WorldWideScience

Sample records for ultrasound power measurements

  1. HIFU Ultrasound Power Measurements at INRiM

    International Nuclear Information System (INIS)

    Durando, G; Guglielmone, C; Musacchio, C

    2011-01-01

    In this work the new system for the ultrasound power measurement of High Intensity Focused Ultrasound transducers realized at INRIM ultrasounds laboratory is presented. The system is based on a submersible load cell that takes the place of the balance. This solution presents essentially two advantages. The first one, of mechanical nature, is relevant to the fact that the target is directly connected to the force transducer, eliminating unwanted target motion at high power. The second, of electric nature, concerns the possibility to reduce the insonation time (the ON period of the electric driving signal to the HIFU transducer) under of 2 s, and is allowed for by the faster response of the force transducer (700 Hz bandwidth). The main components of uncertainty and the overall budget of the measurement system are presented together with the results of measures of conductance, G, carried on a HIFU transducer, at the work frequencies 2.0 MHz and 6.38 MHz, for values of power ranging from 10 W to 100 W. The results of the ultrasonic conductance, G, obtained with the new system are compared with values obtained using the traditional measuring system for low powers (P ≤ 20W).

  2. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    Science.gov (United States)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  3. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  4. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  5. Measurement of ultrasound power using a calorimeter

    Science.gov (United States)

    Morgado, G.; Miqueleti, S.; Costa-Felix, R. P. B.

    2018-03-01

    This paper presents a comparison between the ultrasound power of a 1 MHz therapy equipment on the water using a calorimeter and a radiation force balance. For a range of 5 to 10 W, the results presented a normalized error less than 1, disclosing compatibility of the results from the developed system and the radiation force balance. The calorimetric method might be used as a faster and cheaper means for the verification of the ultrasonic power emitted by an equipment for physiotherapeutic treatment.

  6. Relative ultrasound energy measurement circuit

    OpenAIRE

    Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker

    2005-01-01

    A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...

  7. Integrated low power ultrasound sensor interfaces

    OpenAIRE

    Gustafsson, Martin

    2005-01-01

    Imagine that the technical development can take the ultrasound measurement systems from the large piece of machinery today, to a coin size system tomorrow. The factor that has reduced the size of electronic systems over time is integration and integrated circuits. In this thesis circuit simulator models of complete ultrasound systems are used to design custom integrated circuits. These circuits are optimized for low power consumption and small size. The models that are used predict the acoust...

  8. Influence of power density on the setting behaviour of light-cured glass-ionomer cements monitored by ultrasound measurements.

    Science.gov (United States)

    Tonegawa, Motoka; Yasuda, Genta; Chikako, Takubo; Tamura, Yukie; Yoshida, Takeshi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2009-07-01

    To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements. The ultrasound equipment comprised a pulser-receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm(2). The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements. When the LCGICs were light-irradiated, each curve displayed an initial plateau at approximately 1500 m/s and then rapidly increased to a second plateau at approximately 2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm(2) than with a power density of 600 mW/cm(2). Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated. The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.

  9. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  10. Studies on the use of power ultrasound in leather dyeing.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  11. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  12. Instantaneous input electrical power measurements of HITU transducer

    International Nuclear Information System (INIS)

    Karaboece, B; Guelmez, Y; Rajagapol, S; Shaw, A

    2011-01-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  13. Instantaneous input electrical power measurements of HITU transducer

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Guelmez, Y [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagapol, S; Shaw, A, E-mail: baki.karaboce@ume.tubitak.gov.t [National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW (United Kingdom)

    2011-02-01

    HITU (High Intensity Theraupetic Ultrasound) transducers are widely used in therapeutic ultrasound in medicine. The output ultrasonic power of HITU transducer can be measured in number of methods described in IEC 61161 standard [1]. New IEC standards specifically for measurement of HITU equipment are under development. The ultrasound power radiated from a transducer is dependent on applied input electrical voltage and current and consequently power. But, up to now, no standardised method has been developed and adopted for the input electrical power measurements. Hence, a workpackage was carried out for the establishment of such method in the frequency range of 1 to 3 MHz as a part of EURAMET EMRP Era-net plus 'External Beam Cancer Therapy' project. Several current shunts were developed and evaluated. Current measurements were also realized with Philips current probe and preamplifier at NPL and Agilent current probe at UME. In this paper, a method for the measurement of instantaneous electrical power delivered to a reactive ultrasound transducer in the required frequency range is explored.

  14. Power and color Doppler ultrasound settings for inflammatory flow

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used....... On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA......) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. RESULTS...

  15. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    Science.gov (United States)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  16. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  17. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    Science.gov (United States)

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M.P.; Hihn, J.Y., E-mail: jean-yves.hihn@univ-fcomte.fr

    2015-11-15

    Graphical abstract: Result of an etching step in ultrasound presence on intermetallic particles on a 2024 aluminum alloy. - Highlights: • Etching step prior to anodization on 2024 aluminum alloy. • Etching rate measurement and hydroxide film characterization by GDOES and SEM. • Various etching parameters (temperature, presence or absence of ultrasound). • Improvement of corrosion resistance show by electrochemical tests. - Abstract: Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  19. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M.P.; Hihn, J.Y.

    2015-01-01

    Graphical abstract: Result of an etching step in ultrasound presence on intermetallic particles on a 2024 aluminum alloy. - Highlights: • Etching step prior to anodization on 2024 aluminum alloy. • Etching rate measurement and hydroxide film characterization by GDOES and SEM. • Various etching parameters (temperature, presence or absence of ultrasound). • Improvement of corrosion resistance show by electrochemical tests. - Abstract: Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  20. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.

    Science.gov (United States)

    Rekhi, Angad S; Khuri-Yakub, Butrus T; Arbabian, Amin

    2017-10-01

    We propose the use of airborne ultrasound for wireless power transfer to mm-sized nodes, with intended application in the next generation of the Internet of Things (IoT). We show through simulation that ultrasonic power transfer can deliver 50 [Formula: see text] to a mm-sized node 0.88 m away from a ~ 50-kHz, 25-cm 2 transmitter array, with the peak pressure remaining below recommended limits in air, and with load power increasing with transmitter area. We report wireless power recovery measurements with a precharged capacitive micromachined ultrasonic transducer, demonstrating a load power of 5 [Formula: see text] at a simulated distance of 1.05 m. We present aperture efficiency, dynamic range, and bias-free operation as key metrics for the comparison of transducers meant for wireless power recovery. We also argue that long-range wireless charging at the watt level is extremely challenging with existing technology and regulations. Finally, we compare our acoustic powering system with cutting edge electromagnetically powered nodes and show that ultrasound has many advantages over RF as a vehicle for power delivery. Our work sets the foundation for further research into ultrasonic wireless power transfer for the IoT.

  1. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the foot ultrasound scanner reduced precision errors by half (p quantitative ultrasound measurements is feasible. (E-mail: m.daugschies@rad.uni-kiel.de) (C) 2015 World Federation for Ultrasound in Medicine & Biology....

  2. Muscle blood volume assessment during exercise with Power Doppler Ultrasound

    NARCIS (Netherlands)

    Heres, H.M.; Tchang, B.C.Y.; Schoots, T.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

    2016-01-01

    Assessment of perfusion adaptation in muscle during exercise can provide diagnostic information on cardiac and endothelial diseases. Power Doppler Ultrasound (PDUS) is known for its feasibility in the non-invasive measurement of moving blood volume (MBV), a perfusion related parameter. In this

  3. Application of power ultrasound in radiochemistry

    International Nuclear Information System (INIS)

    Moisy, Ph.; Venault, L.; Blanc, P.; Madic, C.; Nikitenko, S.

    1998-01-01

    The chemical effects of ultrasound are related to cavitation process: nucleation, bubble growth and cavitation collapse. Sono-chemical reactions occur due to the rapid heating of the contents of cavitation bubbles. The shock-waves generated by cavitation collapse cause intense emulsification of the immiscible liquids. The CEA/Marcoule research group investigated the effect of power ultrasound on the homogeneous and heterogeneous (liquid-liquid) actinide reactions, in aqueous nitric acid media. It was found that U(IV), Np(V) and Pu(III) can be rapidly oxidized in HNO 3 solutions by HNO 2 , generated by the effect of power ultrasound on HNO 3 solutions. HNO 2 , formed during HNO 3 sono-lysis, decomposes hydrazinium nitrate within the cavitation bubbles. This makes it possible to the control actinide oxidation states without adding any side chemical reagents (NaNO 2 , for example). The quantitative data on the effect in the ultrasonic field in nitric acid medium are discussed, and sono-chemical mechanisms are proposed for nitrous acid formation and hydrazinium nitrate decomposition. In the presence of anti-nitrous reagents, such as hydrazinium nitrate and sulfamic acid, U(IV) was found to be oxidized and Pu(IV) reduced by H 2 O 2 formed as the result of aqueous nitric acid sono-lysis. The kinetics of H 2 O 2 formation is faster than in water, for the same sono-chemical conditions. Np(V) is rapidly oxidized, by aqueous phase HNO 2 , under the effect of ultrasound on the two-phase system TBP-dodecane/HNO 3 . Intense emulsification of the liquid/liquid system accelerates the mass transfer, of Np(VI) formed, into the organic phase. The quantitative effect of power ultrasound in aqueous nitric acid, with or without anti-nitrous reagents, can be used to predict the behavior of actinides in the ultrasonic field in nitric acid medium. (author)

  4. Solubilization of bovine gelatin using power ultrasound: gelation without heating.

    Science.gov (United States)

    Farahnaky, Asgar; Zendeboodi, Fatemeh; Azizi, Rezvan; Mesbahi, Gholamreza; Majzoobi, Mahsa

    2017-04-01

    The aim of this study was to investigate the efficacy of power ultrasound without using any heating stage in solubilizeing gelatin dispersions, and to characterize the mechanical and microstructural properties of the resulting gels using texture analysis and scanning electron microscopy, respectively. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. For solubilising gelatin, an ultrasound equipment with a frequency of 20 kHz, amplitude of 100% and power range of 50-150 W was used. Aqueous gelatin dispersions (4% w/v) were subjected to ultrasound for different times (40-240 s) at a constant temperature of 13C. Applying ultrasound to gelatin dispersions caused increases in water absorption and water solubility of the hydrocolloid. The textural parameters of the resulting gelatin gels, increased with increasing time and power of ultrasound. Moreover, a generalized Maxwell model with three elements was used for calculating relaxation times of the gels. The microstructural observations by SEM showed that the structural cohesiveness of the gels increased by increasing ultrasonication time. Ultrasound-assisted solubilization of gelatin can have emerging implications for industrial uses in pharmaceuticals, food and non-food systems. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. Therefore, the use of gelatin as a hydrocolloid in food processings or pharmaceutical formulations which lack a heating step has been a technological and practical challenge. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. Ultrasound-assisted solubilisation of gelatin can have emerging implications for industrial uses in pharmaceuticals

  5. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  6. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  7. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Science.gov (United States)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  9. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    Science.gov (United States)

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (pultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  10. Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum

    International Nuclear Information System (INIS)

    Yuan Yi; Lu Cheng-Biao; Li Xiao-Li

    2015-01-01

    Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. (paper)

  11. Novel power MOSFET-based expander for high frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Practical sonochemistry power ultrasound uses and applications

    CERN Document Server

    Mason, T J

    2002-01-01

    This updated version of Practical Sonochemistry for advanced students and teachers in chemistry and chemical engineering conveys the increasing growth in applications and equipment to power ultrasound. Equipment now on the market offers a wider range of frequencies with more reproducible experimentation and a variety of scale-up systems. The book provides detailed descriptions of newer ultrasonic equipment and its applications, and practical laboratory uses of ultrasound technology for industrial scale performance.Modern exercises familiarise readers with recent sonochemical operations

  13. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    Science.gov (United States)

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.

  14. Ultrasound generation with high power and coil only EMAT concepts.

    Science.gov (United States)

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  16. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  17. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    Science.gov (United States)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  18. Value Of Three Dimensional Power Doppler Ultrasound In Prediction Of Endometrial Carcinoma In Patients With Postmenopausal Bleeding

    International Nuclear Information System (INIS)

    Abou-Gabal, A.; Akl, Sh.A.; Hussain, Sh.H.; Allam, H.A.

    2013-01-01

    Objective: to determine whether endometrial volume or power Doppler indices as measured by 3D ultrasound imaging can discriminate between benign and malignant endometrium in women with postmenopausal bleeding and endometrial thickness > 5 mm. Study design: Eighty-four patients with postmenopausal bleeding and endometrial thickness > 5 mm underwent 3D power Doppler ultrasound examination of the corpus uteri. The endometrial volume was calculated, along with the vascularisation index (VI), flow index and vascularisation flow index (VFI) in the endometrium. The gold standard was the histological diagnosis of the endometrium. Results: There were 56 benign and 28 malignant endometrial. Endometrial thickness and volume were significantly larger in malignant than in benign endometrial, and flow indices in the endometrium were Significantly higher. The area under the ROC curve (AUC) of endometrial thickness was 0.83, that of endometrial volume 0.73, and that of the best power Doppler variable FI 0.93. The best logistic regression model for predicting malignancy contained the variables endometrial thickness and FI. Its AUC was 0.93. Conclusion: the diagnostic performance of endometrial volume measured by 3d imaging with regard to discriminating between benign and malignant endometrium was not superior to that of endometrial thickness measured by 2D ultrasound examination, but 3D power Doppler flow indices are good diagnostic tool in predicting endometrial carcinoma

  19. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure.

    Science.gov (United States)

    Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen

    2018-05-31

    Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.

  20. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    Science.gov (United States)

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  1. Comparison of IOL--master and ultrasound biometry in preoperative intra ocular lens (IOL) power calculation.

    Science.gov (United States)

    Kolega, Marija Škara; Kovačević, Suzana; Čanović, Samir; Pavičić, Ana Didović; Bašić, Jadranka Katušić

    2015-03-01

    Postoperative refractive outcome largely depends on the accuracy of calculating power of implanted IOL. Lens power calculation can be done by conventional ultrasound biometry and partial coherence laser interferometry (IOL Master). The aim was to compare the accuracy of IOL power calculations using conventional ultrasound biometry and partial coherence laser interferometry.40 eyes were included in this prospective randomized trial. Twenty eyes underwent IOL master and 20 eyes had aplanation ultrasound biometry. There were included only eyes with age-related cataract and postoperative natural visual acuity (VA) 0.7. Visual acuity was performed 6 weeks after cataract surgery. After 6 weeks best natural visual acuity were 0.9 (± 0.1) in IOL-Master group and 0.85 (± 0.15) in ultrasound biometry. The postoperative mean absolute refractive error was 0.75 (± 0.5) D for ultrasound biometry and 0.50 (± 0.50) D for IOL-Master. Optical biometry with the IOL-Master proved to be slightly more accurate than ultrasound biometry for IOL power calculation.

  2. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  3. Inter-laboratory comparison of HITU power measurement methods and capabilities

    International Nuclear Information System (INIS)

    Jenderka, K V; Durando, G; Karaboece, B; Rajagopal, S; Shaw, A

    2011-01-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  4. Inter-laboratory comparison of HITU power measurement methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jenderka, K V [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Durando, G [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino (Italy); Karaboece, B [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagopal, S; Shaw, A, E-mail: kvjend@ieee.org [National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW (United Kingdom)

    2011-02-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  5. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige

    2008-01-01

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  6. Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration

    International Nuclear Information System (INIS)

    Suri, Rominder P.S.; Nayak, Mohan; Devaiah, Uthappa; Helmig, Edward

    2007-01-01

    There are many reports documenting the adverse effects, such as feminization of fish, of estrogen hormones in the environment. One of the major sources of these compounds is from municipal wastewater effluents. The biological processes at municipal wastewater treatment plants cannot completely remove these compounds. This paper discusses the use of ultrasound to destroy estrogen compounds in water. The study examines the effect of ultrasound power density and power intensity on the destruction of various estrogen compounds which include: 17α-estradiol, 17β-estradiol, estrone, estriol, equilin, 17α-dihydroequilin, 17α-ethinyl estradiol and norgestrel. These tests were conducted in single component batch and flow through reactors using 0.6, 2 and 4 kW ultrasound sources. The sonolysis process produced 80-90% destruction of individual estrogens at initial concentration of 10 μg/L within 40-60 min of contact time. First order rate constants for the individual compounds under different conditions are presented. The estrogen degradation rates increase with increase in power intensity. However, the energy efficiency of the reactor was higher at lower power density. The 4 kW ultrasound reactor was more energy efficient compared to the 0.6 and 2 kW sonicators

  7. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jida Xing

    2015-06-01

    Full Text Available In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared

  8. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    Science.gov (United States)

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  9. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    Science.gov (United States)

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  10. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Advantages and disadvantages of high power ultrasound application in the dairy industry

    Directory of Open Access Journals (Sweden)

    Mislav Muža

    2009-12-01

    Full Text Available Preservation of food with thermal sterilisation is usually the most common way nowadays. Besides the positive aim of preservation regarding microorganisms’ reduction, elevated temperature in processing simultaneously causes serious changes in nutritive and organoleptical properties of food. Loss of food quality is related to structure and texture deformations, modification of macromolecules and creation of new compounds coming from reactions that are catalised with temperature. One of the new non-thermal processes that can in large scale improve different processes in food industry is ultrasound. In the last five years, new applications of high power ultrasound (HPU include inactivation of enzymes and microorganisms, assistance in membrane processes, improvement of dairy product texture, improvement of functional properties of proteins etc. High power ultrasound application is used in emulsification and milk homogenization, but in these processes the most important thing is to monitor possible negative effect like oxidation of fats, inactivation of valuable enzymes and denaturation of proteins. Controled and optimized application of ultrasound demands application of specific ultrasound frequency and optimal treatment time. Treatments should be performed at lower temperatures to avoid negative side effects on treated materials.

  12. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    Science.gov (United States)

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  13. Speed of sound in biodiesel produced by low power ultrasound

    Science.gov (United States)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2018-03-01

    The quality control of the biodiesel produced is an important issue to be addressed for every manufacturer or retailer. The speed of sound is a property that has an influence on the quality of the produced fuel. This work presents the evaluation about the speed of sound in biodiesel produced with the aid of low power ultrasound in the frequencies of 1 MHz and 3 MHz. The speed of sound was measured by pulse-echo technique. The ultrasonic frequency used during reaction affects the speed of sound in biodiesel. The larger expanded uncertainty for adjusted curve was 4.9 m.s-1.

  14. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    Science.gov (United States)

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.

    Science.gov (United States)

    Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T

    2011-02-01

    The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Carotid stenosis measurement on colour Doppler ultrasound: Agreement of ECST, NASCET and CCA methods applied to ultrasound with intra-arterial angiographic stenosis measurement

    International Nuclear Information System (INIS)

    Wardlaw, Joanna M.; Lewis, Steff

    2005-01-01

    Purpose: Carotid stenosis is usually determined on Doppler ultrasound from velocity readings. We wondered if angiography-style stenosis measurements applied to ultrasound images improved accuracy over velocity readings alone, and if so, which measure correlated best with angiography. Materials and methods: We studied prospectively patients undergoing colour Doppler ultrasound (CDU) for TIA or minor stroke. Those with 50%+ symptomatic internal carotid artery (ICA) stenosis had intra-arterial angiography (IAA). We measured peak systolic ICA velocity, and from the ultrasound image, the minimal residual lumen, the original lumen (ECST), ICA diameter distal (NASCET) and CCA diameter proximal (CCA method) to the stenosis. The IAAs were measured by ECST, NASCET and CCA methods also, blind to CDU. Results: Amongst 164 patients (328 arteries), on CDU the ECST, NASCET and CCA stenosis measures were similarly related to each other (ECST = 0.54 NASCET + 46) as on IAA (ECST = 0.6 NASCET + 40). Agreement between CDU- and IAA-measured stenosis was similar for ECST (r = 0.51), and CCA (r = 0.48) methods, and slightly worse for NASCET (r = 0.41). Adding IAA-style stenosis to the peak systolic ICA velocity did not improve agreement with IAA over peak systolic velocity alone. Conclusion: Angiography-style stenosis measures have similar inter-relationships when applied to CDU, but do not improve accuracy of ultrasound over peak systolic ICA velocity alone

  17. Comparison of the effect of low-power laser with therapeutic ultrasound on the treatment of rotator cuff tendonitis

    Directory of Open Access Journals (Sweden)

    asghar Akbari

    2009-01-01

    Full Text Available Akbari A1 1. Assistant Professor, Department of Physiotherapy, Faculty of Medicine, Zahedan University of Medical Sciences Abstract Background: Shoulder pain is the third most prevalent cause of musculoskeletal disorder after low back and cervical pains. Most of the shoulder symptoms are attributed to the rotator cuff. The objective of this study was to compare the effects of low-power laser therapy with ultrasound therapy on the patients with rotator cuff tendonitis. Materials and methods: This clinical trial was performed in Zahedan university of medical sciences in 2006. Thirty patients with rotator cuff tendonitis were randomly assigned to either a low-power laser therapy group (15 patients or an ultrasound therapy group (15 patients. Strength (kg of shoulder abductor, and internal and external rotator muscles, as well as range (degree of shoulder abduction, and internal and external rotation were measured before and after intervention using hand-held dynamometer and goniometer respectively. The pain was evaluated using the visual analogue scale. In the laser group, a low-level Ga-As laser was applied with a 100 mw point probe (average power, wave length of 905 nm, pulse duration of 200 ns, 6 J/cm2 dosage, 5 KHz frequency, and lasting 3 minutes. The ultrasound treatment was applied with a power of 1 W/cm2, a frequency of 1 MHz, pulse mode of 1:4, and lasting 10 minutes on each occasion. The treatment was carried out 3 times weekly for 10 days. The data were analyzed using independent sample t-test and paired t-test. Results: The pain in the laser group was significantly decreased from 6.06±1.6 to 5±1.3 in abduction, from 5.3±1.5 to 4.7±1.3 in internal rotation, and from 5.06±1.4 to 4.3±1.44 in external rotation (p0.05. A significant improvement after treatment was observed in the laser group in measures of shoulder abductor, internal rotator and external rotator muscles strength compared to those of the ultrasound therapy group (p<0

  18. Power ultrasound effects for in situ compatibilization of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Ryu, Joung Gul; Park, Sang Wan; Kim, Hyungsu; Lee, Jae Wook

    2004-01-01

    Polymer-clay nanocomposites of various concentrations were prepared by ultrasonically assisted polymerization and melt mixing processes. The sonication process using power ultrasonic wave was employed to enhance nano-scale dispersion during melt mixing of monomer, polymer and organically modified clay. According to the unique mode of power ultrasound wave, we expected enhanced breakup of layered silicate bundle and further reduction in the size of dispersed phase with better homogeneity compared to the in situ polymerization. The optimum conditions to perform stable exfoliated nanocomposites were studied by various compositions and conditions. Dispersion characteristics and morphology of the nanocomposites were verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Rheological behaviors were measured under dynamic frequency sweep mode using Rheometric science ARES

  19. The clinical study of 2D and power doppler ultrasound in esophagus varix

    International Nuclear Information System (INIS)

    Li Qiang; Zhou Liang; Zhang Yucheng; Yang Minghua; Ruan Fenglian; Lu Haixia; Li Yue

    2008-01-01

    Objective: To study the application of 2D and Power Doppler Ultrasound in diagnosing the abdominal esophageal varicose veins. Methods: 65 patients under suspicion with chronic hepatitis and cirrhosis for esophageal varicose at esophagus in abdomen section were examined by 2D and Power Doppler Ultrasound.Among them, 35 patients suffered from esophageal varicose veins proved by gastroscopy and the rest did not. Results: On the power doppler imaging map, colored blood stream signals were showed in varicose veins while without signals in non-varicose veins.The diagnostic sensitivity and specificity were 91.4% and 100% respectively. On the two-dimensional image chart, non-echoes were represented in varicose veins. The anteroposterior diameter, right-left diameter, as well as the thickness of esophagus wall were larger in patients with varicose veins than those in non varicose veins cases (P<0.01). Conclusion: 2D combined with Power Doppler Ultrasound was of non-invasive, safe, sensitive and high specificity, which is a valuable and practical tool in diagnosing the esophageal varicose veins. (authors)

  20. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Round Robin Test for Performance Demonstration System of Ultrasound Examination Personnel in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Yang, Seung Han; Kim, Yong Sik; Yoon, Byung Sik; Lee, Hee Jong

    2005-01-01

    Ultrasound testing performance during in-service inspection for the main components of NPPs is strongly affected by each examination person. Therefore, ASME established a more strict qualification requirement in Sec. XI Appendix VIII for the ultrasound testing personnel in nuclear power plants. The Korean Performance Demonstration (KPD) System according to the ASME code for the ultrasonic testing personnel, equipments, and procedures to apply to the Class 1 and 2 piping ultrasound examination of nuclear power plants in Korea was established. And a round robin test was conducted in order to verify the effectiveness of PD method by comparing the examination results from the method of Performance Demonstration (PD) and a traditional ASME code dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, application of the PD method to the in-service inspection of the nuclear power plants will improve the performance of ultrasound testing

  2. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  3. Atmospheric freeze drying assisted by power ultrasound

    International Nuclear Information System (INIS)

    Santacatalina, J V; Cárcel, J A; Garcia-Perez, J V; Mulet, A; Simal, S

    2012-01-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms −1 ), temperature (−10°C) and relative humidity (10%) with (20.5 kWm −3 ,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  4. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry

    Directory of Open Access Journals (Sweden)

    Guang-Long Yao

    2016-11-01

    Full Text Available Power ultrasound (US could potentially be used in the food industry in the future. However, the extent of anthocyanin degradation by US requires investigation. Cyanidin-3-glucoside (Cy-3-glu obtained from blueberry extracts was used as research material to investigate the effect of power ultrasound on food processing of anthocyanin-rich raw materials. The effects of ultrasonic waves on the stability of Cy-3-glu and on the corresponding changes in UV-Vis spectrum and antioxidant activity were investigated, and the mechanisms of anthocyanin degradation induced by ultrasonic waves were discussed. To explore Cy-3-glu degradation in different environments, we kept the Cy-3-glu solution treated with ultrasonic waves in four concentrations (0%, 10%, 20%, and 50% of ethanol aqueous solutions to simulate water, beer, wine, and liquor storage environment according to the chemical kinetics method. Results show that the basic spectral characteristics of Cy-3-glu did not significantly change after power ultrasound cell crusher application at 30 °C. However, with anthocyanin degradation, the intensity of the peak for Cy-3-glu at 504 nm significantly decreased (p < 0.05. The degradation kinetics of Cy-3-glu by ultrasonic waves (200–500 W frequency fitted well to first-order reaction kinetics, and the degradation rate constant of Cy-3-glu under power ultrasound was considerably larger than that under thermal degradation (p < 0.05. The sensitivity of the anthocyanins of blueberry to temperature increased with increasing ethanol concentration, and the longest half-life was observed in 20% ethanol aqueous solution.

  5. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn

    NARCIS (Netherlands)

    Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.

    2011-01-01

    The sonochemical oxidation efficiency (¿ox) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to

  7. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species.

    Science.gov (United States)

    Joyce, E; Phull, S S; Lorimer, J P; Mason, T J

    2003-10-01

    Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized: High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates. High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important. Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.

  8. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  9. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    Science.gov (United States)

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    Science.gov (United States)

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Validation of Navigation Ultrasound for Clavicular Length Measurement

    DEFF Research Database (Denmark)

    Høj, Anders Thorsmark; Villa, Chiara; Christensen, Ole M.

    2017-01-01

    interval): approximately ± 7.5 mm, Pearson's correlation R: 0.948-0.974). Navigation ultrasound can measure clavicular length with an intra-rater reliability matching that of 3-D rendered computed tomography scans and with high validity. Its use could spread to other fields requiring accurate...... of 52.5 (range: 21-78 y) were included. Navigation ultrasound exhibited high reliability (intra-class correlation coefficient: 0.942-0.997, standard error of the mean: 0.7-2.9 mm, minimal detectable change: 2.3-8.1 mm) and validity (measurement error: 1.3%-1.8%, limits of agreement (95% confidence...

  12. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    Science.gov (United States)

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  13. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  14. Perspectives of high power ultrasound in food preservation

    Science.gov (United States)

    Evelyn; Silva, F. V. M.

    2018-04-01

    High Power ultrasound can be used to alter physicochemical properties and improve the quality of foods during processing due to a number of mechanical, chemical, and biochemical effects arising from acoustic cavitation. Cavitation creates pressure waves that inactivate microbes and de-agglomerate bacterial clusters or release ascospores from fungal asci. Bacterial and heat resistant fungal spores’ inactivation is a great challenge in food preservation due to their ability to survive after conventional food processing, causing food-borne diseases or spoilage. In this work, a showcase of application of high power ultrasound combined with heat or thermosonication, to inactivate bacterial spores i.e. Bacillus cereus spores in beef slurry and fungal spores i.e. Neosartorya fischeri ascospores in apple juice was presented and compared with thermal processing. Faster inactivation was achieved at higher TS (24 KHz, 0.33 W/g or W/mL) temperatures. Around 2 log inactivation was obtained for B. cereus spores after1 min (70 °C) and N. fischeri ascospores after 30 min (75 °C). Thermal treatments caused <1 log in B. Cereus after 2 min (70 °C) and no inactivation in N. Fischeri ascospores after 30 min (80 °C). In conclusion, temperature plays a significant role for TS spore inactivation and TS was more effective than thermal treatment alone. The mould spores were more resistant than the bacterial spores.

  15. The effect of blood acceleration on the ultrasound power Doppler spectrum

    Science.gov (United States)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  16. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  17. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    Science.gov (United States)

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines

    Directory of Open Access Journals (Sweden)

    Cameron Alyse FM

    2009-11-01

    Full Text Available Abstract Background Diagnostic ultrasound provides a method of analysing soft tissue structures of the musculoskeletal system effectively and reliably. The aim of this study was to evaluate within and between session reliability of measuring muscle dorso-plantar thickness, medio-lateral length and cross-sectional area, of the abductor hallucis muscle using two different ultrasound machines, a higher end Philips HD11 Ultrasound machine and clinically orientated Chison 8300 Deluxe Digital Portable Ultrasound System. Methods The abductor hallucis muscle of both the left and right feet of thirty asymptomatic participants was imaged and then measured using both ultrasound machines. Interclass correlation coefficients (ICC with 95% confidence intervals (CI were used to calculate both within and between session intra-tester reliability. Standard error of the measurement (SEM calculations were undertaken to assess difference between the actual measured score across trials and the smallest real difference (SRD was calculated from the SEM to indicate the degree of change that would exceed the expected trial to trial variability. Results The ICCs, SEM and SRD for dorso-plantar thickness and medial-lateral length were shown to have excellent to high within and between-session reliability for both ultrasound machines. The between-session reliability indices for cross-sectional area were acceptable for both ultrasound machines. Conclusion The results of the current study suggest that regardless of the type ultrasound machine, intra-tester reliability for the measurement the abductor hallucis muscle parameters is very high.

  19. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Michael [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: ormying@polyu.edu.hk; Sin Manhong [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Pang, Shuk-fan [Department of Optometry and Radiography, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2005-11-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = {pi}/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects.

  20. Sonographic measurement of thyroid gland volume: A comparison of 2D and 3D ultrasound

    International Nuclear Information System (INIS)

    Ying, Michael; Sin Manhong; Pang, Shuk-fan

    2005-01-01

    Aims: This study was undertaken to investigate the inter-observer reproducibility of 2D and 3D ultrasound in the measurement of thyroid gland volume. The symmetry of thyroid lobes in healthy subjects was also investigated. Materials and methods: The volume of the left and right lobes of the thyroid gland was measured in 20 healthy subjects (10 men and 10 women) using 2D and 3D ultrasound. On 2D ultrasound, the thyroid lobe volume was calculated by ellipsoid equation (volume = π/6 x craniocaudal x mediolateral x anteroposterior dimensions), whereas 3D ultrasound volumetric measurements were performed with a 3D add-on system. In each subject, the thyroid gland was scanned by two operators to investigate inter-observer variability. Results: There was a moderate agreement between 2D and 3D ultrasound in the measurement of thyroid volume (r = 0.77). 3D ultrasound (90%) had a higher inter-observer reproducibility than 2D ultrasound (85%) in the measurements. About 74% of healthy subjects had the right thyroid lobe larger than the left lobe. Conclusion: 3D ultrasound is useful in the measurement of thyroid volume with a higher reproducibility than 2D ultrasound. Asymmetry of thyroid lobes was noted in healthy subjects

  1. Central corneal thickness and anterior chamber depth measurement by Sirius® Scheimpflug tomography and ultrasound

    Directory of Open Access Journals (Sweden)

    Jorge J

    2013-02-01

    Full Text Available J Jorge,1 JL Rosado,2 JA Díaz-Rey,1 JM González-Méijome11Clinical and Experimental Optometry Research Laboratory, Center of Physics (Optometry, School of Sciences, University of Minho, Braga, 2Opticlinic, Lisboa, PortugalBackground: The purpose of this study was to compare the accuracy of the new Sirius® Scheimpflug anterior segment examination device for measurement of central corneal thickness (CCT and anterior chamber depth (ACD with that of CCT measurements obtained by ultrasound pachymetry and ACD measurements obtained by ultrasound biometry, respectively.Methods: CCT and ACD was measured in 50 right eyes from 50 healthy subjects using a Sirius Scheimpflug camera, SP100 ultrasound pachymetry, and US800 ultrasound biometry.Results: CCT measured with the Sirius was 546 ± 39 µm and 541 ± 35 µm with SP100 ultrasound pachymetry (P = 0.003. The difference was statistically significant (mean difference 4.68 ± 10.5 µm; limits of agreement −15.8 to 25.20 µm. ACD measured with the Sirius was 2.96 ± 0.3 mm compared with 3.36 ± 0.29 mm using US800 ultrasound biometry (P < 0.001. The difference was statistically significant (mean difference −0.40 ± 0.16 mm; limits of agreement −0.72 to 0.07 mm. When the ACD values obtained using ultrasound biometry were corrected according to the values for CCT measured by ultrasound, the agreement increased significantly between both technologies for ACD measurements (mean difference 0.15 ± 0.16 mm; limits of agreement −0.16 to 0.45 mm.Conclusion: CCT and ACD measured by Sirius and ultrasound methods showing good agreement between repeated measurements obtained in the same subjects (repeatability with either instrument. However, CCT and ACD values, even after correcting ultrasound ACD by subtracting the CCT value obtained with either technology should not be used interchangeably.Keywords: Scheimpflug corneal tomography, ultrasound biometry, ultrasound pachymetry, limits of agreement

  2. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  3. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... or kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood flow through a blood vessel. Power Doppler is a newer technique that is more ...

  5. Comparison of axial length, anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal, long and short eyes.

    Science.gov (United States)

    Dong, Jing; Zhang, Yaqin; Zhang, Haining; Jia, Zhijie; Zhang, Suhua; Wang, Xiaogang

    2018-01-01

    To compare the axial length (AL), anterior chamber depth (ACD) and intraocular lens power (IOLP) of IOLMaster and Ultrasound in normal, long and short eyes. Seventy-four normal eyes (≥ 22 mm and ≤ 25 mm), 74 long eyes (> 25 mm) and 78 short eyes (devices in the order of IOLMaster followed by Ultrasound. The IOLP were calculated using a free online LADAS IOL formula calculator. The difference in AL and IOLP between IOLMaster and Ultrasound was statistically significant when all three groups were combined. The difference in ACD between IOLMaster and Ultrasound was statistically significant in the normal group (Peye group (Peye group (P = 0.465). For the IOLP difference between IOLMaster and Ultrasound in the normal group, the percentage of IOLP differences eye group, they were 90.5%, 5.4%, 4.1% and 0%, respectively. For the short eye group, they were 61.5%, 23.1%, 10.3%, and 5.1%, respectively. IOLMaster and Ultrasound have statistically significant differences in AL measurements and IOLP (using LADAS formula) for normal, long eye and short eye. The two instruments agree regarding ACD measurements for the long eye group, but differ for the normal and short eye groups. Moreover, the high percentage of IOLP differences greater than |0.5|D in the short eye group is noteworthy.

  6. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    Science.gov (United States)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  7. A comparison of portable ultrasound and fully-equipped clinical ultrasound unit in the thyroid size measurement of the Indo-Pacific bottlenose dolphin.

    Directory of Open Access Journals (Sweden)

    Brian C W Kot

    Full Text Available Measurement of thyroid size and volume is a useful clinical parameter in both human and veterinary medicine, particularly for diagnosing thyroid diseases and guiding corrective therapy. Procuring a fully-equipped clinical ultrasound unit (FCUS may be difficult in most veterinary settings. The present study evaluated the inter-equipment variability in dolphin thyroid ultrasound measurements between a portable ultrasound unit (PUS and a FCUS; for both units, repeatability was also assessed. Thyroid ultrasound examinations were performed on 15 apparently healthy bottlenose dolphins with both PUS and FCUS under identical scanning conditions. There was a high level of agreement between the two ultrasound units in dolphin thyroid measurements (ICC = 0.859-0.976. A high intra-operator repeatability in thyroid measurements was found (PUS: ICC = 0.854-0.984, FCUS: ICC = 0.709-0.954. As a conclusion, no substantial inter-equipment variability was found between PUS and FCUS in dolphin thyroid size measurements under identical scanning conditions, supporting further application of PUS for quantitative analyses of dolphin thyroid gland in both research and clinical practices at aquarium settings.

  8. Ultrasound Instrumentation for Beam Diagnostics and Accelerating Structures Control

    CERN Document Server

    Moiseev, V I

    2005-01-01

    Sensitive elements and electronics for ultrasound measurements at conducting walls of beam pipes and accelerating structures are described. Noise protected instrumentation provides ultrasound spectra analysis in a wide frequency range up to 5 MHz.In circular accelerators, ultrasound fields in conducting walls of beam pipe represent the space-time characteristics of circulating beams. In accelerating structures, real high power operation modes of structure can be studied by outer ultrasound monitors. The experimental results at KSRS accelerators are discussed.

  9. Use of translabial three-dimensional power Doppler ultrasound for cervical assessment before labor induction.

    Science.gov (United States)

    Esin, Sertac; Yirci, Bulent; Yalvac, Serdar; Kandemir, Omer

    2017-07-26

    To compare translabial three-dimensional (3D) power Doppler ultrasound with Bishop score and transvaginal ultrasound measurements for cervical assessment before induction of labor with dinoprostone or cervical ripening balloon. Translabial cervical volume and length, vascularization indices and transvaginal cervical length were measured. Results were compared among women who had vaginal delivery at 24 h or less and more than 24 h after the insertion of the dinoprostone vaginal insert or cervical ripening balloon and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. There was no correlation between the time to delivery after a ripening agent was applied and translabial cervical volume, translabial cervical length, vascularization index (VI), flow index (FI), vascularization flow index (VFI), transvaginal cervical length and Bishop scores. The ultrasonographic measurements were no different among women who had vaginal delivery at 24 h or less and more than 24 h and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. In this study, we failed to demonstrate the superiority of translabial 3D ultrasonography over Bishop score and transvaginal ultrasonography for predicting the success of induction of labor.

  10. Ultrasound transmission measurements for tensile strength evaluation of tablets.

    Science.gov (United States)

    Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko

    2011-05-16

    Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  12. Achilles tendon (TA) size and power Doppler ultrasound (PD) changes compared to MRI: A preliminary observational study

    International Nuclear Information System (INIS)

    Richards, P.J.; Dheer, A.K.; McCall, I.M.

    2001-01-01

    AIM: To assess whether abnormal Achilles tendon (TA) magnetic resonance imaging (MRI) and spectral ultrasound (US) features have associated development of microvascular power Doppler (PD) flow. MATERIALS AND METHODS: In a prospective, controlled and blinded study six patients with TA symptoms were compared to five with other ankle abnormalities. Two radiologists independently measured the mean maximal anteroposterior diameter on MRI and conventional US (categorized as normal 1.6 cm), assessed morphology and studied the vessels using power Doppler. They formed a consensus over discrepancies. Sonography of the contralateral side within 24 h was used as a control. RESULTS: Twenty-one tendons in six women and five men, aged 45-77 years (mean 57.6 years), were examined, 12 tendons were of normal US morphology and size ( 0.74). Of the 12 tendons studied by MRI five were normal, seven tendons were enlarged, five of which had a proportionate increase in PD flow at the margin on the deep surface and four also had vessels in the centre of the tendon. All five of these tendons had high signal on T2-weighting (T2W). Of the two mildly enlarged tendons of intermediate signal on T1 and T2W, one showed PD flow and the other did not. CONCLUSIONS: In patients with TA disease power Doppler ultrasound shows proliferation of vessels in enlarged, abnormal tendons demonstrated on MRI and standard ultrasound, in the absence of definite tears. Richards, P.J. Dheer, A.K. and McCall, I.M. (2001)

  13. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis.

    Science.gov (United States)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene

    2015-02-01

    To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.

  14. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses.

    Science.gov (United States)

    Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun

    2018-03-12

    This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.

  15. Low power laser generated ultrasound: Signal processing for time domain data acquisition

    International Nuclear Information System (INIS)

    Cleary, A; Thursby, G; McKee, C; Armstrong, I; Culshaw, B; Veres, I; Pierce, S G

    2011-01-01

    The use of low power modulated laser diode systems has previously been established as a suitable method for non-destructive laser generation of ultrasound. Using a quasi-continuous optical excitation amplified by an erbium-doped fibre amplifier (EDFA) allows flexible generation of ultrasonic waves, offering control of further parameters such as the frequency content or signal shape. In addition, pseudo-random binary sequences (PRBS) can be used to improve the detected impulse response. Here we compare two sequences, the m-sequence and the Golay code, and discuss the advantages and practical limits of their application with laser diode based optical excitation of ultrasound.

  16. The OMERACT Ultrasound Group

    DEFF Research Database (Denmark)

    Terslev, Lene; Iagnocco, Annamaria; Bruyn, George A W

    2017-01-01

    OBJECTIVE: To provide an update from the Outcome Measures in Rheumatology (OMERACT) Ultrasound Working Group on the progress for defining ultrasound (US) minimal disease activity threshold at joint level in rheumatoid arthritis (RA) and for standardization of US application in juvenile idiopathic......) and power Doppler (PD). Synovial effusion (SE) was scored a binary variable. For JIA, a Delphi approach and subsequent validation in static images and patient-based exercises were used to developed preliminary definitions for synovitis and a scoring system. RESULTS: For minimal disease activity, 7% HC had...

  17. Power ultrasound in meat processing.

    Science.gov (United States)

    Alarcon-Rojo, A D; Janacua, H; Rodriguez, J C; Paniwnyk, L; Mason, T J

    2015-09-01

    Ultrasound has a wide range of applications in various agricultural sectors. In food processing, it is considered to be an emerging technology with the potential to speed up processes without damaging the quality of foodstuffs. Here we review the reports on the applications of ultrasound specifically with a view to its use in meat processing. Emphasis is placed on the effects on quality and technological properties such as texture, water retention, colour, curing, marinating, cooking yield, freezing, thawing and microbial inhibition. After the literature review it is concluded that ultrasound is a useful tool for the meat industry as it helps in tenderisation, accelerates maturation and mass transfer, reduces cooking energy, increases shelf life of meat without affecting other quality properties, improves functional properties of emulsified products, eases mould cleaning and improves the sterilisation of equipment surfaces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  19. Neovascularity in patellar tendinopathy and the response to eccentric training: a case report using Power Doppler ultrasound.

    Science.gov (United States)

    McCreesh, Karen M; Riley, Sara J; Crotty, James M

    2013-12-01

    This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  1. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    International Nuclear Information System (INIS)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-01-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected. (papers)

  2. Monitoring of pipelines in nuclear power plants by measuring laser-based mechanical impedance

    Science.gov (United States)

    Lee, Hyeonseok; Sohn, Hoon; Yang, Suyoung; Yang, Jinyeol

    2014-06-01

    Using laser-based mechanical impedance (LMI) measurement, this study proposes a damage detection technique that enables structural health monitoring of pipelines under the high temperature and radioactive environments of nuclear power plants (NPPs). The applications of conventional electromechanical impedance (EMI) based techniques to NPPs have been limited, mainly due to the contact nature of piezoelectric transducers, which cannot survive under the high temperature and high radiation environments of NPPs. The proposed LMI measurement technique aims to tackle the limitations of the EMI techniques by utilizing noncontact laser beams for both ultrasound generation and sensing. An Nd:Yag pulse laser is used for ultrasound generation, and a laser Doppler vibrometer is employed for the measurement of the corresponding ultrasound responses. For the monitoring of pipes covered by insulation layers, this study utilizes optical fibers to guide the laser beams to specific target locations. Then, an outlier analysis is adopted for autonomous damage diagnosis. Validation of the proposed LMI technique is carried out on a carbon steel pipe elbow under varying temperatures. A corrosion defect chemically engraved in the specimen is successfully detected.

  3. Detection of vascularity in wrist tenosynovitis: power doppler ultrasound compared with contrast-enhanced grey-scale ultrasound.

    Science.gov (United States)

    Klauser, Andrea S; Franz, Magdalena; Arora, Rohit; Feuchtner, Gudrun M; Gruber, Johann; Schirmer, Michael; Jaschke, Werner R; Gabl, Markus F

    2010-01-01

    We sought to assess vascularity in wrist tenosynovitis by using power Doppler ultrasound (PDUS) and to compare detection of intra- and peritendinous vascularity with that of contrast-enhanced grey-scale ultrasound (CEUS). Twenty-six tendons of 24 patients (nine men, 15 women; mean age ± SD, 54.4 ± 11.8 years) with a clinical diagnosis of tenosynovitis were examined with B-mode ultrasonography, PDUS, and CEUS by using a second-generation contrast agent, SonoVue (Bracco Diagnostics, Milan, Italy) and a low-mechanical-index ultrasound technique. Thickness of synovitis, extent of vascularized pannus, intensity of peritendinous vascularisation, and detection of intratendinous vessels was incorporated in a 3-score grading system (grade 0 to 2). Interobserver variability was calculated. With CEUS, a significantly greater extent of vascularity could be detected than by using PDUS (P < 0.001). In terms of peri- and intratendinous vessels, CEUS was significantly more sensitive in the detection of vascularization compared with PDUS (P < 0.001). No significant correlation between synovial thickening and extent of vascularity could be found (P = 0.089 to 0.097). Interobserver reliability was calculated to be excellent when evaluating the grading score (κ = 0.811 to 1.00). CEUS is a promising tool to detect tendon vascularity with higher sensitivity than PDUS by improved detection of intra- and peritendinous vascularity.

  4. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  6. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar.

    Science.gov (United States)

    Režek Jambrak, Anet; Šimunek, Marina; Evačić, Silva; Markov, Ksenija; Smoljanić, Goran; Frece, Jadranka

    2018-02-01

    The purpose of this study was to investigate the effect of non-thermal technology, high power ultrasound (HPU) on inactivation of Aspergillus ochraceus 318, Penicillium expansum 565, Rhodotorula sp. 74, Saccharomyces cerevisiae 5 and Alicyclobacillus acidoterrestris DSM 3922 in clear juices and nectars from apple, blueberry and cranberry juice concentrate. Inoculated juice and nectars were treated by high power ultrasound (20kHz) according to procedure set by central composite design (CCD). Three operational parameters, amplitude (60, 90 and 120μm), temperature (20, 40 and 60°C), and treatment time (3, 6 or 9min) were varied in order to observe the influence of ultrasound and combination of ultrasound and slight heating (thermosonication) on growth and inactivation of selected microorganisms. Number of vegetative cells of A. acidoterrestris DSM 3922 were not significantly reduced by high power ultrasound (p>0.05), except in apple juice, where statistical significant (pultrasound treatments at 60°C and the duration of the 3, 6 and 9min ranged from 3.556 to 5.934 log units, depending on the initial number of selected yeasts and moulds before treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Assessment of performance measures and learning curves for use of a virtual-reality ultrasound simulator in transvaginal ultrasound examination

    DEFF Research Database (Denmark)

    Madsen, M E; Konge, L; Nørgaard, L N

    2014-01-01

    OBJECTIVE: To assess the validity and reliability of performance measures, develop credible performance standards and explore learning curves for a virtual-reality simulator designed for transvaginal gynecological ultrasound examination. METHODS: A group of 16 ultrasound novices, along with a group......-6), corresponding to an average of 219 min (range, 150-251 min) of training. The test/retest reliability was high, with an intraclass correlation coefficient of 0.93. CONCLUSIONS: Competence in the performance of gynecological ultrasound examination can be assessed in a valid and reliable way using virtual-reality...

  8. Transvaginal ultrasound examination of women with and without pelvic venous congestion

    International Nuclear Information System (INIS)

    Halligan, Steve; Campbell, Deidre; Bartram, Clive I.; Rogers, Vera; El-Haddad, Cadria; Patel, Sujata; Beard, Richard W.

    2000-01-01

    AIM: To determine if transvaginal ultrasound, including power Doppler examination, can distinguish between women with and without pelvic congestion. MATERIALS AND METHODS: Thirty-six women with pelvic congestion were prospectively examined using transvaginal ultrasonography and standard uterine and ovarian measurements made. Additionally, planimetric measurements of each ovary were taken using an image analysis program to determine the cross-sectional area of ovarian stroma and follicles, if any. Power Doppler images of adnexal vessels were obtained and planimetric estimates of surface area calculated. A congestion score was assigned to each patient, based on vein number, diameter and morphology on grey-scale scanning. Identical measurements were obtained from 19 asymptomatic women and results compared. RESULTS: There was no significant difference between women with pelvic congestion and controls with respect to power Doppler or grey-scale images of adnexal vessels, or congestion score. However, women with pelvic congestion had significantly larger and multicystic ovaries when compared to controls. CONCLUSIONS: Transvaginal ultrasound measurements of adnexal vasculature, including power Doppler measurements, cannot reliably distinguish women with pelvic congestion from controls. However, ultrasound may remain useful for diagnosis of pelvic congestion, predominantly because it is able to visualize multi-cystic ovaries in these patients. Halligan, S. (2000).Clinical Radiology 55 , 954-958

  9. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  10. Effects of multi-frequency ultrasound pretreatment under low power density on the enzymolysis and the structure characterization of defatted wheat germ protein.

    Science.gov (United States)

    Yang, Xue; Li, Yunliang; Li, Suyun; Oladejo, Ayobami Olayemi; Wang, Yucheng; Huang, Shanfen; Zhou, Cunshan; Wang, Yang; Mao, Li; Zhang, Yanyan; Ma, Haile; Ye, Xiaofei

    2017-09-01

    The effects of ultrasonic frequency mode, power density, pretreatment time and other parameters under low power density on the degree of hydrolysis (DH) of defatted wheat germ protein (DWGP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of DWGP hydrolysate were studied in this research. Ultraviolet-visible (UV-Vis) spectra, free sulfhydryl (SH), disulfide bond (SS), surface hydrophobicity and hydrophobic protein content of ultrasound-pretreated protein and hydrophobic amino acid (HAA) content of alcalase-hydrolysate of DWGP were measured under optimized ultrasonic condition. The ultrasonic frequency mode with dual-fixed frequency combination of 28/40kHz showed higher ACE inhibitory activity of DWGP hydrolysate compared with that of other ultrasound frequency modes and all the ultrasonic frequency combinations involving in 28kHz showed higher ACE inhibitory activity. Under the dual-fixed frequency ultrasound mode of 28/40kHz, ultrasonic power density of 60W/L, pretreatment time of 70min, temperature of 60°C and substrate concentration of 60g/L, the ACE inhibitory activity of DWGP hydrolysate was the highest with its value of 74.75% (increased by 62.30% compared to control). However, all the ultrasonic pretreatment did not increase the DH of DWGP significantly (p>0.05). The changes in UV-Vis spectra, SH and SS groups, surface hydrophobicity and hydrophobic protein content indicated that the structure of DWGP unfolded after ultrasound pretreatment. The HAA content of hydrolysate from the pretreated DWGP increased significantly (p<0.05). The results proved that ultrasound pretreatment loosed the protein structure and exposed more HAA residues of protein to be attacked easily by alcalase. This resulted in the increase in the HAA content which related to the ACE inhibitory activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound

    International Nuclear Information System (INIS)

    Teh, W.L.; Wilson, A.R.M; Evans, A.J.; Burrell, H.; Pinder, S.E.; Ellis, I.O.

    2000-01-01

    AIM: The pre-operative diagnosis of suspicious mammographic microcalcifications usually requires stereotactic needle biopsy. The aim of this study was to evaluate if high frequency 13 MHz ultrasound (HFUS) and power Doppler (PD) can aid visualization and biopsy of microcalcifications. MATERIALS AND METHODS: Forty-four consecutive patients presenting with microcalcifications without associated mammographic or palpable masses were examined with HFUS and PD. Ultrasound-guided core biopsy (USCB) was performed where possible. Stereotactic biopsy was carried out when US-guided biopsy was unsuccessful. Surgery was performed if a diagnosis of malignancy was made on core biopsy or if the repeat core biopsy was non-diagnostic. RESULTS: Forty-one patients (93%) had ultrasound abnormalities corresponding to mammographic calcification. USCB was performed on 37 patients. In 29/37, USCB obtained a definitive result (78.4%). USCB was non-diagnostic in 4/9 benign (44.4%) and 4/28 (14.3%) malignant lesions biopsied. The complete and absolute sensitivities for malignancy using USCB were 85.7% (24/28) and 81% (23/28), respectively. USCB correctly identified invasive disease in 12/23 (52.2%) cases. There was no significant difference in the presence of abnormal flow on PD between benign and malignant lesions. However, abnormal PD vascularity was present in 43.5% of invasive cancer and was useful in directing successful biopsy in eight cases. CONCLUSION: The combination of high frequency US with PD is useful in the detection and guidance of successful needle biopsy of microcalcifications particularly where there is an invasive focus within larger areas of DCIS. Teh, W.L. (2000)

  12. Novel low-power ultrasound digital preprocessing architecture for wireless display.

    Science.gov (United States)

    Levesque, Philippe; Sawan, Mohamad

    2010-03-01

    A complete hardware-based ultrasound preprocessing unit (PPU) is presented as an alternative to available power-hungry devices. Intended to expand the ultrasonic applications, the proposed unit allows replacement of the cable of the ultrasonic probe by a wireless link to transfer data from the probe to a remote monitor. The digital back-end architecture of this PPU is fully pipelined, which permits sampling of ultrasonic signals at a frequency equal to the field-programmable gate array-based system clock, up to 100 MHz. Experimental results show that the proposed processing unit has an excellent performance, an equivalent 53.15 Dhrystone 2.1 MIPS/ MHz (DMIPS/MHz), compared with other software-based architectures that allow a maximum of 1.6 DMIPS/MHz. In addition, an adaptive subsampling method is proposed to operate the pixel compressor, which allows real-time image zooming and, by removing high-frequency noise, the lateral and axial resolutions are enhanced by 25% and 33%, respectively. Realtime images, acquired from a reference phantom, validated the feasibility of the proposed architecture. For a display rate of 15 frames per second, and a 5-MHz single-element piezoelectric transducer, the proposed digital PPU requires a dynamic power of only 242 mW, which represents around 20% of the best-available software-based system. Furthermore, composed by the ultrasound processor and the image interpolation unit, the digital processing core of the PPU presents good power-performance ratios of 26 DMIPS/mW and 43.9 DMIPS/mW at a 20-MHz and 100-MHz sample frequency, respectively.

  13. Metatarsophalangeal joint extension changes ultrasound measurements for plantar fascia thickness.

    Science.gov (United States)

    Granado, Michael J; Lohman, Everett B; Gordon, Keith E; Daher, Noha S

    2018-01-01

    Ultrasound is an inexpensive method for quantifying plantar fascia thickness, especially in those with plantar fasciitis. Ultrasound has also been used to assess the effectiveness of various treatments for plantar fasciitis by comparing plantar fascia thickness before and after an intervention period. While a plantar fascia thickness over 4 mm via ultrasound has been proposed to be consistent with plantar fasciitis, some researchers believe the 4 mm plantar fascia thickness level to be a dubious guideline for diagnosing plantar fasciitis due to the lack of standardization of the measurement process for plantar fascia thickness. In particular, no universal guidelines exist on the positioning of the metatarsophalangeal (MTP) joints during the procedure and the literature also has inconsistent protocols. The purpose of this study is to investigate and compare the influence of MTP joint extension on plantar fascia thickness in healthy participants and those with unilateral plantar fasciitis. The plantar fascia thickness of forty participants (20 with unilateral plantar fasciitis and 20 control) was measured via ultrasound three times at three different MTP joint positions: 1) at rest, 2) 30° of extension from the plantar surface, and 3) maximal extension possible. The plantar fascia became significantly thinner as MTP joint extension increased in both the plantar fasciitis group ( p  plantar fasciitis group, the involved plantar fascia was 1.2 to 1.3 mm thicker (p plantar fascia thickness between the two sides was less than 0.1 mm ( p  plantar fascia thickness. It is recommended that plantar fascia thickness measurements be performed with the toes at rest. If MTP joints must be extended, then the toes should be extended maximally and then noted to ensure subsequent ultrasound procedures are repeated. Standardizing the position of the MTP joints is not only important for attaining the most accurate thickness measurement of the plantar fascia, but is also

  14. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  15. Endoscopic ultrasound duplex scanning for measurement of portal venous flow. Validation against transit time ultrasound flowmetry in pigs

    DEFF Research Database (Denmark)

    Hansen, E F; Strandberg, C; Bendtsen, F

    1999-01-01

    with that of transit time ultrasound (TTU) in healthy pigs. The ability of EUS to detect changes in the portal venous flow after pharmacologic intervention was also investigated. METHODS: Six anaesthetized pigs were studied. Portal venous flow was measured simultaneously by EUS duplex scanning, using a Pentax FG-32UA...... echoendoscope connected to a Hitachi EUB 515-A ultrasound scanner, and by TTU with a Cardiomed CM 4000 flowmeter probe placed on the portal vein. Terlipressin, 1 mg, and placebo were administered in a blind, randomized, crossover design. Measurements were taken at base line and 30 min after each drug...

  16. Ultrasound as an Outcome Measure in Gout. A Validation Process by the OMERACT Ultrasound Working Group

    DEFF Research Database (Denmark)

    Terslev, Lene; Gutierrez, Marwin; Schmidt, Wolfgang A

    2015-01-01

    OBJECTIVE: To summarize the work performed by the Outcome Measures in Rheumatology (OMERACT) Ultrasound (US) Working Group on the validation of US as a potential outcome measure in gout. METHODS: Based on the lack of definitions, highlighted in a recent literature review on US as an outcome tool...

  17. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    Science.gov (United States)

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (ppower Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  18. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  19. A thermal technique for local ultrasound intensity measurement: part 2. Application to exposimetry on a medical diagnostic device

    International Nuclear Information System (INIS)

    Wilkens, V

    2010-01-01

    Acoustic output measurements on medical ultrasound equipment are usually performed using radiation force balances to determine the output power and using hydrophones to determine pressure and intensity parameters. The local temporal-average ultrasound intensity can be measured alternatively by thermal sensors. The technique was described and prototype sensors were characterized in a preceding paper. Here, the application of such a thermal intensity sensor to the output beam characterization of a typical medical diagnostic device is described. Two transducers, a 7.5 MHz linear array and a 3.5 MHz convex array were investigated in different operating modes. For comparison, hydrophone measurements were also performed. If the spatial averaging effect is taken into account, good agreement is found between both measurement methods. The maximum deviations of the spatial-peak temporal-average intensities I SPTA obtained with the thermal sensor from the corresponding hydrophone-based results were below 12%. The simple thermal technique offers advantages for intensity measurements especially in the case of scanning and combined modes of the diagnostic device, where the synchronization between hydrophone measurements and the complex pulse emission pattern can be difficult

  20. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    International Nuclear Information System (INIS)

    Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.A.J.; Povey, M.J.W.; Parker, N.G.

    2013-01-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm −2 and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure

  1. Ultrasound measurements of testicular volume: Comparing the three ...

    African Journals Online (AJOL)

    T.U. Mbaeri

    The ultrasound measurements of the testicular volume were calculated using the following three formulas: (a) length ... ticular growth, development and function. Studies in ... of the components of a minimum full evaluation of male infertility is palpation of ... opted for orchidectomy after counseling in our center. Subjects and ...

  2. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    Directory of Open Access Journals (Sweden)

    Jianxia Sun

    2016-08-01

    Full Text Available As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200–500 W and treatment time (0–60 min. The degradation trend was consistent with first-order reaction kinetics (R2 > 0.9100. Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R2 = 0.8790, which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  3. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    Science.gov (United States)

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  4. Ultrasound-assisted extraction of fructans from agave (Agave tequilana Weber var. azul at different ultrasound powers and solid-liquid ratios

    Directory of Open Access Journals (Sweden)

    Miguel Ángel SÁNCHEZ-MADRIGAL

    Full Text Available Abstract The effects of ultrasound-assisted extraction (UAE at different ultrasound power densities (UPDs; 40, 80, and 120 mW/mL and solid:liquid (S:L ratio (1:2, 1:3, and 1:6 on the extraction of carbohydrates from Agave tequilana plant of different ages were evaluated. Extracts obtained (6- and 7-year-old plant were analyzed in the yield of carbohydrates (YC, fructan (FRU content, simple sugars, fructan profile and the average degree of polymerization (DPn. UPD, S:L ratio, and plant age all affected YC, FRU, and DPn. Maximum YC and FRU were obtained from the older agave with UPD and S:L ratio of 120 mW/mL and 1:6, respectively; while glucose, fructose, and sucrose were highly released from the younger plant. Agave of 7-year-old presented the highest DPn. Fructan degradation occurred at high UPD, increasing the simple sugars and decreasing the DPn. Thermal-traditional extraction without sonication caused more fructan degradation; and overall, ultrasound enhanced fructan extraction and minimized fructan damage, representing a technological alternative for fructan extraction from agave.

  5. The Disinfection of Escherichia coli by Ultraviolet Intensity and Ultrasound Power

    OpenAIRE

    GÖRMEZ, Arzu; YETİM, Tuba

    2016-01-01

    Physical, chemical and biologicalconstituents such as organic compounds and microorganisms are released bywastewaters from fabrics, homes, facilities and other resources. Bacteria,viruses and fungi can be described as microbial pollutants. In this study thedisinfection of Escherichia coli O157:H7 strain from the wastewater was aimedby using ultrasound power and ultraviolet light intensity. The 60% amplitude ofultrasound energy and also, 88 W/m2 light intensity at 254 nm wavelength wasused. Th...

  6. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  7. Alteration of left ventricular endocardial function by intracavitary high-power ultrasound interacts with volume, inotropic state, and alpha 1-adrenergic stimulation

    NARCIS (Netherlands)

    de Hert, S. G.; Gillebert, T. C.; Brutsaert, D. L.

    1993-01-01

    BACKGROUND: High-power intracavitary ultrasound abbreviates left ventricular (LV) ejection duration, thereby decreasing mechanical LV performance, presumably by selective impairment of endocardial endothelial function. METHODS AND RESULTS: Effects of ultrasound were evaluated in the ejecting LV of

  8. Is there subclinical enthesitis in early psoriatic arthritis? A clinical comparison with power doppler ultrasound.

    Science.gov (United States)

    Freeston, J E; Coates, L C; Helliwell, P S; Hensor, E M A; Wakefield, R J; Emery, P; Conaghan, P G

    2012-10-01

    Enthesitis is a recognized feature of spondylarthritides (SpA), including psoriatic arthritis (PsA). Previously, ultrasound imaging has highlighted the presence of subclinical enthesitis in established SpA, but there are little data on ultrasound findings in early PsA. The aim of our study was to compare ultrasound and clinical examination (CE) for the detection of entheseal abnormalities in an early PsA cohort. Forty-two patients with new-onset PsA and 10 control subjects underwent CE of entheses for tenderness and swelling, as well as gray-scale (GS) and power Doppler (PD) ultrasound of a standard set of entheses. Bilateral elbow lateral epicondyles, Achilles tendons, and plantar fascia were assessed by both CE and ultrasound, the latter scored using a semiquantitative (SQ) scale. Inferior patellar tendons were assessed by ultrasound alone. A GS SQ score of >1 and/or a PD score of >0 was used to describe significant ultrasound entheseal abnormality. A total of 24 (57.1%) of 42 patients in the PsA group and 0 (0%) of 10 controls had clinical evidence of at least 1 tender enthesis. In the PsA group, for sites assessed by both CE and ultrasound, 4% (7 of 177) of nontender entheses had a GS score >1 and/or a PD score >0 compared to 24% (9 of 37) of tender entheses. CE overestimated activity in 28 (13%) of 214 of entheses. All the nontender ultrasound-abnormal entheses were in the lower extremity. The prevalence of subclinical enthesitis in this early PsA cohort was low. CE may overestimate active enthesitis. The few subclinically inflamed entheses were in the lower extremity, where mechanical stress is likely to be more significant. Copyright © 2012 by the American College of Rheumatology.

  9. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers ”8L2 Linear” and ”10L2w Wide Linear” (BK Ultrasound, Herlev, Denmark). The algorithm...

  10. P-shaped Coiled Stator Ultrasound Motor for Rotating Intravascular Surgery Device

    Directory of Open Access Journals (Sweden)

    Toshinobu ABE

    2015-01-01

    Full Text Available The primary focus of this paper is the development of an ultra-miniature ultrasound motor for use in the human blood vessel. Since the size of the drive source for rotating the atherectomy device and intravascular ultrasonography system are large currently in practical use, it is installed outside the body, and the rotational power for the atherectomy device and intravascular ultrasonography system are transmitted through the long tortuous blood vessel. Such systems suffer from the problem that the rotation becomes non-uniform, and the problem that the available time is limited. We have therefore developed a P-shaped coiled stator ultrasound motor as a miniature ultrasound motor for rotating the ultrasound sensor for use in blood vessels in order to solve these problems. In this paper, we describe measurement of the torque, revolution speed, output power, efficiency, and particle motion on acoustic waveguide of the P-shaped coiled stator ultrasound motor.

  11. Ultrasound measurement of transcranial distance during head-down tilt

    Science.gov (United States)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  12. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Paediatric renal length measurements from ultrasound and DMSA scans: does clinical practice reflect theoretical normal values?

    International Nuclear Information System (INIS)

    Que, L.; Rutland, M.D.; Hassan, I.M.

    1999-01-01

    Full text: Renal length measurement is a routine part of ultrasound examination in children and those results are plotted on a normogram style graph, so that each child's results are compared to a normal range (mean ± 2 S.D.). Renal length measurements from the posterior oblique views of dimercaptosuccinic acid (DMSA) scans in our department have not always correlated well with the ultrasound measurements on the same patients. Renal lengths from the DMSA scans of 120 patients with apparently normal kidneys were recorded and used to generate a normogram of renal length at different ages (0.5-7 years). This DMSA normogram was compared to the ultrasound (US) normogram used in the Paediatric Radiology Department, and it showed slight differences in renal lengths (3-8 mm), but that the US normogram had smaller coefficients of variation (US = 6.6%, NM 8.3%), implying a 'tighter' normal range. 39 of these patients had DMSA and ultrasound measurements of renal length within 3 months, and these were studied first by calculating the mean and CV values for different age groups, and then by plotting individual renal lengths on the appropriate normograms. The measured data produced much greater variability in the ultrasound measurements than the DTPA measurements, and the individual points produced 4/78 (5.1%) abnormal results for DMSA, but 21/78 (26.9%) abnormal results for ultrasound. Thus, in routine clinical use, using patients with apparently normal kidneys, ultrasound was unable to match the 'normal range' set by their current normogram, but the nuclear medicine showed 5.1% of values outside the normal (DMSA) range, which was completely appropriate for a range of ± 2 standard deviations

  14. Unpowered wireless transmission of ultrasound signals

    International Nuclear Information System (INIS)

    Huang, H; Paramo, D; Deshmukh, S

    2011-01-01

    This paper presents a wireless ultrasound sensing system that uses frequency conversion to convert the ultrasound signal to a microwave signal and transmit it directly without digitization. Constructed from a few passive microwave components, the sensor is able to sense, modulate, and transmit the full waveform of ultrasound signals wirelessly without requiring any local power source. The principle of operation of the unpowered wireless ultrasound sensor is described first, and this is followed by a detailed description of the implementation of the sensor and the sensor interrogation unit using commercially available antennas and microwave components. Validation of the sensing system using an ultrasound pitch–catch system and the power analysis model of the system are also presented

  15. Correlation between self-reported gestational age and ultrasound measurements

    DEFF Research Database (Denmark)

    Olesen, Annette Wind; Westergaard, Jes Grabow; Thomsen, Sten Grove

    2004-01-01

    BACKGROUND: We studied the agreement between different measurements of gestational age, i.e. self-reported gestational age in the Danish National Birth Cohort Study, ultrasound-estimated gestational age from the medical records in one Danish county and gestational age from the Danish National...

  16. Air-coupled ultrasound for plate thickness measurements

    OpenAIRE

    Waag, Grunde

    2017-01-01

    Non-destructive testing using ultrasound is well established as a technique of inspecting miscellaneous structures and components. Ultrasonic waves propagating in an elastic solid are sensitive to both the material and geometrical properties of the solid. Decades of experience have shown that it is possible to extract these properties from the waves in an efficient and reliable way in a variety of practical measurement settings. Different techniques have been developed over many decades, and ...

  17. A simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound

    Science.gov (United States)

    Hadjisavvas, V.; Damianou, C.

    2011-09-01

    In this paper a simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound is presented. A single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was considered. The power field was estimated using the KZK model. The temperature was estimated using the bioheat equation. The goal was to extract the acoustic parameters (power, pulse duration, duty factor and pulse repetition frequency) that maintain a temperature increase of less than 1 °C during the application of a pulse ultrasound protocol. It was found that the temperature change increases linearly with duty factor. The higher the power, the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. The higher the frequency the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. Finally, the deeper the target, the higher the duty factor needed to keep the temperature change to the safe limit of 1 °C. The simulation model was tested in brain tissue during the application of pulse ultrasound and the measured temperature was in close agreement with the simulated temperature. This simulation model is considered to be very useful tool for providing acoustic parameters (frequency, power, duty factor, pulse repetition frequency) during the application of pulsed ultrasound at various depths in tissue so that a safe temperature is maintained during the treatment. This model could be tested soon during stroke clinical trials.

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements ...

  19. Acute pyelonephritis in pediatric age: comparative study between power Doppler ultrasound scan and DMSA

    International Nuclear Information System (INIS)

    Muro, M. D.; Sanguesa, C.; Otero, M. C.; Piqueras, A. I.; Lloret, M. T.

    2002-01-01

    To evaluate the usefulness of power Doppler (PD) Ultrasound Scan in the study of acute pyelonephritis (APN). To compare ultrasound scan results with those obtained with renal gammagraphy (DMSA). To relate the findings to the clinical criteria and to determine the presence of vesicoureteral reflux (VUR) in the serial micturition cystography (SMC). Prospective study of 92 patients (ages between 1 month and 10 years) with suspected clinical PNA. All children were initially subjected to PD ultrasound scan and DMSA. Those under 3 years old were also subjected to SMC for the study of VUR. PNA in the PD ultrasound scan was manifested by decrease in vascularisation and in the DMSA by decrease in caption in the affected zones. 87 renal units (RU) with PNA foci were detected. Conformity between the PD ultrasound scan and DMSA was 157 RU (92%): 52 positives, 22 negatives with PNA and 83 normal RU. The sensitivities of PD and DMSA were 65.5% and 69.0%. 51 SMC were performed, with VUR being detected in 18 (13 bilateral and 5 unilateral), in which the sensitivities of PD and DMSA were 65.5% and 69.0%. 51 SMC were performed, with VUR being detected in 18 (13 bilateral and 5 unilateral), in which the sensitivities of PD and DMSA were 80% and 85%, respectively. Mode B ultrasound scan and PD can replace DMSA in the initial study of PPNA. It is non-invasive, simple, economical and just as reliable as DMSA in expert hands. it can also postpone by up to 6 months the need to perform DMSA for detection of permanent renal damage. (Author) 22 refs

  20. Role of Duplex Power Doppler Ultrasound in Differentiation between Malignant and Benign Thyroid Nodules

    International Nuclear Information System (INIS)

    Algin, Oktay; Algin, Efnan; Gokalp, Gokhan; Ocakog, Gokhan; Erdog an, Cuneyt; Saraydaroglu, Ozlem; Ercan Tuncel, Prof

    2010-01-01

    To evaluate the usage of duplex power Doppler ultrasound (PDUS) for the differentiation of benign and malignant thyroid nodules. We prospectively examined 77 thyroid nodules in 60 patients undergoing ultrasound-guided fine needle aspiration biopsy (FNAB). Each nodule was described according to size, inner structure, borders, parenchymal echogenicity, peripheral halo formation, and the presence of calcification (Bmode ultrasound findings). Vascularity as determined by PDUS imaging was defined as non-vascular, peripheral, central, or of mixed type. For each nodule, the pulsatility index (PI) and resistive index (RI) values were obtained. Results of FNAB and surgical pathological examination (if available) were used as a proof of final diagnosis to categorize all nodules as benign or malignant. A receiver operating characteristic (ROC) curve analysis was performed to establish cut-off, sensitivity, and specificity values associated with RI-PI values. A significant relationship was observed between malignancy and irregular margins, microcalcifications, and hypoechogenicity on ultrasound examination (p 0.05). The central, peripheral, and mean RI-PI values were higher in malignant nodules when compared to the other cytologies (p < 0.05). Vascularity is not a useful parameter for distinguishing malignant from benign thyroid nodules. However, RI and PI values are useful in distinguishing malignant from benign thyroid nodules

  1. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods

    Directory of Open Access Journals (Sweden)

    Rafal Cupek

    2016-11-01

    Full Text Available Objectives : Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. Material and methods : This paper focus on a computer aided diagnostic system that was developed within joint Polish–Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner’s experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. Results : The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Conclusions : Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner’s experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an

  2. Measurement of ventricular function using Doppler ultrasound

    International Nuclear Information System (INIS)

    Teague, S.M.

    1986-01-01

    Doppler has wide application in the evaluation of valvular heart disease. The need to know ventricular function is a much more common reason for an echocardiographic evaluation. Interestingly, Doppler examinations can assess ventricular function from many perspectives. Description of ventricular function entails measurement of the timing, rate and volume of ventricular filling and ejection. Doppler ultrasound examination reveals all of these aspects of ventricular function noninvasively, simply, and without great expense or radiation exposure, as described in this chapter

  3. Two-dimensional power Doppler-three-dimensional ultrasound imaging of a cesarean section dehiscence with utero-peritoneal fistula: a case report

    Directory of Open Access Journals (Sweden)

    Royo Pedro

    2009-01-01

    Full Text Available Abstract Introduction An imaging diagnosis after an iterative cesarean delivery is reviewed demonstrating a fine ultrasound-pathologic correlation. Case presentation A 33-year-old woman (G3, P3 presented referring intense dysmenorrhea and intermenstrual spotting since her third cesarean delivery, 1 year before. A cesarean section dehiscence with utero-peritoneal fistula was diagnosed by transvaginal ultrasound. Conclusion We can conclude that transvaginal two-dimensional power Doppler and three-dimensional ultrasound are highly accurate in detecting cesarean section dehiscence and uterine fistula.

  4. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  5. The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.

    Science.gov (United States)

    Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K

    2011-09-01

    To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.

  6. Color Doppler, power Doppler and B-flow ultrasound in the assessment of ICA stenosis: Comparison with 64-MD-CT angiography

    International Nuclear Information System (INIS)

    Clevert, D.A.; Johnson, T.; Flach, P.M.; Strautz, T.I.; Becker, C.; Reiser, M.; Jung, E.M.; Ritter, G.; Gallegos, M.T.; Kubale, R.

    2007-01-01

    The purpose of this study is to investigate the diagnostic potential of color-coded Doppler sonography (CCDS), power-Doppler (PD) and B-flow ultrasound in assessing the degree of extracranial internal carotid artery (ICA) stenosis in comparison to CT-angiography (MD-CTA). Thirty-two consecutive patients referred for CTA with 41 ICA-stenoses were included in this prospective study. MD-CTA was performed using a 64 row scanner with a CTDIvol of 13.1 mGy/cm. In CTA, CCDS, PD and B-flow, the degree of stenosis was evaluated by the minimal intrastenotic diameter in comparison to the poststenotic diameter. Two radiologists performed a quantitative evaluation of the stenoses in consensus blinded to the results of ultrasound. These were correlated to CTA, CCDS, PD and B-flow, intraoperative findings and clinical follow-up. Grading of the stenoses in B-flow ultrasound outperformed the other techniques in terms of accuracy with a correlation coefficient to CTA of 0.88, while PD and CCDS measurements yield coefficients of 0.74 and 0.70. Bland-Altman analysis additionally shows a very little bias of the three US methods between 0.5 and 3.2 %. There is excellent correlation (coefficient 0.88, CI 0.77-0.93) with 64-MD-CTA and B-flow ultrasound in terms of accuracy for intrastenotic and poststenotic diameter. Duplex sonography is useful for screening purposes. (orig.)

  7. New flowmetric measurement methods of power dissipated by an ultrasonic generator in an aqueous medium.

    Science.gov (United States)

    Mancier, Valérie; Leclercq, Didier

    2007-02-01

    Two new determination methods of the power dissipated in an aqueous medium by an ultrasound generator were developed. They are based on the use of a heat flow sensor inserted between a tank and a heat sink that allows to measure the power directly coming through the sensor. To be exploitable, the first method requires waiting for stationary flow. On the other hand, the second, extrapolated from the first one, makes it possible to determine the dissipated power in only five minutes. Finally, the results obtained with the flowmetric method are compared to the classical calorimetric ones.

  8. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  10. Estimating the accuracy of optic nerve sheath diameter measurement using a pocket-sized, handheld ultrasound on a simulation model.

    Science.gov (United States)

    Johnson, Garrett G R J; Zeiler, Frederick A; Unger, Bertram; Hansen, Gregory; Karakitsos, Dimitrios; Gillman, Lawrence M

    2016-12-01

    Ultrasound measurement of optic nerve sheath diameter (ONSD) appears to be a promising, rapid, non-invasive bedside tool for identification of elevated intra-cranial pressure. With improvements in ultrasound technology, machines are becoming smaller; however, it is unclear if these ultra-portable handheld units have the resolution to make these measurements precisely. In this study, we estimate the accuracy of ONSD measurement in a pocket-sized ultrasound unit. Utilizing a locally developed, previously validated model of the eye, ONSD was measured by two expert observers, three times with two machines and on five models with different optic nerve sheath sizes. A pocket ultrasound (Vscan, GE Healthcare) and a standard portable ultrasound (M-Turbo, SonoSite) were used to measure the models. Data was analyzed by Bland-Altman plot and intra-class correlation coefficient (ICC). The ICC between raters for the SonoSite was 0.878, and for the Vscan was 0.826. The between-machine agreement ICC was 0.752. Bland-Altman agreement analysis between the two ultrasound methods showed an even spread across the range of sheath sizes, and that the Vscan tended to read on average 0.33 mm higher than the SonoSite for each measurement, with a standard deviation of 0.65 mm. Accurate ONSD measurement may be possible utilizing pocket-sized, handheld ultrasound devices despite their small screen size, lower resolution, and lower probe frequencies. Further study in human subjects is warranted for all newer handheld ultrasound models as they become available on the market.

  11. The effect of high-power ultrasound and gas phase plasma treatment on Aspergillus spp. and Penicillium spp. count in pure culture.

    Science.gov (United States)

    Herceg, Z; Režek Jambrak, A; Vukušić, T; Stulić, V; Stanzer, D; Milošević, S

    2015-01-01

    The aim of this study was to investigate and compare two nonthermal techniques in the inactivation of moulds. High power ultrasound (20 kHz) and nonthermal gas phase plasma treatments were studied in the inactivation of selected moulds. Aspergillus spp. and Penicillium spp. were chosen as the most common mould present in or on food. Experimental design was introduced to establish and optimize working variables. For high power ultrasound, the greatest reduction of moulds (indicated by the total removal of viable cells) was obtained after ultrasound treatments at 60°C (thermosonication) for 6 and 9 min (power applied, 20-39 W). For plasma treatment, the greatest inactivation of moulds was observed for the longest treatment time (5 min) and lowest sample volume (2 ml), (AP12, AP13, PP12 and PP13). The great amount of applied energy required for achieving a partial log reduction in viable cells is the limiting factor for using high-power ultrasound. However, both treatment methods could be combined in the future to produce beneficial outcomes. This study deals with nonthermal food processing techniques and the results and findings present in this study are the root for further prospective studies. The food industry is looking for nonthermal methods that will enable food preservation, reduce deterioration of food compounds and structure and prolong food shelf life. © 2014 The Society for Applied Microbiology.

  12. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. The effect of high power ultrasound on phenolic composition, chromatic characteristics, and aroma compounds of red wines

    Directory of Open Access Journals (Sweden)

    Natka Ćurko

    2017-01-01

    Full Text Available High power ultrasound (HPU is a novel, non-thermal technology the application of which has been primarily evaluated in managing food quality. The application of high power ultrasound in wine technology is therefore directed at modulating microbial activity during fermentation, extraction of phenolic and aroma compounds from grapes to must, as well as at accelerating aging reactions in wine. The main aim of this article was to evaluate the effect of different HPU process parameters on sustaining the phenolic and aroma composition of red wine and its colour characteristics. Three different red wines, including Cabernet Sauvignon, Merlot, and Plavac mali, were treated with high power ultrasound (20kHz, considering the variations in ultrasound probe diameter size (12.7 and 19 mm, amplitude level (20, 30, and 40 %, and processing time (2, 4, and 6 minutes. Total polyphenol content, total anthocyanin concentration, and chromatic characteristics were analyzed by spectrophotometry, free anthocyanins were analysed by high performance liquid chromatography, and wine aroma compounds were analyzed by gas chromatography combined with solid-phase microextraction. The obtained results show that ultrasonic irradiation induces chemical changes in phenolic composition, chromatic characteristics, and aroma compounds concentration, and accelerates chemical reactions responsible for wine aging. The intensity of the mentioned chemical changes depends on the selected processing parameters and on the treated variety. Among three different parameters, the selection of the probe diameter was showed to be most significant factor influencing chemical composition, followed by the amplitude level and processing time. The smaller diameter probe size (12.7 mm, lowest amplitude (20%, and a shorter processing time (2 minutes showed a more favourable and lighter effect on the chemical composition of the treated red wines.

  14. The use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko

    International Nuclear Information System (INIS)

    Erman, R.

    1987-01-01

    This paper describes the main principles of the ultrasonic generator functioning and the use of ultrasound for decontamination of tools and equipment in nuclear power plant Krshko. The paper gives the operating procedure and presents decontamination results of tools and equipment fabricated from various materials. (author) 3 refs.; 1 tab

  15. An ultrasound mini-balance for measurement of therapy level ultrasound

    International Nuclear Information System (INIS)

    Sutton, Yvonne; McBride, Karne; Pye, Stephen

    2006-01-01

    This paper describes a cost-effective method for measuring acoustic power using a radiation force balance. The device is based around a long established balance design with a gantry arrangement fitted with an absorbing target. The notion of this balance design is that it can easily be constructed from materials that would be readily available within a clinical or industrial environment. The mini-balance was calibrated using a transfer standard against an NPL Reference balance, so a comparison of the performance between the two systems could be assessed. The measurements were completed at 1 MHz and 3 MHz and over the acoustic power range of 1 W to 15 W. The results show the acoustic power measured on the mini-balance to be within 5% of the reference measurements made on the NPL Balance. A separate systematic uncertainty budget is also presented based on studies made on the balance and on similar systems. The overall expanded uncertainty was calculated to be within 14% at 1 W level, decreasing with increasing power level to 7.4% above 5 W

  16. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    International Nuclear Information System (INIS)

    Sheng, Fei; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H.

    2014-01-01

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound

  17. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fei, E-mail: shengf@ices.a-star.edu.sg; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H., E-mail: reginald.tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences (Singapore)

    2014-12-15

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound.

  18. Validation of an ultrasound dilution technology for cardiac output measurement and shunt detection in infants and children.

    Science.gov (United States)

    Lindberg, Lars; Johansson, Sune; Perez-de-Sa, Valeria

    2014-02-01

    To validate cardiac output measurements by ultrasound dilution technology (COstatus monitor) against those obtained by a transit-time ultrasound technology with a perivascular flow probe and to investigate ultrasound dilution ability to estimate pulmonary to systemic blood flow ratio in children. Prospective observational clinical trial. Pediatric cardiac operating theater in a university hospital. In 21 children (6.1 ± 2.6 kg, mean ± SD) undergoing heart surgery, cardiac output was simultaneously recorded by ultrasound dilution (extracorporeal arteriovenous loop connected to existing arterial and central venous catheters) and a transit-time ultrasound probe applied to the ascending aorta, and when possible, the main pulmonary artery. The pulmonary to systemic blood flow ratio estimated from ultrasound dilution curve analysis was compared with that estimated from transit-time ultrasound technology. Bland-Altman analysis of the whole cohort (90 pairs, before and after surgery) showed a bias between transit-time ultrasound (1.01 ± 0.47 L/min) and ultrasound dilution technology (1.03 ± 0.51 L/min) of -0.02 L/min, limits of agreement -0.3 to 0.3 L/min, and percentage error of 31%. In children with no residual shunts, the bias was -0.04 L/min, limits of agreement -0.28 to 0.2 L/min, and percentage error 19%. The pooled co efficient of variation was for the whole cohort 3.5% (transit-time ultrasound) and 6.3% (ultrasound dilution), and in children without shunt, it was 2.9% (transit-time ultrasound) and 4% (ultrasound dilution), respectively. Ultrasound dilution identified the presence of shunts (pulmonary to systemic blood flow ≠ 1) with a sensitivity of 100% and a specificity of 92%. Mean pulmonary to systemic blood flow ratio by transit-time ultrasound was 2.6 ± 1.0 and by ultrasound dilution 2.2 ± 0.7 (not significant). The COstatus monitor is a reliable technique to measure cardiac output in children with high sensitivity and specificity for detecting the

  19. A comparison of ultrasound measurements to assess carotid atherosclerosis development in subjects with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Zinman Bernard

    2005-06-01

    Full Text Available Abstract Background Subjects with type 2 diabetes are at an increased risk of vascular complications. The use of carotid ultrasound remains an attractive, non-invasive method to monitor atherosclerotic disease progression and/or response to treatment in patients with type 2 diabetes, with intima-media thickness routinely used as the gold standard to detect pathology. However, alternative measurements, such as plaque area or volume, may represent a potentially more powerful approach. Thus, the objective of this study was to compare the traditional intima-media thickness measurement against the novel total plaque volume measurement in analyzing carotid atherosclerosis development in individuals with type 2 diabetes. Methods The case-control study included 49 Oji-Cree adults with diabetes or impaired glucose tolerance, aged 21–69, and 49 sex- and age-matched normoglycemic subjects. At baseline, metabolic variables were measured, including body mass index, waist circumference, total cholesterol:high density lipoprotein ratio, plasma triglycerides, plasma glucose, and serum insulin. Carotid ultrasound measurements, 7 years later, assessed carotid arterial intima-media thickness and total plaque volume. Results At baseline, the two groups were well matched for smoking habits, hypertension, body mass index, and waist circumference. Differences were noted in baseline measurements of total cholesterol:high density lipoprotein (P = 0.0006, plasma triglycerides (P P P = 0.037, but not intima-media thickness measurements, were higher in subjects with diabetes/impaired glucose tolerance compared to the normoglycemic controls. Correlation between intima-media thickness and total plaque volume was moderate. Based on our study findings, to achieve power levels >0.70 when comparing intima-media thickness measurements for diabetics versus non-diabetics, thousands of study subjects are required. For comparing total plaque volume measurements, only hundreds of

  20. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    Science.gov (United States)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and

  1. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  2. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    by ultrasound dilution was determined within three days of the procedure. The methods were compared using regression analysis and tested for systematic bias. Results: Failure to position the thermodilutional catheter correctly was observed in 8 out of 46 (17%) pre-intervention measurements. Post-intervention......Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...

  3. Automated 3D ultrasound measurement of the angle of progression in labor.

    Science.gov (United States)

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  4. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  5. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    Science.gov (United States)

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements.

  6. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    Science.gov (United States)

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  7. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    Science.gov (United States)

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    Science.gov (United States)

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. [Experimental ultrasound angioplasty: in vitro resolution of thrombi].

    Science.gov (United States)

    Stähr, P; Erbel, R; Weber, W; Fischer, H; Meyer, J

    1995-05-01

    A new ultrasonic angioplasty ablation catheter connected to a 19.5 kHz. 25 W transducer was tested in vitro for its ability to disrupt 12-h. 24-h, and 5-day-old whole blood thrombi (n = 45.697 mg +/- 223 mg) and fibrin thrombi (n = 45.338 mg +/- 133 mg), as well as 5-day-old cadaver thrombi (n = 8.270 mg +/- 71 mg) within 10 min. Five of each age were used as control thrombi in which the catheter was moved back and forth without ultrasound emission. The size of ablated thrombus particles was measured by a laser device. The power output at the end of the catheter was assessed calorimetrically. The loss of weight of whole blood thrombi was between 429 (74%) and 524 mg (91%) (p power output at the catheter tip was 5.9 W compared to the power output of 25 W at the ultrasound generator.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Reliability of ultrasound for measurement of selected foot structures.

    Science.gov (United States)

    Crofts, G; Angin, S; Mickle, K J; Hill, S; Nester, C J

    2014-01-01

    Understanding the relationship between the lower leg muscles, foot structures and function is essential to explain how disease or injury may relate to changes in foot function and clinical pathology. The aim of this study was to investigate the inter-operator reliability of an ultrasound protocol to quantify features of: rear, mid and forefoot sections of the plantar fascia (PF); flexor hallucis brevis (FHB); flexor digitorum brevis (FDB); abductor hallucis (AbH); flexor digitorum longus (FDL); flexor hallucis longus (FHL); tibialis anterior (TA); and peroneus longus and brevis (PER). A sample of 6 females and 4 males (mean age 29.1 ± 7.2 years, mean BMI 25.5 ± 4.8) was recruited from a university student and staff population. Scans were obtained using a portable Venue 40 musculoskeletal ultrasound system (GE Healthcare UK) with a 5-13 MHz wideband linear array probe with a 12.7 mm × 47.1mm footprint by two operators in the same scanning session. Intraclass Correlation Coefficients (ICC) values for muscle thickness (ICC range 0.90-0.97), plantar fascia thickness (ICC range 0.94-0.98) and cross sectional muscle measurements (ICC range 0.91-0.98) revealed excellent inter-operator reliability. The limits of agreement, relative to structure size, ranged from 9.0% to 17.5% for muscle thickness, 11.0-18.0% for plantar fascia, and 11.0-26.0% for cross sectional area measurements. The ultrasound protocol implemented in this work has been shown to be reliable. It therefore offers the opportunity to quantify the structures concerned and better understand their contributions to foot function. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation

    OpenAIRE

    Alles, E. J.; Heo, J.; Noimark, S.; Colchester, R.; Parkin, I.; Baac, H. W.; Desjardins, A.

    2017-01-01

    An optical ultrasound generator was used to perform broadband (2-35 MHz) acoustical characterisation measurements of a nanocomposite comprising carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), a composite that is commonly used as optical ultrasound generator. Samples consisting of either pure PDMS or CNT-loaded PDMS were characterised to determine the influence of CNTs on the speed of sound and power-law acoustic attenuation parameters. A small weight fraction (

  12. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn.

    Science.gov (United States)

    Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

    2011-01-01

    The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Logistic discriminant analysis of breast cancer using ultrasound measurement

    International Nuclear Information System (INIS)

    Abdolmaleki, P.; Mokhtari Dizaji, M.; Vahead, M.R.; Gity, M.

    2004-01-01

    Background: Logistic discriminant method was applied to differentiate malignant from benign in a group of patients with proved breast lesions of the basis of ultrasonic parameters. Materials and methods: Our database include 273 patients' ultrasonographic pictures consisting of 14 quantitative variables. The measured variables were ultrasound propagation velocity, acoustic impedance and attenuation coefficient at 10 MHz in breast lesions at 20, 25, 30 and 35 d ig c temperature, physical density and age. This database was randomly divided into the estimation of 201 and validation of 72 samples. The estimation samples were used to build the logistic discriminant model, and validation samples were used to validate the performance. Finally important criteria such as sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were evaluated. Results: Our results showed that the logistic discriminant method was able to classify correctly 67 out of 72 cases presented in the validation sample. The results indicate a remarkable diagnostic accuracy of 93%. Conclusion: A logistic discriminator approach is capable of predicting the probability of malignancy of breast cancer. Features from ultrasonic measurement on ultrasound imaging is used in this approach

  14. [Two- and three-dimensional power Doppler ultrasound in the follow-up of placenta accreta treated conservatively].

    Science.gov (United States)

    Roulot, A; Barranger, E; Morel, O; Soyer, P; Héquet, D

    2015-02-01

    To determinate the potential of 2D and 3D-ultrasound in the follow-up of patients with placenta accreta treated conservatively. Seven patients with placenta accreta treated conservatively during June 2007 and September 2009 were included. The follow-up consisted in clinical examination and 2D/3D-ultrasound once a month. Criteria studied included clinical outcome, echogenicity at 2D-ultrasound, vascularisation at colour Doppler, Mean Grey at 3D-ultrasound and vascularisation, flow and perfusion index. Seven women with invasive placenta (3 placentas accreta and 2 percreta) were studied. The mean follow-up was 228 days [75-369]. Mean delay for complete elimination of residual placenta was 280 days [120-365]. The two main results were: presence of an increased anechogenicpart in residual placenta before complete resorption for all patients; a systematic and concomitant stop of genital haemorrhage and vascularisation at colour Doppler. High degrees of variability in parameters measured at 3D-ultrasound were observed between patients so that correlations with clinical outcome were found. Long and regular follow-up is essential after conservative management but the role of 3D-ultrasound compared to 2D-ultrasound was not demonstrated in this study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  17. Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

    Science.gov (United States)

    Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q

    2015-06-01

    To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P power Doppler ultrasound might help to identify cases of brain vasodilatation earlier and inform parental counseling. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  18. The cardiac cycle is a major contributor to variability in size measurements of abdominal aortic aneurysms by ultrasound

    DEFF Research Database (Denmark)

    Grøndal, Nikolaj Fibiger; Bramsen, Morten; Thomsen, Marie Dahl

    2012-01-01

    The objective of the study was to evaluate the impact of the cardiac cycle on ultrasound measurements of abdominal aortic aneurysm (AAA) diameters.......The objective of the study was to evaluate the impact of the cardiac cycle on ultrasound measurements of abdominal aortic aneurysm (AAA) diameters....

  19. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    Science.gov (United States)

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  20. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  1. Can ultrasound of plantar plate have normal appearance with a positive drawer test?

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Eloy de Avila [Affiliated Professor, Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo (Brazil); Mann, Tania Szejnfeld [Medical Assistant of Medicine and Surgery of the Foot and Ankle Group, Department of Orthopedics and Traumatology, EPM-Unifesp, São Paulo (Brazil); Puchnick, Andrea, E-mail: andrea.ddi@epm.br [Professor and Coordinator of Educational and Research Support, Department of Diagnostic Imaging, EPM-Unifesp, São Paulo (Brazil); Tertulino, Franklin de Freitas [Postgraduate Physician, Department of Diagnostic Imaging, EPM-Unifesp, São Paulo (Brazil); Cannato, Camila Testoni [Resident Physician, Department of Surgery, EPM-Unifesp, São Paulo (Brazil); Nery, Caio [Associate Professor, Department of Orthopedics and Traumatology, EPM-Unifesp, São Paulo (Brazil); Fernandes, Artur da Rocha Corrêa [Associate Professor, Department of Diagnostic Imaging, EPM-Unifesp, São Paulo (Brazil)

    2015-03-15

    Highlights: •We evaluate the accuracy of ultrasound to identify and measure the plantar plate. •We correlate ultrasound findings with those of physical examination and MRI. •Ultrasound and MRI measures of plantar plate were positively correlated. •Ultrasound is efficient in identifying and measuring plantar plate. •Ultrasound may complement physical examination. •Young asymptomatic subjects can present a grade I positive drawer test. -- Abstract: Objectives: The aims of this study were (1) to evaluate the reliability of ultrasound (US) examination in the identification and measurement of the metatarsophalangeal plantar plate (MTP-PP) in asymptomatic subjects and (2) to establish the correlation of US findings with those of physical examination and magnetic resonance imaging (MRI), once it is an important tool in the evaluation of the instability syndrome of the second and third rays. Materials and Methods: US examinations of the second and third MTP-PPs were performed in eight asymptomatic volunteers, totaling 32 MTP joints, by three examiners with different levels of experience in musculoskeletal US. Plantar plate dimensions, integrity and echogenicity, the presence of ruptures, and confidence level in terms of structure identification were determined using conventional US. Vascular flow was assessed using power Doppler. US data were correlated with data from physical examination and MRI. Results: MTP-PPs were ultrasonographically identified in 100% of cases, always showing homogeneous hyperechoic features and no detectable vascular flow on power Doppler, with 100% certainty in identification for all examiners. There was excellent US inter-observer agreement for longitudinal measures of second and third toe MTP-PPs and for transverse measures of the second toe MTP-PP. The MTP drawer test was positive for grade 1 MTP instability in 34.4% of joints with normal US results. Transverse MTP-PP measures were significantly higher in individuals with positive

  2. Analysis of ultrasound propagation in high-temperature nuclear reactor feedwater to investigate a clamp-on ultrasonic pulse doppler flowmeter

    International Nuclear Information System (INIS)

    Tezuka, Kenichi; Mori, Michitsugu; Wada, Sanehiro; Aritomi, Masanori; Kikura, Hiroshige; Sakai, Yukihiro

    2008-01-01

    The flow rate of nuclear reactor feedwater is an important factor in the operation of a nuclear power reactor. Venturi nozzles are widely used to measure the flow rate. Other types of flowmeters have been proposed to improve measurement accuracy and permit the flow rate and reactor power to be increased. The ultrasonic pulse Doppler system is expected to be a candidate method because it can measure the flow profile across the pipe cross section, which changes with time. For accurate estimation of the flow velocity, the incidence angle of ultrasound entering the fluid should be estimated using Snell's law. However, evaluation of the ultrasound propagation is not straightforward, especially for a high-temperature pipe with a clamp-on ultrasonic Doppler flowmeter. The ultrasound beam path may differ from what is expected from Snell's law due to the temperature gradient in the wedge and variation in the acoustic impedance between interfaces. Recently, simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation, using 3D-FEM simulation code plus the Kirchhoff method, as it relates to flow profile measurement in nuclear reactor feedwater with the ultrasonic pulse Doppler system. (author)

  3. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  4. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  5. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    Science.gov (United States)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  6. Superficial Ultrasound Shear Wave Speed Measurements in Soft and Hard Elasticity Phantoms: Repeatability and Reproducibility Using Two Different Ultrasound Systems

    Science.gov (United States)

    Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.

    2014-01-01

    Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth

  7. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  8. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  9. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    Science.gov (United States)

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  10. Decision Making with Ultrasound in Rheumatology

    NARCIS (Netherlands)

    M. van der Ven (Myrthe)

    2018-01-01

    markdownabstractThe _first aim_ of this thesis was to evaluate the added value of ultrasound in clinical decision making in patients with arthralgia, patients with psoriasis and monitoring RA patients. Our _second aim_ was to increase sensitivity of power Doppler ultrasound for MCP joints.

  11. Medical Ultrasound Imaging.

    Science.gov (United States)

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  12. Power Doppler signal calibration between ultrasound machines by use of a capillary-flow phantom for pannus vascularity in rheumatoid finger joints: a basic study.

    Science.gov (United States)

    Sakano, Ryosuke; Kamishima, Tamotsu; Nishida, Mutsumi; Horie, Tatsunori

    2015-01-01

    Ultrasound allows the detection and grading of inflammation in rheumatology. Despite these advantages of ultrasound in the management of rheumatoid patients, it is well known that there are significant machine-to-machine disagreements regarding signal quantification. In this study, we tried to calibrate the power Doppler (PD) signal of two models of ultrasound machines by using a capillary-flow phantom. After flow velocity analysis in the perfusion cartridge at various injection rates (0.1-0.5 ml/s), we measured the signal count in the perfusion cartridge at various injection rates and pulse repetition frequencies (PRFs) by using PD, perfusing an ultrasound micro-bubble contrast agent diluted with normal saline simulating human blood. By use of the data from two models of ultrasound machines, Aplio 500 (Toshiba) and Avius (Hitachi Aloka), the quantitative PD (QPD) index [the summation of the colored pixels in a 1 cm × 1 cm rectangular region of interest (ROI)] was calculated via Image J (internet free software). We found a positive correlation between the injection rate and the flow velocity. In Aplio 500 and Avius, we found negative correlations between the PRF and the QPD index when the flow velocity was constant, and a positive correlation between flow velocity and the QPD index at constant PRF. The equation for the relationship of the PRF between Aplio 500 and Avius was: y = 0.023x + 0.36 [y = PRF of Avius (kHz), x = PRF of Aplio 500 (kHz)]. Our results suggested that the signal calibration of various models of ultrasound machines is possible by adjustment of the PRF setting.

  13. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    Science.gov (United States)

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  15. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  16. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.

    Science.gov (United States)

    Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi

    2013-01-01

    Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Multiparametric ultrasound in the detection of prostate cancer: a systematic review

    OpenAIRE

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-01-01

    Purpose To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). Methods A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Results Limited research available on combining ultrasound modal...

  18. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people

    NARCIS (Netherlands)

    Pluijm, S.M.F.; Graafmans, W.C.; Bouter, L.M.; Lips, P.T.A.M.

    1999-01-01

    In this prospective study we investigated the predictive value of quantitative ultrasound (QUS) measurements and other potential predictors of osteoporotic fractures in the elderly. During a I-year period, 710 participants (132 men and 578 women), aged 70 years and older (mean age ± SD: 82.8 ± 5.9),

  19. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    International Nuclear Information System (INIS)

    Hornblower, V D M; Yu, E; Fenster, A; Battista, J J; Malthaner, R A

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo

  20. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Hornblower, V D M [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Yu, E [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Fenster, A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Battista, J J [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada); Malthaner, R A [Canadian Surgical Technologies and Advanced Robotics, London, Ontario (Canada)

    2007-01-07

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  1. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  2. AISI/DOE Advanced Process Control Program Vol. 4 of 6: ON-LINE, NON-DESTRUCTIVE MECHANICAL PROPERTY MEASUREMENT USING LASER-ULTRASOUND

    Energy Technology Data Exchange (ETDEWEB)

    Andre' Moreau; Martin Lord; Daniel Levesqure; Marc Dubois; Jean Bussiere; Jean-Pierre Monchalin; Christian Padioleau; Guy Lamouche; Teodor Veres; Martin Viens; Harold Hebert; Pierre Basseras; Cheng-Kuei Jen

    2001-03-31

    The goal of this project was to demonstrate the feasibility to measure the mechanical properties, such as yield strength, tensile strength, elongation, strain hardening exponent and plastic strain ratio parameters, of low carbon steel sheets on the production line using laser ultrasound. The ultrasound generated by the developed apparatus travels mostly back and forth in the thickness of the steel sheet. By measuring the time delay between two echoes, and the relative amplitude of these two echoes, one can measure ultrasound velocity and attenuation. These are governed by the microstructure: grain size, crystallographic texture, dislocations, etc. Thus, by recording the time behavior of the ultrasonic signal, one can extract microstructural information. These microstructural information together with the modified Hall-Petch equation allow measurement of the mechanical properties. Through laboratory investigations with a laboratory laser ultrasound system, followed by the installation of a prototype system at LTV Steel Company's No.1 Inspection Line in Cleveland, all target mechanical properties of ultra low carbon (ULC), low carbon (LC) and high strength low alloy (HSLA) steel sample lots were measured meeting or nearly meeting all the target accuracies. Thus, the project realized its goal to demonstrate that the mechanical properties of low carbon steel sheets can be measured on-line using laser ultrasound

  3. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  4. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  5. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... may produce minimal discomfort. If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured. Most ultrasound examinations ...

  7. Using Flow Characteristics in Three-Dimensional Power Doppler Ultrasound Imaging to Predict Complete Responses in Patients Undergoing Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren

    2017-05-01

    Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide.

    Science.gov (United States)

    Juffermans, L J M; Dijkmans, P A; Musters, R J P; Visser, C A; Kamp, O

    2006-10-01

    In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P ultrasound exposure was completely blocked at MI 0.1 (P ultrasound-exposed microbubbles.

  9. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  10. Sensory and Quality Evaluation of Traditional Compared with Power Ultrasound Processed Corn (Zea Mays) Tortilla Chips.

    Science.gov (United States)

    Janve, Bhaskar; Yang, Wade; Sims, Charles

    2015-06-01

    Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  12. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound

    International Nuclear Information System (INIS)

    Oh, Junghwan; Feldman, Marc D; Kim, Jeehyun; Condit, Chris; Emelianov, Stanislav; Milner, Thomas E

    2006-01-01

    The purpose of this study was to demonstrate the magneto-motive ultrasonic detection of superparamagnetic iron oxide (SPIO) nanoparticles as a marker of macrophage recruitment in tissue. The capability of ultrasound to detect SPIO nanoparticles (core diameter ∼20 nm) taken up by murine liver macrophages was investigated. Eight mice were sacrificed two days after the intravenous administration of four SPIO doses (1.5, 1.0, 0.5, and 0.1 mmol Fe/kg body weight). In the iron-laden livers, ultrasound Doppler measurements showed a frequency shift in response to an applied time-varying magnetic field. M-mode scan and colour power Doppler images of the iron-laden livers also demonstrated nanoparticle movement under focused magnetic field excitation. In the livers of two saline injected control mice, no movement was observed using any ultrasound imaging modes. The results of our experiments indicate that ultrasound imaging of magneto-motive excitation is a candidate imaging modality to identify tissue-based macrophages containing SPIO nanoparticles

  13. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    Science.gov (United States)

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  14. Ultrasound-assisted extraction for total sulphur measurement in mine tailings

    International Nuclear Information System (INIS)

    Khan, Adnan Hossain; Shang, Julie Q.; Alam, Raquibul

    2012-01-01

    Highlights: ► We develop a total sulphur measuring procedure of mine tailings. ► Ultrasound is used in the sample pre-treatment process. ► Full factorial design is applied to identify the best level of effecting factors. - Abstract: A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2 3 ) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80 °C temperature and 1 ml of HNO 3 :1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2 3 full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO™-CNS method.

  15. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  16. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  17. Intra and interobserver variability of renal allograft ultrasound volume and resistive index measurements

    International Nuclear Information System (INIS)

    Mancini, Marcello; Liuzzi, Raffaele; Daniele, Stefania; Raffio, Teresa; Salvatore, Marco; Sabbatini, Massimo; Cianciaruso, Bruno; Ferrara, Liberato Aldo

    2005-01-01

    Purpose: Aim of the presents study was to evaluate the repeatability and reproducibility of the Doppler Resistive Index (R.I.) and the Ultrasound renal volume measurement in renal transplants. Materials and methods: Twenty -six consecutive patients (18 men, 8 women) mean age of 42,8±12,4 years (M±SD)(range 22-65 years) were studied twice by each of two trained sonographers using a color Doppler ultrasound scanner. Twelve of them had a normal allograft function (defined as stable serum creatinine levels ≤123,76 μmol/L), whilst the remaining 14 had decreased allograft function (serum creatinine 132.6-265.2 μmol/L). Results were given as mean of 6 measurements performed at upper, middle and lower pole of the kidney. Intra- and interobserver variability was assessed by the repeatability coefficient and coefficient of variation (CV). Results: Regarding Resistive Index measurement, repeatability coefficient was between 0.04 and 0.06 and the coefficient of variation was [it

  18. Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Delgado, Adriana; Zhang, Zhihang

    2012-05-01

    Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (-2 °C, -3 °C, -4 °C and -5 °C), irradiation duration (0s, 1s, 3s, 5s, 10s or 15s) and ultrasound intensity (0.07 W cm(-2), 0.14 W cm(-2), 0.25 W cm(-2), 0.35 W cm(-2) and 0.42 W cm(-2)) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (-20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from -5 °C to -2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm(-2) ultrasound intensity and different durations of ultrasound application on agar gels showed that 1s was not long enough to induce nucleation, 3s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  20. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    Science.gov (United States)

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  1. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    Science.gov (United States)

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  2. Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system.

    Science.gov (United States)

    Tsuruta, James K; Dayton, Paul A; Gallippi, Caterina M; O'Rand, Michael G; Streicker, Michael A; Gessner, Ryan C; Gregory, Thomas S; Silva, Erick J R; Hamil, Katherine G; Moser, Glenda J; Sokal, David C

    2012-01-30

    Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline) was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the result of repeated use, to verify that the contraceptive effect is

  3. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... of the filter. A numerical, FE- and BE-based model for calculation of the response of ultrasonic transducers of various geometries formed the basis for the design of such transducers. During laboratory experiments frequency and output power have been varied in order to find the optimal transducer design...

  4. Safety of Medical Diagnostic Ultrasound

    International Nuclear Information System (INIS)

    Breyer, B.

    1998-01-01

    Large numbers of people (both sick and healthy) are routinely exposed to ultrasound waves. We shall discuss wave parameters and scanner properties that are relevant to the safety aspect. This includes central pulse frequency, pulse length, intensity (ISPTA and others), focusing, pulse repetition frequency, pulse pressure, etc. Since the transmitted ultrasound power has steadily been increasing during the last two decades, the problems are becoming more serious with time. Doppler methods have gained importance and 'popularity, which additionally increases ultrasound power requirements since the reflectivity of red blood cells is so small that the backscattered pressure is about 100 times less than that from soft tissue structures in the body. Main mechanisms that can potentially present hazard are heating and cavitation. The basic parameter used to assess thermal hazard is ISPTA and the optimal predictor of cavitation hazard is the peak rarefractional pressure. The hazard of heating-up can be summarized in saying that temperatures up to 38.5 o C are safe, while temperatures above 41 o C are definitely not. Care must be taken to stay within the safe zone. However, there does not exist a confirmed report of any type of hazardous effects on humans using intensities presently applied in diagnostic ultrasound scanners. Taking this into account, various international bodies have put limits to the application of ultrasound, which is best summarized in the FDA (USA) regulation that diagnostic apparatus may have an output of maximally 720 mW/cm 2 (derated) provided thermal and mechanical properties are indicated (onscreen) by properly defined Thermal Indices (TI) and Mechanical Index (MI). These aspects shall be discussed in some detail. We shall give the rules for the operator to apply ultrasound with minimal hazard. The general conclusion is that diagnostic ultrasound, as presently known, may be used whenever a qualified expert expects essential medical benefit for the

  5. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  6. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  7. Cooperation between National Defense Medical College and Fukushima Medical University in thyroid ultrasound examination after the Fukushima Daiichi nuclear power plant disaster

    International Nuclear Information System (INIS)

    Yamamoto, Yoritsuna; Fujita, Masanori; Tachibana, Shoich; Morita, Koji; Hamano, Kunihisa; Hamada, Koji; Uchida, Kosuke; Tanaka, Yuji

    2013-01-01

    Fukushima Daiichi Nuclear Power Plant was utterly destroyed by The Great East Japan Earthquake which happened on March 11, 2011, and followed by radioactive contamination to the surrounding areas. Based on the known radioactive iodine ("1"3"1I) which led to thyroid cancer in children after the Chernobyl nuclear power plant disaster in 1986, children living in Fukushima should be carefully observed for the development of thyroid cancer. Fukushima Prefecture and Fukushima Medical University started ''Fukushima Health Management Survey'' in May 2011, which includes screening for thyroid cancer by ultrasonography (Thyroid Ultrasound Examination). Thyroid Ultrasound Examination would cover roughly 360,000 residents aged 0 to 18 years of age at the time of the nuclear disaster. The initial screening is to be performed within the first three years after the accident, followed by complete thyroid examinations from 2014 onwards, and the residents will be monitored regularly thereafter. As Thyroid Ultrasound Examination is being mainly performed by medical staff at Fukushima Medical University, there is insufficient manpower to handle the large number of potential examinees. Thus, specialists of thyroid diseases from all over Japan have begun to support this examination. Six endocrinologists including the authors belonging to the National Defense Medical College are cooperating in part of this examination. This paper briefly reports the outline of Thyroid Ultrasound Examination and our cooperation. (author)

  8. Automatic ultrasound technique to measure angle of progression during labor.

    Science.gov (United States)

    Conversano, F; Peccarisi, M; Pisani, P; Di Paola, M; De Marco, T; Franchini, R; Greco, A; D'Ambrogio, G; Casciaro, S

    2017-12-01

    To evaluate the accuracy and reliability of an automatic ultrasound technique for assessment of the angle of progression (AoP) during labor. Thirty-nine pregnant women in the second stage of labor, with fetus in cephalic presentation, underwent conventional labor management with additional translabial sonographic examination. AoP was measured in a total of 95 acquisition sessions, both automatically by an innovative algorithm and manually by an experienced sonographer, who was blinded to the algorithm outcome. The results obtained from the manual measurement were used as the reference against which the performance of the algorithm was assessed. In order to overcome the common difficulties encountered when visualizing by sonography the pubic symphysis, the AoP was measured by considering as the symphysis landmark its centroid rather than its distal point, thereby assuring high measurement reliability and reproducibility, while maintaining objectivity and accuracy in the evaluation of progression of labor. There was a strong and statistically significant correlation between AoP values measured by the algorithm and the reference values (r = 0.99, P < 0.001). The high accuracy provided by the automatic method was also highlighted by the corresponding high values of the coefficient of determination (r 2  = 0.98) and the low residual errors (root mean square error = 2°27' (2.1%)). The global agreement between the two methods, assessed through Bland-Altman analysis, resulted in a negligible mean difference of 1°1' (limits of agreement, 4°29'). The proposed automatic algorithm is a reliable technique for measurement of the AoP. Its (relative) operator-independence has the potential to reduce human errors and speed up ultrasound acquisition time, which should facilitate management of women during labor. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  9. Measuring the diameter of rising gas bubbles by means of the ultrasound transit time technique

    Energy Technology Data Exchange (ETDEWEB)

    Richter, T., E-mail: Thomas.Richter6@tu-dresden.de; Eckert, K., E-mail: Kerstin.Eckert@tu-dresden.de; Yang, X.; Odenbach, S.

    2015-09-15

    Highlights: • Ultrasound transit time technique (UTTT) is applied to the zig-zag raise of gas bubble. • Comparison of bubble diameter and tilt, measured by UTTT, with high-speed imaging. • Uncertainty in the determination of the bubble diameter by UTTT is less than 7%. • UTTT is able to measure dynamic changes in bubble size in opaque liquids and vessels. • UTTT can be applied to liquid metal loops. - Abstract: This study presents ultrasound transit time technique (UTTT) measurements of the diameter variations of single argon bubbles rising in a zig-zag trajectory in water. Simultaneous size measurements with a high-speed camera show that UTTT resolves both the apparent diameter and the tilt of the bubble axis with an accuracy of better than 7%. This qualifies UTTT for the measurement of bubble sizes in opaque liquids, such as liquid metals, or vessels.

  10. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  11. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor.

    Science.gov (United States)

    Sato, Miki; Noguchi, Junko; Mashima, Masato; Tanaka, Hirokazu; Hata, Toshiyuki

    2016-09-01

    To assess placental perfusion during spontaneous or induced uterine contraction in labor at term using placental vascular sonobiopsy (PVS) by 3D power Doppler ultrasound with the VOCAL imaging analysis program. PVS was performed in 50 normal pregnancies (32 in spontaneous labor group [SLG], and 18 in induced labor group with oxytocin or prostaglandin F2α [ILG]) at 37-41 weeks of gestation to assess placental perfusion during uterine contraction in labor. Only pregnancies with an entirely visualized anterior placenta were included in the study. Data acquisition was performed before, during (at the peak of contraction), and after uterine contraction. 3D power Doppler indices such as the vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were calculated in each placenta. There were no abnormal fetal heart rate tracings during contraction in either group. VI and VFI values were significantly reduced during uterine contraction in both groups (SLG, -33.4% [-97.0-15.2%], and ILG, -49.6% [-78.2--4.0%]), respectively (P power Doppler indices (VI, FI, and VFI) during uterine contraction (at the peak of contraction) showed a correlation greater than 0.7, with good intra- and inter-observer agreements. Our findings suggest that uterine contraction in both spontaneous and induced labors causes a significant reduction in placental perfusion. Reduced placental blood flow in induced uterine contraction has a tendency to be marked compared with that in spontaneous uterine contraction. To the best of our knowledge, this is the first study on the non-invasive assessment of placental perfusion during uterine contraction in labor using 3D power Doppler ultrasound. However, the data and their interpretation in the present study should be taken with some degree of caution because of the small number of subjects studied. Further studies involving a larger sample size are needed to assess placental perfusion and vascularity using PVS during normal and

  12. Ultrasound-assisted extraction for total sulphur measurement in mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Adnan Hossain, E-mail: ad_li2@yahoo.com [Department of Civil and Environmental Engineering, University of Western Ontario (Canada); Shang, Julie Q.; Alam, Raquibul [Department of Civil and Environmental Engineering, University of Western Ontario (Canada)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We develop a total sulphur measuring procedure of mine tailings. Black-Right-Pointing-Pointer Ultrasound is used in the sample pre-treatment process. Black-Right-Pointing-Pointer Full factorial design is applied to identify the best level of effecting factors. - Abstract: A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2{sup 3}) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80 Degree-Sign C temperature and 1 ml of HNO{sub 3}:1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2{sup 3} full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO Trade-Mark-Sign -CNS method.

  13. Factors Affecting Estimated Fetal Weight Measured by Ultrasound

    Directory of Open Access Journals (Sweden)

    Hasan Energin

    2016-06-01

    Full Text Available Objective: In this study, we aimed to evaluate the fac­tors that affect the accuracy of estimated fetal weight in ultrasound. Methods: This study was conducted in 3rd degree hospi­tal antenatal outpatient clinic and perinatology inpatient clinic between June 2011 and January 2012. The data were obtained from 165 pregnant women. Inclusion cri­teria were; no additional diseases, giving birth within 48 hours after ultrasound. The same physician executed all ultrasound process. Age, height, weight, obstetric history and obstetric follow –up findings were recorded. Results: Fetal gender, fetal presentation, presence of meconium in amniotic fluid, maternal parity, did not sig­nificantly affect the accuracy of fetal weight estimation by ultrasound. The mean difference between estimated fetal weight and birth weight was 104.48±84 gr in nullipars and 94.2±81 gr in multipars (p=0.44; mean difference was 98.22±79 gr in male babies and 98.15±86 gr in female babies (p=0.99. Mean difference between estimated fetal weight and birth weight was 96.92±81 gr in babies with cephalic presentation and 110.9±90 gr in babies with breech presentation (p=0.53; this difference was 95.36±79 gr in babies with amniotic fluid with meconium and 98.82± 83 gr in babies with amniotic fluid without me­conium (p=0.83. Conclusion: Fetal weight is estimation is one of key points in the obstetrician’s intrapartum managament. And it is important to make fetal weight estimation accurately. In our study, consistent with literature, we observed that fetal gender; meconium presence in amniotic fluid, fetal presentation, maternal parity does not significantly effect the accuracy of fetal weight estimation by ultrasound.

  14. Development of the clamp-on ultrasound flow meter for steam in pipe

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Tsukada, Keisuke; Kikura, Hiroshige; Tanaka, Katsuhiko; Umezawa, Shuichi

    2014-01-01

    Gas flow metering of a pipe flow such as chemical plant, reactors and power stations is one of the significant techniques that enable to diagnose and control the behavior of working fluid, and to govern the entire fluid system in the industrial facilities. In order to operate the aforementioned systems, the precise measurement of the flow rate is required. The conventional flow meter, however, needs the installation of the spool piece that disturbs the stable and continuous operation of the plants. i.e., the destructive set-up process of the measurement section is necessary. In this study, the novel ultrasound gas flow metering technique has been developed by means of the clamp-on ultrasound transmitter and receivers. By the numerical simulation, the ultrasound propagation through the gas and metal pipe was firstly investigated. The effects of the external damping material, applicable vapor pressure range as well as the appropriate shape of the acoustic lens were analyzed that was followed by the feasibility test of the actual measurement system. The pressurized vapor flow was used as a working fluid. Pressure and sensor dimension were varied to compare the efficiency of the ultrasound transmission between transducers. The temperature of the working fluid was beyond 373 K. The ultrasound pulsar-receiver was used that could control the frequency, amplitude and phase of the burst sinusoids. The signal processing algorithm was developed in order to discriminate the direct signal through the gaseous flow from the unwanted circumference noise through the solid stainless pipe. The linear relation between flow rate and ultrasound peak shift was confirmed. (author)

  15. Diagnostic utility of three-dimensional power Doppler ultrasound for postmenopausal bleeding.

    Science.gov (United States)

    Kim, Ari; Lee, Ji Young; Chun, Sungwook; Kim, Heung Yeol

    2015-06-01

    We evaluated the role of three-dimensional power Doppler ultrasound (3D PD-US) to detect endometrial lesions in women with postmenopausal endometrial bleeding. In this prospective observational study, from January 2009 to November 2012, we recruited 225 postmenopausal women with postmenopausal uterine bleeding who met the study criteria. Women who had hematologic disease, chronic medical diseases, or nonuterine pelvic diseases were excluded. Prior to endometrial biopsy, the patients underwent a baseline transvaginal ultrasound screening. The vascular indices and endometrial volumes were calculated with 3D PD-US and compared with the endometrial histopathology. Among the endometrial histopathologic findings of 174 women, atrophic endometrium was the most common finding (30.5%). Endometrial malignancy was confirmed in 28 cases (16.1%), and endometrial hyperplasia was diagnosed in 17 cases (9.8%). The prevalence of endometrial cancer was high in patients who had endometrial thickness >9.5 mm (p < 0.001) and volume greater than 4.05 mL (p < 0.001). For the endometrial carcinoma only, the cutoff values of vascular index, flow index, and vascular flow index for predicting malignancy were 13.070, 12.610, and 3.764, respectively. For endometrial hyperplasia, endometrial thickness and vascular flow index were significant findings. Endometrial vasculature and volume can be obtained using 3D PD-US. The diagnostic usefulness of 3D PD-US for endometrial diseases is promising in women with postmenopausal endometrial bleeding. Copyright © 2015. Published by Elsevier B.V.

  16. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    Science.gov (United States)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  17. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.

    Science.gov (United States)

    Heo, Seo Weon; Kim, Hyungsuk

    2010-05-01

    An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  19. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  20. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    Science.gov (United States)

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  1. The Use of 3D Power Doppler Ultrasound in the Quantification of Blood Vessels in Uterine Fibroids: Feasibility and Reproducibility

    NARCIS (Netherlands)

    Nieuwenhuis, L.L.; Betjes, H.E.; Hehenkamp, W.J.K.; Heymans, M.W.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Background: To evaluate the interobserver agreement and discriminating value of three-dimensional power Doppler ultrasound (3D PDUS) in patients with fibroids. Methods: An observational prospective cohort study in 19 patients with fibroids. 3D PDUS was performed by one examiner and evaluated by

  2. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.

    Science.gov (United States)

    Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P

    2012-01-01

    Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.

  3. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    Science.gov (United States)

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  4. Intracavitary ultrasound impairs left ventricular performance: presumed role of endocardial endothelium

    NARCIS (Netherlands)

    Gillebert, T. C.; de Hert, S. G.; Andries, L. J.; Jageneau, A. H.; Brutsaert, D. L.

    1992-01-01

    Irradiation of isolated cardiac muscle by high-power, high-frequency, continuous wave ultrasound selectively damages endocardial endothelium (EE). We evaluated this ultrasound effect in vivo on the performance of the intact ejecting canine left ventricle (LV). A cylindrical ultrasound probe (0.9

  5. Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe

    NARCIS (Netherlands)

    Yu, Z.

    2012-01-01

    This thesis describes the design of a front-end application-specific integrated circuit (ASIC), which will be put into the tip of a miniature ultrasound probe for 3D Trans-Esophageal Echocardiography (TEE). To enable 3D TEE, a matrix piezoelectric ultrasound transducer with more than 2000 elements

  6. Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system

    Directory of Open Access Journals (Sweden)

    Tsuruta James K

    2012-01-01

    Full Text Available Abstract Background Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Methods Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. Results We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. Conclusions The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the

  7. Development of an Inverse Technique to Estimate the Ultrasound Field During Chest Wall and Breast Hyperthermia

    National Research Council Canada - National Science Library

    Thomas, Charles

    1997-01-01

    ... of a patient registration and tissue geometry acquisition system based on the same B-scan hardware, and investigation of the accuracy of thermocouple measurements to determine ultrasound power incident at a point in tissue...

  8. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon.

    Science.gov (United States)

    Liu, Liyan; Zhang, Yu; Tan, Wei

    2014-05-01

    Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70°C) after 9 min of ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Subclinical Synovitis Measured by Ultrasound in Rheumatoid Arthritis Patients With Clinical Remission Induced by Synthetic and Biological Modifying Disease Drugs.

    Science.gov (United States)

    Cruces, Marcos; Al Snih, Soham; Serra-Bonett, Natalí; Rivas, Juan C

    2017-10-09

    Rheumatoid arthritis (RA) patients with disease in clinical remission might show subclinical synovitis, which can be related to the progress of structural joint damage. To determine and compare the degree of synovial inflammation by ultrasound (US) in patients with RA in clinical remission, treated with DMARD or combination therapy with DMARD and anti-TNF. Hospital-based cross-sectional study of 58 patients with RA in sustained remission for at least 6 months by DAS28 <2.6, who attended the Rheumatology Service at the Hospital Universitario de Caracas. Patients underwent clinical, functional, and laboratory assessments. Ultrasound was performed in hands measuring synovial effusion, synovial hypertrophy and power Doppler signal; using a semiquantitative 4-point scale of 0=none to 3=severe. Chi-square and t-test were used to compare the clinical, functional, laboratory and US assessments between the DMARD (N=37) and combination therapy with DMARD and anti-TNF (N=21) groups. A p-value <0.05 was considered statistically significant. Out of 58 patients, 25.9% had remission by US and 74.1% had synovial effusion or hypertrophy or positive power Doppler signal. Non-significant differences in US synovitis between the two groups were found. Persistent US activity was evident in a high percentage of rheumatoid arthritis patients in clinical remission by DAS28. No differences in subclinical synovitis measured by US were found between patients with DMARD and anti-TNF-induced clinical remission. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  10. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    Science.gov (United States)

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  11. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    Science.gov (United States)

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  12. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    Science.gov (United States)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  13. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Moros, Eduardo G [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Novak, Petr [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Straube, William L [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Kolluri, Prashant [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Yablonskiy, Dmitriy A [Department of Radiology, Washington University, St Louis, MO 63108 (United States); Myerson, Robert J [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States)

    2004-03-21

    The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater

  14. Standards of the Polish Ultrasound Society – update. Ultrasound examination of thyroid gland and ultrasound-guided thyroid biopsy

    Directory of Open Access Journals (Sweden)

    Anna Trzebińska

    2014-03-01

    Full Text Available Ultrasonography is a primary imaging technique in patients with suspected thyroid disease. It allows to assess the location, size and echostructures of the thyroid gland as well as detect focal lesions, along with indication of their size, echogenicity, echostructure and vascularity. Based on these features, ultrasound examination allows to predict abnormal focal lesions for biopsy and monitor the biopsy needle track. This paper presents the standards of thyroid ultrasound examination regarding ultrasound apparatus technical requirements, scanning techniques, readings, measurements, and the description of the examination. It discusses the ultrasound features of increased malignancy risk in focal lesions (nodules found in the thyroid gland. It presents indications for fine needle aspiration biopsy of the thyroid gland for the visibility of single nodules (focal lesions and numerous lesions as well as discusses contraindications for thyroid biopsy. It describes the biopsy technique, possible complications and rules for post-biopsy monitoring of benign lesions. The paper is an update of the Standards of the Polish Ultrasound Society issued in 2011. It has been prepared on the basis of current literature, taking into account the information contained in the following publications: Thyroid ultrasound examination and Recommendations of the Polish Ultrasound Society for the performance of the FNAB of the thyroid.

  15. Assessment of placental volume and vascularization at 11-14 weeks of gestation in a Taiwanese population using three-dimensional power Doppler ultrasound.

    Science.gov (United States)

    Wang, Hsing-I; Yang, Ming-Jie; Wang, Peng-Hui; Wu, Yi-Cheng; Chen, Chih-Yao

    2014-12-01

    The placental volume and vascular indices are crucial in helping doctors to evaluate early fetal growth and development. Inadequate placental volume or vascularity might indicate poor fetal growth or gestational complications. This study aimed to evaluate the placental volume and vascular indices during the period of 11-14 weeks of gestation in a Taiwanese population. From June 2006 to September 2009, three-dimensional power Doppler ultrasound was performed in 222 normal pregnancies from 11-14 weeks of gestation. Power Doppler ultrasound was applied to the placenta and the placental volume was obtained by a rotational technique (VOCAL). The three-dimensional power histogram was used to assess the placental vascular indices, including the mean gray value, the vascularization index, the flow index, and the vascularization flow index. The placental vascular indices were then plotted against gestational age (GA) and placental volume. Our results showed that the linear regression equation for placental volume using gestational week as the independent variable was placental volume = 18.852 × GA - 180.89 (r = 0.481, p power Doppler ultrasonography showed a constant distribution throughout gestation. Copyright © 2014. Published by Elsevier Taiwan.

  16. Reproducibility and interoperator reliability of obtaining images and measurements of the cervix and uterus with brachytherapy treatment applicators in situ using transabdominal ultrasound.

    Science.gov (United States)

    van Dyk, Sylvia; Garth, Margaret; Oates, Amanda; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2016-01-01

    To validate interoperator reliability of brachytherapy radiation therapists (RTs) in obtaining an ultrasound image and measuring the cervix and uterine dimensions using transabdominal ultrasound. Patients who underwent MRI with applicators in situ after the first insertion were included in the study. Imaging was performed by three RTs (RT1, RT2, and RT3) with varying degrees of ultrasound experience. All RTs were required to obtain a longitudinal planning image depicting the applicator in the uterine canal and measure the cervix and uterus. The MRI scan, taken 1 hour after the ultrasound, was used as the reference standard against which all measurements were compared. Measurements were analyzed with intraclass correlation coefficient and Bland-Altman plots. All RTs were able to obtain a suitable longitudinal image for each patient in the study. Mean differences (SD) between MRI and ultrasound measurements obtained by RTs ranged from 3.5 (3.6) to 4.4 (4.23) mm and 0 (3.0) to 0.9 (2.5) mm on the anterior and posterior surface of the cervix, respectively. Intraclass correlation coefficient for absolute agreement between MRI and RTs was >0.9 for all posterior measurement points in the cervix and ranged from 0.41 to 0.92 on the anterior surface. Measurements were not statistically different between RTs at any measurement point. RTs with variable training attained high levels of interoperator reliability when using transabdominal ultrasound to obtain images and measurements of the uterus and cervix with brachytherapy applicators in situ. Access to training and use of a well-defined protocol assist in achieving these high levels of reliability. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    Unknown

    In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavi- ... ment system like radiation pressure balance, the power is given by ... Thus the bubble size has direct relationship with its life and.

  18. Wireless ultrasound-powered biotelemetry for implants.

    Science.gov (United States)

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  19. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  20. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  1. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  2. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  3. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    Science.gov (United States)

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging.

  4. Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system

    OpenAIRE

    Tsuruta James K; Dayton Paul A; Gallippi Caterina M; O'Rand Michael G; Streicker Michael A; Gessner Ryan C; Gregory Thomas S; Silva Erick JR; Hamil Katherine G; Moser Glenda J; Sokal David C

    2012-01-01

    Abstract Background Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Methods Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration ...

  5. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    Science.gov (United States)

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  6. Combined ultrasound/ozone degradation of carbazole in APG1214 surfactant solution

    International Nuclear Information System (INIS)

    Ji, Guodong; Zhang, Baolong; Wu, Yingchao

    2012-01-01

    Highlights: ► We first describe the role of US/O 3 in promoting carbazole degradation in APG 1214 solution. ► 20 W ultrasound for 30 min improves the effectiveness of carbazole ozonolysis by 5–10%. ► 40 W or 80 W only plays a role in promoting degradation of carbazole in the first 5 min. ► The content of ·OH radical is inversely proportional to the ultrasound power. ► Absolute value of zeta potential of APG 1214 micelles is inversely proportional to US power. - Abstract: We examined the effects of power and treatment time on the ultrasonically enhanced ozonation of carbazole dissolved in APG 1214 surfactant solutions, including an analysis of the mechanism of ·OH radical formation, the zeta potential of the colloidal suspension, the influence of ultrasound on micellar morphology, and the degradation kinetics for carbazole and APG 1214 . A 30 min ultrasound treatment at 28 kHz and 20 W improved the degradation of carbazole by 5–10%, while power levels of 40 W and 80 W provided improvements only during the first 5 min and resulted in reduced degradation after 15 min. The ·OH concentration was inversely proportional to ultrasound power, and directly proportional to the irradiation time. The absolute value of the APG 1214 micelle zeta potential was inversely proportional to power and decreased with increasing irradiation time. The relationships of ·OH radical concentration in APG 1214 micelles, the zeta potential, and the micellar dynamic radius (R h ) to ultrasonic power and time are the key factors affecting carbazole degradation in this system.

  7. Effect of malaria on placental volume measured using three-dimensional ultrasound: a pilot study

    Directory of Open Access Journals (Sweden)

    Rijken Marcus J

    2012-01-01

    Full Text Available Abstract Background The presence of malaria parasites and histopathological changes in the placenta are associated with a reduction in birth weight, principally due to intrauterine growth restriction. The aim of this study was to examine the feasibility of studying early pregnancy placental volumes using three-dimensional (3D ultrasound in a malaria endemic area, as a small volume in the second trimester may be an indicator of intra-uterine growth restriction and placental insufficiency. Methods Placenta volumes were acquired using a portable ultrasound machine and a 3D ultrasound transducer and estimated using the Virtual Organ Computer-aided AnaLysis (VOCAL image analysis software package. Intra-observer reliability and limits of agreement of the placenta volume measurements were calculated. Polynomial regression models for the mean and standard deviation as a function of gestational age for the placental volumes of uninfected women were created and tested. Based on these equations each measurement was converted into a z -score. The z-scores of the placental volumes of malaria infected and uninfected women were then compared. Results Eighty-four women (uninfected = 65; infected = 19 with a posterior placenta delivered congenitally normal, live born, single babies. The mean placental volumes in the uninfected women were modeled to fit 5th, 10th, 50th, 90th and 95th centiles for 14-24 weeks' gestation. Most placenta volumes in the infected women were below the 50th centile for gestational age; most of those with Plasmodium falciparum were below the 10th centile. The 95% intra-observer limits of agreement for first and second measurements were ± 37.0 mL and ± 25.4 mL at 30 degrees and 15 degrees rotation respectively. Conclusion The new technique of 3D ultrasound volumetry of the placenta may be useful to improve our understanding of the pathophysiological constraints on foetal growth caused by malaria infection in early pregnancy.

  8. Power doppler 'blanching' after the application of transducer pressure

    International Nuclear Information System (INIS)

    Joshua, F.; Edmonds, J.; Lassere, M.; De Carle, R.; Rayment, M.; Bryant, C.; Shnier, R.

    2005-01-01

    The aim of this study was to determine if transducer pressure modifies power Doppler assessments of rheumatoid arthritis synovium at the metacarpophalangeal joints and metatarsophalangeal joints. Five rheumatoid arthritis patients of varying degrees of 'disease activity' and damage were assessed with power Doppler ultrasound scanning of the dominant hand second to fifth metacarpophalangeal joints. Two rheumatoid arthritis patients had their dominant foot first to fifth metatarsophalangeal joints assessed with power Doppler ultrasound. Ultrasonography was performed with a high frequency transducer (14 MHz) with a colour mode frequency of 10 Mhz, and a standard colour box and gain. In the joint that showed the highest power Doppler signal, an image was made. A further image was taken after transducer pressure was applied. In all patients, there was increased flow to at least one joint. After pressure was applied, power Doppler signal intensity markedly reduced in all images and in some there was no recordable power Doppler signal. Increased transducer pressure can result in a marked reduction or obliteration in power Doppler signal. This power Doppler 'blanching' shows the need for further studies to evaluate sources of error and standardization before power Doppler ultrasound becomes a routine measure of 'disease activity' in rheumatoid arthritis. Copyright (2005) Blackwell Science Pty Ltd

  9. Ultrasound induced by CW laser cavitation bubbles

    International Nuclear Information System (INIS)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  10. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  11. Comparison of grey scale median (GSM) measurement in ultrasound images of human carotid plaques using two different softwares.

    Science.gov (United States)

    Östling, Gerd; Persson, Margaretha; Hedblad, Bo; Gonçalves, Isabel

    2013-11-01

    Grey scale median (GSM) measured on ultrasound images of carotid plaques has been used for several years now in research to find the vulnerable plaque. Centres have used different software and also different methods for GSM measurement. This has resulted in a wide range of GSM values and cut-off values for the detection of the vulnerable plaque. The aim of this study was to compare the values obtained with two different softwares, using different standardization methods, for the measurement of GSM on ultrasound images of carotid human plaques. GSM was measured with Adobe Photoshop(®) and with Artery Measurement System (AMS) on duplex ultrasound images of 100 consecutive medium- to large-sized carotid plaques of the Beta-blocker Cholesterol-lowering Asymptomatic Plaque Study (BCAPS). The mean values of GSM were 35·2 ± 19·3 and 55·8 ± 22·5 for Adobe Photoshop(®) and AMS, respectively. Mean difference was 20·45 (95% CI: 19·17-21·73). Although the absolute values of GSM differed, the agreement between the two measurements was good, correlation coefficient 0·95. A chi-square test revealed a kappa value of 0·68 when studying quartiles of GSM. The intra-observer variability was 1·9% for AMS and 2·5% for Adobe Photoshop. The difference between softwares and standardization methods must be taken into consideration when comparing studies. To avoid these problems, researcher should come to a consensus regarding software and standardization method for GSM measurement on ultrasound images of plaque in the arteries. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  13. Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound

    Directory of Open Access Journals (Sweden)

    Tiago Carregari Polachini

    Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.

  14. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    Science.gov (United States)

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Cognitive load predicts point-of-care ultrasound simulator performance.

    Science.gov (United States)

    Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M

    2018-02-01

    The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.

  16. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  17. DYEING OF KNITTED MICRO-VISCOSE IN THE PRESENCE OF ULTRASOUND WITH DIFFERENT FREQUENCIES

    Directory of Open Access Journals (Sweden)

    MITIC Jelena

    2014-05-01

    Full Text Available In dyeing process, the object is to transport or diffuse dyes and chemicals into the fibre. Various novel processes, including ultrasound, are being introduced and studied as more environmentally friendly alternatives. Encouraging results have been reported for the use of ultrasound energy in dyeing processes of micro-viscose. The recent studies revealed major ultrasound applications advances: savings of processing time, energy, chemicals, as well as environmental protection. Influence of various ultrasound frequencies (40, 200 and 400 kHz on dyeing of micro-viscose knitted fabrics, by a reactive dye has been reported in this work. A method of reflection spectrophotometry has been employed to record reemission curves of the colored compounds. A software packet has been employed to calculate CIELab colored coordinates. Then, a comparison has been made with samples colored by conventional procedure according to CIELab76 and CMC (2:1 criteria. The use ultrasound in textile dyeing processing offers many potential advantages. The results prove better dye exhaustion by ultrasound and consequently the better fixing. The exhaustion for the bifunctional dye (containing two vinylsulphone groups reaches 71.75 % without ultrasound, and 83.69 % with 400 kHz ultrasound. The 40 kHz, 150 W ultrasound causes a cavitation of higher intensity, compared to 200 and 400 kHz ultrasounds. In this particular case, destruction of cavitation bubbles is very intensive. That is why a large amount of cavitation energy is being transformed into a heat, yielding the additional bath heating. The ultrasounds with higher frequencies (200 and 400 kHz cannot use such a strong power. The applied powering this case reaches 0.6 W. The cavitation bubbles are now smaller the cavitation disintegration is not so strong, and the energy loss is much smaller, i.e. a smaller amount of energy has been transformed into a heat. An ultrasound of an equal power, but of higher frequency contributes

  18. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  19. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.

    Science.gov (United States)

    Kang, Da-Cheng; Zou, Yun-He; Cheng, Yu-Ping; Xing, Lu-Juan; Zhou, Guang-Hong; Zhang, Wan-Gang

    2016-11-01

    The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96Wcm(-2)) and treatment time (30, 60, 90 and 120min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20kHz and fresh beef at 48h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (Pgeneration of free radicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ultrasound elastography as an objective diagnostic measurement tool for lymphoedema of the treated breast in breast cancer patients following breast conserving surgery and radiotherapy

    International Nuclear Information System (INIS)

    Adriaenssens, Nele; Belsack, Dries; Buyl, Ronald; Ruggiero, Leonardo; Breucq, Catherine; De Mey, Johan; Lievens, Pierre; Lamote, Jan

    2012-01-01

    Lymphoedema of the operated and irradiated breast is a common complication following early breast cancer treatment. There is no consensus on objective diagnostic criteria and standard measurement tools. This study investigates the use of ultrasound elastography as an objective quantitative measurement tool for the diagnosis of parenchymal breast oedema. The elasticity ratio of the subcutis, measured with ultrasound elastography, was compared with high-frequency ultrasound parameters and subjective symptoms in twenty patients, bilaterally, prior to and following breast conserving surgery and breast irradiation. Elasticity ratio of the subcutis of the operated breast following radiation therapy increased in 88.9% of patients, was significantly higher than prior to surgery, unlike the non operated breast and significantly higher than the non operated breast, unlike preoperative results. These results were significantly correlated with visibility of the echogenic line, measured with high-frequency ultrasound. Big preoperative bra cup size was a significant risk factor for the development of breast oedema. Ultrasound elastography is an objective quantitative measurement tool for the diagnosis of parenchymal breast oedema, in combination with other objective diagnostic criteria. Further research with longer follow-up and more patients is necessary to confirm our findings

  1. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  2. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    Science.gov (United States)

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  3. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  4. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    International Nuclear Information System (INIS)

    Hodnett, M; Zeqiri, B

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (≤ 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  6. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  7. Characterization of ultrasound elevation beamwidth artifacts for prostate brachytherapy needle insertion

    International Nuclear Information System (INIS)

    Peikari, Mohammad; Chen, Thomas Kuriran; Lasso, Anras; Heffter, Tamas; Fichtinger, Gabor; Burdette, Everette C.

    2012-01-01

    Purpose: Ultrasound elevation beamwidth leads to image artifacts and uncertainties in localizing objects (such as a surgical needle) in ultrasound images. The authors examined the clinical significance of errors caused by elevation beamwidth artifacts and imaging parameters in needle insertion procedures. Methods: Beveled prostate brachytherapy needles were inserted through all holes of a grid template under real-time transrectal ultrasound (TRUS) guidance. The needle tip position as indicated by the TRUS image was compared to their observed physical location. A new device was developed to measure the ultrasound elevation beamwidth. Results: Imaging parameters of the TRUS scanner have direct impact on the localization error ranging from 0.5 up to 4 mm. The smallest localization error was observed laterally close to the center of the grid template and axially within the beam's focal zone. Largest localization error occurs laterally around both sides of the grid template and axially within the beam's far field. The authors also found that the localization errors vary with both lateral and elevation offsets. Conclusions: The authors found properly adjusting the TRUS imaging settings to lower the ultrasound gain and power effectively minimized the appearance of elevation beamwidth artifacts and in turn reduced the localization errors of the needle tip.

  8. Effects of Ultrasound on the Survival and Characteristics of Cryptosporidium Oocysts and Giardia Cysts

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Gad, J.; Klinting, M.

    2011-01-01

    determine the effects of ultrasound on the parasite, including the sonication power of ultrasound as well as substrate temperature. Conclusions: Ultrasound is harmful for waterborne protozoa even when momentarily applied. However, a mode of operation may exist in which ultrasound can be used for collection......-. Additionally ultrasound has been used for cleaning filters used for water sampling and purification. Other studies have shown that backwash sampling of filtrates, and thereby collection of microorganisms, can be facilitated by sonication. Methods: We studied the effects of ultrasound with different sonication...... power and time durations on two of the most common waterborne protozoa Cryptosporidium and Giardia, and examined its effects on parasite characteristics and survival rate using immunofluorescence dyes; DAPI (4’,6-diamidino-2-phenylindol) staining/PI (propidium iodide), and analyzed by flow cytometry...

  9. An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation

    International Nuclear Information System (INIS)

    Straube, William L.; Moros, Eduardo G.; Low, Daniel A.; Klein, Eric E.; Willcut, Virgil M.; Myerson, Robert J.

    1996-01-01

    Purpose: An existing ultrasound system has been adapted for simultaneous use with external photon beam irradiation. The system is being used to investigate the potential for increased biological benefit of simultaneously combined hyperthermia and external beam irradiation with currently achievable temperature distributions. Methods and Materials: An existing clinical ultrasound system has been modified for simultaneous operation with a 60 Co teletherapy machine. The generator, thermometry system, computer, and applicators are located inside the treatment room, while the monitor and system control are located at the control console. Two approaches have been used clinically to combine the two modalities. In the first approach, an en-face setup is used in which the ultrasound beam and the photon beam travel through the same window of entry to the tumor. This is achieved by a reflecting system designed to deflect the ultrasound to the tumor while positioning the ultrasound transducer outside the radiation beam. The reflecting system consists of water and water-equivalent materials except for a 1 mm sheet of polished brass that is used as the reflector. The relative pressure fields were measured in water at the same distance from the ultrasound source using a scanning hydrophone with and without the reflector at the two operating frequencies of the device (1.0 and 3.4 MHz) for two applicators. Radiation dosimetry measurements were performed to determine the relationship between 60 Co irradiation through the reflector and absorbed dose. In the second approach the ultrasound and the radiation beam travel into the tumor from different windows of entry such that the radiation beam passes through no portion of the water bolus prior to entering the patient. We have termed this approach the orthogonal approach. For both approaches, the radiation fraction is given in the middle of an uninterrupted 60-min hyperthermia treatment. Results: The system modifications did not impair

  10. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K., E-mail: kathryn.taylor@addenbrookes.nhs.uk [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); O' Keeffe, S.; Britton, P.D.; Wallis, M.G. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); Treece, G.M.; Housden, J. [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Parashar, D.; Bond, S. [Cambridge Cancer Trials Centre, Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge (United Kingdom); Cambridge Hub in Trials Methodology Research, MRC Biostatics Unit, University Forvie Site, Cambridge (United Kingdom); Sinnatamby, R. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom)

    2011-11-15

    Aims: To compare the performance of ultrasound elastography with conventional ultrasound in the assessment of axillary lymph nodes in suspected breast cancer and whether ultrasound elastography as an adjunct to conventional ultrasound can increase the sensitivity of conventional ultrasound used alone. Materials and methods: Fifty symptomatic women with a sonographic suspicion for breast cancer underwent ultrasound elastography of the ipsilateral axilla concurrent with conventional ultrasound being performed as part of triple assessment. Elastograms were visually scored, strain measurements calculated and node area and perimeter measurements taken. Theoretical biopsy cut points were selected. The sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV) were calculated and receiver operating characteristic (ROC) analysis was performed and compared for elastograms and conventional ultrasound images with surgical histology as the reference standard. Results: The mean age of the women was 57 years. Twenty-nine out of 50 of the nodes were histologically negative on surgical histology and 21 were positive. The sensitivity, specificity, PPV, and NPV for conventional ultrasound were 76, 78, 70, and 81%, respectively; 90, 86, 83, and 93%, respectively, for visual ultrasound elastography; and for strain scoring, 100, 48, 58 and 100%, respectively. There was no significant difference between any of the node measurements Conclusions: Initial experience with ultrasound elastography of axillary lymph nodes, showed that it is more sensitive than conventional ultrasound in detecting abnormal nodes in the axilla in cases of suspected breast cancer. The specificity remained acceptable and ultrasound elastography used as an adjunct to conventional ultrasound has the potential to improve the performance of conventional ultrasound alone.

  11. Reproducibility of three-dimensional ultrasound for the measurement of a niche in a caesarean scar and assessment of its shape

    NARCIS (Netherlands)

    Bij de Vaate, A.J.M.; Linskens, I.H.; van der Voet, L.F.; Twisk, J.W.R.; Brölmann, H.A.M.; Huirne, J.A.F.

    2015-01-01

    Abstract Objective To evaluate the inter- and intraobserver agreement for measurement of the size and volume of a niche and assessment of the shape, with the use of three-dimensional (3D) ultrasound. Study design In this reproducibility study, 20 3D ultrasound volumes of uteri with a niche were

  12. Detection of a Surface-Breaking Crack by Using the Surface Wave of a Laser Ultrasound

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a high spatial resolution and a wide-band spectrum. Also it provides absolute measurements of the moving distance and can be applied to the hard-to access locations with curved or rough surfaces like a nuclear power plant. Several laser ultrasonic techniques are applied for the detection of micro cracks in a nuclear power plant. Also, laser ultrasonic techniques are used to measure the grain size of materials and to detect cracks in railroads and aircrafts. Though the laser ultrasonic inspection system is widely applicable, it is comparatively expensive and it provides a low signal-to-noise ratio when compared to the conventional piezoelectric transducers. Many studies have been carried out to improve the system performance. One of the widely used measurement devices of a ultrasound is the Confocal Fabry-Perot Interferometer(CFPI) with a dynamic stabilizer. The dynamic stabilizer improves the stability of the CFPI by adaptively maintaining the optimum working status at the measuring time of the CFPI. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. We have fabricated a laser ultrasonic inspection system on an optical table by using a pulse laser, a CFPI with a dynamic stabilizer and a computer. The computer acquires the laser ultrasound by using a high speed A/D converter with a sampling rate of 1000 MHz. The dynamic stabilizer stabilizes the CFPI by adaptively maintaining it at an optimum status when the laser ultrasound is generated. The computer processes the ultrasonic signal in real time to extract the depth information of a surface-breaking crack. We extracted the depth information from the peak-to-valley values in the time domain and also from the center frequencies of the spectrum in the frequency domain

  13. Factors influencing the examinations by means of ultrasounds

    International Nuclear Information System (INIS)

    Brocco, M.

    1988-01-01

    The reliability of ultrasound examination can be influenced by many variables: the pulse generator and receiver, the material under examination, size, type, position and orientation of a defect inside the material. The results of a study aiming at evaluating the amplitude of the response signals as a means to size defects are exposed. The conclusions have been drawn considering the influence that a defect and an ultrasound system have on the power absorbed. The results show that the orientation, the geometry and the band width of the ultrasound system

  14. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  15. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  16. Scalable Directed Self-Assembly Using Ultrasound Waves

    Science.gov (United States)

    2015-09-04

    the practical implementation of ultrasound DSA as a manufacturing technique requires linking the transducer arrangement and settings that generate ...function generator (Tektronix, AFG 3102), amplified by a 45 dB 50 W RF power amplifier (Electronic Navigation Industries, 440LA). Cross-linking of the...SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such

  17. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  18. Preoperative ultrasound measurements predict the feasibility of gallbladder extraction during transgastric natural orifice translumenal endoscopic surgery cholecystectomy.

    Science.gov (United States)

    Santos, Byron F; Auyang, Edward D; Hungness, Eric S; Desai, Kush R; Chan, Edward S; van Beek, Darren B; Wang, Edward C; Soper, Nathaniel J

    2011-04-01

    Extraction of a gallbladder through an endoscopic overtube during natural orifice translumenal endoscopic surgery (NOTES) transgastric cholecystectomy avoids potential injury to the esophagus. This study examined the rate of successful gallbladder specimen extraction through an overtube and hypothesized that preoperative ultrasound findings could predict successful specimen passage. Gallbladder specimens from patients undergoing laparoscopic cholecystectomy were measured, and an attempt was made to pull the specimens through a commercially available overtube with an inner diameter of 16.7-mm. A radiologist blinded to the outcomes reviewed the available preoperative ultrasound measurements from these patients. Ultrasound dimensions including gallbladder length, width, and depth; wall thickness; common bile duct diameter; and size of the largest gallstone (LGS) were recorded. Multiple logistic regression analysis was performed to determine whether ultrasound findings and patient characteristics (age, body mass index [BMI], and sex) could predict the ability of a specimen to pass through the overtube. Of 57 patients, 44 (77%) who had preoperative ultrasounds available for electronic review were included in the final analysis. Gallstones were present in 35 (79%) of these 44 patients. Intraoperative gallbladder perforation occurred in 18 (41%) of the 44 patients, and 16 (36%) of the 44 gallbladders could be extracted through the overtube. Measurement of LGS was possible for 23 patients, and indeterminate gallstone size (IGS) was determined for 12 patients. The rate for passage of perforated versus intact gallbladders was similar (40% vs. 23%; p = 0.054). The LGS (odds ratio [OR], 1.17; 95% confidence interval [CI], 1.02-1.33; p = 0.021) and IGS (OR, 22.97; 95% CI, 1.99-265.63; p = 0.025) predicted failed passage on multivariate logistic regression analysis. The passage rate was 80% for LGS smaller than 10 mm or no stones present, 18% for LGS 10 mm or larger, and 8% for

  19. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Federici, Paolo

    This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2.......This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2....

  20. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    International Nuclear Information System (INIS)

    McCarthy, C.L.; Wilson, D.J.; Coltman, T.P.

    2008-01-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  1. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    Science.gov (United States)

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Carotid and femoral B-mode ultrasound intima-media thickness measurements in adult post-coarctectomy patients

    NARCIS (Netherlands)

    Vriend, J. J. W.; de Groot, E.; Kastelein, J. J. P.; Mulder, B. J. M.

    2004-01-01

    Aim. Cardiovascular and cerebrovascular morbidity and mortality in adult post-coarctectomy patients is increased even after successful surgical repair of the aorta. B-mode ultrasound intima-media thickness (IMT), a validated marker for atherosclerosis and vascular disease risk, was used to measure

  3. Ultrasound promoted synthesis of arylmethylenemalonitriles catalyzed by melamine

    International Nuclear Information System (INIS)

    Lu, Q.; Ai, H.M.

    2016-01-01

    Arylmethylenemalonitriles were synthesized in the presence of melamine through the Knoevenagel condensation of aldehydes with malononitrile in ethanol. Two strategies such as the conventional stirring and ultrasound-assisted method were performed in this work, and improvements were observed by carrying out the reactions under ultrasound irradiation. The effect of frequency and power of ultrasound on the yields was investigated, and the optimum frequency and power was 45 kHz and 240 W, respectively. The Knoevenagel reaction was carried out smoothly under the optimum conditions with the yields of 80-99% within short time. The melamine catalyst showed high activity and reusability, and exhibited no substantial loss of activity over up to four reaction cycles. This work demonstrated that short reaction times and high yields of arylmethylenemalonitriles can be obtained with the facile operation in the presence of the low-toxic, cheap and reusable melamine catalyst. (author)

  4. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  5. Optimisation of ultrasound-assisted extraction of natural antioxidants from mustard seed cultivars.

    Science.gov (United States)

    Szydłowska-Czerniak, Aleksandra; Tułodziecka, Agnieszka; Karlovits, György; Szłyk, Edward

    2015-05-01

    Modified mustard varieties can produce edible oil with reduced amounts of erucic acid and glucosinolates and enhanced antioxidant potential. Therefore, this work focused on the optimisation of the ultrasound-assisted extraction of compounds with high antioxidant capacity from three white mustard seed cultivars using response surface methodology. The predicted optimum solvent polarity (57.2, 56.5 and 57.6) and ultrasound power-to-sonication time ratio (4.5, 4.8 and 4.3 W min(-1)) resulted in antioxidant capacities determined by the ferric-reducing antioxidant power (FRAP) assay [54.37, 65.75 and 68.55 mmol Trolox equivalent (TE) kg(-1)] and the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method (141.65, 175.26 and 185.10 mmol TE kg(-1)) and total phenolics content (23.70, 27.16 and 11.29 mg sinapic acid g(-1)) for extracts obtained from one traditional and two modified mustard seed varieties. The highest FRAP and DPPH values (69.51 and 197.73 mmol TE kg(-1)) revealed 50% methanolic extract prepared from modified mustard seed cultivar without erucic acid and glucosinolates treated with ultrasound for 30 min (ultrasound power/ultrasound time = 4 W min(-1)). Ultrasound-assisted extraction was found to be a more rapid, convenient and appropriate extraction method with higher yield of antioxidants, shorter time and lower solvent consumption in comparison to conventional extraction. © 2014 Society of Chemical Industry.

  6. Combined ultrasound/ozone degradation of carbazole in APG{sub 1214} surfactant solution

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guodong, E-mail: jiguodong@iee.pku.edu.cn [Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Zhang, Baolong; Wu, Yingchao [Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We first describe the role of US/O{sub 3} in promoting carbazole degradation in APG{sub 1214} solution. Black-Right-Pointing-Pointer 20 W ultrasound for 30 min improves the effectiveness of carbazole ozonolysis by 5-10%. Black-Right-Pointing-Pointer 40 W or 80 W only plays a role in promoting degradation of carbazole in the first 5 min. Black-Right-Pointing-Pointer The content of {center_dot}OH radical is inversely proportional to the ultrasound power. Black-Right-Pointing-Pointer Absolute value of zeta potential of APG{sub 1214} micelles is inversely proportional to US power. - Abstract: We examined the effects of power and treatment time on the ultrasonically enhanced ozonation of carbazole dissolved in APG{sub 1214} surfactant solutions, including an analysis of the mechanism of {center_dot}OH radical formation, the zeta potential of the colloidal suspension, the influence of ultrasound on micellar morphology, and the degradation kinetics for carbazole and APG{sub 1214}. A 30 min ultrasound treatment at 28 kHz and 20 W improved the degradation of carbazole by 5-10%, while power levels of 40 W and 80 W provided improvements only during the first 5 min and resulted in reduced degradation after 15 min. The {center_dot}OH concentration was inversely proportional to ultrasound power, and directly proportional to the irradiation time. The absolute value of the APG{sub 1214} micelle zeta potential was inversely proportional to power and decreased with increasing irradiation time. The relationships of {center_dot}OH radical concentration in APG{sub 1214} micelles, the zeta potential, and the micellar dynamic radius (R{sub h}) to ultrasonic power and time are the key factors affecting carbazole degradation in this system.

  7. Comparison of central corneal thickness measurements with the galilei dual scheimpflug analyzer and ultrasound pachymetry

    International Nuclear Information System (INIS)

    Dildar, M.T.; Saeed, M.K.; Ali, S.; Yaqub, M.A.

    2017-01-01

    To determine the correlation between mean central corneal thickness taken with Galilei dual Scheimpflug Analyzer and Applanation Ultrasound Pachymetry. Study Design: Descriptive cross sectional study. Place and Duration of Study: Armed Forces Institute of Ophthalmology Rawalpindi, from Jul 2013 to Jan 2014. Material and Methods: Central corneal thickness was measured in 100 eyes of 50 patients. First three readings were taken with Galilei dual Scheimpflug analyzer, with a gap of 1 minute. Then three readings were taken with ultrasound pachymetry after applying topical 0.5% proparacaine (Alcain). The mean of the three readings was used for the analysis. Results: For right eye the mean central corneal thickness measured by the Galilei dual Scheimpflug analyzer and Ultrasound pachymetry was 544.06 mu m +- 27.36 and 546.88 +-m +- 27.71 respectively, and for left eye it was 544.72mu m +- 25.47 and 546.52+- m +- 26.15 respectively. There was a strong and positive correlation between the two instruments (r=0.969, p=0.000 for right eye and r=0.956, p=0.000 for left eye). Conclusions: The pachymetry readings with GSA showed strong and positive correlation with those of US pachymetry. So GSA may be considered as an alternative to US Pachymetry, thus avoiding operator-dependent errors, patient discomfort and other disadvantages. (author)

  8. [Role of ultrasound in elective abortions].

    Science.gov (United States)

    Wylomanski, S; Winer, N

    2016-12-01

    Ultrasound plays a fundamental role in the management of elective abortions. Although it can improve the quality of post-abortion care, it must not be an obstacle to abortion access. We thus studied the role of ultrasound in pregnancy dating and possible alternatives and analyzed the literature to determine the role of ultrasound in post-abortion follow-up. During an ultrasound scan, the date of conception is estimated by measurement of the crown-rump length (CRL), defined by Robinson, or of the biparietal diameter (BPD), as defined by the French Center for Fetal Ultrasound (CFEF) after 11 weeks of gestation (Robinson and CFEF curves) (grade B). Updated curves have been developed in the INTERGROWTH study. In the context of abortion, the literature recommends the application of a safety margin of 5 days, especially when the CRL and/or BPD measurement indicates a term close to 14 weeks (that is equal or below 80 and 27mm, respectively) (best practice agreement). Accordingly, with the ultrasound measurement reliable to±5 days when its performance meets the relevant criteria, an abortion can take place when the CRL measurement is less than 90mm or the BPD less than 30mm (INTERGROWTH curves) (best practice agreement). While a dating ultrasound should be encouraged, its absence is not an obstacle to scheduling an abortion for women who report that they know the date of their last menstrual period and/or of the at-risk sexual relations and for whom a clinical examination by a healthcare professional is possible (best practice agreement). In cases of intrauterine pregnancy of uncertain viability or of a pregnancy of unknown location, without any particular symptoms, the patient must be able to have a transvaginal ultrasound to increase the precision of the diagnosis (grade B). Various reviews of the literature on post-abortion follow-up indicate that the routine use of ultrasound during instrumental abortions should be avoided (best practice agreement). If it becomes

  9. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  10. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  11. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    International Nuclear Information System (INIS)

    Yoon, Sangpil; Emelianov, Stanislav; Aglyamov, Salavat; Karpiouk, Andrei

    2012-01-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. (paper)

  12. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  13. Fluid and solid mechanics in a poroelastic network induced by ultrasound.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-01-04

    We made a theoretical analysis on the fluid and solid mechanics in a poroelastic medium induced by low-power ultrasound. Using a perturbative approach, we were able to linearize the governing equations and obtain analytical solutions. We found that ultrasound could propagate in the medium as a mechanical wave, but would dissipate due to frictional forces between the fluid and the solid phase. The amplitude of the wave depends on the ultrasonic power input. We applied this model to the problem of drug delivery to soft biological tissues by low-power ultrasound and proposed a mechanism for enhanced drug penetration. We have also found the coexistence of two acoustic waves under certain circumstances and pointed out the importance of very accurate experimental determination of the high-frequency properties of brain tissue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Doppler ultrasound imaging techniques for assessment of synovial inflammation

    Directory of Open Access Journals (Sweden)

    Filippucci E

    2013-09-01

    Full Text Available Emilio Filippucci,1 Fausto Salaffi,1 Marina Carotti,2 Walter Grassi1 1Rheumatology Department, Polytechnic University of the Marche, Ancona, Italy; 2Department of Radiology, Polytechnic University of the Marche, Ancona, Italy Abstract: Ultrasound is an evolving technique, and the rapid progress made in ultrasound technology over the past ten years has dramatically increased its range of applications in rheumatology. One of the most exciting advances is the use of Doppler ultrasound imaging in the assessment of blood flow abnormalities at the synovial tissue level in patients with chronic inflammatory arthritis. This review describes the Doppler techniques available and their main applications in patients with inflammatory arthritis, discusses the evidence supporting their use, and outlines the latest advances in hardware and software. Spectral, color, and power Doppler allow sensitive assessment of vascular abnormalities at the synovial tissue level. Use of contrast agents enhances visualization of the small synovial vessels using color or power Doppler ultrasound and allows for accurate characterization of the rheumatoid pannus. Doppler techniques represent a unique method for assessment of synovial inflammation, showing blood flow characteristics in real time. They are safe, noninvasive, cost-effective, and have high sensitivity in revealing and monitoring synovitis. However, several questions still need to be answered. In the near future, the Doppler techniques described here, together with upcoming hardware and software facilities, will be investigated further and a consensus will be reached on their feasibility and appropriate use in daily rheumatologic practice. Keywords: power and color Doppler techniques, ultrasound, contrast media, synovitis, rheumatoid arthritis

  15. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins

    Science.gov (United States)

    Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.

    2016-01-01

    The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655

  16. AMH MEASUREMENT VERSUS OVARIAN ULTRASOUND IN THE DIAGNOSIS OF POLYCYSTIC OVARY SYNDROME IN DIFFERENT PHENOTYPES.

    Science.gov (United States)

    Carmina, Enrico; Campagna, Anna M; Fruzzetti, Franca; Lobo, Rogerio A

    2016-03-01

    This study was designed to assess the value of serum anti-Müllerian hormone (AMH) in the diagnosis of polycystic ovary syndrome (PCOS) in various phenotypes and to assess ovarian ultrasound parameters. We performed a retrospective matched controlled study of 113 females with various PCOS phenotypes and 47 matched controls. The diagnostic utility of AMH measurement and ovarian ultrasound were compared. Using receiver operating characteristic (ROC) curve analyses, the threshold for AMH (>4.7 ng/mL) and ultrasound parameters (follicle number per ovary [FNPO] >22 and ovarian volume [OV] >8 cc) were established. In the entire cohort, AMH had a low sensitivity of 79%; while FNPO and OV were 93% and 68%, respectively. Specificities ranged from 85 to 96%. In classic anovulatory PCOS, AMH exhibited a sensitivity of 91%, and for FNPO and OV the corresponding sensitivities were 92% and 72%. In the ovulatory phenotype, AMH sensitivity was only 50%, while FNPO and OV were 95% and 50%, respectively. In the nonhyperandrogenic phenotype, the sensitivity of AMH was 53% while those for FNPO and OV were 93% and 67%. AMH does not appear to be helpful for all subjects with PCOS but may be of some value in those who are anovulatory. However, FNPO was highly sensitive in all phenotypes, and was the single best criterion assessed for all subjects, suggesting the important role of ultrasound.

  17. A step towards measuring the fetal head circumference with the use of obstetric ultrasound in a low resource setting

    Science.gov (United States)

    van den Heuvel, Thomas L. A.; Petros, Hezkiel; Santini, Stefano; de Korte, Chris L.; van Ginneken, Bram

    2017-03-01

    Worldwide, 99% of all maternal deaths occur in low-resource countries. Ultrasound imaging can be used to detect maternal risk factors, but requires a well-trained sonographer to obtain the biometric parameters of the fetus. One of the most important biometric parameters is the fetal Head Circumference (HC). The HC can be used to estimate the Gestational Age (GA) and assess the growth of the fetus. In this paper we propose a method to estimate the fetal HC with the use of the Obstetric Sweep Protocol (OSP). With the OSP the abdomen of pregnant women is imaged with the use of sweeps. These sweeps can be taught to somebody without any prior knowledge of ultrasound within a day. Both the OSP and the standard two-dimensional ultrasound image for HC assessment were acquired by an experienced gynecologist from fifty pregnant women in St. Luke's Hospital in Wolisso, Ethiopia. The reference HC from the standard two-dimensional ultrasound image was compared to both the manually measured HC and the automatically measured HC from the OSP data. The median difference between the estimated GA from the manual measured HC using the OSP and the reference standard was -1.1 days (Median Absolute Deviation (MAD) 7.7 days). The median difference between the estimated GA from the automatically measured HC using the OSP and the reference standard was -6.2 days (MAD 8.6 days). Therefore, it can be concluded that it is possible to estimate the fetal GA with simple obstetric sweeps with a deviation of only one week.

  18. Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-01-01

    Graphical abstract: Transesterification reaction mediated by simultaneous microwave and ultrasound irradiations with barium oxide (BaO) heterogeneous catalyst. - Highlights: • Synergistic effect of simultaneous microwave/ultrasound irradiations was evaluated. • Yields were higher for the MW/US reactions compared to MW or US individually. • BaO catalyzed MW/US transesterification reaction is more environmental-friendly. • BaO catalyzed MW/US transesterification reaction provides better biodiesel yields. • Optimum power density must be identified for energy-efficient biodiesel production. - Abstract: This study presents a novel application of simultaneous microwave and ultrasound (MW/US) irradiations on transesterification of used vegetable oil catalyzed by barium oxide, heterogeneous catalyst. Experiments were conducted to study the optimum process conditions, synergistic effect of microwave and ultrasound irradiations and the effect of power density. From the process parametric optimization study, the following conditions were determined as optimum: 6:1 methanol to oil ratio, 0.75% barium oxide catalyst by wt.%, and 2 min of reaction time at a combined power output rate of 200 W (100/100 MW/US). The biodiesel yields were higher for the simultaneous MW/US mediated reactions (∼93.5%) when compared to MW (91%) and US (83.5%) irradiations individually. Additionally, the effect of power density and a discussion on the synergistic effect of the microwave and ultrasound mediated reactions were presented. A power density of 7.6 W/mL appears to be effective for MW, and MW/US irradiated reactions (94.4% and 94.7% biodiesel yields respectively), while a power density of 5.1 W/mL was appropriate for ultrasound irradiation (93.5%). This study concludes that the combined microwave and ultrasound irradiations result in a synergistic effect that reduces the heterogeneity of the transesterification reaction catalyzed by heterogeneous catalysts to enhance the biodiesel

  19. Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal

    International Nuclear Information System (INIS)

    Voloshinov, V. B.; Lemyaskina, E. A.

    1996-01-01

    The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)

  20. Objective and structured assessment of lung ultrasound competence

    DEFF Research Database (Denmark)

    Skaarup, Søren Helbo; Laursen, Christian B.; Bjerrum, Anne Sofie

    2017-01-01

    RATIONALE: Point-of-care lung ultrasound imaging has substantial diagnostic value and is widely used in respiratory, emergency and critical care medicine. Like other ultrasound examinations, lung ultrasound is operator-dependent. The current recommendations for competence in lung ultrasound sets...... a fixed number of ultrasound procedures to be performed without considering different learning rates. Recommendations do not consider different uses of lung ultrasound across specialties. OBJECTIVE: To create a reliable, valid and feasible instrument to assess lung ultrasound competence that includes...... 23 ultrasound operators of different competence levels. Examination time was measured and skill was rated by experienced observers using the assessment tool. Inter-rater agreement was examined by two observers in 9 lung ultrasound examinations. RESULTS: Consensus was obtained within 3 Delphi rounds...

  1. Virtual Ultrasound Guidance for Inexperienced Operators

    Science.gov (United States)

    Caine, Timothy; Martin, David

    2012-01-01

    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with

  2. Research of Ultrasound-Mediated Transdermal Drug Delivery System Using Cymbal-Type Piezoelectric Composite Transducer

    Science.gov (United States)

    Huan, Huiting; Gao, Chunming; Liu, Lixian; Sun, Qiming; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Transdermal drug delivery (TDD) implemented by especially low-frequency ultrasound is generally known as sonophoresis or phonophoresis which has drawn considerable wide attention. However, TDD has not yet achieved its full potential as an alternative to conventional drug delivery methods due to its bulky instruments. In this paper, a cymbal-type piezoelectric composite transducer (CPCT) which has advantages over a traditional ultrasound generator in weight, flexibility, and power consumption, is used as a substitute ultrasonicator to realize TDD. First, theoretical research on a CPCT based on the finite element analysis was carried out according to which a series of applicable CPCTs with bandwidths of 20 kHz to 100 kHz were elaborated. Second, a TDD experimental setup was built with previously fabricated CPCTs aimed at the administration of glucose. Finally, the TDD performance of glucose molecule transport in porcine skin was measured in vitro by quantifying the concentration of glucose, and the time variation curves were subsequently obtained. During the experiment, the driving wave form, frequency, and power consumption of the transducers were selected as the main elements which determined the efficacy of glucose delivery. The results indicate that the effectiveness of the CPCT-based delivery is constrained more by the frequency and intensity of ultrasound rather than the driving waveform. The light-weight, flexibility, and low-power consumption of a CPCT can potentially achieve effective TDD.

  3. Intra and interobserver variability of intrapartum transperineal ultrasound measurements with contraction and pushing.

    Science.gov (United States)

    Sainz, José A; Fernández-Palacín, Ana; Borrero, Carlota; Aquise, Adriana; Ramos, Zenaida; García-Mejido, José A

    2018-04-01

    The aim of this study was to evaluate the inter- and intraobserver correlation of the different intrapartum-transperineal-ultrasound-parameters(ITU) (angle of progression (AoP), progression-distance (PD), head-direction (HD), midline-angle (MLA) and head-perineum distance (HPD)) with contraction and pushing. We evaluated 28 nulliparous women at full dilatation under epidural analgesia. We performed a transperineal ultrasound evaluating AoP and PD in the longitudinal plane, and MLA and HPD in the transverse plane. Interclass correlation coefficients (ICC) with 95% CIs and Bland-Altman analysis were used to assess intra- and interobserver measurement's repeatability. The ICC of the ITU for the same observer was adequate for all the parameters (p pushing under epidural analgesia. Impact statement What is already known on this subject: The intrapartum transperineal ultrasound parameters can be used with contraction and pushing under epidural analgesia. What the results of this study add to what we know: ITU may be used to evaluate the difficulty of instrumental delivery/to evaluate the difficulty of instrumentation in vaginal operative deliveries and this study concludes that ITU is reproducible during uterine contraction with pushing. What the implications are of these findings for clinical practice and/or further research: Therefore, ITU could be used without difficulty with an adequate intra- and interobserver correlation for the prediction of instrumentation difficulty in operative vaginal deliveries.

  4. Does ultrasound contrast agent improve the diagnostic value of colour and power Doppler sonography in superficial lymph node enlargement?

    International Nuclear Information System (INIS)

    Schulte-Altedorneburg, Gernot; Demharter, Johannes; Linne, Renate; Droste, Dirk W.; Bohndorf, Klaus; Buecklein, Wolfgang

    2003-01-01

    Objective: to analyse whether ultrasound contrast agent (UCA) improves the diagnostic accuracy to differentiate between benign and malignant superficial lymph node enlargement by using colour-coded duplex sonography (CCDS) and power Doppler (PD). Methods: 32 patients with suspected malignant superficial lymph node enlargement prospectively underwent standardised ultrasound examinations using B-mode sonography and native and contrast-enhanced CCDS and PD immediately before biopsy. Solbiati-Index (longitudinal-transverse diameter ratio) and intranodal flow patterns by using different vascularisation types were assessed. Histological and sonographical findings were correlated. Results: 27 malignant and 5 benign lymph nodes were found. Solbiati-Index was lower in malignant lymph nodes than in benign nodes (mean 1.5 vs. 2.4, P<0.045). More intranodal flow patterns could be detected after UCA (53 vs. 43) but the number of correctly identified malignant nodes decreased after UCA (26 vs. 24) and the number of correctly identified benign nodes remained constant compared with native CCDS and PD. In 31% of the colour-mode studies, PD was considered to visualise more clearly intranodal vascular flow patterns than CCDS. Conclusion: despite depicting more intranodal vascular patterns, the use of an ultrasound contrast agent seems not to improve the diagnostic value of CCDS and PD compared with native colour-mode studies in superficial lymph node enlargement

  5. Ultrasound-detected bone erosion is a relapse risk factor after discontinuation of biologic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis whose ultrasound power Doppler synovitis activity and clinical disease activity are well controlled.

    Science.gov (United States)

    Kawashiri, Shin-Ya; Fujikawa, Keita; Nishino, Ayako; Okada, Akitomo; Aramaki, Toshiyuki; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Mizokami, Akinari; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Aoyagi, Kiyoshi; Maeda, Takahiro; Kawakami, Atsushi

    2017-05-25

    In the present study, we explored the risk factors for relapse after discontinuation of biologic disease-modifying antirheumatic drug (bDMARD) therapy in patients with rheumatoid arthritis (RA) whose ultrasound power Doppler (PD) synovitis activity and clinical disease activity were well controlled. In this observational study in clinical practice, the inclusion criteria were based on ultrasound disease activity and clinical disease activity, set as low or remission (Disease Activity Score in 28 joints based on erythrocyte sedimentation rate Ultrasound was performed in 22 joints of bilateral hands at discontinuation for evaluating synovitis severity and presence of bone erosion. Patients with a maximum PD score ≤1 in each joint were enrolled. Forty patients with RA were consecutively recruited (November 2010-March 2015) and discontinued bDMARD therapy. Variables at the initiation and discontinuation of bDMARD therapy that were predictive of relapse during the 12 months after discontinuation were assessed. The median patient age was 54.5 years, and the median disease duration was 3.5 years. Nineteen (47.5%) patients relapsed during the 12 months after the discontinuation of bDMARD therapy. Logistic regression analysis revealed that only the presence of bone erosion detected by ultrasound at discontinuation was predictive of relapse (OR 8.35, 95% CI 1.78-53.2, p = 0.006). No clinical characteristics or serologic biomarkers were significantly different between the relapse and nonrelapse patients. The ultrasound synovitis scores did not differ significantly between the groups. Our findings are the first evidence that ultrasound bone erosion may be a relapse risk factor after the discontinuation of bDMARD therapy in patients with RA whose PD synovitis activity and clinical disease activity are well controlled.

  6. [Diagnostic value of power Doppler ultrasonography for Sirenomelia Seguence in prenatal].

    Science.gov (United States)

    Yan, Xia-yu; Yang, Tai-zhu; Luo, Hong; Tian, Yu; Yang, Fan

    2011-11-01

    To study and discuss the diagnostic value and ultrasonographic characteristics of power doppler ultrasound in the prenatal diagnosis of Sirenomelia Seguence. The abdominal aorta in two fetuses with sirenomelia seguence fetuses and in ten with nomal was reviewed and compared with two-dimensional power doppler ultrasound and three-dimensional power doppler ultrasound in prenatal. The abdominal aorta were showed to divid into renal arteries in the kidney level while two common iliac arteries in the pelvis in nomal fetuses with two-dimensional power doppler ultrasound and three-dimensional power doppler ultrasound; compared with the nomal, the abdominal aorta and whose branches in sirenomelia seguence were demonstrated as follows: 1) a large and deformed vascular coming from the high abdominal aorta, which was found to act as a umbilical artery by careful examination; 2) no bifurcation of renal arteries identified; 3) no bifurcation of two common iliac arteries identified; 4) the abdominal aorta changing into a narrow vascular after one deformed vascular separating from. Sirenomelia seguence fetuses has a characteristic change in two-dimensional power doppler ultrasound and three-dimensional power doppler ultrasound, which is helpful to improve the prenatal diagnosis of sirenomelia seguence.

  7. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  8. IPEM Report No 84: Guidelines for the Testing and Calibration of Physiotherapy Ultrasound Machines

    Energy Technology Data Exchange (ETDEWEB)

    Duck, Francis A

    2003-01-21

    Institute of Physics and Engineering in Medicine York: IPEM (2001) 67 pp, 20.00 British Pounds, ISBN: 0-904181-98-7. This 67-page soft-cover report has been prepared by an expert group within the Institute of Physics and Engineering in Medicine (IPEM) to provide detailed guidance on the testing and calibration of ultrasound therapy devices. Physiotherapists have long used external energy sources to supplement massage and manipulation for musculo-skeletal therapy. Whilst, recently, there has been a general reduction in use of electrotherapy using radio-frequency radiation, microwaves and interferential devices, ultrasound therapy still remains central to physiotherapy practice. There is now robust evidence that, at least for some injuries, ultrasound accelerates the repair of injured tissue. This has been particularly well demonstrated for bone fracture repair. Managed therapy relies on well-calibrated radiation sources. Unfortunately, there has been less than adequate management of ultrasound output in the past. Several well-documented situations have occurred for which faulty ultrasound equipment has continued in clinical use, either generating no output at all, or, more seriously, operating at maximum power all the time. This report reminds those responsible for managing ultrasound equipment of the need for testing and calibration, and gives detailed advice on procedures for carrying this out. These details are contained in 12 annexes forming the majority of the text. Each annex presents a self-contained aspect of one aspect of testing or calibration, such as the measurement of acoustic power, or an example protocol for machine testing. Each is sufficiently detailed to allow novice technical staff to follow the recommended procedure, or to allow a department to plan to introduce ultrasound field calibration into its practice. Other annexes contain useful additional material, not included in the earlier IPSM Report 58. A procedure for the measurement of effective

  9. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    Science.gov (United States)

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  10. Determination of prostate gland volume by transrectal ultrasound

    DEFF Research Database (Denmark)

    Myschetzky, P S; Suburu, R E; Kelly, B S

    1991-01-01

    Seventy six patients underwent transrectal ultrasound examination of the prostate prior to radical prostatectomy. All radical specimens were weighed and measured when freshly excised. Corresponding measurements calculated using transrectal ultrasound dimensions were retrospectively compared with ...... was shown. A modified prolate ellipse formula, using the factor of 0.70, appears to be a more reliable means of estimating gland volume with transrectal ultrasound than the original formula [Width x Height x Length) x 0.523)....

  11. [Size of testes and epididymes in boys up to 17 years of life assessed by ultrasound method and method of external linear measurements].

    Science.gov (United States)

    Osemlak, Paweł

    2011-01-01

    1. Determination of the size of testes and epididymes on the right and left side, in healthy boys in various age groups with use of non-invasive ultrasound examination method and the method of external linear measurements. 2. Determination of age, when intensive growth of testicular and epididymal size starts. 3. Determination whether there are statistically significant differences between the size of the right and the left testis, as well as between the right and left epididymis. 4. Evaluation of the ultrasound method and method of external linear measurements in their use for scientific investigations. 309 boys, aged from 1 day to 17 years of life, treated in the Clinical Department of Paediatric Surgery and Traumatology of the Medical University in Lublin from 2009 to 2010 due to diseases needed to be treated surgically, but not the scrotum, were examined in this study. No pathologies influencing the development of genital organs were found in these boys. Dimension of the testes was studied with ultrasound method and with method of external linear measurements. Dimension of epididymes was only examined with ultrasound method. In every age group the author calculated mean arithmetical values for: testiscular length, thickness, width and volume, as well as epididymal depth and basis. With consideration of standard deviation (X+/-1 SD) it was possible to define the range of dimension of healthy testes and epididymes and their change with age. Final dimensions of the right and left testis as well as of the right and left epididymis were compared. Dimensions of the testis on the same side of body acquired with the ultrasound method and acquired with the method of external linear measurements were compared. Statistical work-up with Wilcoxon test for two dependent groups was implemented. Ultrasound evaluation pointed to intensive 2.5-times increase in testicular length and width, and 2-times increase in testicular thickness in boys aged 10 to 17 years. Mean volume of

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. help ... end of their bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment planning. detect ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment ... caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and ...

  15. The challenges of measuring in vivo knee collateral ligament strains using ultrasound.

    Science.gov (United States)

    Slane, Laura C; Slane, Josh A; D'hooge, Jan; Scheys, Lennart

    2017-08-16

    Ultrasound-based methods have shown promise in their ability to characterize non-uniform deformations in large energy-storing tendons such as the Achilles and patellar tendons, yet applications to other areas of the body have been largely unexplored. The noninvasive quantification of collateral ligament strain could provide an important clinical metric of knee frontal plane stability, which is relevant in ligament injury and for measuring outcomes following total knee arthroplasty. In this pilot cadaveric experiment, we investigated the possibility of measuring collateral ligament strain with our previously validated speckle-tracking approach, but encountered a number of challenges during both data acquisition and processing. Given the clinical interest in this type of tool, and the fact that this is a developing area of research, the goal of this article is to transparently describe this pilot study, both in terms of methods and results, while also identifying specific challenges to this work and areas for future study. Some challenges faced relate generally to speckle-tracking of soft tissues (e.g. the limitations of using a 2D imaging modality to characterize 3D motion), while others are specific to this application (e.g. the small size and complex anatomy of the collateral ligaments). This work illustrates a clear need for additional studies, particularly relating to the collection of ground-truth data and more thorough validation work. These steps will be critical prior to the translation of ultrasound-based measures of collateral ligament strains into the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  17. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    Science.gov (United States)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  19. Plantar fasciitis (fasciosis) treatment outcome study: plantar fascia thickness measured by ultrasound and correlated with patient self-reported improvement.

    Science.gov (United States)

    Fabrikant, Jerry M; Park, Tae Soon

    2011-06-01

    Ultrasound, well recognized as an effective diagnostic tool, reveals a thickening of the plantar fascia in patients with plantar fasciitis/fasciosis disease. The authors hypothesized that ultrasound would also reveal a decrease in the plantar fascia thickness for patients undergoing treatment for the disease, a hypothesis that, heretofore, had been only tested on a limited number of subjects. They conducted a more statistically significant study that found that clinical treatment with injection and biomechanical correction does indeed diminish plantar fascia thickness as shown on ultrasound. The study also revealed that patients experience the most heightened plantar fascia tenderness toward the end of the day, and improvement in their symptomatic complaints were associated with a reduction in plantar fascia thickness. As a result, the authors conclude that office-based ultrasound can help diagnose and confirm plantar fasciitis/fasciosis through the measurement of the plantar fascia thickness. Because of the advantages of ultrasound--that it is non-invasive with greater patient acceptance, cost effective and radiation-free--the imaging tool should be considered and implemented early in the diagnosis and treatment of plantar fasciitis/fasciosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  1. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  2. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  3. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  4. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    Science.gov (United States)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  5. Automated Visualization and Quantification of Spiral Artery Blood Flow Entering the First-Trimester Placenta, Using 3-D Power Doppler Ultrasound.

    Science.gov (United States)

    Stevenson, Gordon N; Noble, J Alison; Welsh, Alec W; Impey, Lawrence; Collins, Sally L

    2018-03-01

    The goal of our research was to quantify the placental vascularity in 3-D at 11-13 + 6 wk of pregnancy at precise distances from the utero-placental interface (UPI) using 3-D power Doppler ultrasound. With this automated image analysis technique, differences in vascularity between normal and pathologic pregnancies may be observed. The algorithm was validated using a computer-generated image phantom and applied retrospectively in 143 patients. The following features from the PD data were recorded: The number of spiral artery jets into the inter-villous space, total geometric and PD area. These were automatically measured at discrete millimeter distances from the UPI. Differences in features were compared with pregnancy outcomes: Pre-eclamptic versus normal, all small-for-gestational age (SGA) to appropriate-for-gestational age (AGA) patients and AGA versus SGA in normotensives (Mann-Whitney). The Benjamini-Hochberg procedure was used (false discovery rate 10%) for multiple comparison testing. Features decreased with increasing distance from the UPI (Kruskal-Wallis test; p  0.05). This method provides a new in-vivo imaging tool for examining spiral artery development through pregnancy. Size and number of entrances of blood flow into the UPI could potentially be used to identify high-risk pregnancies and may provide a new imaging biomarker for placental insufficiency. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Instant magnetic labeling of tumor cells by ultrasound in vitro

    International Nuclear Information System (INIS)

    Mo Runyang; Yang Jian; Wu, Ed X.; Lin Shuyu

    2011-01-01

    Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling. - Highlights: → High frequency focus ultrasound can be used as a safe method for instant magnetic labeling of cells. → 8-16 times increased efficiency can be gained by ultrasound versus that by transfection agents. → Calculation of shear stress around cells provide a quantitative design for ultrasound protocols.

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  8. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  9. Common fetal measurements: A comparison between ultrasound and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Parkar, Anagha P. (Dept. of Radiology, Haukeland Univ. Hospital, Bergen (Norway)); Olsen, Oeystein E.; Rosendahl, Karen (Diagnostic Radiology, Great Ormond Street Hospital for Children, London (United Kingdom)), e-mail: rosenk@gosh.nhs.uk; Gjelland, Knut; Kiserud, Torvid (Fetal Medicine Unit, Dept. of Obstetrics and Gynecology, Haukeland Univ. Hospital, Bergen (Norway))

    2010-01-15

    Background: Ultrasound has been the method of choice for antenatal fetal assessment for the past three decades; however, problems may arise in cases of oligohydramnion, unfavorable position of the fetus, and maternal obesity. Purpose: To compare ultrasound (US) and magnetic resonance imaging (MRI) for common fetal measurements at 19-30 weeks' gestation, and to assess the effect of high maternal body-mass index (BMI). Material and Methods: 59 low-risk singleton pregnancies were enrolled in a prospective blinded cross-sectional study. In a first session, an experienced obstetrician used a high-resolution US technique and in a second session on the same day MRI was used to measure biparietal diameter (BPD), head circumference (HC), mean abdominal diameter (MAD), abdominal circumference (AC), and femur length (FL). Inter- and intraobserver and intermodality variability was determined using Bland-Altman plots. The effect of maternal BMI was assessed using Spearman's statistics. Results: A total of 45 women aged 19-43 years (median 29 years) attended both US and MRI at median 22 weeks' gestation. The mean differences between US and MRI were 1.6 mm for HC (95% confidence interval [CI] -1.0, 4.3 mm), 1 mm for AC (95% CI -0.2, 4.0 mm), 0.2 mm for MAD (95% CI -0.7, 1.2 mm), 2.2 mm for BPD (95% CI 1.7, 2.7 mm), and 4.6 mm for FL (95% CI 2.9, 6.4 mm). Maternal BMI did not affect the results (Spearman' rho 0.054-0.277; P=NS). The intraobserver agreement for all MRI measurements was acceptable, except for FL, while the interobserver agreement was poor. Conclusion: There was good agreement between US and MRI for common fetal measurements, but not for all (i.e., BPD and particularly FL). MRI had a poor interobserver agreement, underscoring the need for technical refinement and reference ranges specifically established for MRI

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  11. Influence of ultrasonic frequency on the regeneration of silica gel by applying high-intensity ultrasound

    International Nuclear Information System (INIS)

    Zhang Weijiang; Yao Ye; Wang Rongshun

    2010-01-01

    Ultrasonic frequency is the key parameter considered in ultrasonic applications. In order to provide a basic knowledge about the influence of ultrasonic frequency on the regeneration of silica gel assisted by power ultrasound, the experiments about silica gel regeneration under the radiation of constant-power (60 W) ultrasound with different frequencies (i.e., 23, 27, and 38 kHz) and that without ultrasound were carried out at different regeneration temperatures (i.e., 35, 45, 55, and 65 deg. C). The experimental results showed that the lower frequency was beneficial for the application of power ultrasound in the regeneration of silica gel. The fact was theoretically explained by the ultrasonic power attenuation model which indicates that the ultrasound of lower frequency will lead to more uniform energy distribution and hence achieve higher efficiency of utilization. Meanwhile, the effect of ultrasonic frequency on silica gel regeneration would be influenced by the regeneration temperature and the moisture ratio in silica gel. As investigated in this study, the effect of ultrasonic frequency on the regeneration would be more significant at the lower regeneration temperature or at the higher moisture ratio in silica gel. In addition, the mean regeneration speed model of silica gel dependent of the regeneration temperature and the ultrasonic frequency was established according to the experimental data.

  12. Analysis of apple beverages treated with high-power ultrasound: a quality function deployment approach.

    Science.gov (United States)

    Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija

    2018-04-01

    The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Mechanics of ultrasound elastography

    Science.gov (United States)

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  15. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    LENUS (Irish Health Repository)

    McCreesh, Karen

    2011-09-13

    Abstract Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  16. KINETICS OF ULTRASOUND ASSISTED EXTRACTION OF WEDELOLACTONE FROM Eclipta alba

    Directory of Open Access Journals (Sweden)

    T. W. Charpe

    Full Text Available Abstract Ultrasound assisted extraction of wedelolactone, a major coumestan present in Eclipta alba, is investigated in the present work.Various process parameters such as type of solvent, power, solvent to solid ratio and extraction temperature, which affect the extraction yield, are optimized. In the ultrasound-assisted extraction with final optimized conditions, i.e., methanol as solvent, 170 W power, 60:1 solvent to solid ratio, 50 °C temperature and 60% duty cycle, amaximum extraction yieldof 0.62 mg/g is obtained in 45 minutes. The kinetic model (Peleg's model has been used for the prediction of the yield of wedelolactone in the extract at a given time for all experimental conditions. The values of predicted yields show good agreement with the experimental data for all parameters, i.e., power, solvent to solid ratio and temperature. The extraction of wedelolactone from Eclipta alba is also carried out by conventional extraction methods, i.e., Soxhlet and batch extraction. Ultrasound-assisted extraction gives higher extraction yield in less time as compared to batch extraction (0.41 mg/g in 90 min and Soxhlet extraction(0.7 mg/g in 360 min. The ultrasound-assisted extraction of wedelolactone from Eclipta alba is an effective way of extraction with the advantages of lower time and higher extraction.

  17. Thermal power measurement apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Thermal power measurements are important in nuclear power plants, fossil-fuel plants and other closed loop systems such as heat exchangers and chemical reactors. The main object of this invention is to determine the enthalpy of a fluid using only acoustically determined sound speed and correlating the speed with enthalpy. An enthalpy change is measured between two points in the fluid flow: the apparatus is described in detail. (U.K.)

  18. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel

    International Nuclear Information System (INIS)

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-01-01

    Graphical abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. Effect of power and irradiation time have been studied by changing the time (30–45–60 min) and power of sonication (50–100–150 W) during the synthesis which lead to different physiochemical properties of the catalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated catalysts. Study on the performance of investigated catalysts in direct synthesis of DME from syngas showed ultrasound-assisted co-precipitated synthesized catalysts have superior reactivity and stability compared with non-sonicated catalyst. Among sonicated catalysts, with increasing power and time of irradiation, the catalyst represents higher activity and DME selectivity. - Highlights: • Synthesis of CuO–ZnO–Al 2 O 3 /HZSM-5 by ultrasound assisted co-precipitation method. • Significant changes in morphology and surface area after ultrasound irradiations. • Smaller dispersed particle aggregates in longer and more intense irradiated catalysts. • Improvement in reactivity and stability of the longer and more intense ultrasound irradiated CZAZ catalyst. - Abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. The effect of irradiation power and irradiation time have been studied by changing time (30, 45, 60 min) and power of the sonication (50, 100, 150 W) during the synthesis which led to different physiochemical properties of the nanocatalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated nanocatalysts. The nanocatalyst irradiated at 150 W for 60 min (the longest irradiation time and the most intense power

  19. Evaluation of the relationship between renal function and renal volume-vascular indices using 3D power Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cansu, Aysegul, E-mail: drcansu@gmail.com; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan

    2014-07-15

    Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.

  20. Scoring ultrasound synovitis in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Terslev, Lene; Naredo, Esperanza; Aegerter, Philippe

    2017-01-01

    OBJECTIVES: To test the reliability of new ultrasound (US) definitions and quantification of synovial hypertrophy (SH) and power Doppler (PD) signal, separately and in combination, in a range of joints in patients with rheumatoid arthritis (RA) using the European League Against Rheumatisms...

  1. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  2. Proposal for standardised ultrasound descriptors of abnormally invasive placenta (AIP)

    DEFF Research Database (Denmark)

    Collins, Sally L; Ashcroft, Anna; Braun, Thorsten

    2016-01-01

    on subjective interpretation of imaging signs. There is no accepted consensus on the definition of the commonly used ultrasound markers for AIP. The studies included in a recently published systematic review of antenatal sonographic diagnosis of AIP were analysed for the ultrasound descriptors. Different...... were examined for wording used to describe AIP signs. These were extracted and grouped by ultrasound modality, and synonymous or identical terms identified. The group agreed on six unified descriptors for 2D greyscale signs, four for 2D colour Doppler and one for 3D power Doppler. Four papers included...

  3. Accuracy of ultrasound-measured bladder wall thickness for the ...

    African Journals Online (AJOL)

    M.M. Ali

    history taking, general physical and genital examination, urine analysis, urine culture, blood chemistry, ... supine position, using an ultrasound device (BK Medical, Herlev, .... The standardisation of terminology of lower urinary tract function:.

  4. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  5. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  6. On the reproducibility of expert-operated and robotic ultrasound acquisitions.

    Science.gov (United States)

    Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir

    2017-06-01

    We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.

  7. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks.

    Science.gov (United States)

    Diehl, Lisarb O; Gatiboni, Thais L; Mello, Paola A; Muller, Edson I; Duarte, Fabio A; Flores, Erico M M

    2018-01-01

    In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70°C and 20mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20kHz for 15min, ultrasound amplitude of 40% (692Wdm -3 ) and using a diluted extraction solution (3% v/v HNO 3 +2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of automatic time gain compensated in-vivo ultrasound sequences

    DEFF Research Database (Denmark)

    Axelsen, Martin Christian; Røeboe, Kristian Frostholm; Hemmsen, Martin Christian

    2010-01-01

    algorithm for automatic time gain compensation (TGC) on in-vivo ultrasound sequences. Forty ultrasound sequences were recorded from the abdomen of two healthy volunteers. Each sequence of 5 sec was recorded with 40 frames/sec. Post processing each frame, a mask is created wherein anechoic and hyper echoic...... regions are mapped. Near field hyper intensity and deep areas with low signal strength are also included in the mask. The algorithm uses this mask to create a parallel image where anechoic and hyper echoic regions are eliminated. From this, the mean power is calculated as a function of depth. The power...

  9. The spectroscopy analyses of PpIX by ultrasound irradiation and its sonotoxicity in vitro.

    Science.gov (United States)

    Wang, Pan; Wang, Xiaobing; Zhang, Kun; Gao, Kaili; Song, Ming; Liu, Quanhong

    2013-07-01

    Protoporphyrin IX (PpIX) has been used as a sensitizer in photodynamic therapy (PDT) as well as in sonodynamic therapy (SDT). The photo-bleaching of PpIX has been well investigated in many experimental systems and some photo-products have also been identified in PDT. But until now, little information has been reported about the sono-damage of PpIX in SDT. So, the present study was to investigate changes of PpIX properties before and after different ultrasound treatment, and the potential interactions between PpIX, ultrasound and the irradiated cells. In cell-free system, the absorption and fluorescence spectra of PpIX in different solutions were measured by ultraviolet spectrometer and fluorescence spectrophotometer, respectively. The terephthalic acid dosimetry was applied to evaluate the efficiency of ultrasound cavitation by monitoring hydroxyl radical (OH) production on the thermolysis of H2O in the ultrasound field. In in vitro study, confocal microscopy was applied to detect the sub-cellular localization of PpIX in S180 cells before and after ultrasound exposure. Flow cytometry was used to detect the reactive oxygen species (ROS) generation during PpIX-SDT. MTT assay was performed to evaluate the cell viability of S180 cells after SDT treatment with or without ROS scavengers. The results show that PpIX displayed different spectral patterns in different solutions. PpIX was decomposed by ultrasound exposure as measured by the decreased absorption and fluorescence peak values in RPMI-1640 medium. In addition, the decomposition of PpIX was found to be simultaneously accompanied by OH production with increasing output power from ultrasound generator. PpIX at 1μg/ml significantly enhanced the ultrasound induced cavitation as measured by OH generation, and which was greatly eliminated by NaN3, histidine, mannitol, EDTA and catalase, but not by SOD. The in vitro study indicates more PpIX entered into S180 cells after ultrasound exposure. And, the extra-cellular Pp

  10. [Ultrasound dissection in laparoscopic cholecystectomy].

    Science.gov (United States)

    Horstmann, R; Kern, M; Joosten, U; Hohlbach, G

    1993-01-01

    An ultrasound dissector especially developed for laparoscopic surgery was used during laparoscopic cholecystectomy on 34 patients. The ultrasound power, the volume of suction and irrigation could be determined individually at the generator and activated during the operation with a foot pedal. With the dissector it was possible to fragmentate, emulgate and aspirate simultaneously fat tissue as well as infected edematous structures. The cystic artery and cystic duct, small vessels, lymphatic and connective tissue were not damaged. Therefore this system seems to be excellent for the preparation of Calot's trigonum and blunt dissection of the gallbladder out of its bed, particularly in fatty, acute or chronic infected tissue. No complications were observed within the peri- and postoperative period.

  11. Quantum fluctuation theorems and power measurements

    International Nuclear Information System (INIS)

    Prasanna Venkatesh, B; Watanabe, Gentaro; Talkner, Peter

    2015-01-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics. (paper)

  12. Comparison of the Efficacy of Dry Needling and High-Power Pain Threshold Ultrasound Therapy with Clinical Status and Sonoelastography in Myofascial Pain Syndrome.

    Science.gov (United States)

    Aridici, Rifat; Yetisgin, Alparslan; Boyaci, Ahmet; Tutoglu, Ahmet; Bozdogan, Erol; Sen Dokumaci, Dilek; Kilicaslan, Nihat; Boyaci, Nurefsan

    2016-10-01

    The aim of this study was to compare the therapeutic efficacy of high-power pain threshold (HPPT) ultrasound therapy applied to the trigger points and dry needling (DN) in myofascial pain syndrome. Sixty-one patients were randomly assigned to an HPPT (n = 30) and dry needling (n = 31) groups. The primary outcome measures were the Visual Analog Scale (VAS) and Neck Pain and Disability Scale (NPDS), both at 1 week and 4 weeks after treatment. The secondary outcome measures were the number of painful trigger points, range of the tragus-acromioclavicular joint, the Short Form-36, the Beck Depression Inventory, the Beck Anxiety Inventory, and sonoelastographic tests after a 1-week treatment. More improvement was seen in anxiety in the HPPT group (P 0.05). A decrease in tissue stiffness was only seen in the HPPT group (P pain syndrome. Although a significant decrease was shown in tissue stiffness with HPPT, neither of these treatments had an apparent superiority.

  13. Ultrasound imaging measurement of submerged topography in the muddy water physical model

    International Nuclear Information System (INIS)

    Xiao, Xiongwu; Guo, Bingxuan; Li, Deren; Zhang, Peng; Zang, Yu-fu; Zou, Xianjian; Liu, Jian-chen

    2015-01-01

    The real-time, accurate measurement of submerged topography is vital for the analysis of riverbed erosion and deposition. This paper describes a novel method of measuring submerged topography in the B-scan image obtained using an ultrasound imaging device. Results show the distribution of gray values in the image has a process of mutation. This mutation process can be used to adaptively track the topographic lines between riverbed and water, based on the continuity of topography in the horizontal direction. The extracted topographic lines, of one pixel width, are processed by a wavelet filtering method. Compared with the actual topography, the measurement accuracy is within 1 mm. It is suitable for the real-time measurement and analysis of all current model topographies with the advantage of good self-adaptation. In particular, it is visible and intuitive for muddy water in the movable-bed model experiment. (paper)

  14. A power measuring device

    International Nuclear Information System (INIS)

    As, R. van.

    1985-01-01

    As a part of the klystron test facility of the Dutch NIKHEF-K accelerator, a sensitive power measuring device has been built. The high-frequency power of a klystron is stored in a water-cooled dummy load. Using a microcomputer, the increase of the water temperature and the water flow rate are transformed to a digital indication of the klystron power. (Auth.)

  15. Redox reactions of U(IV) and Pu(IV) with H2O2 generated in nitric acid media by power ultrasound

    International Nuclear Information System (INIS)

    Moisy, P.; Venault, L.; Madic, C.; Nikitenko, S.

    1998-01-01

    Power ultrasound causes water molecule dissociation on H o and OH o radicals due to high local temperatures and pressures generated in the cavitation threshold. In nitric acid media scavenging of OH o radicals with NO 3 - followed by NO 3 o radicals hydrolysis leads to H 2 O 2 formation. It was shown that H 2 O 2 generated under the effect of ultrasound with the frequency 20 kHz and intensity 1-3 Wcm -2 (Ar atmosphere) oxidizes U(IV) to U(VI) or reduces Pu(IV) to Pu(III) in 1-4 M HNO 3 in the presence of antinitrous reagents ( N 2 H 5 NO 3 or NH 2 SO 3 H). The effect of HNO 3 concentration and ultrasonic intensity on the kinetics of U(IV) oxidation and Pu(IV) reduction was studied. (author)

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood ...

  19. Quality management of nuchal translucency ultrasound measurement in Australia.

    Science.gov (United States)

    Nisbet, Debbie; Robertson, Ann; Mannil, Blessy; Pincham, Vanessa; Mclennan, Andrew

    2018-02-22

    Nuchal translucency measurement has an established role in first trimester screening. Accurate measurement requires that technical guidelines are followed. Performance can be monitored by auditing the distribution of measurements obtained in a series of cases. The primary aim is to develop an accessible, theory-based educational program for individuals whose distribution of measurements at audit falls outside an acceptable range, and assess operator performance following this intervention. Operators whose nuchal translucency measurement distributions fall outside a normal range (38-65% above the median) were expected to undergo a teleconference tutorial. Accessible from anywhere in Australia, the one hour tutorials were run by a senior sonographer (to explain technical ultrasound aspects) and the audit program manager (to explain the audit process). In 2011, 83 operators attended the teleconference tutorials. Compared to a random comparison group of operators meeting standard in 2011, teleconference tutorial attendees were significantly more likely to: (i) operate in rural or regional, rather than metropolitan, centres (P = 0.001); (ii) be less experienced (P audit cycle and was maintained over subsequent years. The mean percentage of the study cohort reaching standard over the five-year audit was 77.8% which was not statistically different from the average for the comparison cohort of all other audited operators (79.3%; P = 0.61). Teleconference tutorials are a convenient, accessible and effective way to obtain immediate and sustained improvement in operator performance. © 2018 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  20. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Reamer, Courtney B.; Mohler, Emile R. [Department of Medicine, Division of Cardiovascular Medicine, Section of Vascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  2. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  3. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  5. Reproducibility of abdominal fat assessment by ultrasound and computed tomography.

    Science.gov (United States)

    Mauad, Fernando Marum; Chagas-Neto, Francisco Abaeté; Benedeti, Augusto César Garcia Saab; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Carneiro, Antonio Adilton Oliveira; Muller, Enrico Mattana; Elias Junior, Jorge

    2017-01-01

    To test the accuracy and reproducibility of ultrasound and computed tomography (CT) for the quantification of abdominal fat in correlation with the anthropometric, clinical, and biochemical assessments. Using ultrasound and CT, we determined the thickness of subcutaneous and intra-abdominal fat in 101 subjects-of whom 39 (38.6%) were men and 62 (61.4%) were women-with a mean age of 66.3 years (60-80 years). The ultrasound data were correlated with the anthropometric, clinical, and biochemical parameters, as well as with the areas measured by abdominal CT. Intra-abdominal thickness was the variable for which the correlation with the areas of abdominal fat was strongest (i.e., the correlation coefficient was highest). We also tested the reproducibility of ultrasound and CT for the assessment of abdominal fat and found that CT measurements of abdominal fat showed greater reproducibility, having higher intraobserver and interobserver reliability than had the ultrasound measurements. There was a significant correlation between ultrasound and CT, with a correlation coefficient of 0.71. In the assessment of abdominal fat, the intraobserver and interobserver reliability were greater for CT than for ultrasound, although both methods showed high accuracy and good reproducibility.

  6. Enhanced Removal of Pb+2 from Wastewater Using Combination of Ultrasound and nZVI Methods

    Directory of Open Access Journals (Sweden)

    mirroozbeh jamei

    2017-07-01

    Full Text Available This research reported a new method of removal of Pb+2from water by using a nano zero valent iron (nZVI assisted ultrasonic wave. At first, nZVI was synthesized by an ultrasound assisted method. Particles morphology and surface composition were characterized by FESEM, XRD, and EDX. The XRD patterns showed that the crystallinity of the nZVI prepared using ultrasonic conditions was higher than the conventional method. According to the EDX pattern, 67% of particle composition was nZVI. The synthesized nanoparticles were then utilized as a Fenton-like catalyst for the removal of Pb+2from water using an ultrasound assisted method. In the present study, ultrasound power, temperature effects, nZVI, and reaction time were optimized. From the studies, it has been observed that removal does not increase indefinitely with an increase in ultrasound power, but it instead reaches an optimum value and decreases with a further increase in the ultrasound power. The removal of Pb+2increased with increasing temperature, nZVI, and H2O2 concentration. The result indicated that the efficiency of hydrocarbon removal by this novel method was 97.87%.

  7. Towards Comparison of Ultrasound Dose Measurements - Current Capabilities and Open Challenges

    Science.gov (United States)

    Durando, G.; Guglielmone, C.; Haller, J.; Georg, O.; Shaw, A.; Martin, E.; Karaböce, B.

    The aim of this work is to evaluate measurement methods for dosimetry and exposimetry quantities that were developed in the EMRP project "Dosimetry for Ultrasound Therapy -DUTy" by comparing the measurement results for three common quantities from three national laboratories. It further aims to investigate the general feasibility of possible future (key) comparisons for dosimetry and exposimetry quantities and to identify possible open challenges towards this goal. The general format is similar to a metrological comparison, with which the National Metrological Institutes, NMIs, are already familiar. The first step involved the agreement of the protocol that was to specify the set of transducers to be circulated and the measurement conditions. Two transducers were circulated and different drive voltage levels and pulsing regimes were defined and tissue mimicking materials (TMMs) characteristics were specified. Each lab was asked to prepare the TMMs for their own measurements with the inclusion of formulations and preparation instructions specified in the protocol. Uncertainties of the input data were to be declared by the participating laboratories.

  8. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root

    Directory of Open Access Journals (Sweden)

    Xuejing Jia

    2015-11-01

    Full Text Available Box-Behnken design (BBD, one of the most common response surface methodology (RSM methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM. The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95% ± 0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  9. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    Science.gov (United States)

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  10. Patient-exposure data for doppler ultrasound

    International Nuclear Information System (INIS)

    Stewart, H.F.; Silvis, P.X.; Smith, S.W.

    1986-01-01

    In recent years ultrasound imaging and Doppler blood flow measurements have become important tools for use in diagnostic medicine. Commercial pulse-echo imaging equipment was first introduced into commerce in 1963. The first commercial continuous wave Doppler unit was introduced to the marketplace in 1966. As equipment improved and applications developed, the industry experienced rapid growth in the 1970s. One of the more recent growth areas in the application of diagnostic ultrasound has been the use of pulsed Doppler equipment for cardiac applications. Prior to 1976, some continuous wave Doppler ultrasound was used for cardiovascular diagnosis. However, only a single manufacturer marketed a pulsed Doppler clinical instrument for cardiac or peripheral vascular diagnosis. Currently, many continuous wave and pulsed Doppler instruments are commercially available for both peripheral vascular and cardiac diagnosis. This chapter (1) briefly reviews current safety guidelines, regulations, and recommendations for diagnostic ultrasound; (2) discusses the patient-exposure intensities associated with Doppler ultrasound medical equipment and compare these levels of exposure with intensities from other medical ultrasound devices; and (3) considers some of the current information as it relates to the safety of diagnostic ultrasound

  11. Three-dimensional carotid ultrasound plaque texture predicts vascular events

    DEFF Research Database (Denmark)

    van Engelen, Arna; Wannarong, Thapat; Parraga, Grace

    2014-01-01

    BACKGROUND AND PURPOSE: Carotid ultrasound atherosclerosis measurements, including those of the arterial wall and plaque, provide a way to monitor patients at risk of vascular events. Our objective was to examine carotid ultrasound plaque texture measurements and the change in carotid plaque text...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  13. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm 3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  14. Usefulness of optic nerve ultrasound to predict clinical progression in multiple sclerosis.

    Science.gov (United States)

    Pérez Sánchez, S; Eichau Madueño, S; Rus Hidalgo, M; Domínguez Mayoral, A M; Vilches-Arenas, A; Navarro Mascarell, G; Izquierdo, G

    2018-03-21

    Progressive neuronal and axonal loss are considered the main causes of disability in patients with multiple sclerosis (MS). The disease frequently involves the visual system; the accessibility of the system for several functional and structural tests has made it a model for the in vivo study of MS pathogenesis. Orbital ultrasound is a non-invasive technique that enables various structures of the orbit, including the optic nerve, to be evaluated in real time. We conducted an observational, ambispective study of MS patients. Disease progression data were collected. Orbital ultrasound was performed on all patients, with power set according to the 'as low as reasonably achievable' (ALARA) principle. Optical coherence tomography (OCT) data were also collected for those patients who underwent the procedure. Statistical analysis was conducted using SPSS version 22.0. Disease progression was significantly correlated with ultrasound findings (P=.041 for the right eye and P=.037 for the left eye) and with Expanded Disability Status Scale (EDSS) score at the end of the follow-up period (P=.07 for the right eye and P=.043 for the left eye). No statistically significant differences were found with relation to relapses or other clinical variables. Ultrasound measurement of optic nerve diameter constitutes a useful, predictive factor for the evaluation of patients with MS. Smaller diameters are associated with poor clinical progression and greater disability (measured by EDSS). Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  16. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  17. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry

    International Nuclear Information System (INIS)

    Smith, Nadine Barrie; Buchanan, Mark T.; Hynynen, Kullervo

    1999-01-01

    Purpose: For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. Methods and Materials: A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 deg. C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. Results: The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34 ± 0.36 deg. C. Conclusions: The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution

  18. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance.

    Science.gov (United States)

    Park, A Y; Seo, B K; Woo, O H; Jung, K S; Cho, K R; Park, E K; Cha, S H; Cha, J

    2018-03-01

    To investigate the utility of superb microvascular imaging (SMI) for evaluating the vascularity of breast masses in comparison with colour or power Doppler ultrasound (US) and the effect on diagnostic performance. A total of 191 biopsy-proven masses (99 benign and 92 malignant) in 166 women with greyscale, colour Doppler, power Doppler, and SMI images were enrolled in this retrospective study. Three radiologists analysed the vascular images using a three-factor scoring system to evaluate the number, morphology, and distribution of tumour vessels. They assessed the Breast Imaging-Reporting and Data System categories for greyscale US alone and combinations of greyscale US and each type of vascular US. The Kruskal-Wallis test was performed and the area under the receiver-operating characteristic curve (AUC) measured. On SMI, vascular scores were compared between benign and malignant masses and the optimal cut-off value for the overall score was determined. SMI showed higher vascular scores than colour or power Doppler US and malignant masses had higher scores than benign masses (ppower Doppler US (AUC, 0.815 versus 0.774, 0.789, 0.791; ppower Doppler US for characterising the vascularity in breast masses and improving diagnostic performance. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. [Renal length measured by ultrasound in adult mexican population].

    Science.gov (United States)

    Oyuela-Carrasco, J; Rodríguez-Castellanos, F; Kimura, E; Delgado-Hernández, R; Herrera-Félix, J P

    2009-01-01

    Renal length estimation by ultrasound is an important parameter in clinical evaluation of kidney disease and healthy donors. Changes in renal volume may be a sign of kidney disease. Correct interpretation of renal length requires the knowledge of normal limits, these have not been described for Latin American population. To describe normal renal length (RL) by ultrasonography in a group of Mexican adults. Ultrasound measure of RL in 153 healthy Mexican adults stratified by age. Describe the association of RL to several anthropometric variables. A total of 77 males and 76 females were scanner. The average age for the group was 44.12 +/- 15.44 years. The mean weight, body mass index (BMI) and height were 68.87 +/- 11.69 Kg, 26.77 +/- 3.82 kg/m2 and 160 +/- 8.62 cm respectively. Dividing the population by gender, showed a height of 166 +/- 6.15 cm for males and 154.7 +/- 5.97 cm for females (p =0.000). Left renal length (LRL) in the whole group was 105.8 +/- 7.56 mm and right renal length (RRL) was 104.3 +/- 6.45 mm (p = 0.000.) The LRL for males was 107.16 +/- 6.97 mm and for females was 104.6 +/- 7.96 mm. The average RRL for males was 105.74 +/- 5.74 mm and for females 102.99 +/- 6.85 mm (p = 0.008.) We noted that RL decreased with age and the rate of decline accelerates alter 60 years of age. Both lengths correlated significantly and positively with weight, BMI and height. The RL was significantly larger in males than in females in both kidneys (p = 0.036) in this Mexican population. Renal length declines after 60 years of age and specially after 70 years.

  20. Impact of Power Ultrasound on the Quality of Fruits and Vegetables During Dehydration

    Science.gov (United States)

    Villamiel, Mar; Gamboa, Juliana; Soria, A. Cristina; Riera, Enrique; García-Pérez, José V.; Montilla, Antonia

    In the present work, the influence of power ultrasound (US) on the quality of fruits and vegetables during both the pre-treatment and drying has been evaluated. Chemical indicators such as pectinmethyl esterase and peroxidase enzymes, vitamin C, carbohydrates, proteins, polyphenols and 2-furoylmethylamino acids (indicators of the early stages of Maillard reaction) have been studied. In addition, rehydration capacity, leaching losses and shrinkage and organoleptic characteristics of the final product have also been assessed. During blanching, similar leaching losses and enzyme inactivation were found in low temperature and prolonged conventional treatments and in US processes, but with a significant reduction in the time for the latter. Finally, application of US in drying of carrots and strawberries originated significant reductions in processing time, while providing high quality end-products. The quality was higher as compared to marketed products and superior or equivalent to samples obtained under similar conditions in a prototype convective dryer, and, in the case of some indicators, similar to that of freeze-dried samples.

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  3. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a ... Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview Images related to General Ultrasound Videos ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  6. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  7. Reproducibility of abdominal fat assessment by ultrasound and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mauad, Fernando Marum; Chagas-Neto, Francisco Abaete; Benedeti, Augusto Cesar Garcia Saab; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Carneiro, Antonio Adilton Oliveira; Muller, Enrico Mattana; Elias Junior, Jorge, E-mail: fernando@fatesa.edu.br [Faculdade de Tecnologia em Saude (FATESA), Ribeirao Preto, SP (Brazil); Universidade de Fortaleza (UNIFOR), Fortaleza, CE (Brazil). Departmento de Radiologia; Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Departmento de Medicina Clinica; Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Hospital Mae de Deus, Porto Alegre, RS (Brazil)

    2017-05-15

    Objective: To test the accuracy and reproducibility of ultrasound and computed tomography (CT) for the quantification of abdominal fat in correlation with the anthropometric, clinical, and biochemical assessments. Materials and Methods: Using ultrasound and CT, we determined the thickness of subcutaneous and intra-abdominal fat in 101 subjects-of whom 39 (38.6%) were men and 62 (61.4%) were women-with a mean age of 66.3 years (60-80 years). The ultrasound data were correlated with the anthropometric, clinical, and biochemical parameters, as well as with the areas measured by abdominal CT. Results: Intra-abdominal thickness was the variable for which the correlation with the areas of abdominal fat was strongest (i.e., the correlation coefficient was highest). We also tested the reproducibility of ultrasound and CT for the assessment of abdominal fat and found that CT measurements of abdominal fat showed greater reproducibility, having higher intraobserver and interobserver reliability than had the ultrasound measurements. There was a significant correlation between ultrasound and CT, with a correlation coefficient of 0.71. Conclusion: In the assessment of abdominal fat, the intraobserver and interobserver reliability were greater for CT than for ultrasound, although both methods showed high accuracy and good reproducibility. (author)

  8. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children

    International Nuclear Information System (INIS)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  9. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children.

    Science.gov (United States)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  10. A Continuous-Time Delta-Sigma ADC for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2017-01-01

    A fully differential fourth-order 1-bit continuous-time delta-sigma ADC designed in a 65nm process for portable ultrasound scanners is presented in this paper. The circuit design, implementation and measurements on the fabricated die are shown. The loop filter consists of RC-integrators, programmable...... capacitor arrays, resistors and voltage feedback DACs. The quantizer contains a pulse generator, a high-speed clocked comparator and a pull-down clocked latch to ensure constant delay in the feedback loop. Using this implementation, a small and low-power solution required for portable ultrasound scanner...... applications is achieved. The converter has a supply voltage of 1.2V, a bandwidth of 10MHz and an oversampling ratio of 16 leading to an operating frequency of 320MHz. The design occupies a die area of 0.0175mm2. Simulations with extracted parasitics show a SNR of 45.2dB and a current consumption of 489 µ...

  11. Storage test on apple juice after ultrasound treatment

    Directory of Open Access Journals (Sweden)

    Filomena Montemurro

    2014-03-01

    Full Text Available Apple juice, for its sensory and nutritional qualities, is consumed by people of all ages. Apples are an excellent source of several phenolic compounds and the presence of polyphenols is recognized for their health promoting antioxidant properties. Thermal pasteurization of fruit juices is the conventional method used for their preservation. Therefore, this constitutes the most extensively available methods for the inactivation of microorganisms in fruit juices but it causes side effects on their flavour and nutritional quality. Consumers tend to prefer recently extracted juices with fresh taste and minimal flavor or vitamin losses. To meet consumers’ demand, among the novel technologies that involve non-thermal processes, power ultrasound have been investigated as an alternative to conventional heat treatments. Objective of this study was to evaluate the effectiveness of the use of ultrasound in an attempt to maintain the organoleptic characteristics typical of a natural apple juice. In particular, it was evaluated the action on the microflora residing and shelf life of the product through microbiological and sensory analyses. Juice treated with ultrasound highlighted a reduction of aerobic mesophilic counts and psychrophilic bacteria respectively about 3 and 5 log CFU/mL and an enhanced yeast growth. The general opinion expressed by the panelist was in favour of the sonicated juice. This preliminary study showed that non-thermal methods such as power ultrasound technology may give new opportunities to develop fresh-like apple juice.

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  13. A brief history of ultrasound in rheumatology: where we were.

    Science.gov (United States)

    Grassi, Walter; Filippucci, Emilio

    2014-01-01

    Ultrasonography in the '70s was a well-known and widely used method within several medical specialties but not in rheumatology. Initial development of the field was led by radiologists who mainly investigated the potential of ultrasound in the assessment of large joints. In the late '80s, the first studies supporting the role of ultrasound in the detection of soft tissue changes and bone erosions in the hands of patients with rheumatoid arthritis were published. In the '90s, the dramatic improvement of spatial resolution due to the new generation high frequency probes opened up new avenues for the exploration of otherwise undetectable anatomical details. Ultrasound research during this period was enhanced by the growing use of colour Doppler and power Doppler and by the first prototypes of three dimensional ultrasound. Over the last 10 years, the buzz words in ultrasound research in rheumatology have been standardisation, early diagnosis and therapy monitoring.

  14. Accuracy and reproducibility of IOLMaster versus contact ultrasound biometry

    Directory of Open Access Journals (Sweden)

    Quan-Hao Bai

    2015-06-01

    Full Text Available AIM: To compare biometry results of IOLMaster and contact ultrasound(USanterior segment parameters, and to evaluate the calculation accuracy and repeatability of intraocular lens power in both.METHODS: Preoperative measurement of anterior segment parameters were prospectively obtained in 137 eyes of 121 subjects with the IOLMaster compared with the US. Postoperative best corrected visual acuity(BCVAand the actual diopter were measured.RESULTS: There was an excellent correlation between IOLMaster and US measurements for the ACD(r=0.823, Pr=0.996, PPCONCLUSION: Partial coherence biometry using the IOLMaster provides the more accurate and reliable anterior segment parameters measurement values. A high degree of agreement between US and IOLMaster is noted. The IOLMaster not only has the advantage of performing noncontact examinations, but also produces various additional data simultaneously and may thus obviate the need for multiple examinations.

  15. KMRR thermal power measurement error estimation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.

    1990-01-01

    The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power

  16. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  17. Quantitative analysis of normal fetal medulla oblongata volume and flow by three-dimensional power Doppler ultrasound.

    Science.gov (United States)

    Shyu, Ing-Luen; Wang, Peng-Hui; Chen, Chih-Yao; Chen, Yi-Jen; Chang, Chia-Ming; Horng, Huann-Cheng; Yang, Ming-Jie; Yen, Ming-Shyen

    2016-06-01

    Assessment of the fetal medulla oblongata volume (MOV) and blood flow might be important in the evaluation of fetal brain growth. We used three-dimensional power Doppler ultrasound (3DPDUS) to assess the fetal MOV and blood flow index in normal gestation. The relationships between these parameters were further analyzed. We assessed the total volume and blood flow index of the fetal MO in normal pregnancies using a 3DPDUS (Voluson 730 Expert). The true sagittal plane over the fetal occipital area was measured by a 3D transabdominal probe to scan the fetal MO under the power Doppler mode. Then, we quantitatively assessed the total volume of the fetal MOV, mean gray area (MG), vascularization index (VI), and flow index (FI). A total of 106 fetuses, ranging from 19 weeks to 39 weeks of gestation, were involved in our study. The volume of the fetal MO was highly positively correlated with gestational age [correlation coefficient (r) = 0.686, p < 0.0001]. The MG was negatively correlated with gestational age [r = -0.544, p < 0.0001). VI and FI showed no significant correlation with gestational age (p = 0.123 and p = 0.219, respectively). 3DPDUS can be used to assess the fetal MOV and blood flow development quantitatively. Our study indicated that fetal MOV and blood flow correlated significantly with the advancement of gestational age. This information may serve as reference data for further studies of the fetal brain and blood flow under abnormal conditions. Copyright © 2016. Published by Elsevier B.V.

  18. Studies of nonlinear ultrasound propagation: safety considerations in the use of ultrasound for medical diagnosis - nonlinear propagation

    International Nuclear Information System (INIS)

    Egerton, B.; Barnett, S.; Vella, G.

    1994-01-01

    Diagnostic ultrasound is an established imaging modality without any documented harmful effects. New developments such as pulsed Doppler and intracavity investigations may result in increases in ultrasound exposures which could cause harm. Thermal mechanisms and cavitation may become relevant sources of bioeffects. The preliminary study described here investigates the distribution and amplitude of harmonics generated through nonlinear propagation of ultrasound in water. Knowledge of harmonic attenuation will help predict sites of enhanced heating and enable accurate modelling of clinical situations. This presentation is concerned with thermal safety guidelines, their relationship to a typical ultrasound beam profile for a single, medium focussed, transducer operating in water and possible sites of enhanced heating due to nonlinear propagation effects. Measurements were made of the amplitudes of the harmonics generated by the nonlinear propagation of ultrasound in water. The amplitudes of the harmonics were detected up to frequencies of 35 MHz and displayed using Fast Fourier Transform facilities within the oscilloscope. The nonlinearity parameter of the ultrasonic waveforms has been identified as an important factor in thermal effects of ultrasound interactions. The appearance of nonlinear distortion is shown to be dependant on the peak compressional pressure and distance from the ultrasound source. 20 refs., 2 figs

  19. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    Science.gov (United States)

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis

  20. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  1. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  2. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  3. Study of cell killing effect on S180 by ultrasound activating protoporphyrin IX.

    Science.gov (United States)

    Wang, Xiao Bing; Liu, Quan Hong; Wang, Pan; Tang, Wei; Hao, Qiao

    2008-04-01

    The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm(2) in the presence of 120 microM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.

  4. Hyperecho in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Tanaka, Katsuaki; Ito, Ryu; Ohto, Masao; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang Zhibiao

    2011-01-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method that can cause complete coagulation necrosis without requiring the insertion of any instruments. The hyperechoic grayscale change (hyperechoic region) is used as a sign that the treated lesion has been completely coagulated. The purpose of this study was to evaluate the first hyperechoic region during treatment using HIFU ablation according to various conditions, such as the sonication power, the depth of the tumor from the surface of the skin, and the shield rate. HIFU treatment was performed in 20 patients. The HIFU system (Chongqing Haifu Tech, Chongqing, China) was used under ultrasound guidance. Complete coagulation was achieved in 17 cases. Hyperechoic region were detected after HIFU ablation in 17 patients. The size of the hyperechoic region at a depth of >50 mm was significantly smaller than that at a depth of ≤50 mm. The number and power of the sonications for areas at a depth of >50 mm were significantly larger than those for areas at a depth of ≤50 mm. The number and power in cases with a shield rate of 31–60% were significantly larger than those in cases with a shield rate of 0–30%. When the shield rate was 0%, a hyperechoic region occurred, even when a maximum sonication power was not used. In all three cases with tumors located at a depth of greater than 70 mm and a shield rate of larger than 60%, a hyperechoic region was not seen. In conclusion, hyperechoic regions are easy to visualize in cases with tumors located at a depth of ≤50 mm or shield rates of 0–30%.

  5. Comparison of Measurements of the Uterus and Cervix Obtained by Magnetic Resonance and Transabdominal Ultrasound Imaging to Identify the Brachytherapy Target in Patients With Cervix Cancer

    International Nuclear Information System (INIS)

    Dyk, Sylvia van; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2014-01-01

    Purpose: To compare measurements of the uterus and cervix obtained with magnetic resonance imaging (MRI) and transabdominal ultrasound to determine whether ultrasound can identify the brachytherapy target and be used to guide conformal brachytherapy planning and treatment for cervix cancer. Methods and Materials: Consecutive patients undergoing curative treatment with radiation therapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were inserted into the uterine canal while patients were anesthetized. Images were obtained by MRI and transabdominal ultrasound in the longitudinal axis of the uterus with the applicator in treatment position. Measurements were taken at the anterior and posterior surface of the uterus at 2.0-cm intervals along the applicator, from the external os to the tip of the applicator. Data were analyzed using Bland Altman plots examining bias and 95% limits of agreement. Results: A total of 192 patients contributed 1668 measurements of the cervix and uterus. Mean (±SD) differences of measurements between imaging modalities at the anterior and posterior uterine surface ranged from 1.5 (±3.353) mm to 3.7 (±3.856) mm, and −1.46 (±3.308) mm to 0.47 (±3.502) mm, respectively. The mean differences were less than 3 mm in the cervix. The mean differences were less than 1.5 mm at all measurement points on the posterior surface. Conclusion: Differences in the measurements of the cervix and uterus obtained by MRI and ultrasound were within clinically acceptable limits. Transabdominal ultrasound can be substituted for MRI in defining the target volume for conformal brachytherapy treatment of cervix cancer

  6. Comparison of Measurements of the Uterus and Cervix Obtained by Magnetic Resonance and Transabdominal Ultrasound Imaging to Identify the Brachytherapy Target in Patients With Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Sylvia van, E-mail: sylvia.vandyk@petermac.org [Radiation Therapy Services, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kondalsamy-Chennakesavan, Srinivas [Rural Clinical School, University of Queensland, Toowoomba, Queensland (Australia); Schneider, Michal [Department of Medical Imaging and Radiation Science, Monash University, Clayton, Victoria (Australia); Bernshaw, David [Division of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Narayan, Kailash [Division of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Obstetrics and Gynaecology, Melbourne University, Melbourne, Victoria (Australia)

    2014-03-15

    Purpose: To compare measurements of the uterus and cervix obtained with magnetic resonance imaging (MRI) and transabdominal ultrasound to determine whether ultrasound can identify the brachytherapy target and be used to guide conformal brachytherapy planning and treatment for cervix cancer. Methods and Materials: Consecutive patients undergoing curative treatment with radiation therapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were inserted into the uterine canal while patients were anesthetized. Images were obtained by MRI and transabdominal ultrasound in the longitudinal axis of the uterus with the applicator in treatment position. Measurements were taken at the anterior and posterior surface of the uterus at 2.0-cm intervals along the applicator, from the external os to the tip of the applicator. Data were analyzed using Bland Altman plots examining bias and 95% limits of agreement. Results: A total of 192 patients contributed 1668 measurements of the cervix and uterus. Mean (±SD) differences of measurements between imaging modalities at the anterior and posterior uterine surface ranged from 1.5 (±3.353) mm to 3.7 (±3.856) mm, and −1.46 (±3.308) mm to 0.47 (±3.502) mm, respectively. The mean differences were less than 3 mm in the cervix. The mean differences were less than 1.5 mm at all measurement points on the posterior surface. Conclusion: Differences in the measurements of the cervix and uterus obtained by MRI and ultrasound were within clinically acceptable limits. Transabdominal ultrasound can be substituted for MRI in defining the target volume for conformal brachytherapy treatment of cervix cancer.

  7. Role of ultrasound in managing rheumatoid arthritis

    DEFF Research Database (Denmark)

    Hammer, Hilde Berner; Terslev, Lene

    2012-01-01

    Ultrasound (US) is a valid and reliable imaging tool for evaluation of joint and tendon inflammation as well as cartilage and erosions in patients with rheumatoid arthritis (RA). Synovitis is usually scored semiquantitatively for both gray scale synovitis and power Doppler activity, and use...

  8. Reliability of pelvic floor measurements on three- and four-dimensional ultrasound during and after first pregnancy: implications for training.

    Science.gov (United States)

    van Veelen, G A; Schweitzer, K J; van der Vaart, C H

    2013-11-01

    To evaluate the reliability of measurements of the levator hiatus and levator-urethra gap (LUG) using three/four-dimensional (3D/4D) transperineal ultrasound in women during their first pregnancy and 6 months postpartum, and to assess the learning process for these measurements. An inexperienced observer was taught to perform measurements of the levator hiatus and LUG by an experienced observer. After training, 3D/4D ultrasound volume datasets of 40 women in the first trimester were analyzed by these two observers. Another training session then took place and both observers repeated the analyses of the same volume datasets. Finally, analyses of 40 volume datasets of the women 6 months postpartum were performed by both observers. Intra- and interobserver reliability were determined by intraclass correlation coefficients (ICC) with 95% CIs. For levator hiatal measurements, in the women during their first pregnancy the interobserver reliability was substantial to almost perfect after both the first and second training session (ICC, 0.62-0.83 and 0.71-0.89, respectively, for anteroposterior diameter, transverse diameter and area at rest, on contraction and on Valsalva) and the intraobserver reliability was substantial to almost perfect for both observers. For these measurements performed once the women had delivered, interobserver reliability was moderate to almost perfect. For LUG measurements performed during pregnancy, interobserver reliability was slight to moderate after the first training session (ICC, 0.14-0.54), but improved after the second training session (ICC, 0.38-0.71), and intraobserver reliability was moderate to substantial for the experienced observer and slight to moderate for the inexperienced observer. For these measurements performed when the women had delivered, interobserver reliability was fair to moderate. The levator hiatus and LUG can be measured reliably using 3D/4D ultrasound in primigravid and primiparous women. The technique to measure

  9. [Ultrasound-guided peripheral catheterization].

    Science.gov (United States)

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  10. Focused ultrasound-modulated glomerular ultrafiltration assessed by functional changes in renal arteries.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available This study demonstrates the feasibility of using focused ultrasound (FUS to modulate glomerular ultrafiltration by renal artery sonication and determine if protein-creatinine ratios are estimated through vascular parameters. All animal experiments were approved by our Animal Care and Use Committee. The renal arteries of Sprague-Dawley rats were surgically exposed and sonicated at various acoustic power levels using a FUS transducer with a resonant frequency of 1 MHz. The mean peak systolic velocity (PSV of the blood flow was measured by Doppler ultrasound imaging. Urinary protein-creatinine ratios were calculated during the experiments. Histological examination of renal arteries and whole kidneys was performed. The PSV, pulsatility index, and resistance index of blood flow significantly increased in the arteries after FUS sonication without microbubbles (p<0.05. The change in normalized protein-creatinine ratios significantly increased with increasing acoustic power, but such was not observed when microbubbles were administered. Furthermore, no histological changes were observed in the hematoxylin- and eosin-stained sections. Glomerular ultrafiltration is regulated temporarily by renal artery sonication without microbubbles. Monitoring vascular parameters are useful in estimating the normalized change in protein-creatinine ratios.

  11. Prognostic value of three-dimensional ultrasound for fetal hydronephrosis

    Science.gov (United States)

    WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING

    2015-01-01

    The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  16. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    Science.gov (United States)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  17. Computer-assisted quantitative assessment of power Doppler US: effects of microbubble contrast agent in the differentiation of breast tumors

    International Nuclear Information System (INIS)

    Kettenbach, Joachim; Helbich, Thomas H.; Huber, Sabine; Zuna, Ivan; Dock, Wolfgang

    2005-01-01

    Rationale and objectives: To objectively quantify the effects of a microbubble contrast agent to differentiate breast tumors with power doppler ultrasound and to compare these results with color doppler ultrasound (CD US). Methods: In 47 patients a microbubble contrast agent was injected intravenously. Computer-assisted quantitative assessment of the color pixel density was performed to evaluate the increase in Doppler signals. Results were compared to previously published results of a color Doppler ultrasound study. Results: Peak color pixel density at contrast-enhanced power Doppler ultrasound was higher for carcinomas than for benign tumors (P < 0.03). Time to peak enhancement was shorter in carcinomas than in benign tumors (P < 0.01). For both parameters, diagnostic accuracy of power Doppler ultrasound was 69 and 78%, and for color Doppler ultrasound 62 and 76%, respectively. Conclusions: Quantitative assessment of contrast-enhanced power Doppler ultrasound showed significant differences in malignant and benign breast tumors. Diagnostic accuracy of contrast-enhanced power Doppler ultrasound was higher compared to color Doppler ultrasound

  18. Determination of gestational age by ultrasound.

    Science.gov (United States)

    Butt, Kimberly; Lim, Ken

    2014-02-01

    (such as fetal growth restriction or macrosomia) result in a discrepancy between ultrasound biometric and clinical gestational age. Such reassignment may lead to the omission of appropriate-or the performance of inappropriate-fetal interventions. Summary Statements 1. When performed with quality and precision, ultrasound alone is more accurate than a "certain" menstrual date for determining gestational age in the first and second trimesters (≤ 23 weeks) in spontaneous conceptions, and it is the best method for estimating the delivery date. (II) 2. In the absence of better assessment of gestational age, routine ultrasound in the first or second trimester reduces inductions for post-term pregnancies. (I) 3. Ideally, every pregnant woman should be offered a first-trimester dating ultrasound; however, if the availability of obstetrical ultrasound is limited, it is reasonable to use a second-trimester scan to assess gestational age. (I) 4. Notwithstanding Summary Statements 1, 2, and 3, women vary greatly in their awareness of their internal functions, including ovulation, and this self-knowledge can sometimes be very accurate. (III) Recommendations 1. First-trimester crown-rump length is the best parameter for determining gestational age and should be used whenever appropriate. (I-A) 2. If there is more than one first-trimester scan with a mean sac diameter or crown-rump length measurement, the earliest ultrasound with a crown-rump length equivalent to at least 7 weeks (or 10 mm) should be used to determine the gestational age. (III-B) 3. Between the 12th and 14th weeks, crown-rump length and biparietal diameter are similar in accuracy. It is recommended that crown-rump length be used up to 84 mm, and the biparietal diameter be used for measurements > 84 mm. (II-1A) 4. Although transvaginal ultrasound may better visualize early embryonic structures than a transabdominal approach, it is not more accurate in determining gestational age. Crown-rump length measurement from

  19. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.

    Science.gov (United States)

    Wang, M; Yuan, W; Hale, Andy

    2016-03-01

    The three-dimensional distribution (x, y, and z) of ultrasound-induced microalgal cell disruption in a sonochemical reactor was predicted by solving the Helmholtz equation using a three-dimensional acoustic module in the COMSOL Multiphysics software. The simulated local ultrasound pressure at any given location (x, y, and z) was found to correlate with cell disruption of a freshwater alga, Scenedesmus dimorphus, represented by the change of algal cell particle/debris concentration, chlorophyll-a fluorescence density (CAFD), and Nile red stained lipid fluorescence density (LFD), which was also validated by the model reaction of potassium iodide oxidation (the Weissler reaction). Furthermore, the effect of ultrasound power intensity and processing duration on algal cell disruption was examined to address the limitation of the model.

  20. A new method to measure necrotic core and calcium content in coronary plaques using intravascular ultrasound radiofrequency-based analysis

    NARCIS (Netherlands)

    E.S. Shin (Eun-Seok); H.M. Garcia-Garcia (Hector); P.W.J.C. Serruys (Patrick)

    2010-01-01

    textabstractAlthough previous intravascular ultrasound (IVUS) radiofrequency-based analysis data showed acceptable reproducibility for plaque composition, measurements are not easily obtained, particularly that of lumen contour, because of the limited IVUS resolution. The purpose of this study was

  1. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  2. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... What are the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and ... be heard with every heartbeat. top of page What are some common uses of the procedure? Ultrasound ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart ... Articles and Media Angioplasty and Vascular Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... ultrasound study may be part of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is ...

  7. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  8. Multicenter assessment of the reproducibility of volumetric radiofrequency-based intravascular ultrasound measurements in coronary lesions that were consecutively stented

    NARCIS (Netherlands)

    Huisman, Jeroen; Egede, R.; Rdzanek, A.; Böse, D.; Erbel, R.; van der Palen, Jacobus Adrianus Maria; von Birgelen, Clemens

    2012-01-01

    To assess in a multicenter design the between-center reproducibility of volumetric virtual histology intravascular ultrasound (VH-IVUS) measurements with a semi-automated, computer-assisted contour detection system in coronary lesions that were consecutively stented. To evaluate the reproducibility

  9. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    Science.gov (United States)

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia

    International Nuclear Information System (INIS)

    Lin, W.-L.; Fan, W.-C.; Yen, J.-Y.; Chen, Y.-Y.; Shieh, M.-J.

    2000-01-01

    Purpose: The purpose of this paper was to examine the heating patterns and penetration depth when a cylindrical ultrasound transducer is employed for intracavitary hyperthermia treatments. Methods and Materials: The present study employs a simulation program based on a simplified power deposition model for infinitely long cylindrical ultrasound transducers. The ultrasound power in the tissue is assumed to be exponentially attenuated according to the penetration depth of the ultrasound beam, and a uniform attenuation for the entire treatment region is also assumed. The distribution of specific absorption rate (SAR) ratio (the ratio of SAR for a point within the tissue to that for a specific point on the cavity surface) is used to determine the heating pattern for a set of given parameters. The parameters considered are the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity. Results: Simulation results show that the ultrasound attenuation in the tissue, the cavity size, and the transducer eccentricity are the most influential parameters for the distribution of SAR ratio. A low frequency transducer located in a large cavity can produce a much better penetration. The cavity size is the major parameter affecting the penetration depth for a small cavity size, such as interstitial hyperthermia. The heating pattern can also be dramatically changed by the transducer eccentricity and radiating sector. In addition, for a finite length of cylindrical transducer, lower SAR ratio appears in the regions near the applicator's edges. Conclusion: The distribution of SAR ratio indicates the relationship between the treatable region and the parameters if an appropriate threshold of SAR ratio is taken. The findings of the present study comprehend whether or not a tumor is treatable, as well as select the optimal driving frequency, the appropriate cavity size, and the eccentricity of a cylindrical transducer for a specific treatment

  11. Understanding of percutaneous puncture under guidance of ultrasound in treating peritoneal and perinephritic abscess

    International Nuclear Information System (INIS)

    Huang Liying; Wang Jiagang

    2010-01-01

    Objective: To explore the clinical value of percutaneous puncture under guidance of ultrasound in treating peritoneal abscess. Methods: To summarize 68 patients with peritoneal abscess underwent percutaneous puncture under guidance of ultrasound to analyse the method of operation and therapeutic effect. Results: effective power of percutaneous puncture under guidance of ultrasound in treating peritoneal abscess was 96.8%. Conclusion: Percutaneous puncture under guidance of ultrasound in treating peritoneal abscess may avoid injury induced by blinded puncture, with characteristic of easier operation, slighter trauma. higher safety, significant therapeutic effect, and can be spreaded to the clinical application. (authors)

  12. In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis

    Directory of Open Access Journals (Sweden)

    Agnieszka Magdziarz

    2017-01-01

    Full Text Available This short review provides the current state-of-the-art of in situ coupling of ultrasound to chemical deposition methods. A synergetic action of the ultrasound and light radiation or electrical fields may result in new powerful methodologies, and these include sonophotodeposition and sonoelectrodeposition processes. The effect of ultrasound is explained on the base of different physical mechanisms emerging from cavitation phenomenon. Some possible mechanisms of the interactions between ultrasound and photochemical and electrochemical processes are discussed here. The application of sonophotodeposition and sonoelectrodeposition as green energy sources in the syntheses of different nanomaterials is also reviewed.

  13. Is articular pain in rheumatoid arthritis correlated with ultrasound power Doppler findings?

    Science.gov (United States)

    Pereira, Daniele Freitas; Gutierrez, Marwin; de Buosi, Ana Leticia Pirozzi; Ferreira, Fernando Bernardes Maia Diniz; Draghessi, Antonella; Grassi, Walter; Natour, Jamil; Furtado, Rita Nely Vilar

    2015-11-01

    The study is addressed to determine if there is a correlation between intra-articular power Doppler (PD) and pain symptoms in patients with rheumatoid arthritis (RA). A cross-sectional study of patients with established RA was rolled out. Seventy-two patients with chronic swelling at metacarpophalangeal (MCP) joints were consecutively enrolled in the study and divided into two groups (painful and painless). In the painful group, the inclusion criteria were pain in the visual analog scale (VAS), from 0 to 10 cm, of at least 4 cm and 0 in the painless group. All two to five MCP joints, bilaterally, were scanned by ultrasound (US) searching for intra-articular PD presence. Any value of p painful group had longer morning stiffness, worse 28-joint disease activity score (DAS 28), and health assessment questionnaire (HAQ) indexes. There were no association between pain and gray scale (GS) synovitis, odds ratio (OR) = 0.9 (0.6-1.2), p = 0.485; and pain and intra-articular PD, OR = 0.8 (0.6-1.2), p = 0.244. Intra-articular PD was not correlated with pain symptom in this study.

  14. Electrochemical measurements of mass transfer in RTILs (Room Temperature Ionic Liquids) medium under low frequency ultrasound irradiation; Mesures electrochimiques de transfert de matiere en milieu RTIL's (Room Temperature Ionic Liquids) sous irradiation ultrasonore basse frequence

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.; Hihn, J.Y.; Rebetez, M.; Doche, M.L. [Universite de Franche Comte - IUT Dept. Chimie, Institut UTINAM-UMR CNRS 6213, 25 - Montbeliard (France); Costa, C.; Bisel, I. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS/LPCP), 30 - Marcoule (France); Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS/LCA), 30 - Marcoule (France)

    2007-07-01

    The aim of this work is to measure the influence of ultrasounds on the mass transfer at the electrode. The electro diffusional method which consists to measure the limit diffusion current on the polarization curve i=f(E) of a reversible couple in diluted solution in the electrolyte. The used couple changes with the electrolytic medium: potassium ferro/ferricyanide in water, ferrocene/ferricinium for acetonitrile and for the ionic liquid 1-butyl-3-methyl-imidazolium bis(tri-fluoro-methyl-sulfonyl)imide [BuMIm][CF{sub 3}SO{sub 2}){sub 2}N]). The limit diffusion currents are converted into mass transfer coefficients and then into a dimensional Sherwood numbers to allow an easier comparison of the results between the different research teams participating to this study. Recent tests, carried out in partner laboratories (LCMI-UFC, LPCP-CEA and LCA-CEA) have demonstrated the interest of the use of power ultrasounds in Room Temperature Ionic Liquids (RTILs) but revealed too a lot of experimental difficulties. Nevertheless, it appears that the ultrasounds are an aging mode particularly adapted to the RTILs because the mass transfer to the electrode is there 5 times more efficient than in presence of an electrode turning at 4500 tr.min{sup -1}, while limiting their re-hydration. (O.M.)

  15. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    OpenAIRE

    Jianxia Sun; Zhouxiong Mei; Yajuan Tang; Lijun Ding; Guichuan Jiang; Chi Zhang; Aidong Sun; Weibin Bai

    2016-01-01

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •O...

  16. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    Science.gov (United States)

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete

  17. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    Science.gov (United States)

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  18. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are ...

  20. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  1. Portable bladder ultrasound: an evidence-based analysis.

    Science.gov (United States)

    2006-01-01

    The aim of this review was to assess the clinical utility of portable bladder ultrasound. TARGET POPULATION AND CONDITION Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 mL are considered an indication for urinary

  2. Mapping intravascular ultrasound controversies in interventional cardiology practice.

    Directory of Open Access Journals (Sweden)

    David Maresca

    Full Text Available Intravascular ultrasound is a catheter-based imaging modality that was developed to investigate the condition of coronary arteries and assess the vulnerability of coronary atherosclerotic plaques in particular. Since its introduction in the clinic 20 years ago, use of intravascular ultrasound innovation has been relatively limited. Intravascular ultrasound remains a niche technology; its clinical practice did not vastly expand, except in Japan, where intravascular ultrasound is an appraised tool for guiding percutaneous coronary interventions. In this qualitative research study, we follow scholarship on the sociology of innovation in exploring both the current adoption practices and perspectives on the future of intravascular ultrasound. We conducted a survey of biomedical experts with experience in the technology, the practice, and the commercialization of intravascular ultrasound. The collected information enabled us to map intravascular ultrasound controversies as well as to outline the dynamics of the international network of experts that generates intravascular ultrasound innovations and uses intravascular ultrasound technologies. While the technology is praised for its capacity to measure coronary atherosclerotic plaque morphology and is steadily used in clinical research, the lack of demonstrated benefits of intravascular ultrasound guided coronary interventions emerges as the strongest factor that prevents its expansion. Furthermore, most of the controversies identified were external to intravascular ultrasound technology itself, meaning that decision making at the industrial, financial and regulatory levels are likely to determine the future of intravascular ultrasound. In light of opinions from the responding experts', a wider adoption of intravascular ultrasound as a stand-alone imaging modality seems rather uncertain, but the appeal for this technology may be renewed by improving image quality and through combination with

  3. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Directory of Open Access Journals (Sweden)

    Johann Otto Pelz

    Full Text Available Currently, colour-coded duplex sonography (2D-CDS is clinical standard for detection and grading of internal carotid artery stenosis (ICAS. However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS for direct visualisation and quantification of ICAS.Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA reduction percentage and compared with 2D-CDS.There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%. Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90 followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81. Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51. Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}. In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57 than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51.Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard

  4. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis.

    Science.gov (United States)

    Pelz, Johann Otto; Weinreich, Anna; Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with the angiographic gold standard imaging

  5. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  6. Aroma Profile and Sensory Properties of Ultrasound-Treated Apple Juice and Nectar

    Directory of Open Access Journals (Sweden)

    Marinko Petrović

    2013-01-01

    Full Text Available Ultrasonication is a nonthermal food processing method that is used in several applications (extraction, treatment before drying, freezing, inactivation of microorganisms, etc. in ultrasound processing. The objective of this study is to investigate the effect of high power ultrasound and pasteurisation on the aroma profile and sensory properties of apple juice and nectar. Samples were treated according to the experimental design, with high power sonicator at ultrasound frequency of 20 kHz under various conditions (treatment time: 3, 6 and 9 min, sample temperature: 20, 40 and 60 °C, and amplitude: 60, 90 and 120 μm. The aromatic profiles of juices showed that, compared to the untreated samples of juices and nectars, ultrasonic treatment led to the formation of new compounds (which were not present in the untreated samples or to the disappearance of compounds that were found in the untreated samples. Samples treated at the highest amplitude (120 μm were used for evaluation and comparison with untreated and pasteurised samples using electronic tongue study. Principal component analysis confirmed the results of electronic tongue study, which showed that the ultrasound-treated and pasteurised juices had different scores compared to the untreated samples.

  7. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  8. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  9. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  10. Simulation and measurement of nonlinear behavior in a high-power test cell.

    Science.gov (United States)

    Harvey, Gerald; Gachagan, Anthony

    2011-04-01

    High-power ultrasound has many diverse uses in process applications in industries ranging from food to pharmaceutical. Because cavitation is frequently a desirable effect within many high-power, low-frequency systems, these systems are commonly expected to feature highly nonlinear acoustic propagation because of the high input levels employed. This generation of harmonics significantly alters the field profile compared with that of a linear system, making accurate field modeling difficult. However, when the short propagation distances involved are considered, it is not unreasonable to assume that these systems may remain largely linear until the onset of cavitation, in terms of classical acoustic propagation. The purpose of this paper is to investigate the possible nonlinear effects within such systems before the onset of cavitation. A theoretical description of nonlinear propagation will be presented and the merits of common analytical models will be discussed. Following this, a numerical model of nonlinearity will be outlined and the advantages it presents for representing nonlinear effects in bounded fields will be discussed. Next, the driving equipment and transducers will be evaluated for linearity to disengage any effects from those formed in the transmission load. Finally, the linearity of the system will be measured using an acoustic hydrophone and compared with finite element analysis to confirm that nonlinear effects are not prevalent in such systems at the onset of cavitation. © 2011 IEEE

  11. Applications of ultrasound in dentistry.

    Science.gov (United States)

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  12. Intra- and interobserver reliability of quantitative ultrasound measurement of the plantar fascia.

    Science.gov (United States)

    Rathleff, Michael Skovdal; Moelgaard, Carsten; Lykkegaard Olesen, Jens

    2011-01-01

    To determine intra- and interobserver reliability and measurement precision of sonographic assessment of plantar fascia thickness when using one, the mean of two, or the mean of three measurements. Two experienced observers scanned 20 healthy subjects twice with 60 minutes between test and retest. A GE LOGIQe ultrasound scanner was used in the study. The built-in software in the scanner was used to measure the thickness of the plantar fascia (PF). Reliability was calculated using intraclass correlation coefficient (ICC) and limits of agreement (LOA). Intraobserver reliability (ICC) using one measurement was 0.50 for one observer and 0.52 for the other, and using the mean of three measurements intraobserver reliability increased up to 0.77 and 0.67, respectively. Interobserver reliability (ICC) when using one measurement was 0.62 and increased to 0.82 when using the average of three measurements. LOA showed that when using the average of three measurements, LOA decreased to 0.6 mm, corresponding to 17.5% of the mean thickness of the PF. The results showed that reliability increases when using the mean of three measurements compared with one. Limits of agreement based on intratester reliability shows that changes in thickness that are larger than 0.6 mm can be considered actual changes in thickness and not a result of measurement error. Copyright © 2011 Wiley Periodicals, Inc.

  13. Reproducibility of Ultrasound and Magnetic Resonance Imaging Measurements of Tendon Size

    International Nuclear Information System (INIS)

    Brushoej, C.; Henriksen, B.M.; Albrecht-Beste, E.; Hoelmich, P.; Larsen, K.; Bachmann Nielsen, M.

    2006-01-01

    Purpose: To investigate the intra- and inter-tester reproducibility of measurements of the Achilles tendon, tibialis anterior tendon, and the tibialis posterior tendon in football players using ultrasound (US) and magnetic resonance imaging (MRI). Material and Methods: Eleven asymptomatic football players were examined. Using a standardized US scanning protocol, the tendons were examined by two observers with US for thickness, width, and cross-sectional area. One observer conducted the procedure twice. The subjects also underwent an MRI examination, and the assessment of tendon size was conducted twice by two observers. Results: The best reproducibility judged by coefficient of variation (CV) and 95% confidence interval was determined for the Achilles tendon on both US and MRI. The variability of US on measurements on the tibialis anterior and tibialis posterior tendons was less than that when using MRI. In 12 out of 18 measurements, there were systematic differences between observers as judged by one-sided F-test. Conclusion: The reproducibility of the three tendons was limited. Precaution should be taken when looking for minor quantitative changes, i.e., training-induced hypertrophy, and when doing so, the Achilles tendon should be used

  14. The development of a practical and uncomplicated predictive equation to determine liver volume from simple linear ultrasound measurements of the liver

    International Nuclear Information System (INIS)

    Childs, Jessie T.; Thoirs, Kerry A.; Esterman, Adrian J.

    2016-01-01

    This study sought to develop a practical and uncomplicated predictive equation that could accurately calculate liver volumes, using multiple simple linear ultrasound measurements combined with measurements of body size. Penalized (lasso) regression was used to develop a new model and compare it to the ultrasonic linear measurements currently used clinically. A Bland–Altman analysis showed that the large limits of agreement of the new model render it too inaccurate to be of clinical use for estimating liver volume per se, but it holds value in tracking disease progress or response to treatment over time in individuals, and is certainly substantially better as an indicator of overall liver size than the ultrasonic linear measurements currently being used clinically. - Highlights: • A new model to calculate liver volumes from simple linear ultrasound measurements. • This model was compared to the linear measurements currently used clinically. • The new model holds value in tracking disease progress or response to treatment. • This model is better as an indicator of overall liver size.

  15. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inactivation of pathogens on pork by steam-ultrasound treatment

    DEFF Research Database (Denmark)

    Morild, Rikke K; Christiansen, Pia; Sørensen, Anders Morten Hay

    2011-01-01

    The objective of the study was to evaluate a new pathogen inactivation concept that combines application of pressurized steam simultaneously with high-power ultrasound through a series of nozzles. On skin and meat surfaces of pork jowl samples, counts of total viable bacteria were reduced by 1...... in reduction was observed between samples inoculated with 10(4) CFU/cm(2) and those inoculated with 10(7) CFU/cm(2), and cold storage of samples for 24 h at 5°C after steam-ultrasound treatment did not lead to changes in recovery of bacteria....

  17. Effect of ultrasound on electrochemical chloride extraction from mortar

    Science.gov (United States)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  18. Ultrasound changes in the relationship between the urethra and bladder neck caused by prolapse repair: feasibility and reliability of measurements.

    Science.gov (United States)

    Duckett, J; Lautmann, K

    2012-10-01

    The objective of this study was to assess whether intraoperative transperineal ultrasound can be used to assess changes in the relationship between the urethra and bladder caused by a prolapse repair operation. The reliability of the measurements was also assessed. A total of 25 women having an anterior colporrhaphy operation had pre- and post-repair imaging using a standard bladder volume. There was a statistically significant change (p ≤ 0.04) in the posterior urethrovesical angle (PUA) from 115° (SD 37) before surgery, to 135° (SD 30) after surgery. There was no significant change (p = 0.93) in the anterior urethrovesical angle before 73° (SD 14) after surgery 73° (SD 14). Interclass correlation coefficients showed good reproducibility for all measurements. Ultrasound can be used to measure changes in the relationship of the urethra and bladder produced by anterior colporrhaphy. Clinically, the effect of these changes is to reduce the angulation of the urethra in relation to the bladder.

  19. Ultrasound measurement of rotator cuff thickness and acromio-humeral distance in the diagnosis of subacromial impingement syndrome of the shoulder.

    Science.gov (United States)

    Cholewinski, Jerzy J; Kusz, Damian J; Wojciechowski, Piotr; Cielinski, Lukasz S; Zoladz, Miroslaw P

    2008-04-01

    The usefulness of ultrasound measurements in the diagnosis of the subacromial impingement syndrome of the shoulder was evaluated. Fifty-seven patients with unilateral symptoms of the impingement syndrome underwent ultrasound examination of both shoulder joints, which included assessment of rotator cuff integrity, measurement of rotator cuff thickness and the distance between the infero-lateral edge of acromion and the apex of the greater tuberosity of humerus (AGT distance) in the standard ultrasonographic positions. As a control group, 36 volunteers (72 shoulders) with no history of shoulder pain were examined sonographically. Ultrasonographic assessment of humeral head elevation, measured as the AGT distance, proved to be useful in establishing the diagnosis of the subacromial impingement syndrome of the shoulder. A difference in rotator cuff thickness of more than 1.1 mm and a difference in the AGT distance of more than 2.1 mm between both shoulder joints may reflect dysfunction of rotator cuff muscles.

  20. Use of high-resolution ultrasound to measure changes in plantar fascia thickness resulting from tissue creep in runners and walkers.

    Science.gov (United States)

    Welk, Aaron B; Haun, Daniel W; Clark, Thomas B; Kettner, Norman W

    2015-01-01

    This study sought to use high-resolution ultrasound to measure changes in plantar fascia thickness as a result of tissue creep generated by walking and running. Independent samples of participants were obtained. Thirty-six walkers and 25 runners walked on a treadmill for 10 minutes or ran for 30 minutes, respectively. Standardized measures of the thickness of the plantar fascia were obtained in both groups using high-resolution ultrasound. The mean thickness of the plantar fascia was measured immediately before and after participation. The mean plantar fascia thickness was decreased by 0.06 ± 0.33 mm SD after running and 0.03 ± 0.22 mm SD after walking. The difference between groups was not significant. Although the parameters of this study did not produce significant changes in the plantar fascia thickness, a slightly higher change in the mean thickness of the plantar fascia in the running group deserves further investigation. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  1. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  2. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  3. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    Science.gov (United States)

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  4. Local inversions in ultrasound-modulated optical tomography

    International Nuclear Information System (INIS)

    Bal, Guillaume; Moskow, Shari

    2014-01-01

    Ultrasound-modulated optical tomography is a hybrid imaging modality that aims to combine the high contrast of optical waves with the high resolution of ultrasound. We follow the model of the influence of ultrasound modulation on the light intensity measurements developed in Bal and Schotland (2010 Phys. Rev. Lett. 104 043902). We present sufficient conditions ensuring that the absorption and diffusion coefficients modeling light propagation can locally be uniquely and stably reconstructed from the corresponding available information. We present an iterative procedure to solve such a problem based on the analysis of linear elliptic systems of redundant partial differential equations. (paper)

  5. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    Science.gov (United States)

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  6. Simultaneous ultrasound and photoacoustics based flow cytometry

    Science.gov (United States)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  7. Reliability of Ultrasound Diameter Measurements in Patients with a Small Asymptomatic Popliteal Artery Aneurysm: An Intra- and Inter-observer Agreement Study.

    Science.gov (United States)

    Zwiers, I; Hoogland, C M T; Mackaay, A J C

    2016-03-01

    In this study the intra- and inter-observer variability of ultrasound measurements of the diameter of the popliteal artery were tested in a group of patients under surveillance for a small (diameter 10-20 mm), asymptomatic popliteal artery aneurysm (PAA). From a group of patients under ultrasound surveillance for bilateral, asymptomatic PAAs, 13 consecutive patients agreed to participate in the study and provided informed consent. The maximum diameter of the popliteal arteries was assessed by a vascular technologist. The same assessment was repeated by a second vascular technologist, unaware of the results of the first measurement. After a week, this protocol was repeated. The intra- and inter-observer reliability of this measurement was calculated using intra-class correlation coefficients (ICCs) and Bland and Altman plots. Of the 10 patients with bilateral and three patients with unilateral PAA, 12 completed the 2 week protocol. A total of 86 measurements were analyzed. The mean diameter of the popliteal arteries was 13.5 ± 3.4 mm. The ICC for the intra-observer reliability of observer 1 was 0.96 (95% CI 0.92-0.99), p .47. The absolute magnitude of the systematic error of both observers was less than 0.135 mm (median 0.00). Ultrasound measurement of the maximum diameter of the popliteal artery is reproducible; hence, it is suitable for making a clinical treatment decision. Its use for surveillance of small, asymptomatic PAAs is justified. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Influence of power ultrasound on the main quality properties and cell viability of osmotic dehydrated cranberries.

    Science.gov (United States)

    Nowacka, Malgorzata; Fijalkowska, Aleksandra; Wiktor, Artur; Dadan, Magdalena; Tylewicz, Urszula; Dalla Rosa, Marco; Witrowa-Rajchert, Dorota

    2018-02-01

    The aim of the study was to investigate the effect of ultrasound treatment in two osmotic solutions, carried out at different time, on some physical properties, antioxidant activity and cell survival of cranberries. Ultrasound treatment was conducted at 21kHz for 30 and 60min in liquid medium: 61.5% sucrose solution and 30% sucrose solution with 0.1% steviol glycosides addition. Some samples before the ultrasound treatment were subjected to cutting or blanching. The results showed that dry matter content and concentration of the dissolved substances increased during ultrasound treatment in osmotic solution, however higher value was observed for treatment in 61.5% sucrose solution and for longer time. Water activity and volume of cranberries did not change after the ultrasonic treatment. Combined treatment led to colour and antioxidant activity alterations as well. A cell viability of whole and cut samples decreased after 60min of osmotic treatment and completely lost in the blanched samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanism study of multimode ultrasound pretreatment on the enzymolysis of wheat gluten.

    Science.gov (United States)

    Zhang, Yanyan; Li, Jing; Li, Suyun; Ma, Haile; Zhang, Hua

    2018-03-01

    Ultrasound pretreatment could improve the angiotensin-I converting enzyme (ACE) inhibitory activity of hydrolysates of wheat gluten (WG). The working mode of ultrasound has an important effect on the enzymatic hydrolysis of protein. The results showed that the optimum working mode of ultrasound was alternate dual-frequency mode (20/35 kHz), substrate concentration was 30 g L -1 , initial temperature of the suspension was 30 °C, ultrasound pretreatment time was 10 min and power density was 150 W L -1 . Under optimised conditions, ACE inhibitory activity of WG hydrolysates reached to its maximum value in advance. The surface hydrophobicity (H 0 ) of WG and the content of small peptides at the beginning of the enzymolysis were improved by the ultrasound pretreatment. The structure of WG was destroyed by the ultrasound pretreatment. The enzymatic residue of ultrasound pretreated WG were damaged greater than control. It was concluded that alternate dual-frequency ultrasound pretreatment improved the ACE inhibitory activity. Ultrasonic pretreatment may loosen the tissue of WG aggregate, and help the enzyme alcalase to attack the interior of WG aggregate easily, which resulted in the release of low molecular weight peptides from WG aggregate. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Development of a method for measuring femoral torsion using real-time ultrasound

    International Nuclear Information System (INIS)

    Hafiz, Eliza; Hiller, Claire E; Nightingale, E Jean; Eisenhuth, John P; Refshauge, Kathryn M; Nicholson, Leslie L; Clarke, Jillian L; Grimaldi, Alison

    2014-01-01

    Excessive femoral torsion has been associated with various musculoskeletal and neurological problems. To explore this relationship, it is essential to be able to measure femoral torsion in the clinic accurately. Computerized tomography (CT) and magnetic resonance imaging (MRI) are thought to provide the most accurate measurements but CT involves significant radiation exposure and MRI is expensive. The aim of this study was to design a method for measuring femoral torsion in the clinic, and to determine the reliability of this method. Details of design process, including construction of a jig, the protocol developed and the reliability of the method are presented. The protocol developed used ultrasound to image a ridge on the greater trochanter, and a customized jig placed on the femoral condyles as reference points. An inclinometer attached to the customized jig allowed quantification of the degree of femoral torsion. Measurements taken with this protocol had excellent intra- and inter-rater reliability (ICC 2,1  = 0.98 and 0.97, respectively). This method of measuring femoral torsion also permitted measurement of femoral torsion with a high degree of accuracy. This method is applicable to the research setting and, with minor adjustments, will be applicable to the clinical setting. (paper)

  11. Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound.

    Science.gov (United States)

    Genovese, Eugenio; Ronga, Mario; Recaldini, Chiara; Fontana, Federico; Callegari, Leonardo; Maffulli, Nicola; Fugazzola, Carlo

    2011-01-01

    To compare morphological, power Doppler, and contrast-enhanced ultrasound (CEUS) features of the Achilles tendon between asymptomatic athletes and athletes who had undergone surgical repair of a previous rupture. Twenty-four athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon rupture. Group B (control group) included 10 subjects with a median age of 34 years (range 27 to 40 years) with no previous or present history of tendinopathy. All patients were evaluated with ultrasound, power Doppler, and CEUS with second-generation contrast agent. We studied the uninjured Achilles tendon in athletes of group A and either the left or the right Achilles tendon of the athletes in group B. CEUS showed a significantly greater ability to detect a greater number of vascular spots within the uninjured tendon of group A compared to group B (power Doppler ultrasound in the uninjured contralateral Achilles tendon. CEUS is useful to evaluate vascularity not detected by other imaging techniques. Vascularity in the uninjured tendon seems to be increased in patients who had a previous rupture. Copyright © 2011 Wiley Periodicals, Inc.

  12. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    Science.gov (United States)

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  13. Ultrasound automated volume calculation in reproduction and in pregnancy.

    Science.gov (United States)

    Ata, Baris; Tulandi, Togas

    2011-06-01

    To review studies assessing the application of ultrasound automated volume calculation in reproductive medicine. We performed a literature search using the keywords "SonoAVC, sonography-based automated volume calculation, automated ultrasound, 3D ultrasound, antral follicle, follicle volume, follicle monitoring, follicle tracking, in vitro fertilization, controlled ovarian hyperstimulation, embryo volume, embryonic volume, gestational sac, and fetal volume" and conducted the search in PubMed, Medline, EMBASE, and the Cochrane Database of Systematic Reviews. Reference lists of identified reports were manually searched for other relevant publications. Automated volume measurements are in very good agreement with actual volumes of the assessed structures or with other validated measurement methods. The technique seems to provide reliable and highly reproducible results under a variety of conditions. Automated measurements take less time than manual measurements. Ultrasound automated volume calculation is a promising new technology which is already used in daily practice especially for assisted reproduction. Improvements to the technology will undoubtedly render it more effective and increase its use. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  15. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  16. 3D Flow reconstruction using ultrasound PIV

    Science.gov (United States)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  17. Office-based ultrasound screening for abdominal aortic aneurysm.

    Science.gov (United States)

    Blois, Beau

    2012-03-01

    To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). A prospective observational study. Consecutive patients were approached by nonphysician staff. Rural family physician offices in Grand Forks and Revelstoke, BC. The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. A focused “quick screen”, which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (i.e., a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of- care ultrasound technology. The screening test can be completed within the time constraints of a

  18. Exploring a new ultrasound score as a clinical predictive tool in patients with rheumatoid arthritis starting abatacept

    DEFF Research Database (Denmark)

    D'Agostino, Maria-Antonietta; Boers, Maarten; Wakefield, Richard J

    2016-01-01

    Objectives: To explore whether changes in a composite ( power Doppler/greyscale ultrasound (PDUS)) synovitis score, developed by the OMERACT-EULAR-Ultrasound Task Force, predict disease activity outcomes in rheumatoid arthritis (RA). Methods: Patients with RA who were methotrexate inadequate...

  19. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    Science.gov (United States)

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.