparison of ultrasound and CT accuracy in common diagnoses causing acute abdominal pain. Consecutive patients with abdominal pain for >2 h and <5 days referred for imaging underwent both US and CT by different radiologists/radiological residents. An expert panel assigned a final diagnosis. Ultrasound and CT sensitivity and predictive values were calculated for frequent final diagnoses. Effect of patient characteristics and observer experience on ultrasound sensitivity was studied. Frequent final diagnoses in the 1,021 patients (mean age 47; 55% female) were appendicitis (284; 28%), diverticulitis (118; 12%) and cholecystitis (52; 5%). The sensitivity of CT in detecting appendicitis and diverticulitis was significantly higher than that of ultrasound: 94% versus 76% (p < 0.01) and 81% versus 61% (p = 0.048), respectively. For cholecystitis, the sensitivity of both was 73% (p = 1.00). Positive predictive values did not differ significantly between ultrasound and CT for these conditions. Ultrasound sensitivity in detecting appendicitis and diverticulitis was not significantly negatively affected by patient characteristics or reader experience. CT misses fewer cases than ultrasound, but both ultrasound and CT can reliably detect common diagnoses causing acute abdominal pain. Ultrasound sensitivity was largely not influenced by patient characteristics and reader experience. (orig.)

  11. Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjunction: Comparison of radiographic, ultrasound and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Faruch Bilfeld, Marie; Lapegue, Franck; Chiavassa Gandois, Helene; Bayol, Marie Aurelie; Sans, Nicolas [CHU Toulouse-Purpan, Service de Radiologie, Toulouse Cedex 9 (France); Bonnevialle, Nicolas [CHU Toulouse-Purpan, Service d' Orthopedie, Toulouse Cedex 9 (France)

    2017-02-15

    Acromioclavicular joint injuries are typically diagnosed by clinical and radiographic assessment with the Rockwood classification, which is crucial for treatment planning. The purpose of this study was to describe how the ultrasound findings of acromioclavicular joint injury compare with radiography and MRI findings. Forty-seven patients with suspected unilateral acromioclavicular joint injury after acute trauma were enrolled in this prospective study. All patients underwent digital radiography, ultrasound and 3T MRI. A modified Rockwood classification was used to evaluate the coracoclavicular ligaments. The classifications of acromioclavicular joint injuries diagnosed with radiography, ultrasound and MRI were compared. MRI was used as the gold standard. The agreement between the ultrasound and MRI findings was very good, with a correlation coefficient of 0.83 (95 % CI: 0.72-0.90; p < 0.0001). Ultrasound detected coracoclavicular ligament injuries with a sensitivity of 88.9 %, specificity of 90.0 %, positive predictive value of 92.3 % and negative predictive value of 85.7 %. The agreement between the ultrasound and radiography findings was poor, with a correlation coefficient of 0.69 (95 % CI: 0.51-0.82; p < 0.0001). Ultrasound is an effective examination for the diagnostic work-up of lesions of the coracoclavicular ligaments in the acute phase of an acromioclavicular injury. (orig.)

  12. Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjunction: Comparison of radiographic, ultrasound and MRI findings

    International Nuclear Information System (INIS)

    Faruch Bilfeld, Marie; Lapegue, Franck; Chiavassa Gandois, Helene; Bayol, Marie Aurelie; Sans, Nicolas; Bonnevialle, Nicolas

    2017-01-01

    Acromioclavicular joint injuries are typically diagnosed by clinical and radiographic assessment with the Rockwood classification, which is crucial for treatment planning. The purpose of this study was to describe how the ultrasound findings of acromioclavicular joint injury compare with radiography and MRI findings. Forty-seven patients with suspected unilateral acromioclavicular joint injury after acute trauma were enrolled in this prospective study. All patients underwent digital radiography, ultrasound and 3T MRI. A modified Rockwood classification was used to evaluate the coracoclavicular ligaments. The classifications of acromioclavicular joint injuries diagnosed with radiography, ultrasound and MRI were compared. MRI was used as the gold standard. The agreement between the ultrasound and MRI findings was very good, with a correlation coefficient of 0.83 (95 % CI: 0.72-0.90; p < 0.0001). Ultrasound detected coracoclavicular ligament injuries with a sensitivity of 88.9 %, specificity of 90.0 %, positive predictive value of 92.3 % and negative predictive value of 85.7 %. The agreement between the ultrasound and radiography findings was poor, with a correlation coefficient of 0.69 (95 % CI: 0.51-0.82; p < 0.0001). Ultrasound is an effective examination for the diagnostic work-up of lesions of the coracoclavicular ligaments in the acute phase of an acromioclavicular injury. (orig.)

  13. Detection of myasthenia gravis using electrooculography signals.

    Science.gov (United States)

    Liang, T; Boulos, M I; Murray, B J; Krishnan, S; Katzberg, H; Umapathy, K

    2016-08-01

    Myasthenia gravis (MG) is an autoimmune neuromuscular disorder resulting from skeletal muscle weakness and fatigue. An early common symptom is fatigable weakness of the extrinsic ocular muscles; if symptoms remain confined to the ocular muscles after a few years, this is classified as ocular myasthenia gravis (OMG). Diagnosis of MG when there are mild, isolated ocular symptoms can be difficult, and currently available diagnostic techniques are insensitive, non-specific or technically cumbersome. In addition, there are no accurate biomarkers to follow severity of ocular dysfunction in MG over time. Single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS) offers a way of detecting and measuring ocular muscle dysfunction in MG, however, challenges of these methods include a poor signal to noise ratio in quantifying eye muscle weakness especially in mild cases. This paper presents one of the attempts to use the electric potentials from the eyes or electrooculography (EOG) signals but obtained from three different forms of sleep testing to differentiate MG patients from age- and gender-matched controls. We analyzed 8 MG patients and 8 control patients and demonstrated a difference in the average eye movements detected between the groups. A classification accuracy as high as 68.8% was achieved using a linear discriminant analysis based classifier.

  14. The OMERACT ultrasound task force--status and perspectives.

    LENUS (Irish Health Repository)

    Naredo, Esperanza

    2011-09-01

    This article reports the most recent work of the Outcome Measures in Rheumatology (OMERACT) Ultrasound Task Force, and highlights the future research priorities discussed at the OMERACT 10 meeting. Results of the following studies were presented: (1) intra- and interobserver reliability of ultrasound detecting and scoring synovitis in different joints of patients with rheumatoid arthritis (RA); (2) systematic review of previous ultrasound scoring systems of synovitis in RA; (3) enthesitis systematic review and Delphi definition exercise in spondyloarthritis enthesitis; (4) enthesitis intra- and interobserver reliability exercise; and (5) Delphi definition exercise in hand osteoarthritis, and reliability exercises. Study conclusions were discussed, and a future research agenda was approved, notably further validation of an OMERACT ultrasound global synovitis score (GLOSS) in RA, emphasizing the importance of testing feasibility, predictive value, and added value over standard clinical variables. Future research areas will include validating scoring systems for enthesitis and osteoarthritis, and testing the metric qualities of ultrasound for evaluating tenosynovitis and structural damage in RA.

  15. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  16. Can Technical Analysis Signals Detect Price Reactions Around Earnings Announcement?: Evidence from Indonesia

    OpenAIRE

    Dedhy Sulistiawan; Jogiyanto Hartono

    2014-01-01

    This study examines whether technical analysis signals can detect price reactions before and after earnings announcement dates in Indonesian stock market. Earnings announcements produce reactions, both before and after the announcements. Informed investors may use private information before earnings announcements (Christophe, Ferri and Angel, 2004; Porter, 1992). Using technical analysis signals, this study expects that retail investors (uninformed investors) can detect preannouncements react...

  17. Movement and respiration detection using statistical properties of the FMCW radar signal

    KAUST Repository

    Kiuru, Tero

    2016-07-26

    This paper presents a 24 GHz FMCW radar system for detection of movement and respiration using change in the statistical properties of the received radar signal, both amplitude and phase. We present the hardware and software segments of the radar system as well as algorithms with measurement results for two distinct use-cases: 1. FMCW radar as a respiration monitor and 2. a dual-use of the same radar system for smart lighting and intrusion detection. By using change in statistical properties of the signal for detection, several system parameters can be relaxed, including, for example, pulse repetition rate, power consumption, computational load, processor speed, and memory space. We will also demonstrate, that the capability to switch between received signal strength and phase difference enables dual-use cases with one requiring extreme sensitivity to movement and the other robustness against small sources of interference. © 2016 IEEE.

  18. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  19. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  20. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  1. Two-phase xenon detector with gas amplification and electroluminescent signal detection

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Burenkov, A.A.; Grishkin, Yu.L.; Kovalenko, A.G.; Lebedenko, V.N.; Stekhanov, V.N.

    2008-01-01

    An optical technique for detecting ionization electrons produced during ionization of the liquid phase has been experimentally tested in two-phase (liquid-gas) xenon. The effects of gas and electroluminescent amplifications at the wire anode are simultaneously used for detection. This method allows construction of a supersensitive detector of small ionization signals-down to those corresponding to the detection of single electrons [ru

  2. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic signal processing technique

    International Nuclear Information System (INIS)

    Lee, J.H.; Oh, W.D.; Choi, S.W.; Park, M.H.

    2004-01-01

    'Full-text:' The stud bolts is one of the most critical parts for safety of reactor vessels in the nuclear power plants. However, in the application of ultrasonic technique for crack detection in stud bolt, some difficulties encountered are classification of crack signal from the signals reflected from threads part in stud bolt. In this study, shadow effect technique combined with new signal processing method is Investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of signal processing is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different to the reference signals. It is demonstrated that the small flaws are efficiently detected by novel ultrasonic technique combined with this new signal processing concept. (author)

  3. Coherent spectral amplitude coded label detection for DQPSK payload signals in packet-switched metropolitan area networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Guerrero Gonzalez, Neil; Jensen, Jesper Bevensee

    2011-01-01

    We report on an experimental demonstration of a frequency swept local oscillator-based spectral amplitude coding (SAC) label detection for DQPSK signals after 40km of fiber transmission. Label detection was performed for a 10.7Gbaud DQPSK signal labeled with a SAC label composed of four......-frequency tones with 500MHz spectral separation. Successful label detection and recognition is achieved with the aid of digital signal processing that allows for substantial reduction of the complexity of the detection optical front-end....

  4. An optimized ultrasound detector for photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Photoacoustic imaging has proven to be able to detect vascularization-driven optical absorption contrast associated with tumors. In order to detect breast tumors located a few centimeter deep in tissue, a sensitive ultrasound detector is of crucial importance for photoacoustic mammography. Further,

  5. Augmented Reality Using Transurethral Ultrasound for Laparoscopic Radical Prostatectomy: Preclinical Evaluation.

    Science.gov (United States)

    Lanchon, Cecilia; Custillon, Guillaume; Moreau-Gaudry, Alexandre; Descotes, Jean-Luc; Long, Jean-Alexandre; Fiard, Gaelle; Voros, Sandrine

    2016-07-01

    To guide the surgeon during laparoscopic or robot-assisted radical prostatectomy an innovative laparoscopic/ultrasound fusion platform was developed using a motorized 3-dimensional transurethral ultrasound probe. We present what is to our knowledge the first preclinical evaluation of 3-dimensional prostate visualization using transurethral ultrasound and the preliminary results of this new augmented reality. The transurethral probe and laparoscopic/ultrasound registration were tested on realistic prostate phantoms made of standard polyvinyl chloride. The quality of transurethral ultrasound images and the detection of passive markers placed on the prostate surface were evaluated on 2-dimensional dynamic views and 3-dimensional reconstructions. The feasibility, precision and reproducibility of laparoscopic/transurethral ultrasound registration was then determined using 4, 5, 6 and 7 markers to assess the optimal amount needed. The root mean square error was calculated for each registration and the median root mean square error and IQR were calculated according to the number of markers. The transurethral ultrasound probe was easy to manipulate and the prostatic capsule was well visualized in 2 and 3 dimensions. Passive markers could precisely be localized in the volume. Laparoscopic/transurethral ultrasound registration procedures were performed on 74 phantoms of various sizes and shapes. All were successful. The median root mean square error of 1.1 mm (IQR 0.8-1.4) was significantly associated with the number of landmarks (p = 0.001). The highest accuracy was achieved using 6 markers. However, prostate volume did not affect registration precision. Transurethral ultrasound provided high quality prostate reconstruction and easy marker detection. Laparoscopic/ultrasound registration was successful with acceptable mm precision. Further investigations are necessary to achieve sub mm accuracy and assess feasibility in a human model. Copyright © 2016 American Urological

  6. Detection of anomalous signals in temporally correlated data (Invited)

    Science.gov (United States)

    Langbein, J. O.

    2010-12-01

    Detection of transient tectonic signals in data obtained from large geodetic networks requires the ability to detect signals that are both temporally and spatially coherent. In this report I will describe a modification to an existing method that estimates both the coefficients of temporally correlated noise model and an efficient filter based on the noise model. This filter, when applied to the original time-series, effectively whitens (or flattens) the power spectrum. The filtered data provide the means to calculate running averages which are then used to detect deviations from the background trends. For large networks, time-series of signal-to-noise ratio (SNR) can be easily constructed since, by filtering, each of the original time-series has been transformed into one that is closer to having a Gaussian distribution with a variance of 1.0. Anomalous intervals may be identified by counting the number of GPS sites for which the SNR exceeds a specified value. For example, during one time interval, if there were 5 out of 20 time-series with SNR>2, this would be considered anomalous; typically, one would expect at 95% confidence that there would be at least 1 out of 20 time-series with an SNR>2. For time intervals with an anomalously large number of high SNR, the spatial distribution of the SNR is mapped to identify the location of the anomalous signal(s) and their degree of spatial clustering. Estimating the filter that should be used to whiten the data requires modification of the existing methods that employ maximum likelihood estimation to determine the temporal covariance of the data. In these methods, it is assumed that the noise components in the data are a combination of white, flicker and random-walk processes and that they are derived from three different and independent sources. Instead, in this new method, the covariance matrix is constructed assuming that only one source is responsible for the noise and that source can be represented as a white

  7. Ultrasound in the diagnosis of palpable abdominal masses in children.

    Science.gov (United States)

    Annuar, Z; Sakijan, A S; Annuar, N; Kooi, G H

    1990-12-01

    Ultrasound examinations were done to evaluate clinically palpable abdominal masses in 125 children. The examinations were normal in 21 patients. In 15 patients, the clinically palpable masses were actually anterior abdominal wall abscesses or hematomas. Final diagnosis was available in 87 of 89 patients with intraabdominal masses detected on ultrasound. The majority (71%) were retroperitoneal masses where two-thirds were of renal origin. Ultrasound diagnosis was correct in 68 patients (78%). All cases of hydronephrosis were correctly diagnosed based on characteristic ultrasound appearances. Correct diagnoses of all cases of adrenal hematoma, psoas abscess, liver hematoma, liver abscess and one case of liver metastases were achieved with correlation of relevant clinical information.

  8. Emergency medicine physicians performed ultrasound for pediatric intussusceptions

    Directory of Open Access Journals (Sweden)

    Yi-Jung Chang

    2013-08-01

    Full Text Available Background: Intussusception is the common acute abdomen in children with difficult clinical diagnosis. The routine ultrasound has recently been proposed as the initial diagnostic modality with high accuracy, but is not available for 24 h by gastroenterologists. We aimed to evaluate the validation of bedside ultrasound for intussusceptions performed by pediatric emergency physicians with ultrasound training during the night or holiday. Methods: A retrospective study was conducted in children with suspected intussusceptions when routine ultrasounds by gastroenterologists were not available over the period from July 2004 to July 2008. Patients were divided into two groups: those diagnosed by emergency physicians with ultrasound training and without training. The clinical characteristics and course for all patients were reviewed and compared for seeking the difference. Results: A total of 186 children were included. One hundred and thirteen (61% children were diagnosed by pediatric emergency physician with ultrasound training. The clinical symptoms were not statistically different between the two groups. The diagnostic sensitivity of the ultrasound training group was significantly higher (90% vs. 79%, p = 0.034. Children of the training group also had significantly shorter hospital stay duration at emergency departments before reduction (2.41 ± 2.01 vs. 4.58 ± 4.80 h, p = 0.002. Conclusion: Bedside ultrasound performed by pediatric emergency physicians with ultrasound training is a sensitive test for detecting intussusceptions. Knowledge and use of bedside ultrasound can aid the emergency physician in the diagnosis of pediatric intussusceptions with less delay in treatment.

  9. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.

    Science.gov (United States)

    Heo, Seo Weon; Kim, Hyungsuk

    2010-05-01

    An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  13. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  14. Criteria for assessing the quality of signal processing techniques for acoustic leak detection

    International Nuclear Information System (INIS)

    Prabhakar, R.; Singh, O.P.

    1990-01-01

    In this paper the criteria used in the first IAEA coordinated research programme to assess the quality of signal processing techniques for sodium boiling noise detection are highlighted. Signal processing techniques, using new features sensitive to boiling and a new approach for achieving higher reliability of detection, which were developed at Indira Gandhi Centre for Atomic Research are also presented. 10 refs, 3 figs, 2 tabs

  15. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging.

    Science.gov (United States)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-07

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd(3+) ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T(1)-weighted turbo-spin-echo sequence MR imaging. Heavy T(2)*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T(1)-, T(2)- and T(2)*-weighted MR images. The r(1) and r(2) relaxivities for Gd-DTPA were 7.69 and 21.35 s(-1)mM(-1), respectively, indicating that the MBs represent a positive contrast agent in T(1)-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual

  16. Ultrasound Burst Phase Thermography (UBP) for applications in the automotive industry

    International Nuclear Information System (INIS)

    Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.

    2003-01-01

    The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented

  17. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    Science.gov (United States)

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  19. Development of the clamp-on ultrasound flow meter for steam in pipe

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Tsukada, Keisuke; Kikura, Hiroshige; Tanaka, Katsuhiko; Umezawa, Shuichi

    2014-01-01

    Gas flow metering of a pipe flow such as chemical plant, reactors and power stations is one of the significant techniques that enable to diagnose and control the behavior of working fluid, and to govern the entire fluid system in the industrial facilities. In order to operate the aforementioned systems, the precise measurement of the flow rate is required. The conventional flow meter, however, needs the installation of the spool piece that disturbs the stable and continuous operation of the plants. i.e., the destructive set-up process of the measurement section is necessary. In this study, the novel ultrasound gas flow metering technique has been developed by means of the clamp-on ultrasound transmitter and receivers. By the numerical simulation, the ultrasound propagation through the gas and metal pipe was firstly investigated. The effects of the external damping material, applicable vapor pressure range as well as the appropriate shape of the acoustic lens were analyzed that was followed by the feasibility test of the actual measurement system. The pressurized vapor flow was used as a working fluid. Pressure and sensor dimension were varied to compare the efficiency of the ultrasound transmission between transducers. The temperature of the working fluid was beyond 373 K. The ultrasound pulsar-receiver was used that could control the frequency, amplitude and phase of the burst sinusoids. The signal processing algorithm was developed in order to discriminate the direct signal through the gaseous flow from the unwanted circumference noise through the solid stainless pipe. The linear relation between flow rate and ultrasound peak shift was confirmed. (author)

  20. Screening for significant chronic liver disease by using three simple ultrasound parameters

    International Nuclear Information System (INIS)

    Lignon, Grégoire; Boursier, Jérome; Delumeau, Stéphanie; Michalak-Provost, Sophie; Lebigot, Jérome; Oberti, Frederic

    2015-01-01

    Highlights: • Three US parameters have diagnosis accuracy for the diagnosis of severe fibrosis equal to 66%. • These three signs detect unidentified fibrosis with a predictive positive value of 32%. • It would be an easy way to detect patients with silent chronic liver diseases. - Abstract: Objectives: Chronic liver diseases remain asymptomatic for many years. Consequently, patients are diagnosed belatedly, when cirrhosis is unmasked by lifethreatening complications. We aimed to identify simple ultrasound parameters for the screening of patients with unknown significant chronic liver disease. Methods: Three hundred and twenty seven patients with chronic liver disease, liver biopsy, and ultrasound examination were included in the derivation set. 283 consecutive patients referred for ultrasound examination were included in the validation set; those selected according to the ultrasound parameters identified in the derivation set were then referred for specialized consultation including non-invasive fibrosis tests and ultimately liver biopsy if liver fibrosis was suspected. Results: In the derivation set, three ultrasound parameters were independent predictors of severe fibrosis: liver surface irregularity, spleen length (>110 mm), and demodulation of hepatic veins. The association of ≥2 of the three above parameters provided 49.1% sensitivity and 86.9% specificity. In the validation set, at ≥2 of the three parameters were present in 23 (8%) of the patients. Among these patients, 8 had liver fibrosis (F ≥ 1), 5 had significant fibrosis (F ≥2) and two cirrhosis. Conclusion: The generalized search of three simple ultrasound signs in patients referred for abdominal ultrasound examination may be an easy way to detect those with silent but significant chronic liver disease