WorldWideScience

Sample records for ultrasound modulated optical

  1. Reconstructions in ultrasound modulated optical tomography

    KAUST Repository

    Allmaras, Moritz; Bangerth, Wolfgang

    2011-01-01

    We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.

  2. Local inversions in ultrasound-modulated optical tomography

    International Nuclear Information System (INIS)

    Bal, Guillaume; Moskow, Shari

    2014-01-01

    Ultrasound-modulated optical tomography is a hybrid imaging modality that aims to combine the high contrast of optical waves with the high resolution of ultrasound. We follow the model of the influence of ultrasound modulation on the light intensity measurements developed in Bal and Schotland (2010 Phys. Rev. Lett. 104 043902). We present sufficient conditions ensuring that the absorption and diffusion coefficients modeling light propagation can locally be uniquely and stably reconstructed from the corresponding available information. We present an iterative procedure to solve such a problem based on the analysis of linear elliptic systems of redundant partial differential equations. (paper)

  3. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    Science.gov (United States)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  4. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  5. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection.

    Science.gov (United States)

    Ruan, Haowen; Mather, Melissa L; Morgan, Stephen P

    2013-07-01

    A method that uses digital heterodyne holography reconstruction to extract scattered light modulated by a single-cycle ultrasound (US) burst is demonstrated and analyzed. An US burst is used to shift the pulsed laser frequency by a series of discrete harmonic frequencies which are then locked on a CCD. The analysis demonstrates that the unmodulated light's contribution to the detected signal can be canceled by appropriate selection of the pulse repetition frequency. It is also shown that the modulated signal can be maximized by selecting a pulse sequence which consists of a pulse followed by its inverted counterpart. The system is used to image a 12 mm thick chicken breast with 2 mm wide optically absorbing objects embedded at the midplane. Furthermore, the method can be revised to detect the nonlinear US modulated signal by locking at the second harmonic US frequency.

  6. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    Science.gov (United States)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  7. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-01-01

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p -2 ± 0.01 μm and 1.99 x 10 -2 ± 0.004 μm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  8. Electroabsorption optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, Erik J.

    2017-11-21

    An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.

  9. Nestor optical modules blackening

    International Nuclear Information System (INIS)

    Cordelli, M.; Rutili, A.; Trasatti, L.

    1998-09-01

    The optical modules (OM) containing the photomultiplier tubes (PM) for a deep sea neutrino telescope must be protected them from direct sunlight. The problem has been solved using a heat shrink plastic sheet with very good optical and mechanical properties

  10. The ANTARES optical module

    Energy Technology Data Exchange (ETDEWEB)

    Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F.E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R.W.; Blondeau, F.; Botton, N. de; Boulesteix, J.; Brooks, C.B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carloganu, C.; Carmona, E.; Carr, J.; Carton, P.-H.; Cartwright, S.L.; Cassol, F.; Cecchini, S.; Ciacio, F.; Circella, M.; Compere, C.; Cooper, S.; Coyle, P.; Croquette, J.; Cuneo, S.; Danilov, M.; Dantzig, R. van; De Marzo, C.; DeVita, R.; Deck, P.; Destelle, J.-J.; Dispau, G.; Drougou, J.F.; Druillole, F.; Engelen, J.; Feinstein, F.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gosset, L.; Gournay, J.-F.; Heijboer, A.; Hernandez-Rey, J.J.; Herrouin, G.; Hubbard, J.R.; Jaquet, M.; Jong, M. de; Karolak, M.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V.A.; Lachartre, D.; Lafoux, H. E-mail: lafoux@cea.fr; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Lemoine, L.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Massol, A.; Masullo, R.; Mazeas, F.; Mazeau, B.; Mazure, A.; McMillan, J.E.; Michel, J.L.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Morel, J.P.; Moscoso, L.; Musumeci, M.; Navas, S.; Nezri, E.; Nooren, G.J.; Oberski, J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Rolin, J.F.; Rostovstev, A.; Russo, G.V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N.J.C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Tayalati, Y.; Thompson, L.F.

    2002-05-21

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km{sup 2} and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R and D studies and is reviewed here in detail.

  11. The ANTARES optical module

    International Nuclear Information System (INIS)

    Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F.E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R.W.; Blondeau, F.; Botton, N. de; Boulesteix, J.; Brooks, C.B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carloganu, C.; Carmona, E.; Carr, J.; Carton, P.-H.; Cartwright, S.L.; Cassol, F.; Cecchini, S.; Ciacio, F.; Circella, M.; Compere, C.; Cooper, S.; Coyle, P.; Croquette, J.; Cuneo, S.; Danilov, M.; Dantzig, R. van; De Marzo, C.; DeVita, R.; Deck, P.; Destelle, J.-J.; Dispau, G.; Drougou, J.F.; Druillole, F.; Engelen, J.; Feinstein, F.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gosset, L.; Gournay, J.-F.; Heijboer, A.; Hernandez-Rey, J.J.; Herrouin, G.; Hubbard, J.R.; Jaquet, M.; Jong, M. de; Karolak, M.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V.A.; Lachartre, D.; Lafoux, H.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Lemoine, L.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Massol, A.; Masullo, R.; Mazeas, F.; Mazeau, B.; Mazure, A.; McMillan, J.E.; Michel, J.L.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Morel, J.P.; Moscoso, L.; Musumeci, M.; Navas, S.; Nezri, E.; Nooren, G.J.; Oberski, J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Rolin, J.F.; Rostovstev, A.; Russo, G.V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N.J.C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Tayalati, Y.; Thompson, L.F.; Tilav, S.; Triay, R.; Valente, V.; Varlamov, I.; Vaudaine, G.; Vernin, P.; Witt Huberts, P. de; Wolf, E. de; Zakharov, V.; Zavatarelli, S.; D Zornoza, J. de; Zuniga, J.

    2002-01-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km 2 and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R and D studies and is reviewed here in detail

  12. The ANTARES Optical Module

    CERN Document Server

    Amram, P; Anvar, S; Ardellier-Desages, F E; Aslanides, Elie; Aubert, Jean-Jacques; Azoulay, R; Bailey, D; Basa, S; Battaglieri, M; Bellotti, R; Benhammou, Ya; Bernard, F; Berthier, R; Bertin, V; Billault, M; Blaes, R; Bland, R W; Blondeau, F; De Botton, N R; Boulesteix, J; Brooks, B; Brunner, J; Cafagna, F; Calzas, A; Capone, A; Caponetto, L; Cârloganu, C; Carmona, E; Carr, J; Carton, P H; Cartwright, S L; Cassol, F; Cecchini, S; Ciacio, F; Circella, M; Compere, C; Cooper, S; Coyle, P; Croquette, J; Cuneo, S; Danilov, M; Van Dantzig, R; De Marzo, C; De Vita, R; Deck, P; Destelle, J J; Dispau, G; Drougou, J F; Druillole, F; Engelen, J; Feinstein, F; Festy, D; Fopma, J; Gallone, J M; Giacomelli, G; Goret, P; Gosset, L G; Gournay, J F; Heijboer, A; Hernández-Rey, J J; Herrouin, G; Hubbard, John R; Jacquet, M; De Jong, M; Karolak, M; Kooijman, P M; Kouchner, A; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lamare, P; Languillat, J C; Laubier, L; Laugier, J P; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lemoine, L; Lo Nigro, L; Lo Presti, D; Loucatos, Sotirios S; Louis, F; Lyashuk, V I; Magnier, P; Marcelin, M; Margiotta, A; Massol, A; Masullo, R; Mazéas, F; Mazeau, B; Mazure, A; McMillan, J E; Michel, J L; Migneco, E; Millot, C; Mols, P; Montanet, François; Montaruli, T; Morel, J P; Moscoso, L; Navas, S; Nezri, E; Nooren, G J L; Oberski, J; Olivetto, C; Oppelt-pohl, A; Palanque-Delabrouille, Nathalie; Payre, P; Perrin, P; Petruccetti, M; Petta, P; Piattelli, P; Poinsignon, J; Popa, V; Potheau, R; Queinec, Y; Racca, C; Raia, G; Randazzo, N; Rethore, F; Riccobene, G; Ricol, J S; Ripani, M; Roca-Blay, V; Rolin, J F; Rostovtsev, A A; Russo, G V; Sacquin, Yu; Salusti, E; Schuller, J P; Schuster, W; Soirat, J P; Suvorova, O; Spooner, N J C; Spurio, M; Stolarczyk, T; Stubert, D; Taiuti, M; Tao, Charling; Tayalati, Y; Thompson, L F; Tilav, S; Triay, R; Valente, V; Varlamov, I; Vaudaine, G; Vernin, P; De Witt-Huberts, P K A; De Wolf, E; Zakharov, V; Zavatarelli, S; De Dios-Zornoza-Gomez, Juan; Zúñiga, J

    2002-01-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.

  13. Silicon Optical Modulator Simulation

    Directory of Open Access Journals (Sweden)

    Soon Thor LIM

    2015-04-01

    Full Text Available We developed a way of predicting and analyzing high speed optical modulator. Our research adopted a bottom-up approach to consider high-speed optical links using an eye diagram. Our method leverages on modular mapping of electrical characteristics to optical characteristics, while attaining the required accuracy necessary for device footprint approaching sub-micron scales where electrical data distribution varies drastically. We calculate for the bias dependent phase shift (2pi/mm and loss (dB/mm for the optical modulator based on the real and imaginary part of complex effective indices. Subsequently, combine effectively both the electrical and optical profiles to construct the optical eye diagram which is the essential gist of signal integrity of such devices.

  14. Synthetic focusing in ultrasound modulated tomography

    KAUST Repository

    Kuchment, Peter; Kunyansky, Leonid

    2010-01-01

    Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere. © 2010 American Institute of Mathematical Sciences.

  15. Synthetic focusing in ultrasound modulated tomography

    KAUST Repository

    Kuchment, Peter

    2010-09-01

    Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere. © 2010 American Institute of Mathematical Sciences.

  16. Brownian modulated optical nanoprobes

    International Nuclear Information System (INIS)

    Behrend, C.J.; Anker, J.N.; Kopelman, R.

    2004-01-01

    Brownian modulated optical nanoprobes (Brownian MOONs) are fluorescent micro- and nanoparticles that resemble moons: one hemisphere emits a bright fluorescent signal, while an opaque metal darkens the other hemisphere. Brownian motion causes the particles to tumble and blink erratically as they rotate literally through the phases of the moon. The fluctuating probe signals are separated from optical and electronic backgrounds using principal components analysis or images analysis. Brownian MOONs enable microrheological measurements on size scales and timescales that are difficult to study with other methods. Local chemical concentrations can be measured simultaneously, using spectral characteristics of indicator dyes embedded within the MOONs

  17. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  18. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  19. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  20. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurements has been the development of suitable polarization modulators for submillimeter wavelengths. The problems are to obtain high optical transmission and fast modulation frequencies. At ORNL we have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequencies of approximately 100 kHz and both have high transmission

  1. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  2. Biphasically Modulating the Activity of Carboxypeptidase G2 with Ultrasound

    Directory of Open Access Journals (Sweden)

    Wanying Ma

    2017-07-01

    Full Text Available Background/Aims: Carboxypeptidase G2 (CPG2 has been used for cancer prodrug therapy to realize the targeted release of active drugs, but there yet lacks a means to modulate the CPG2 activity. Here ultrasound was used to modulate the CPG2 activity. Methods: The activity of insonated CPG2 was determined, and then underlying biochemical (i.e., monomer, dimer and conformation and ultrasonic (i.e., heat and cavitation mechanisms were explored. Results: Ultrasound (1.0 MHz increased or decreased the enzymatic activity; the activity decreased as zero- or first-order kinetics, depending on the intensity. L1 (10 W/cm2 for 200 s improved the activity via increasing the specific activity. L2 or L3 (20 W/cm2 for 1200 or 3000 s decreased the activity via disassembling the dimer, degrading the monomer, inducing glycosylation, transforming conformation and decreasing the specific activity. An increase or a slight decrease of activity attributable to 10 W/cm2 was reversible, but the activity decrease due to 20 W/cm2 was irreversible. The enzymatic modulation was realized via cavitation. Conclusion: Ultrasound can biphasically modulate the CPG2 activity, and can be employed in the CPG2-prodrug therapy to adjust the release and moles of active drugs.

  3. Noise and detection in ''optical'' modulation spectroscopy

    International Nuclear Information System (INIS)

    Montelatici, V.

    1975-01-01

    The measuring techniques suitable for ''optical'' modulation spectroscopy are analyzed and source of noise identified. The choice of optical detector is for photoelectrical devices. It is shown that the shot noise of phototubes is the most important noise source

  4. METHOD AND MODULE FOR OPTICAL SUBCARRIER LABELLING

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to optical labelling in WDM networks, in that it provides a method and a module to be used in subcarrier label generation and switching in network edge nodes and core switch nodes. The methods and modules are typically employed in Optical Subcarrier Multiplexing (OSCM......) transmitters. The payload and the label are encoded independently on optical carrier and subcarrier signals respectively, using electro-optical modulators. The invention applies single or double sideband carrier-suppressed modulation to generate subcarrier signals for encoding of the label. Thereby the payload...... encoded carrier signal and the label encoded subcarrier signal can be coupled directly without prior filtering....

  5. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  6. Optical detection of ultrasound from optically rough surfaces using a custom CMOS sensor

    International Nuclear Information System (INIS)

    Achamfuo-Yeboah, S O; Light, R A; Sharpies, S D

    2015-01-01

    The optical detection of ultrasound from optically rough surfaces is severely limited when using a conventional interferometric or optical beam deflection (OBD) setup because the detected light is speckled. This means that complicated and expensive setups are required to detect ultrasound optically on rough surfaces. We present a CMOS integrated circuit that can detect laser ultrasound in the presence of speckle. The detector circuit is based on the simple knife edge detector. It is self-adapting and is fast, inxepensive, compact and robust. The CMOS circuit is implemented as a widefield array of 32×32 pixels. At each pixel the received light is compared with an adjacent pixel in order to determine the local light gradient. The result of this comparison is stored and used to connect each pixel to the positive or negative gradient output as appropriate (similar to a balanced knife edge detector). The perturbation of the surface due to ultrasound preserves the speckle distribution whilst deflecting it. The spatial disturbance of the speckle pattern due to the ultrasound is detected by considering each pair of pixels as a knife edge detector. The sensor can adapt itself to match the received optical speckle pattern in less than 0.1 μs, and then detect the ultrasound within 0.5 μs of adaptation. This makes it possible to repeatedly detect ultrasound from optically rough surfaces very quickly. The detector is capable of independent operation controlled by a local microcontroller, or it may be connected to a computer for more sophisticated configuration and control. We present the theory of its operation and discuss results validating the concept and operation of the device. We also present preliminary results from an improved design which grants a higher bandwidth, allowing for optical detection of higher frequency ultrasound

  7. ULTRASOUND AND COMPUTED TOMOGRAPHIC DIAGNOSIS OF OPTIC NERVE TUMORS

    Directory of Open Access Journals (Sweden)

    S. V. Saakyan

    2012-01-01

    Full Text Available A comprehensive examination was made in 93 patients, including 18 children, with tumors of the optic nerve (ON. Duplex ultrasound scanning was performed in 39 patients, of them there were 11 patients with ON gliomas and 28 with ON meningiomas. The specific computed tomographic and echographic signs of ON glioma and meningiomas were detected. The studies have shown that duplex ultrasound scanning and structural computed tomography of orbital sockets are highly informative complementary imaging procedures for ON tumors, which permits one to make their correct diagnosis, to specify surgical volume, and to plan adequate treatment.

  8. Amplitude and phase modulation with waveguide optics

    International Nuclear Information System (INIS)

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-01-01

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz

  9. Polybinary modulation for bandwidth limited optical links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Jurado-Navas, Antonio

    2015-01-01

    form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, poly binary modulation requires low complexity direct detection and very little digital signal processing. This talk will review...... the recent results on poly binary modulation, comprising both binary and multilevel signals as seed signals. The results will show how poly binary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  10. Magneto-optic and electro-optic modulators

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Price, T.R.; Staats, P.A.; Sluis, K.L.V.

    1982-01-01

    An important aspect of the Faraday rotation diagnostic for tokamak plasma measurement has been the development of suitable polarization modulators for submillimeter wavelength. The problems are to obtain high optical transmission and fast modulation frequencies. In ORNL, the authors have developed both a magneto-optic and an electro-optic submillimeter-wave modulators. These devices have been operated at modulation frequency of approximately 100 kHz, and both have high transmission. The original magneto-optic modulator consists of a 3 mm thick by 1.4 cm diameter 2-111 ferrite disk mounted at the center of an air core coil. Recently, a new ferrite modulator has been tested, which allows a much higher modulation frequency than the original device. A laboratory set-up designed to simulate a plasma heterodyne interferometer/polarimeter experiment has been used to determine the modulator characteristics. A mechanical polarization rotor was used to simulate the rotation by plasma. The transmission of the ferrite disk was 80 % at a wavelength of 0.447 mm. The authors have also performed preliminary measurement on an electro-optic modulator first demonstrated by Fetterman at Lincoln Laboratory, U.S. This device is a classical electro-optic modulator using a cryogenically cooled (4.2 K) LiTaO 3 crystal. Experiments are underway to determine the electro-optic properties of the crystal over the temperature range from 4.2 K to 77 K and over the range of wavelength from 0.118 mm to 0.447 mm. (Wakatsuki, Y.)

  11. Method and apparatus of highly linear optical modulation

    Science.gov (United States)

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  12. Optics modules for circular accelerator design

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine

  13. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  14. Electro Optic Modulation In a Polymer Ringresonator

    Science.gov (United States)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  15. Diffuse optical tomography using semiautomated coregistered ultrasound measurements

    Science.gov (United States)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing

    2017-12-01

    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  16. Optical rangefinding applications using communications modulation technique

    Science.gov (United States)

    Caplan, William D.; Morcom, Christopher John

    2010-10-01

    A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.

  17. Using low-frequency ultrasound to improve the optical clearing of porcine skin

    Science.gov (United States)

    Zhong, Huiqing; Guo, Zhouyi; Wei, Huajiang; Zhang, Zude; Zeng, Changchun; Zhai, Juan; He, Yonghong

    2008-12-01

    The glycerol used as an enhancer for tissue optical clearing technique has been researched. However, using it and a physical way of ultrasound enhance optical clearing of tissue reported a few. We researched that the ultrasound whether can improve the optical clearing of dealt with 80% glycerol tissue. The fresh porcine skins divided into four groups. The first group was not dealt with by ultrasound and 80% glycerol, the second group was dealt with by only ultrasound, the third group was dealt with by 80% glycerol and no by ultrasound, and the fourth group was dealt with by both 80% glycerol and ultrasound. And we measured changes in optical scattering of the porcine skins under treatment with OCT. From the OCT images show that the fourth group changed very faster than the other's during the 0~15 min. And it can be clearly seen that there is a significant improvement in the light penetration depth and imaging contrast in a shorter time. It is possible that the low-frequency ultrasound can make disordering of the stratum corneum lipids of the porcine skin (because the cavitation has happened), and improve the speed of 80% glycerol through the stratum corneum of skin. These results proved that using 80% glycerol with the ultrasound can better improve the optical clearing of tissue.

  18. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    Science.gov (United States)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  19. An algorithm for sensing venous oxygenation using ultrasound-modulated light enhanced by microbubbles

    Science.gov (United States)

    Honeysett, Jack E.; Stride, Eleanor; Deng, Jing; Leung, Terence S.

    2012-02-01

    Near-infrared spectroscopy (NIRS) can provide an estimate of the mean oxygen saturation in tissue. This technique is limited by optical scattering, which reduces the spatial resolution of the measurement, and by absorption, which makes the measurement insensitive to oxygenation changes in larger deep blood vessels relative to that in the superficial tissue. Acousto-optic (AO) techniques which combine focused ultrasound (US) with diffuse light have been shown to improve the spatial resolution as a result of US-modulation of the light signal, however this technique still suffers from low signal-to-noise when detecting a signal from regions of high optical absorption. Combining an US contrast agent with this hybrid technique has been proposed to amplify an AO signal. Microbubbles are a clinical contrast agent used in diagnostic US for their ability to resonate in a sound field: in this work we also make use of their optical scattering properties (modelled using Mie theory). A perturbation Monte Carlo (pMC) model of light transport in a highly absorbing blood vessel containing microbubbles surrounded by tissue is used to calculate the AO signal detected on the top surface of the tissue. An algorithm based on the modified Beer-Lambert law is derived which expresses intravenous oxygen saturation in terms of an AO signal. This is used to determine the oxygen saturation in the blood vessel from a dual wavelength microbubble-contrast AO measurement. Applying this algorithm to the simulation data shows that the venous oxygen saturation is accurately recovered, and this measurement is robust to changes in the oxygenation of the superficial tissue layer.

  20. Optical modulation in silicon-vanadium dioxide photonic structures

    Science.gov (United States)

    Miller, Kevin J.; Hallman, Kent A.; Haglund, Richard F.; Weiss, Sharon M.

    2017-08-01

    All-optical modulators are likely to play an important role in future chip-scale information processing systems. In this work, through simulations, we investigate the potential of a recently reported vanadium dioxide (VO2) embedded silicon waveguide structure for ultrafast all-optical signal modulation. With a VO2 length of only 200 nm, finite-differencetime- domain simulations suggest broadband (200 nm) operation with a modulation greater than 12 dB and an insertion loss of less than 3 dB. Predicted performance metrics, including modulation speed, modulation depth, optical bandwidth, insertion loss, device footprint, and energy consumption of the proposed Si-VO2 all-optical modulator are benchmarked against those of current state-of-the-art all-optical modulators with in-plane optical excitation.

  1. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  2. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  3. Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation

    OpenAIRE

    Alles, E. J.; Heo, J.; Noimark, S.; Colchester, R.; Parkin, I.; Baac, H. W.; Desjardins, A.

    2017-01-01

    An optical ultrasound generator was used to perform broadband (2-35 MHz) acoustical characterisation measurements of a nanocomposite comprising carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), a composite that is commonly used as optical ultrasound generator. Samples consisting of either pure PDMS or CNT-loaded PDMS were characterised to determine the influence of CNTs on the speed of sound and power-law acoustic attenuation parameters. A small weight fraction (

  4. Use of modulated excitation signals in ultrasound. Part I: Basic concepts and expected benefits

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    This paper, the first from a series of three papers on the application of coded excitation signals in medical ultrasound, discusses the basic principles and ultrasound-related problems of pulse compression. The concepts of signal modulation and matched filtering are given, and a simple model...... of attenuation relates the matched filter response with the ambiguity function, known from radar. Based on this analysis and the properties of the ambiguity function, the selection of coded waveforms suitable for ultrasound imaging is discussed. It is shown that linear frequency modulation (FM) signals have...... that in the case of linear FM signals, a SNR improvement of 12 to 18 dB can be expected for large imaging depths in attenuating media, without any depth-dependent filter compensation. In contrast, nonlinear FM modulation and binary codes are shown to give a SNR improvement of only 4 to 9 dB when processed...

  5. A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2016-01-01

    comparator and a pull-down clocked latch. The feedback signal is generated with voltage DACs based on transmission gates. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The modulator has a bandwidth of 10 MHz with an oversampling......A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...

  6. High speed all-silicon optical modulator

    International Nuclear Information System (INIS)

    Marris-Morini, Delphine; Le Roux, Xavier; Pascal, Daniel; Vivien, Laurent; Cassan, Eric; Fedeli, Jean Marc; Damlencourt, Jean Francois; Bouville, David; Palomo, Jose; Laval, Suzanne

    2006-01-01

    Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P + layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P + layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product V π L π , determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that V π L π as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps

  7. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  8. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  9. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  10. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  11. Fourier optical cryptosystem using complex spatial modulation

    International Nuclear Information System (INIS)

    Sarkadi, T; Koppa, P

    2014-01-01

    Our goal is to enhance the security level of a Fourier optical encryption system. Therefore we propose a Mach–Zehnder interferometer based encryption setup. The input data is organized in a binary array, and it is encoded in the two wave fronts propagated in the arms of the interferometer. Both input wave fronts are independently encrypted by Fourier systems, hence the proposed method has two encryption keys. During decryption, the encrypted wave fronts are propagated through the interferometer setup. The interference pattern of the output shows the reconstructed data in cases where the correct decryption Fourier keys are used. We propose a novel input image modulation method with a user defined phase parameter. We show that the security level of the proposed cryptosystem can be enhanced by an optimally chosen phase parameter. (paper)

  12. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  13. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens

    1986-01-01

    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  14. System Level Design of a Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Færch, Kjartan; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match these requir......, based on high-level VerilogA simulations, the performance of the ∆Σ modulator versus various block performance parameters is presented as trade-off curves. Based on these results, the block specifications are derived.......In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match...

  15. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase-...

  16. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  17. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  18. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  19. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  20. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  1. LMM Holographic Optical Tweezers (HOT) Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...

  2. All-optical modulation based on electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Fountoulakis, Antonios; Terzis, Andreas F.; Paspalakis, Emmanuel

    2010-01-01

    We numerically investigate the implementation of all-optical absorption modulation of electromagnetic pulses by a medium that exhibits electromagnetically induced transparency. The quantum system is modelled as a three-level Λ-type system that interacts with two electromagnetic pulses, a probe pulse and a coupling pulse. The dynamics of the system is described by the coupled Maxwell-density matrix equations, and we explore the dependence of the optical modulation efficiency on the parameters of the system.

  3. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  4. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    Science.gov (United States)

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  5. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  6. Development of an electro-optic super modulator

    International Nuclear Information System (INIS)

    Cusack, B; Shaddock, D.

    2002-01-01

    Full text: Optical phase modulators and amplitude modulators are commonplace in modern laser laboratories. In this talk, we present the development of a device that produces both amplitude modulation (AM) and phase modulation (PM), with a selectable phase relation between the two, on a single free-space Gaussian beam. We term this device a 'super modulator. The device is a version of the Mach-Zehnder modulator, where a beam is split, then separately phase modulated and recombined. Previous work has concentrated on one specific operating point, where the relative modulation phases and the interferometer phase are set to generate single sideband modulation, equivalent to an equal amount of AM and PM in quadrature. Here we are interested in the entire parameter space of amplitude modulation strength, phase modulation strength, and the phase relation between the two. The need for such a super modulator has arisen in the context of control systems for gravitational wave detection interferometers. Typical locking systems are based on the Pound-Drever-Hall method of locking which uses phase modulation. In principle, a super modulator could be used in a PDH configuration, when the locking point of the device will be tunable according to the quantity of AM injected (along with the obligatory PM) into the device

  7. Design and experimental verification for optical module of optical vector-matrix multiplier.

    Science.gov (United States)

    Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin

    2013-06-20

    Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.

  8. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  9. Performance Study of optical Modulator based on electrooptic effect

    International Nuclear Information System (INIS)

    Palodiya, V; Raghuwanshi, S K

    2016-01-01

    In this paper, we have studied and derive performance parameter of highly integrated Lithium Niobate optical modulator. This is a chirp free modulator having low switching voltage and large bandwidth. For an external modulator in which travelling-wave electrodes length L imposed the modulating switching voltage, the product of V_π and L is fixed for a given electro optic material Lithium Niobate. We investigate to achieve a low V_π by both magnitude of the electro-optic coefficient for a wide variety of electro-optic materials. A Sellmeier equation for the extraordinary index of congruent lithium niobate is derived. For phase-matching, predictions are accmate for temperature between room temperature 250°C and wavelength ranging from 0.4 to 5µm. The Sellmeier equations predict more accmately refractive indices at long wavelengths. Theoretical result is confirmed by simulated results. We have analysed the various parameters such as switching voltage, device performance index, time constant, transmittance, cut-off frequency, 3-dB bandwidth, power absorption coefficient and transmission bit rate of Lithium Niobate optical Modulator based on electro -optic effect. (paper)

  10. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  11. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    Science.gov (United States)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  12. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  13. Design and Modeling a New Optical Modulator

    Directory of Open Access Journals (Sweden)

    Mohammad MEZAAEL

    2009-06-01

    Full Text Available A new opt modulator device using a Silicon Schottky Photodiode Device (s.s.p.d is proposed. The s.s.p.d. is fabricated in laboratory and has been used to mix an intensity modulated laser beam with a high frequency. The effects of modulating the high frequency signal before mixing on the photovoltage enhancement of the s.s.p.d is studied. A significant reduction in the required drive level of the high frequency input signal was achieved. Such a mixer could be use in radar and other communication systems.

  14. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  15. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  16. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  17. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  18. Optical encryption using pseudorandom complex spatial modulation.

    Science.gov (United States)

    Sarkadi, Tamás; Koppa, Pál

    2012-12-01

    In this paper we propose a new (to our knowledge) complex spatial modulation method to encode data pages applicable in double random phase encryption (DRPE) to make the system more resistant to brute-force attack. The proposed modulation method uses data page pixels with random phase and amplitude values with the condition that the intensity of the interference of light from two adjacent pixels should correspond to the encoded information. A differential phase contrast technique is applied to recover the data page at the output of the system. We show that the proposed modulation method can enhance the robustness of the DRPE technique using point spread function analysis. Key space expansion is determined by numeric model calculations.

  19. Stable Optical Phase Modulation With Micromirrors

    Science.gov (United States)

    2012-01-27

    to a voltage signal using a transimpedance amplifier with tranimpedance gain of Rf = 2 kΩ. The detected photocurrent of Iph = 0.6mA from 1.5mW of...the interferometer phase noise of δφmax = 4πrlδθmax/λ , which is then converted to the voltage noise at the output of the transimpedance amplifier by...The depth of modulation for a micromirror driven at mechanical resonance is amplified by the quality factor Q, enabling significant modulation with

  20. Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized....... The signal-to-noise-ratio can in this way be optimized. The waveform design is based on least squares optimization. A desired amplitude spectrum is chosen, hereafter the phase spectrum is chosen, so that the instantaneous frequency takes on the form of a third order polynomial. The finite energy waveform...

  1. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    Science.gov (United States)

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  2. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  3. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  4. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  5. Radiation resistance of electro-optic polymer-based modulators

    International Nuclear Information System (INIS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-01-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation

  6. Study of PMMA materials for a digital optical module

    Science.gov (United States)

    Spina, Roberto; Tricarico, Luigi; Berardi, Vincenzo; De Rosa, Gianfranca; Ruggeri, Alan C.; Mastrorilli, Piero

    2018-05-01

    This work illustrates the material characterization to realize of a prototypal polymeric cover of a Digital Optical Module for the Hyper-Kamiokande neutrino experiment. The cover was made of a high transmittance poly-methyl methacrylate (PMMA), used as a glass substitute. The main objective of the present research is to investigate the structural and optical properties of PMMA, evaluating the respect of the project specification.

  7. Method and apparatus for optical communication by frequency modulation

    Science.gov (United States)

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  8. Non-Contact Optical Ultrasound Concept for Biomedical Imaging

    Science.gov (United States)

    2016-11-03

    reflection images of a phantom limb that contains muscle and bone surrogate materials and use the data for inversion of the Young’s modulus...CT are the dominant modalities used for many medical imaging applications including head injury, cancer, fractures and musculoskeletal disease. MRI...original higher frequency signal, but is oscillating at a lower more easily processed carrier frequency. Electrical field oscillations in the optical

  9. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching

  10. The optical-mechanical design of DMD modulation imaging device

    Science.gov (United States)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  11. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    Science.gov (United States)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  12. Optical vector network analyzer based on double-sideband modulation.

    Science.gov (United States)

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  13. Usefulness of optic nerve ultrasound to predict clinical progression in multiple sclerosis.

    Science.gov (United States)

    Pérez Sánchez, S; Eichau Madueño, S; Rus Hidalgo, M; Domínguez Mayoral, A M; Vilches-Arenas, A; Navarro Mascarell, G; Izquierdo, G

    2018-03-21

    Progressive neuronal and axonal loss are considered the main causes of disability in patients with multiple sclerosis (MS). The disease frequently involves the visual system; the accessibility of the system for several functional and structural tests has made it a model for the in vivo study of MS pathogenesis. Orbital ultrasound is a non-invasive technique that enables various structures of the orbit, including the optic nerve, to be evaluated in real time. We conducted an observational, ambispective study of MS patients. Disease progression data were collected. Orbital ultrasound was performed on all patients, with power set according to the 'as low as reasonably achievable' (ALARA) principle. Optical coherence tomography (OCT) data were also collected for those patients who underwent the procedure. Statistical analysis was conducted using SPSS version 22.0. Disease progression was significantly correlated with ultrasound findings (P=.041 for the right eye and P=.037 for the left eye) and with Expanded Disability Status Scale (EDSS) score at the end of the follow-up period (P=.07 for the right eye and P=.043 for the left eye). No statistically significant differences were found with relation to relapses or other clinical variables. Ultrasound measurement of optic nerve diameter constitutes a useful, predictive factor for the evaluation of patients with MS. Smaller diameters are associated with poor clinical progression and greater disability (measured by EDSS). Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Simulation research of acousto optic modulator drive based on Multisim

    Science.gov (United States)

    Wang, Shiqian; Guo, Yangkuan; Zhu, Lianqing; Na, Yunxiao; Zhang, Yinmin; Liu, Qianzhe

    2013-10-01

    The acousto optic modulator drive is mainly made with 2 amplitude shift keying (2ASK)circuit, pre-amplifier circuit and power operational amplifier circuit, and the simulation of the acousto optic modulator drive is realized. Firstly, the acousto optic modulator drive works as follows.The modulation function is realized by the analoged switch circuit, and the on-off of the analoged switch chip (CD4066) are controlled by the pulse signal generated by the electronic conversion circuit. The voltage amplification of the modulated signal is achieved by two reverse proportional operation implements voltage amplifier circuit, and the circuit is mainly made with the AD8001 chip. Then the amplified signal is transfered into a two-stage power operational amplifier circuit of class C which is mainly made with the chip of MRF158. Secondly, both of the simulating structures and the union debugging based on the designed system are realized by Multisim. Finally, obtaining the modulation signal of 150(MHz) frequency and 5(μs) pulse width illustrates that a 2ASk modulation of the 150 (MHz)carrier signal and the 20(kHz) modulation signal is achieved. Besides, as the frequency of input signal and amplitude of voltage change, the output power of the power operational amplifier circuit also changes, and the conclusion is drawn that the output power increases when the frequency of input signal decreases and the amplitude of voltage increases. The component selection of the drive's PCB design, the performance parameter and of the actual circuit and the debugging of the actual circuit are based on the simulation results.

  15. EVALUATION METHOD FOR PARASITIC EFFECTS OF THE ELECTRO-OPTICAL MODULATOR IN A FIBER OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    S. A. Volkovskiy

    2016-09-01

    Full Text Available Subject of Research.The paper proposes an original method for studying the parasitic effects in the electro-optic modulator of the fiber optic gyroscope. Proposed method is based on the usage of a special waveform phase modulation signal. Method. The essence of the proposed method lies in modification of serrodyne modulation signal, thereby providing a periodic displacement of the phase difference signal to the maximum of the interference curve. In this case, the intensity level reflects the influence of parasitic effects with the degree of manifestation being determined by the sequence of voltage control signals applied to the modulator. Enumeration of combinations of control signals and the corresponding intensity levels gives the possibility to observe an empirical dependence of the parasitic effects and use it later for compensation. Main Results. The efficiency of the proposed method is demonstrated by the program model of the fiber optic gyroscope. The results of the method application on a production sample of the device were obtained. Comparison with the results of direct estimate of the parasitic intensity modulation effect testifies to the effectiveness of the proposed method. Practical Relevance. The method can be used as a diagnostic tool to quantify the influence of parasitic effects in the electro-optic modulator of the fiber optic gyroscope as well as for their subsequent compensation.

  16. SCALE FACTOR DETERMINATION METHOD OF ELECTRO-OPTICAL MODULATOR IN FIBER-OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-05-01

    Full Text Available Subject of Research. We propose a method for dynamic measurement of half-wave voltage of electro-optic modulator as part of a fiber optic gyroscope. Excluding the impact of the angular acceleration o​n measurement of the electro-optical coefficient is achieved through the use of homodyne demodulation method that allows a division of the Sagnac phase shift signal and an auxiliary signal for measuring the electro-optical coefficient in the frequency domain. Method. The method essence reduces to decomposition of step of digital serrodyne modulation in two parts with equal duration. The first part is used for quadrature modulation signals. The second part comprises samples of the auxiliary signal used to determine the value of the scale factor of the modulator. Modeling is done in standalone model, and as part of a general model of the gyroscope. The applicability of the proposed method is investigated as well as its qualitative and quantitative characteristics: absolute and relative accuracy of the electro-optic coefficient, the stability of the method to the effects of angular velocities and accelerations, method resistance to noise in actual devices. Main Results. The simulation has showed the ability to measure angular velocity changing under the influence of angular acceleration, acting on the device, and simultaneous measurement of electro-optical coefficient of the phase modulator without interference between these processes. Practical Relevance. Featured in the paper the ability to eliminate the influence of the angular acceleration on the measurement accuracy of the electro-optical coefficient of the phase modulator will allow implementing accurate measurement algorithms for fiber optic gyroscopes resistant to a significant acceleration in real devices.

  17. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    Science.gov (United States)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  18. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    Science.gov (United States)

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  19. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  20. Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal

    International Nuclear Information System (INIS)

    Voloshinov, V. B.; Lemyaskina, E. A.

    1996-01-01

    The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)

  1. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...

  2. Optical filtering in directly modulated/detected OOFDM systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  3. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  4. Focused ultrasound-modulated glomerular ultrafiltration assessed by functional changes in renal arteries.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available This study demonstrates the feasibility of using focused ultrasound (FUS to modulate glomerular ultrafiltration by renal artery sonication and determine if protein-creatinine ratios are estimated through vascular parameters. All animal experiments were approved by our Animal Care and Use Committee. The renal arteries of Sprague-Dawley rats were surgically exposed and sonicated at various acoustic power levels using a FUS transducer with a resonant frequency of 1 MHz. The mean peak systolic velocity (PSV of the blood flow was measured by Doppler ultrasound imaging. Urinary protein-creatinine ratios were calculated during the experiments. Histological examination of renal arteries and whole kidneys was performed. The PSV, pulsatility index, and resistance index of blood flow significantly increased in the arteries after FUS sonication without microbubbles (p<0.05. The change in normalized protein-creatinine ratios significantly increased with increasing acoustic power, but such was not observed when microbubbles were administered. Furthermore, no histological changes were observed in the hematoxylin- and eosin-stained sections. Glomerular ultrafiltration is regulated temporarily by renal artery sonication without microbubbles. Monitoring vascular parameters are useful in estimating the normalized change in protein-creatinine ratios.

  5. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  6. Demonstration of the frequency modulation of optical signals with a high frequency deviation parameter

    International Nuclear Information System (INIS)

    Shamray, A V; Kozlov, A S; Il'ichev, I V; Petrov, M P

    2008-01-01

    A new type of an integrated optical modulator for the frequency coding of optical signals is developed and fabricated. The modulator operation is based on the original technology of the electric control of a Bragg grating. The frequency modulation of an optical signal with the frequency deviation of 25 GHz is demonstrated experimentally. The modular was used to transfer the ASCII code through an optical fibre. (optical communication)

  7. Theoretical analysis of a novel ultrasound generator on an optical fiber tip

    Science.gov (United States)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Guthy, Charles; Wang, Xingwei

    2010-04-01

    A novel ultrasound generator consisting of a single mode optical fiber with a layer of gold nanoparticles on its tip has been designed. The generator utilizes the optical and photo-acoustic properties of gold nanoparticles. When heated by laser pulses, a thin absorption layer made up of these nanoparticles at the cleaved surface of a single mode fiber generates a mechanical shock wave caused by thermal expansion. Mie's theory was applied in a MATLAB simulation to determine the relationship between the absorption efficiency and the optical resonance wavelengths of a layer of gold nanospheres. Results showed that the absorption efficiency and related resonance wavelengths of gold nanospheres varied based on the size of the gold nanosphere particles. In order to obtain the bandwidths associated with ultrasound, another MATLAB simulation was run to study the relationship between the power of the laser being used, the size of the gold nanosphere, and the energy decay time. The results of this and the previous simulation showed that the energy decay time is picoseconds in length.

  8. Three-dimensional diffuse optical mammography with ultrasound localization in a human subject

    Science.gov (United States)

    Holboke, Monica J.; Tromberg, Bruce J.; Li, Xingde; Shah, Natasha; Fishkin, Joshua B.; Kidney, D.; Butler, J.; Chance, Britton; Yodh, Arjun G.

    2000-04-01

    We describe an approach that combines clinical ultrasound and photon migration techniques to enhance the sensitivity and information content of diffuse optical tomography. Measurements were performed on a postmenopausal woman with a single 1.8 X 0.9 cm malignant ductal carcinoma in situ approximately 7.4 mm beneath the skin surface (UCI IRB protocol 95-563). The ultrasound-derived information about tumor geometry enabled us to segment the breast tissue into tumor and background regions. Optical data was obtained with a multifrequency, multiwavelength hand-held frequency-domain photon migration backscattering probe. The optical properties of the tumor and background were then computed using the ultrasound-derived geometrical constraints. An iterative perturbative approach, using parallel processing, provided quantitative information about scattering and absorption simultaneously with the ability to incorporate and resolve complex boundary conditions and geometries. A three to four fold increase in the tumor absorption coefficient and nearly 50% reduction in scattering coefficient relative to background was observed ((lambda) equals 674, 782, 803, and 849 nm). Calculations of the mean physiological parameters reveal fourfold greater tumor total hemoglobin concentration [Hbtot] than normal breast (67 (mu) M vs 16 (mu) M) and tumor hemoglobin oxygen saturation (SOx) values of 63% (vs 73% and 68% in the region surrounding the tumor and the opposite normal tissue, respectively). Comparison of semi-infinite to heterogeneous models shows superior tumor/background contrast for the latter in both absorption and scattering. Sensitivity studies assessing the impact of tumor size and refractive index assumptions, as well as scan direction, demonstrate modest effects on recovered properties.

  9. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due to their......The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due...... (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function...... of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical...

  10. Testing the precision optical calibration module for PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, Martin; Holzapfel, Kilian [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The Precision IceCube Next Generation Upgrade (PINGU) is primarily designed to determine the neutrino mass hierarchy. This measurement requires an accurate calibration of the detector in order to reduce systematic uncertainties. The Precision Optical Calibration Modules (POCAM) will be placed in the detector as a well calibrated artificial light source in the ice. The POCAM will be enclosed in a glass sphere identical to those used for the detector modules. To construct and simulate a prototype of the POCAM, every component needs to be analyzed by their optical characteristics and by the behavior in temperatures down to -50 C. Therefore a highly shielded an isolated environment has to be build up. We report the status of the testing environment and the hardware selected.

  11. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  12. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  13. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    Science.gov (United States)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  14. Ultra-fine metal gate operated graphene optical intensity modulator

    Science.gov (United States)

    Kou, Rai; Hori, Yosuke; Tsuchizawa, Tai; Warabi, Kaori; Kobayashi, Yuzuki; Harada, Yuichi; Hibino, Hiroki; Yamamoto, Tsuyoshi; Nakajima, Hirochika; Yamada, Koji

    2016-12-01

    A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide-planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al2O3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2 dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.

  15. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    Science.gov (United States)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  16. Rejuvenating direct modulation and direct detection for modern optical communications

    Science.gov (United States)

    Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William

    2018-02-01

    High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.

  17. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  18. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    Science.gov (United States)

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  19. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography

    International Nuclear Information System (INIS)

    Zhang, Y Q; Wei, H J; Guo, Z Y; Gu, H M; Guo, X; Zhu, Z G; Yang, H Q; Xie, S S

    2013-01-01

    Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound–OCAs combination has the ability to distinguish CE from NE. (paper)

  20. Optical logic gates based on electro-optic modulation with Sagnac interferometer.

    Science.gov (United States)

    Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong

    2014-07-20

    In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12)  m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.

  1. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Räber, Lorenz; Heo, Jung Ho; Radu, Maria D

    2012-01-01

    To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.......To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images....

  2. Maximum likelihood sequence estimation for optical complex direct modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  3. Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation

    Science.gov (United States)

    Fleury, R.; Sounas, D. L.; Alù, A.

    2018-03-01

    Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.

  4. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns

    NARCIS (Netherlands)

    Resink, Steffen; Steenbergen, Wiendelt

    2015-01-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical

  5. Estimating the accuracy of optic nerve sheath diameter measurement using a pocket-sized, handheld ultrasound on a simulation model.

    Science.gov (United States)

    Johnson, Garrett G R J; Zeiler, Frederick A; Unger, Bertram; Hansen, Gregory; Karakitsos, Dimitrios; Gillman, Lawrence M

    2016-12-01

    Ultrasound measurement of optic nerve sheath diameter (ONSD) appears to be a promising, rapid, non-invasive bedside tool for identification of elevated intra-cranial pressure. With improvements in ultrasound technology, machines are becoming smaller; however, it is unclear if these ultra-portable handheld units have the resolution to make these measurements precisely. In this study, we estimate the accuracy of ONSD measurement in a pocket-sized ultrasound unit. Utilizing a locally developed, previously validated model of the eye, ONSD was measured by two expert observers, three times with two machines and on five models with different optic nerve sheath sizes. A pocket ultrasound (Vscan, GE Healthcare) and a standard portable ultrasound (M-Turbo, SonoSite) were used to measure the models. Data was analyzed by Bland-Altman plot and intra-class correlation coefficient (ICC). The ICC between raters for the SonoSite was 0.878, and for the Vscan was 0.826. The between-machine agreement ICC was 0.752. Bland-Altman agreement analysis between the two ultrasound methods showed an even spread across the range of sheath sizes, and that the Vscan tended to read on average 0.33 mm higher than the SonoSite for each measurement, with a standard deviation of 0.65 mm. Accurate ONSD measurement may be possible utilizing pocket-sized, handheld ultrasound devices despite their small screen size, lower resolution, and lower probe frequencies. Further study in human subjects is warranted for all newer handheld ultrasound models as they become available on the market.

  6. Sinusoidal modulation analysis for optical system MTF measurements.

    Science.gov (United States)

    Boone, J M; Yu, T; Seibert, J A

    1996-12-01

    The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.

  7. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  8. Self-organized plasmonic metasurfaces for all-optical modulation

    Science.gov (United States)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  9. Optical trapping and tweezing using a spatial light modulator

    CSIR Research Space (South Africa)

    Ismail, Y

    2009-07-01

    Full Text Available using a spatial light modulator Y.Ismail1,2, M. G. Mclaren1,3, A. Forbes1,2,4 1 CSIR National Laser Centre 2 School of Physics, University of KwaZulu-Natal 3 School of Physics, University of the Witwatersrand 4 School of Physics, University... of Stellenbosch Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009 Optical tweezing is based on the manipulation of micron sized particles in 3 dimensions 100X...

  10. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  11. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  12. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim

    2006-01-01

    A novel noise reduction scheme called Balanced Modulation and Detection (BMD) is proposed. In this scheme, the modulating RF signal is half-wave rectified in the optical domain, eliminating the DC optical power resulting from pre-biasing of the optical source. A link model employing this scheme has

  13. Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Cases1

    Science.gov (United States)

    Zhu, Quing; Huang, Minming; Chen, NanGuang; Zarfos, Kristen; Jagjivan, Bipin; Kane, Mark; Hedge, Poornima; Kurtzman, H. Scott

    2003-01-01

    Abstract The diagnosis of solid benign and malignant tumors presents a unique challenge to all noninvasive imaging modalities. Ultrasound is used in conjunction with mammography to differentiate simple cysts from solid lesions. However, the overlapping appearances of benign and malignant lesions make ultrasound less useful in differentiating solid lesions, resulting in a large number of benign biopsies. Optical tomography using near-infrared diffused light has great potential for imaging functional parameters of 1) tumor hemoglobin concentration, 2) oxygen saturation, and 3) metabolism, as well as other tumor distinguishing characteristics. These parameters can differentiate benign from malignant lesions. However, optical tomography, when used alone, suffers from low spatial resolution and target localization uncertainty due to intensive light scattering. Our aim is to combine diffused light imaging with ultrasound in a novel way for the detection and diagnosis of solid lesions. Initial findings of two earlystage invasive carcinomas, one combined fibroadenoma and fibrocystic change with scattered foci of lobular neoplasia/lobular carcinoma in situ, and 16 benign lesions are reported in this paper. The invasive cancer cases reveal about two-fold greater total hemoglobin concentration (mean 119 µmol) than benign cases (mean 67 µmol), and suggest that the discrimination of benign and malignant breast lesions might be enhanced by this type of achievable optical quantification with ultrasound localization. Furthermore, the small invasive cancers are well localized and have wavelength-dependent appearance in optical absorption maps, whereas the benign lesions appear diffused and relatively wavelength-independent. PMID:14670175

  14. Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Cases

    Directory of Open Access Journals (Sweden)

    Quing Zhu

    2003-09-01

    Full Text Available The diagnosis of solid benign and malignant tumors presents a unique challenge to all noninvasive imaging modalities. Ultrasound is used in conjunction with mammography to differentiate simple cysts from solid lesions. However, the overlapping appearances of benign and malignant lesions make ultrasound less useful in differentiating solid lesions, resulting in a large number of benign biopsies. Optical tomography using near-infrared diffused light has great potential for imaging functional parameters of 1 tumor hemoglobin concentration, 2 oxygen saturation, 3 metabolism, as well as other tumor distinguishing characteristics. These parameters can differentiate benign from malignant lesions. However, optical tomography, when used alone, suffers from low spatial resolution and target localization uncertainty due to intensive light scattering. Our aim is to combine diffused light imaging with ultrasound in a novel way for the detection and diagnosis of solid lesions. Initial findings of two earlystage invasive carcinomas, one combined fibroadenoma and fibrocystic change with scattered foci of lobular neoplasia/lobular carcinoma in situ, 16 benign lesions are reported in this paper. The invasive cancer cases reveal about two-fold greater total hemoglobin concentration (mean 119 μmol than benign cases (mean 67 μmol, suggest that the discrimination of benign and malignant breast lesions might be enhanced by this type of achievable optical quantification with ultrasound localization. Furthermore, the small invasive cancers are well localized and have wavelength-dependent appearance in optical absorption maps, whereas the benign lesions appear diffused and relatively wavelength-independent.

  15. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  16. Transcranial cavitation-mediated ultrasound therapy at sub-MHz frequency via temporal interference modulation

    Science.gov (United States)

    Sun, Tao; Sutton, Jonathan T.; Power, Chanikarn; Zhang, Yongzhi; Miller, Eric L.; McDannold, Nathan J.

    2017-10-01

    Sub-megahertz transmission is not usually adopted in pre-clinical small animal experiments for focused ultrasound (FUS) brain therapy due to the large focal size. However, low frequency FUS is vital for preclinical evaluations due to the frequency-dependence of cavitation behavior. To maximize clinical relevance, a dual-aperture FUS system was designed for low-frequency (274.3 kHz) cavitation-mediated FUS therapy. Combining two spherically curved transducers provides significantly improved focusing in the axial direction while yielding an interference pattern with strong side lobes, leading to inhomogeneously distributed cavitation activities. By operating the two transducers at slightly offset frequencies to modulate this interference pattern over the period of sonication, the acoustic energy was redistributed and resulted in a spatially homogenous treatment profile. Simulation and pressure field measurements in water were performed to assess the beam profiles. In addition, the system performance was demonstrated in vivo in rats via drug delivery through microbubble-mediated blood-brain barrier disruption. This design resulted in a homogenous treatment profile that was fully contained within the rat brain at a clinically relevant acoustic frequency.

  17. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  18. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  19. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  20. Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system

    Science.gov (United States)

    Nuster, Robert; Paltauf, Guenther

    2017-07-01

    CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.

  1. Perspectives on Imaging the Left Main Coronary Artery Using Intravascular Ultrasound and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Harry C Lowe

    2015-01-01

    Full Text Available Percutaneous Coronary Intervention (PCI for significant left main coronary artery (LMCA stenosis is increasingly being viewed as a viable alternative to Coronary Artery Bypass Grafting (CABG (1. This is leading to an expectation of increasing numbers of such procedures, with a consequent focus on both the ability to image both lesion severity, and assess more accurately the results of PCI. While there have been advances in physiologic assessment of left main severity using fractional flow reserve (FFR, imaging of the LMCA using Intravascular Ultrasound (IVUS and more recently Optical Coherence Tomography (OCT has the specific advantage of being able to provide detailed anatomical information both pre and post PCI, such that it is timely to review briefly the current status of these two imaging technologies in the context of LMCA intervention.

  2. Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo

    2013-11-15

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  3. Are Live Ultrasound Models Replaceable? Traditional vs. Simulated Education Module for FAST

    Directory of Open Access Journals (Sweden)

    Suzanne Bentley

    2015-10-01

    Full Text Available Introduction: The focused assessment with sonography for trauma (FAST is a commonly used and life-saving tool in the initial assessment of trauma patients. The recommended emergency medicine (EM curriculum includes ultrasound and studies show the additional utility of ultrasound training for medical students. EM clerkships vary and often do not contain formal ultrasound instruction. Time constraints for facilitating lectures and hands-on learning of ultrasound are challenging. Limitations on didactics call for development and inclusion of novel educational strategies, such as simulation. The objective of this study was to compare the test, survey, and performance of ultrasound between medical students trained on an ultrasound simulator versus those trained via traditional, hands-on patient format. Methods: This was a prospective, blinded, controlled educational study focused on EM clerkship medical students. After all received a standardized lecture with pictorial demonstration of image acquisition, students were randomized into two groups: control group receiving traditional training method via practice on a human model and intervention group training via practice on an ultrasound simulator. Participants were tested and surveyed on indications and interpretation of FAST and training and confidence with image interpretation and acquisition before and after this educational activity. Evaluation of FAST skills was performed on a human model to emulate patient care and practical skills were scored via objective structured clinical examination (OSCE with critical action checklist. Results: There was no significant difference between control group (N=54 and intervention group (N=39 on pretest scores, prior ultrasound training/education, or ultrasound comfort level in general or on FAST. All students (N=93 showed significant improvement from pre- to post-test scores and significant improvement in comfort level using ultrasound in general and on FAST

  4. Modulation Formats for Beyond-100Gbps Ethernet Optical Links – A Review of Research

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Iglesias Olmedo, Miguel; Tafur Monroy, Idelfonso

    2013-01-01

    The current increase in data-centers traffic and cloud-based services presents a formidable challenge for optical interconnects. We examine these challenges, and review recent breakthroughs in advanced modulation formats formats for intensity modulation - direct detection....

  5. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  6. Programmable logic controller optical fibre sensor interface module

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Hinckley, Steven

    2011-12-01

    Most automated industrial processes use Distributed Control Systems (DCSs) or Programmable Logic Controllers (PLCs) for automated control. PLCs tend to be more common as they have much of the functionality of DCSs, although they are generally cheaper to install and maintain. PLCs in conjunction with a human machine interface form the basis of Supervisory Control And Data Acquisition (SCADA) systems, combined with communication infrastructure and Remote Terminal Units (RTUs). RTU's basically convert different sensor measurands in to digital data that is sent back to the PLC or supervisory system. Optical fibre sensors are becoming more common in industrial processes because of their many advantageous properties. Being small, lightweight, highly sensitive, and immune to electromagnetic interference, means they are an ideal solution for a variety of diverse sensing applications. Here, we have developed a PLC Optical Fibre Sensor Interface Module (OFSIM), in which an optical fibre is connected directly to the OFSIM located next to the PLC. The embedded fibre Bragg grating sensors, are highly sensitive and can detect a number of different measurands such as temperature, pressure and strain without the need for a power supply.

  7. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  8. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud

    2001-01-01

    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  9. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  10. A readout system for the wavelength-shifting optical module

    Energy Technology Data Exchange (ETDEWEB)

    Foesig, Carl-Christian; Boeser, Sebastian [Johannes Gutenberg-Universitaet, Mainz (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The success of IceCube and the plans for an IceCube-Gen2 stimulate the development of new photo sensors. The approach of the Wavelength-shifting Optical Module is to provide a device which has a low dark noise rate combined with a high detection efficiency. A small PMT is used to detect red shifted photons guided in a coated PMMA tube, originally emitted by a wavelength shifting coating that absorbs photons in the UV Region. We have studied several PMTs for their usability with the IceCube-Gen2 readout system. Relevant parameters are the pulse widths in relation to the bandwidth of the IceCube-Gen2 readout electronics and the dark noise rates.

  11. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  12. Macular hole: 10 and 20-MHz ultrasound and spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Juliana Mantovani Bottós

    2012-12-01

    Full Text Available PURPOSE: Optical coherence tomography (OCT is valuable for macula evaluation. However, as this technique relies on light energy it cannot be performed in the presence of opaque media. In such cases, the ultrasound (US may predict some macular features. The aim of this study was to characterize images obtained by ultrasound with 10 and 20-MHz transducers comparing to OCT, as well as to analyze the relationship between the vitreous and retina in eyes with macular hole (MH. METHODS: 29 eyes of 22 patients with biomicroscopic evidence of MH at different stages were included. All patients were evaluated using ultrasonography with 10 and 20-MHz transducers and OCT. RESULTS: OCT identified signs of MH in 25 of 29 eyes. The remaining 4 cases not identified by US were pseudoholes caused by epiretinal membranes. In MH stages I (2 eyes and II (1 eye, both transducers were not useful to analyze the macular thickening, but suggestive findings as macular irregularity, operculum or partial posterior vitreous detachment (PVD were highlighted. In stages III (14 eyes and IV (5 eyes, both transducers identified the double hump irregularity and thickening. US could measure the macular thickness and other suggestive findings for MH: operculum, vitreomacular traction and partial or complete PVD. In cases of pseudoholes, US identified irregularities macular contour and a discrete depression. CONCLUSION: 10-MHz US was useful for an overall assessment of the vitreous body as well as its relationship to the retina. The 20-MHz transducer allowed valuable information on the vitreomacular interface and macular contour. OCT provides superior quality for fine morphological study of macular area, except in cases of opaque media. In these cases, and even if OCT is not available, the combined US study is able to provide a valid evaluation of the macular area improving therapeutic approach.

  13. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    ultrasound presents design methods of linear FM signals and mismatched filters, in order to meet the higher demands on resolution in ultrasound imaging. It is shown that for the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces....... The method is evaluated first for resolution performance and axial sidelobes through simulations with the program Field II. A coded excitation ultrasound imaging system based on a commercial scanner and a 4 MHz probe driven by coded sequences is presented and used for the clinical evaluation of the coded...... excitation/compression scheme. The clinical images show a significant improvement in penetration depth and contrast, while they preserve both axial and lateral resolution. At the maximum acquisition depth of 15 cm, there is an improvement of more than 10 dB in the signal-to-noise ratio of the images...

  14. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  15. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  16. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    International Nuclear Information System (INIS)

    Fehm, Thomas Felix; Razansky, Daniel; Deán-Ben, Xosé Luís

    2014-01-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  17. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  18. Sensitivity of a multi-photomultiplier optical module for KM3NeT

    NARCIS (Netherlands)

    Löhner, H.; Mjos, A.

    2009-01-01

    For the KM3NeT neutrino telescope an optical module with a number of small photomultiplier tubes (multi-PMT optical module) will be advantageous for various reasons, e.g. reduced background rate, a larger number of coincidence hits, and sensitivity to ultra-high energy neutrinos. The properties of

  19. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  20. Local vacancies in optical modulation polymers studied by positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shimazu, Akira

    2009-01-01

    The ability of a slow positron beam to prove vacancies at the surface and in bulk regions of optical modulation polymers was demonstrated. A slow positron beam system was found to be a powerful tool to study the change in the microstructure driven by photopolymerization of novel optical modulation polymers. (author)

  1. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  2. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  3. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    Science.gov (United States)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  4. Head to head comparison of optical coherence tomography, intravascular ultrasound echogenicity and virtual histology for the detection of changes in polymeric struts over time

    DEFF Research Database (Denmark)

    Brugaletta, Salvatore; Gomez-Lara, Josep; Bruining, Nico

    2012-01-01

    To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the A......To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation...

  5. A simple system for 160GHz optical terahertz wave generation and data modulation

    Science.gov (United States)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  6. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  7. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.

    Science.gov (United States)

    Whiteside, Paul J D; Qian, Chenxi; Golda, Nicholas; Hunt, Heather K

    2017-09-01

    Applications of light-based energy devices involving optical targets within the dermis frequently experience negative side-effects resultant from surface scattering and excess optical absorption by epidermal melanin. As a broadband optical absorber, melanin decreases the efficacy of light-based treatments throughout the ultraviolet, visible, and near-infrared spectra while also generating additional heat within the surface tissue that can lead to inflammation or tissue damage. Consequently, procedures may be performed using greater energy densities to ensure that the target receives a clinically relevant dose of light; however, such practices are limited, as doing so tends to exacerbate the detrimental complications resulting from melanin absorption of treatment light. The technique presented herein represents an alternative method of operation aimed at increasing epidermal energy fluence while mitigating excess absorption by unintended chromophores. The approach involves the application of continuously pulsed ultrasound to modulate the tissue's optical properties and thereby improve light transmission through the epidermis. To demonstrate the change in optical properties, pulsed light at a wavelength of 532 nm from a Q-switched Nd:YAG laser was transmitted into 4 mm thick samples of porcine skin, comprised of both epidermal and dermal tissue. The light was transmitted using an optical waveguide, which allowed for an ultrasonic transducer to be incorporated for simultaneous paraxial pulsation in parallel with laser operation. Light transmitted through the tissue was measured by a photodiode attached to an integrating sphere. Increasing the driving voltage of ultrasonic pulsation resulted in an increase in mean transmitted optical power of up to a factor of 1.742 ± 0.0526 times the control, wherein no ultrasound was applied, after which the optical power increase plateaued to an average amplification factor of 1.733 ± 0.549 times the control. The

  8. 8x40 Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Yvind, Kresten

    2004-01-01

    We experimentally demonstrate all-optical broadcasting through simultaneous 8 × 40 Gb/s wavelength conversion in the RZ format based on cross absorption modulation in an electroabsorption modulator. The original intensity-modulated information is successfully duplicated onto eight wavelengths...

  9. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  10. Magneto-optically modulated CH/sub 3/OH laser For faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH/sub 3/OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a Tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant. 12 refs

  11. A magneto-optically modulated CH3OH laser for Faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH3OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant

  12. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  13. 3D optical imagery for motion compensation in a limb ultrasound system

    Science.gov (United States)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  14. Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents

    Science.gov (United States)

    Ardeshirpour, Yasaman; Biswal, Nrusingh; Aguirre, Andres; Zhu, Quing

    2011-04-01

    In diffuse optical tomography (DOT), a typical perturbation approach requires two sets of measurements obtained at the lesion breast (lesion or target site) and a contra-lateral location of the normal breast (reference site) for image reconstruction. For patients who have a small amount of breast tissue, the chest-wall underneath the breast tissue at both sites affects the imaging results. In this group of patients, the perturbation, which is the difference between measurements obtained at the lesion and reference sites, may include the information of background mismatch which can generate artifacts or affect the reconstructed quantitative absorption coefficient of the lesion. Also, for patients who have a single breast due to prior surgery, the contra-lateral reference is not available. To improve the DOT performance or overcome its limitation, we introduced a new method based on an exogenous contrast agent and demonstrate its performance using animal models. Co-registered ultrasound was used to guide the lesion localization. The results have shown that artifacts caused by background mismatch can be reduced significantly by using this new method.

  15. Electro-optic polymers for high speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature $(T_g)$ and photodefinable properties. The polymers tested are polysulfone (PS) and polycarbonate (PC). The electro-optic chromophore,

  16. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  17. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  18. Development and investigation of a CPV module with Cassegrain mirror optics

    Science.gov (United States)

    Dreger, Max; Wiesenfarth, Maike; Kisser, Arne; Schmid, Tobias; Bett, Andreas W.

    2014-09-01

    One approach to concentrate the sunlight in concentrating photovoltaic (CPV) modules is using Cassegrain mirror optics. The advantage is that a passively cooled solar cell can be mounted to a large heat spreader that does not shade the primary optics. In addition, the height of the module, hence weight, can be low. The design was selected on the basis of the results of a design study comparing different CPV module approaches presented in [1]. In this work, we present the development of a new prototype micro dish module. First results of the characterization are shown. Besides of the electrical performance, a machined optics and an injection molded was investigated regarding sensitivity to misalignment errors between the optical elements as well as measurement of the acceptance angle in- and outdoors. The machined optics was used as reference.

  19. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    Science.gov (United States)

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  20. Design of an Electro-Optic Modulator for High Speed Communications

    Science.gov (United States)

    Espinoza, David

    The telecommunications and computer technology industries have been requiring higher communications speeds at all levels for devices, components and interconnected systems. Optical devices and optical interconnections are a viable alternative over other traditional technologies such as copper-based interconnections. Latency reductions can be achieved through the use of optical interconnections. Currently, a particular architecture for optical interconnections is being studied at the University of Colorado at Boulder in the EMT/NANO project, called Broadcast Optical Interconnects for Global Communication in Many-Core Chip Multiprocessor. As with most types of networks, including optical networks, one of the most important components are modulators. Therefore adequate design and fabrication techniques for modulators contribute to higher modulation rates which lead to improve the efficiency and reductions in the latency of the optical network. Electro-optical modulators are presented in this study as an alternative to achieve this end. In recent years, nonlinear optical (NLO) materials have been used for the fabrication of high-speed electro-optical modulators. Polymers doped with chromophores are an alternative among NLO materials because they can develop large electro-optic coefficients and low dielectric constants. These two factors are critical for achieving high-speed modulation rates. These polymer-based electro-optical modulators can be fabricated using standard laboratory techniques, such as polymer spin-coating onto substrates, UV bleaching to achieve a refractive index variation and poling techniques to align the chromophores in cured polymers. The design of the electro-optic modulators require the use of the optical parameters of the materials to be used. Therefore the characterization of these materials is a required previous step. This characterization is performed by the fabrication of chromophores-doped polymer samples and conducting transmission and

  1. High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound.

    Science.gov (United States)

    Sakamoto, João Marcos Salvi; Kitano, Cláudio; Pacheco, Gefeson Mendes; Tittmann, Bernhard Rainer

    2012-07-10

    In this paper, we report on the development of an intensity-modulated fiber-optic sensor for angular displacement measurement. This sensor was designed to present high sensitivity, linear response, and wide bandwidth and, furthermore, to be simple and low cost. The sensor comprises two optical fibers, a positive lens, a reflective surface, an optical source, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to compare different sensor configurations regarding the core radii of the optical fibers. The simulation results showed that the sensor configurations tested are highly sensitive to small angle variation (in the range of microradians) with nonlinearity less than or equal to 1%. The normalized sensitivity ranges from (0.25×V(max)) to (2.40×V(max)) mV/μrad (where V(max) is the peak voltage of the static characteristic curve), and the linear range is from 194 to 1840 μrad. The unnormalized sensitivity for a reflective surface with reflectivity of 100% was measured as 7.7 mV/μrad. The simulations were compared with experimental results to validate the mathematical model and to define the most suitable configuration for ultrasonic detection. The sensor was tested on the characterization of a piezoelectric transducer and as part of a laser ultrasonics setup. The velocities of the longitudinal, shear, and surface waves were measured on aluminum samples as 6.43, 3.17, and 2.96 mm/μs, respectively, with an error smaller than 1.3%. The sensor, an alternative to piezoelectric or interferometric detectors, proved to be suitable for detection of ultrasonic waves and to perform time-of-flight measurements and nondestructive inspection.

  2. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery

    Directory of Open Access Journals (Sweden)

    Jami L. Johnson

    2018-03-01

    Full Text Available Photoacoustic (PA imaging may be advantageous as a safe, non-invasive imaging modality to image the carotid artery. However, calcification that accompanies atherosclerotic plaque is difficult to detect with PA due to the non-distinct optical absorption spectrum of hydroxyapatite. We propose reflection-mode all-optical laser-ultrasound (LUS imaging to obtain high-resolution, non-contact, non-ionizing images of the carotid artery wall and calcification. All-optical LUS allows for flexible acquisition geometry and user-dependent data acquisition for high repeatability. We apply all-optical techniques to image an excised human carotid artery. Internal layers of the artery wall, enlargement of the vessel, and calcification are observed with higher resolution and reduced artifacts with nonconfocal LUS compared to confocal LUS. Validation with histology and X-ray computed tomography (CT demonstrates the potential for LUS as a method for non-invasive imaging in the carotid artery. Keywords: Atherosclerosis, Photoacoustic imaging, Laser-ultrasound, Calcification, Reverse-time migration

  3. Reversely modulated optical single sideband scheme and its application in a 60-GHz full duplex ROF system

    NARCIS (Netherlands)

    Cao, Z.; Yu, J.J.; Chen, L.; Shu, Q.L.

    2012-01-01

    The reversely modulated optical single sideband scheme (IM-OSSB) based on a parallel Mach-Zehnder modulator (P-MZM) is proposed. In this P-MZM, one sub-MZM is employed for data modulation and the other is used for optical millimeter wave (mm-wave) generation. Due to the individual modulation, this

  4. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Morr, Jody; DiPetrillo, Thomas; Tsai, J.-S.; Engler, Mark; Wazer, David E. MD.

    2002-01-01

    Purpose: To evaluate the clinical feasibility of daily computer-assisted transabdominal ultrasonography for target position verification in the setting of intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Twenty-three patients with clinically localized prostate cancer were treated using a sequential tomotherapy IMRT technique (Peacock) and daily computer-assisted transabdominal ultrasonography (BAT) for target localization. Patients were instructed to maintain a full bladder and were placed in the supine position using triangulation tattoos and a leg immobilizer to minimize pelvic rotation. The BAT ultrasound system is docked to the treatment collimator and electronically imports the CT simulation target contours and isocenter. The system is able to use the machine isocenter as a reference point to overlay the corresponding CT contours onto the ultrasound images captured in the transverse and sagittal planes. A touch screen menu is used to maneuver the CT contours in three dimensions such that they match the ultrasound images. The system then displays the three-dimensional couch shifts required to produce field alignment. Data were prospectively collected to measure the frequency by which useful ultrasound images were obtained, the amount of time required for localization/setup, and the direction/magnitude of the positional adjustments. Results: Of the 23 patients, the BAT ultrasound system produced images of sufficient quality to perform the overlay of the CT contours in 19 patients such that positional verification could be reliably performed. Poor image quality was associated with patient inability to maintain a full bladder, large body habitus, or other anatomic constraints. Of the 19 assessable patients, a total of 185 treatment alignments were performed (mean 8.8/patient). For all cases, the average time required for the daily ultrasound imaging and positional adjustments was 11.9 min. After the initial 5 cases, the user

  5. Acousto-optic modulation of III-V semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Smith, D.L.; Kogan, S.M.; Ruden, P.P.; Mailhiot, C.

    1996-01-01

    We present an analysis of the effect of surface acoustic waves (SAW close-quote s) on the optical properties of III-V semiconductor multiple quantum wells (MQW close-quote s). Modulation spectra at the fundamental and second harmonic of the SAW frequency are presented. The SAW modulates the optical properties of the MQW primarily by changing optical transition energies. The SAW generates both strains, which modulate the transition energies by deformation potential effects, and electric fields, which modulate the transition energies by the quantum confined Stark effect. We find that modulation of the transition energies by strain effects is usually more important than by electric-field effects. If large static electric fields occur in the MQW, the SAW-generated electric field can mix with the static field to give optical modulation, which is comparable in magnitude to modulation from the deformation potential effect. If there are no large static electric fields, modulation by the SAW-generated fields is negligible. A large static electric field distributes oscillator strength among the various optical transitions so that no single transition is as strong as the primary allowed transitions without a static electric field. To achieve the maximum modulation for fixed SAW parameters, it is best to modulate a strong optical transition. Thus optimum modulation occurs when there are no large static electric fields present and that modulation is primarily from deformation potential effects. We specifically consider Ga x In 1-x As/Ga x Al 1-x As MQW close-quote s grown on (100) and (111) oriented substrates, but our general conclusions apply to other type I MQW close-quote s fabricated from III-V semiconductors. copyright 1996 The American Physical Society

  6. Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures

    DEFF Research Database (Denmark)

    Thirstrup, C.

    1992-01-01

    A novel electro-optical phase modulator working at 1.55 µm is analyzed and proposed. It is shown by a numerical model that in a GaInAs/InP pn-nin-pn multiple-quantum-well waveguide structure, large optical phase modulation can be obtained at small intensity modulation and with improved performance...

  7. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  8. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  9. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  10. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  11. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    Science.gov (United States)

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  12. Optical Coherence Tomography Analysis of Attenuated Plaques Detected by Intravascular Ultrasound in Patients with Acute Coronary Syndromes

    Directory of Open Access Journals (Sweden)

    Takashi Kubo

    2011-01-01

    Full Text Available Background. Recent intravascular ultrasound (IVUS studies have demonstrated that hypoechoic plaque with deep ultrasound attenuation despite absence of bright calcium is common in acute coronary syndrome. Such “attenuated plaque” may be an IVUS characteristic of unstable lesion. Methods. We used optical coherence tomography (OCT in 104 patients with unstable angina to compare lesion characteristics between IVUS-detected attenuated plaque and nonattenuated plaque. Results. IVUS-detected attenuated plaque was observed in 41 (39% patients. OCT-detected lipidic plaque (88% versus 49%, <0.001, thin-cap fibroatheroma (48% versus 16%, <0.001, plaque rupture (44% versus 11%, <0.001, and intracoronary thrombus (54% versus 17%, <0.001 were more often seen in IVUS-detected attenuated plaques compared with nonattenuated plaques. Conclusions. IVUS-detected attenuated plaque has many characteristics of unstable coronary lesion. The presence of attended plaque might be an important marker of lesion instability.

  13. Low-cost optical interconnect module for parallel optical data links

    Science.gov (United States)

    Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.

    1995-04-01

    We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.

  14. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    Science.gov (United States)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  15. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  16. Optically stimulated luminescence from quartz measured using the linear modulation technique

    DEFF Research Database (Denmark)

    Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonical...

  17. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  18. PREPARATION OF THE SINGLE MODE PLANAR OPTICAL SPLITTER MODULES AND THEIR CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    Vu Doan Mien

    2017-11-01

    Full Text Available Optical splitter modules have been prepared based on 1x8 single mode silica planar waveguide optical splitter chips with 250 µm spacing and v-groove fiber arrays for applications in fiber optic communications. We report the technology of precise optical coupling and packaging of the splitter modules and the measurements of the insertion loss (< 11 dB,  uniformity (< 0.80 dB and polarization dependence loss (PLD < 0.10 dB as well as the lateral profile and the image of the input and output lights for the wavelengths of 1310 nm and 1550 nm. The main characteristics of the prepared splitter modules are about the same for the commercial available products. The prepared modules have been tested for operation in the conditions of wide temperature range (5–80°C and humidity range (50–98% and no changes in the main characteristics were observed.

  19. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We present a technique for modulation format recognition for heterogeneous reconfigurable optical networks. The method is based on Stokes space signal representation and uses a variational Bayesian expectation maximization machine learning algorithm. Differentiation between diverse common coheren...

  20. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing; Yue, Weisheng; Gosztola, David J.; Wiederrecht, Gary P.; Wurtz, Gré gory; Zayats, Anatoly V.

    2016-01-01

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time

  1. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... of the filter. A numerical, FE- and BE-based model for calculation of the response of ultrasonic transducers of various geometries formed the basis for the design of such transducers. During laboratory experiments frequency and output power have been varied in order to find the optimal transducer design...

  2. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2013-11-01

    Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in

  3. Cell-to-module optical loss/gain analysis for various photovoltaic module materials through systematic characterization

    Science.gov (United States)

    Hsian Saw, Min; Khoo, Yong Sheng; Singh, Jai Prakash; Wang, Yan

    2017-08-01

    Reducing levelized cost of electricity (LCOE) is important for solar photovoltaics to compete against other energy sources. Thus, the focus should not only be on improving the solar cell efficiency, but also on continuously reducing the losses (or achieving gain) in the cell-to-module process. This can be achieved by choosing the appropriate module material and design. This paper presents a detailed and systematic characterization of various photovoltaic (PV) module materials (encapsulants, tabbing ribbons, and backsheets) and an evaluation of their impact on the output power of silicon wafer-based PV modules. Various characterization tools/techniques, such as UV-vis (reflectance) measurement, external quantum efficiency (EQE) measurement and EQE line-scan are used. Based on the characterization results, we use module materials with the best-evaluated optical performance to build “optimized modules”. Compared to the standard mini-module, an optical gain of more than 5% is achievable for the “optimized module” with selected module materials.

  4. High performance electro-optical modulator based on photonic crystal and graphene

    Science.gov (United States)

    Malekmohammad, M.; Asadi, R.

    2017-07-01

    An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.

  5. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  6. The VTRx+, an optical link module for data transmission at HL-LHC

    CERN Document Server

    Troska, Jan; Detraz, Stephane; Kraxner, Andrea; Olanterä, Lauri; Scarcella, Carmelo; Sigaud, Christophe; Soos, Csaba; Vasey, Francois

    2017-01-01

    Optical data transmission will remain a key enabling technology for the upgrading detectors at HL-LHC. In particular the inner tracking detectors will require low-mass, radiation tolerant optical transmit and receive modules for tight integration in the detector front-ends. We describe the development of such a module, giving details of the design, functional and environmental performance, as well as showing the feasibility of achieving small size, low-mass, and low-power operation.

  7. Advanced Modulation Formats in Cognitive Optical Networks: EU project CHRON Demonstration

    DEFF Research Database (Denmark)

    Borkowski, Robert; Caballero Jambrina, Antonio; Klonidis, Dimitris

    2014-01-01

    We demonstrate real-time path establishment and switching of coherent modulation formats (QPSK, 16QAM) within an optical network driven by cognitive algorithms. Cognition aims at autonomous configuration optimization to satisfy quality of transmission requirements.......We demonstrate real-time path establishment and switching of coherent modulation formats (QPSK, 16QAM) within an optical network driven by cognitive algorithms. Cognition aims at autonomous configuration optimization to satisfy quality of transmission requirements....

  8. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  9. Electroabsorption modulators used for all-optical signal processing and labelling

    DEFF Research Database (Denmark)

    Xu, Lin

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form...... function of an EAM is frequency dependent and the main improvement from an EAM-based regenerator is the enhancement of the ER and the suppression of the noise in a space bit. Applications of EAMs in optical label processing using various orthogonal labelling schemes are discussed. Through EAM...... encoding are –25.6/-28.1 dBm and –23.7/-21 dBm, respectively. Using an EAM for optical label insertion and a MZ-SOA for optical label erasure and payload regeneration in the ASK(10 Gb/s)/ Frequency Shift Keying (312 Mb/s) orthogonal modulation format, the complete functionality of a network node including...

  10. Design and assembly of the optical modules for phase-2 of the NEMO project

    Energy Technology Data Exchange (ETDEWEB)

    Leonora, E., E-mail: emanuele.leonora@ct.infn.it; Aiello, S.

    2013-10-11

    The NEMO collaboration team has undertaken a Phase-2 project, which aims at the realization and installation of a new infrastructure at the Capo Passero (Italy) deep-sea site at a depth of 3500 m. With this objective in mind, a fully equipped tower with 8-storey hosting two optical modules at each end is under construction. Following a well established procedure, 32 optical modules have been assembled. The optical module consists of a large area photomultiplier tube enclosed in a pressure resistant glass sphere with a diameter of 13 in. The photomultiplier is a R7081 type, produced by Hamamatsu, with a photocathode area with a diameter of 10 in. and 10 dynodes. Mechanical and optical contacts between the front of the photomultiplier tube and the glass surface are ensured by an optical bi-component silicone gel. A mu-metal cage is used to shield the photomultiplier against the influence of the Earth's magnetic field.

  11. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, Semere A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Li, Huan; Liu, Qiyu; Li, Mo, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  12. Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics

    Science.gov (United States)

    Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z.; Soref, Richard; Chen, Ray T.

    2018-03-01

    The past several decades have witnessed the gradual transition from electrical to optical interconnects, ranging from long-haul telecommunication to chip-to-chip interconnects. As one type of key component in integrated optical interconnect and high-performance computing, optical modulators have been well developed these past few years, including ultrahigh-speed microring and microdisk modulators. In this paper, a comparison between microring and microdisk modulators is well analyzed in terms of dimensions, static and dynamic power consumption, and fabrication tolerance. The results show that microdisks have advantages over microrings in these aspects, which gives instructions to the chip design of high-density integrated systems for optical interconnects and optical computing.

  13. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    Science.gov (United States)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  14. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  15. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  16. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing...

  17. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  18. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  19. A novel modulation scheme for noise reduction in analog fiber optic links

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.

    2005-01-01

    A novel balanced modulation and detection scheme for analog fiber optic links is proposed to overcome the limitations in signal-to-noise ratio (SNR) and dynamic range (DR).In this scheme, the modulating signal is split into positive and negative halves and applied to a pair of laser diodes. Both

  20. High resolution ultrasound and magnetic resonance imaging of the optic nerve and the optic nerve sheath: anatomic correlation and clinical importance.

    Science.gov (United States)

    Steinborn, M; Fiegler, J; Kraus, V; Denne, C; Hapfelmeier, A; Wurzinger, L; Hahn, H

    2011-12-01

    We performed a cadaver study to evaluate the accuracy of measurements of the optic nerve and the optic nerve sheath for high resolution US (HRUS) and magnetic resonance imaging (MRI). Five Thiel-fixated cadaver specimens of the optic nerve were examined with HRUS and MRI. Measurements of the optic nerve and the ONSD were performed before and after the filling of the optic nerve sheath with saline solution. Statistical analysis included the calculation of the agreement of measurements and the evaluation of the intraobserver and interobserver variation. Overall a good correlation of measurement values between HRUS and MRI can be found (mean difference: 0.02-0.97 mm). The repeatability coefficient (RC) and concordance correlation coefficient (CCC) values were good to excellent for most acquisitions (RC 0.2-1.11 mm; CCC 0.684-0.949). The highest variation of measurement values was found for transbulbar sonography (RC 0.58-1.83 mm; CCC 0.615/0.608). If decisive anatomic structures are clearly depicted and the measuring points are set correctly, there is a good correlation between HRUS and MRI measurements of the optic nerve and the ONSD even on transbulbar sonography. As most of the standard and cut-off values that have been published for ultrasound are significantly lower than the results obtained with MRI, a reevaluation of sonographic ONSD measurement with correlation to MRI is necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Developmental abnormalities of the optic nerve head in mouse fetuses caused by simultaneous irradiation of x-rays and ultrasound

    International Nuclear Information System (INIS)

    Shirai, Shoichiro; Yuguchi, Shuji; Majima, Akio.

    1981-01-01

    Eye abnormalities in mouse fetuses caused by irradiation of X-rays alone, or simultaneous irradiation of X-rays and ultrasound on day 7 of gestation were histologically studied on day 18 of gestation. Developmental abnormalities of the optic nerve head were examined in the present experiment, and the following results were obtained: 1. Developmental abnormalities of the optic nerve head associated with developmental abnormalities of the vitreous were detected in 4 fetuses (5 eyes). In all cases, excessive mesenchymal tissue of components of the primary vitreous was found from the optic nerve head to the vitreous cavity. It was impossible to distinguish between the neuroectodermal tissue of Bergmeister's papilla and the mesodermal tissue of components of the primary vitreous. 2. In 3 fetuses (4 eyes), the fetal fissure involving the optic nerve head was open. At the peripapillary region, the inner layer of the optic cup was everted and hyperplastic. The inner neuroblastic layer of the everted portion contacted the outer coat of the eyeball, directly. In these cases, the optic nerve entrance was very wide. 3. The relation between the congenital optic nerve head anomalies encountered clinically and those observed experimentally in the mouse fetuses was discussed. It was considered that the pathogenesis of congenital optic nerve head anomalies consists of the malformation of the primitive epithelial papilla, the faulty closure of the proximal end of the fetal fissure, the anomalies of Bergmeister's papilla, the anomalies of the hyaloid system, or the abnormal differentiation and growth of the neuroectodermal cells of the optic cup. (author)

  2. Experimental Demonstration of the Fermi-Pasta-Ulam Recurrence in a Modulationally Unstable Optical Wave

    International Nuclear Information System (INIS)

    Van Simaeys, G.; Emplit, Ph.; Haelterman, M.

    2001-01-01

    Through a detailed spectral analysis of the propagation of square-shaped laser pulses in optical fibers, we provide the experimental demonstration of the Fermi-Pasta-Ulam recurrence phenomenon in modulationally unstable optical waves ruled by the nonlinear Schroedinger equation

  3. Large-area and highly crystalline MoSe2 for optical modulator

    Science.gov (United States)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  4. Analog direct-modulation behavior of semiconductor laser transmitters using optical FM demodulation

    NARCIS (Netherlands)

    Yabre, G.S.

    1998-01-01

    In this paper, we report a theoretical investigation of the analog modulation performance of a semiconductor laser transmitter which employs the direct optical FM demodulation. This analysis is based on the rate equations in which Langevin noise functions are included. The optical FM response has

  5. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  6. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  7. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    Science.gov (United States)

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  8. A Study of Mach-Zehnder Interferometer Type Optical Modulator Applicable to an Accelerometer

    Science.gov (United States)

    Suzuki, Masato; Takahashi, Tomokazu; Aoyagi, Seiji; Amemiya, Yoshiteru; Fukuyama, Masataka; Yokoyama, Shin

    2011-04-01

    A novel Mach-Zehnder interferometer (MZI)-type optical modulator based on micro electro mechanical systems (MEMS) technology is developed in this study. In this optical modulator, one of two branched waveguides in the MZI has a floating beam structure (air-bridge type). Additionally, a cantilever supporting a proof mass intersects with the floating optical waveguide. When an inertial force due to acceleration is applied to the proof mass, the floating waveguide is expanded and the output of the MZI is modulated. Therefore, this optical modulator will be applicable to an accelerometer in the future. To decrease optical loss at the intersectional point between the floating waveguide and the cantilever in the MZI, the multi-mode interference (MMI) waveguide is serially connected with the floating waveguide and the cantilever crosses to the MMI waveguide. An optimization of the MMI waveguide and an estimation of deflection of the floating waveguide due to applying force are carried out by using optical and mechanical simulation, respectively. The proposed optical modulator is fabricated by inductively coupled plasma (ICP) etching of the top layer of a silicon-on-insulator (SOI) wafer, which is made of crystal Si. The floating waveguide in the modulator is formed by removal of its underlying buried oxide (BOX) layer of SOI. As a result of evaluation, we have succeeded in changing the output of the MZI by applying a force to the cantilever. However, the modulation is smaller than the expected value. Improvement of the modulation and detection of the inertial force due to the applied acceleration are future tasks.

  9. Modulation of ionization in the plasma column of an optical discharge

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.

    1981-01-01

    Stability of the ionization in the plasma column of an optical discharge is discussed. It is shown that a plasma filament formed by a long laser spike under optical discharge conditions may break up into a chain of bright luminous layers oriented in the direction of propagation of a laser beam and characterized by a higher gas ionization (''optical striations''). A nonlinear formulation of the problem is used to find the depth of modulation of the gas ionization

  10. Performance degradation of integrated optical modulators due to electrical crosstalk

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper, we investigate electrical crosstalk in integrated Mach-Zehnder modulator arrays based on n-doped InP substrate and show that it can be the cause for transmitter performance degradations. In particular, a common ground return path between adjacent modulators can cause high coupling

  11. Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso; Madsen, Peter

    2016-01-01

    effectively increase the available capacity. Advanced modulation formats however require digitalization of the signals and digital signal processing blocks to both generate and recover the data. There is therefore a trade-off in terms of efficiency gain vs complexity. Polybinary modulation, a generalized form...

  12. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    Science.gov (United States)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  13. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  14. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    . The reported experiment uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding to a data payload of 95.2 Gb/s error free transmission by using a 7% forward error correction (FEC) code. The signal is successfully recovered after 15 km of standard single mode fiber (SSMF) in a system limited by a 3 d......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...... packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...

  15. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  16. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  17. Optimised dispersion management and modulation formats for high speed optical communication systems

    DEFF Research Database (Denmark)

    Tokle, Torger

    2004-01-01

    both narrow spectral width and good transmission properties. The cost of an optical communication system can be lowered by using longer span lengths to reduce the number of amplifier stations. We experimentally study optimum dispersion compensation schemes for systems with 160 km fibre spans made...... modulated signals. In summary, we show that dispersion management using recently developed fibres in combination with advanced modulation formats significantly improves the transmission performance compared to traditional systems. Multi-level phase modulation is demonstrated at bit rates up to 80 Gbit......This thesis studies dispersion management and modulation formats for optical communication systems using per channel bit rates at and above 10 Gbit/s. Novel modulation formats—including recently proposed multilevel phase modulation—are investigated and demonstrated at bit rates up to 80 Gbit/s. New...

  18. Optical Intensity Modulation in an LiNbO3 Slab-Coupled Waveguide

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Optical intensity modulation has been demonstrated through switching the optical beam between the main core waveguide and a closely attached leaky slab waveguide by applying a low-voltage electrical field. Theory for simulating such an LiNbO3 slab-coupled waveguide structure was suggested, and the result indicates the possibility of making the spatial guiding mode large, circular and symmetric, which further allows the potential to significantly reduce the coupling losses with adjacent lasers and optical networks. Optical intensity modulation using electro-optic effect was experimentally demonstrated in a 5 cm long waveguide fabricated by using a procedure of soft proton exchange and then an overgrowth of thin LN film on top of a c-cut LiNbO3 wafer.

  19. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  20. Photodefinable electro-optic polymer for high-speed modulators

    NARCIS (Netherlands)

    Balakrishnan, M.; Faccini, M.; Diemeer, Mart; Verboom, Willem; Driessen, A.; Reinhoudt, David; Leinse, Arne

    2006-01-01

    Direct waveguide definition of a negative photoresist (SU8) containing tricyanovinylidenediphenylaminobenzene (TCVDPA) as electro-optic (EO) chromophore, has been demonstrated for the first time. This was possible by utilising the chromophore low absorption window in the UV region allowing

  1. Transparent conducting oxides for electro-optical plasmonic modulators

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Boltasseva, Alexandra; Lavrinenko, Andrei V.

    2015-01-01

    The ongoing quest for ultra-compact opticaldevices has reached a bottleneck due to the diffractionlimit in conventional photonics. New approaches that providesubwavelength optical elements, and therefore leadto miniaturization of the entire photonic circuit, are urgentlyrequired. Plasmonics, whic...

  2. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Francucci M

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  3. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    R. Ricci

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager (λ = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  4. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  5. Ultracompact electro-optic phase modulator based on III-V-on-silicon microdisk resonator.

    Science.gov (United States)

    Lloret, J; Kumar, R; Sales, S; Ramos, F; Morthier, G; Mechet, P; Spuesens, T; Van Thourhout, D; Olivier, N; Fédéli, J-M; Capmany, J

    2012-06-15

    A novel ultracompact electro-optic phase modulator based on a single 9 μm-diameter III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic waveguide is presented. Modulation is enabled by effective index modification through carrier injection. Proof-of-concept implementation involving binary phase shift keying modulation format is assembled. A power imbalance of ∼0.6  dB between both symbols and a modulation rate up to 1.8 Gbps are demonstrated without using any special driving technique.

  6. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  7. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  8. The optics of gyrotropic crystals in the field of two counter-propagating ultrasound waves

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Hovhannisyan, M A; Matinyan, G K

    2014-01-01

    We consider oblique light propagation through a layer of a gyrotropic crystal in the field of two counter-propagating ultrasound waves. The problem is solved by Ambartsumyan's layer addition modified method. The results of the reflection spectra for different values of the problem parameters are presented. The possibilities of such system applications are discussed.

  9. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  10. Design of a fiber-optic interrogator module for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  11. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  12. The impact of LED transfer function nonlinearity on high-speed optical wireless communications based on discrete-multitone modulation

    NARCIS (Netherlands)

    Inan, B.; Lee, S.C.J.; Randel, S.; Neokosmidis, L.; Koonen, A.M.J.; Walewski, J.

    2009-01-01

    The nonlinear dependence of the optical power from white LEDs on the applied driving current and its impact on discrete-multitone modulation was investigated by use of numerical simulations for the case of optical wireless communications.

  13. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  14. The design of optical module of LED street lamp with non-axial symmetrical reflector

    Science.gov (United States)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  15. Interprofessional Obstetric Ultrasound Education: Successful Development of Online Learning Modules; Case-Based Seminars; and Skills Labs for Registered and Advanced Practice Nurses, Midwives, Physicians, and Trainees.

    Science.gov (United States)

    Shaw-Battista, Jenna; Young-Lin, Nichole; Bearman, Sage; Dau, Kim; Vargas, Juan

    2015-01-01

    Ultrasound is an important aid in the clinical diagnosis and management of normal and complicated pregnancy and childbirth. The technology is widely applied to maternity care in the United States, where comprehensive standard ultrasound examinations are routine. Targeted scans are common and used for an increasing number of clinical indications due to emerging research and a greater availability of equipment with better image resolution at lower cost. These factors contribute to an increased demand for obstetric ultrasound education among students and providers of maternity care, despite a paucity of data to inform education program design and evaluation. To meet this demand, from 2012 to 2015 the University of California, San Francisco nurse-midwifery education program developed and implemented an interprofessional obstetric ultrasound course focused on clinical applications commonly managed by maternity care providers from different professions and disciplines. The course included matriculating students in nursing and medicine, as well as licensed practitioners such as registered and advanced practice nurses, midwives, and physicians and residents in obstetrics and gynecology and family medicine. After completing 10 online modules with a pre- and posttest of knowledge and interprofessional competencies related to teamwork and communication, trainees attended a case-based seminar and hands-on skills practicum with pregnant volunteers. The course aimed to establish a foundation for further supervised clinical training prior to independent practice of obstetric ultrasound. Course development was informed by professional guidelines and clinical and education research literature. This article describes the foundations, with a review of the challenges and solutions encountered in obstetric ultrasound education development and implementation. Our experience will inform educators who wish to facilitate obstetric ultrasound competency development among new and experienced

  16. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Pollock, Benjamin J.; Andrew, Trisha L. [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Soppera, Olivier [Mulhouse Institute for Material Sciences, CNRS LRC 7228, BP2488, Mulhouse 68200 (France)

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes the underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.

  17. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  18. Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

    DEFF Research Database (Denmark)

    Geng, Yan

    the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation......This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator...

  19. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    We obtain conditions for the occurrence of polarization modulational instability in the anomalous and normal dispersion regimes for the coupled nonlinear Schrödinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of ...

  20. Creation and detection of optical modes with spatial light modulators

    CSIR Research Space (South Africa)

    Forbes, A

    2016-06-01

    Full Text Available (1979). 24. J. A. Davis, K. O. Valade´z, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003–2008 (2003). 25. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd...

  1. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  2. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    Science.gov (United States)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were

  3. Dynamics of matter solitons in weakly modulated optical lattices

    Czech Academy of Sciences Publication Activity Database

    Brazhnyi, V. A.; Konotop, V.; Kuzmiak, Vladimír

    2004-01-01

    Roč. 70, č. 4 (2004), 0436041-0436046 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC P11.001 Institutional research plan: CEZ:AV0Z2067918 Keywords : Bose-Einstein condesation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.902, year: 2004

  4. Polarization modulational instability in a birefringent optical fiber ...

    Indian Academy of Sciences (India)

    effects on PMI gain spectra of a linearly polarized intense pump wave which experiences periodic nonlinear polarization rotation in a birefringent optical fiber in both the anomalous and normal dispersion regimes. The paper is arranged as follows: In Ü2, we briefly discuss the basic equation. In Ü3, using Floquet theorem ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  8. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  9. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    Science.gov (United States)

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-04

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  10. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  11. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    Science.gov (United States)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  12. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    Science.gov (United States)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  13. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  14. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Lapin, V A; Sementsov, D I [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  15. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  16. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  17. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)

    2011-09-02

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  18. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica

    International Nuclear Information System (INIS)

    Torres-Torres, C; Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A; Rangel-Rojo, R; Torres-Martinez, R

    2011-01-01

    The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.

  19. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  20. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we...

  1. Refractive index modulation of SU-8 polymer optical waveguides by means of hybrid photothermal process

    OpenAIRE

    Salazar-Miranda, D.; Castillón, F. F.; Sánchez-Sánchez, J. J.; Angel-Valenzuela, J. L.; Márquez, H.

    2010-01-01

    This paper describes the fabrication and characterization of multimode polymer optical waveguides obtained using a SU-8-2005 polymer by means of photolithographic process. Critical information about refractive index modulation of polymer waveguides as function of fabrication parameters as pre-baked and ultraviolet exposure times is presented. Physical properties of the waveguides were determined by means prism-coupling technique, optical and SEM microscopy. Este trabajo describe la fabrica...

  2. Electro-optic modulation measurement technique and enhancement

    DEFF Research Database (Denmark)

    Jacobsen, Rune Shim

    2005-01-01

    indeks bølgeleder blev påbegyndt. Når denne koefficient opnås i en sådan bølgeleder vil fremtidige forsøg kunne fastlægge hvor stor den inducerede ikke-lineare koefficient i silicium kan blive. Fremtidige forsøg vil også fastlægge om den inducerede effekt eksisterer for hurtig elektrisk modulation....

  3. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    International Nuclear Information System (INIS)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  4. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  5. All-optical Demultiplexing Using an Electroabsorption Modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    -optical networks.Here, we present modeling results of all-optical demultiplexing from 80 to 10 Gbit/s using an EAM. Our large-signal model for the reverse-biased quantum well absorber is based on a detailed gain model, and was originally developed for studying colliding-pulse mode-locked lasers. Sweep-out of photo......-processing such as wavelength conversion, demultiplexing, and signal regeneration using an EAM have also been experimentally demonstrated, and lately theoretical calculations of wavelength conversion and signal regeneration have been presented. These functionalities are important for constructing ultrahigh-speed all......-generated carriers from the active region is a limiting factor for the device speed. Based on experimental results in we assume a sweep-out time of 8 ps.We demonstrate and explain a critical dependence of the quality of the demultiplexed signal on device length and input power levels. The extinction ratio between...

  6. Comparison of intraocular lens power prediction using immersion ultrasound and optical biometry with and without formula optimization.

    Science.gov (United States)

    Nemeth, Gabor; Nagy, Attila; Berta, Andras; Modis, Laszlo

    2012-09-01

    Comparison of postoperative refraction results using ultrasound biometry with closed immersion shell and optical biometry. Three hundred and sixty-four eyes of 306 patients (age: 70.6 ± 12.8 years) underwent cataract surgery where intraocular lenses calculated by SRK/T formula were implanted. In 159 cases immersion ultrasonic biometry, in 205 eyes optical biometry was used. Differences between predicted and actual postoperative refractions were calculated both prior to and after optimization with the SRK/T formula, after which we analysed the similar data in the case of Holladay, Haigis, and Hoffer-Q formulas. Mean absolute error (MAE) and the percentage rate of patients within ±0.5 and ±1.0 D difference in the predicted error were calculated with these four formulas. MAE was 0.5-0.7 D in cases of both methods with SRK/T, Holladay, and Hoffer-Q formula, but higher with Haigis formula. With no optimization, 60-65 % of the patients were under 0.5 D error in the immersion group (except for Haigis formula). Using the optical method, this value was slightly higher (62-67 %), however, in this case, Haigis formula also did not perform so well (45 %). Refraction results significantly improved with Holladay, Hoffer-Q, and Haigis formulas in both groups. The rate of patients under 0.5 D error increased to 65 % by the immersion technique, and up to 80 % by the optical one. According to our results, optical biometry offers only slightly better outcomes compared to those of immersion shell with no optimized formulas. However, in case of new generation formulas with both methods, the optimization of IOL-constants give significantly better results.

  7. Comparison of immersion ultrasonography, ultrasound biomicroscopy and anterior segment optical coherence tomography in the evaluation of traumatic phacoceles

    Directory of Open Access Journals (Sweden)

    Harikrishna Vodapalli

    2012-01-01

    Full Text Available Blunt ocular trauma in the elderly can result in anterior dislocation of the crystalline lens into the subconjunctival space (phacocele. Although rare, this presentation can be missed, especially if the patient presents several days after the injury and if the lid is not everted on examination. While a careful clinical examination is adequate in the diagnosis, imaging techniques can be put to use for the accurate location of the associated sclera rupture. We report three cases of post-traumatic phacocele wherein ultrasound biomicroscopy (UBM was compared to the anterior segment optical coherence tomography (AS-OCT and B-scan ultrasonography (B-scan, in order to establish the best imaging tool for this condition. We concluded, based on image quality, that UBM could be the imaging modality of choice to aid in the diagnosis of phacocele.

  8. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  9. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  10. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  11. Enhanced performance of semiconductor optical amplifier at high direct modulation speed with birefringent fiber loop

    Directory of Open Access Journals (Sweden)

    K. E. Zoiros

    2014-07-01

    Full Text Available We employ a birefringent fiber loop (BFL for enhancing the performance of a semiconductor optical amplifier (SOA which is directly modulated. By properly exploiting the BFL comb-like spectral response, we show that the SOA can be directly modulated at a data rate which is more than five times faster than that enabled by the SOA electrical bandwidth. The experimental results, which include chirp measurements, demonstrate the significant improvements achieved in the performance of the directly modulated SOA with the help of the BFL.

  12. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles

    DEFF Research Database (Denmark)

    El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam

    2017-01-01

    transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...

  13. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  14. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Science.gov (United States)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  15. Optical Module Front-End for a Neutrino Underwater Telescope PMT interface

    CERN Document Server

    Lo Presti, D; Caponetto, L

    2007-01-01

    A proposal for a new system to capture signals in the Optical Module (OM) of an Underwater Neutrino Telescope is described. It concentrates on the problem of power consumption in relation to precision. In particular, a solution for the interface between the photomultiplier (PMT) and the front-end electronics is presented.

  16. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    All-optical wavelength conversion in an InGaAsP quantum well electroabsorption modulator is studied at different bit-rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and signal regeneration capability is demonstrated....

  17. All-optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel

    2010-01-01

    Roč. 283, č. 9 (2010), s. 1744-1749 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502 Institutional research plan: CEZ:AV0Z20670512 Keywords : Wavelength conversion * Fiber cross phase modulation * Fiber Bragg grating Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  18. Equivalent circuit modelling of integrated traveling-wave optical modulator in InP foundry platform

    NARCIS (Netherlands)

    Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.

    2016-01-01

    In this paper we present an electro-optical model for traveling-wave modulator devices utilizing measurement-based equivalent circuit model extraction in conjunction with microwave CAD simulation techniques. Model verification is performed with frequencydomain and time-domain characterization of an

  19. Optical label encoding using electroabsorption modulators and investigation of chirp properties

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Oxenløwe, Leif Katsuo

    2003-01-01

    A novel scheme of optical label encoding by wavelength conversion based on electroabsorption modulators (EAMs) is reported. Based on the experimental observations, the chirp properties of the wavelength-converted signal are discussed and a wide dynamic range of the chirp α-parameter is found...

  20. Information rates of next-generation long-haul optical fiber systems using coded modulation

    NARCIS (Netherlands)

    Liga, G.; Alvarado, A.; Agrell, E.; Bayvel, P.

    2017-01-01

    A comprehensive study of the coded performance of long-haul spectrally-efficient WDM optical fiber transmission systems with different coded modulation decoding structures is presented. Achievable information rates are derived for three different square QAM formats and the optimal format is

  1. Characterisation of a MQW electroabsorption modulator as an all-optical demultiplexer

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Romstad, Francis Pascal; Tersigni, Andrea

    2001-01-01

    A detailed experimental investigation of the all-optical switching properties of an InGaAsP MQW electroabsorption modulator has been performed. Using high pump pulse energies and high reverse bias settings, switching windows were demonstrated with extinction ratios up to 25 dB and widths down to 10...

  2. Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.

    Science.gov (United States)

    Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz

    2002-02-11

    In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

  3. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  4. Multi-PMT optical module for the KM3NeT neutrino telescope

    NARCIS (Netherlands)

    Kavatsyuk, O.; Dorosti-Hasankiadeh, Q.; Löhner, H.

    2012-01-01

    The future cubic kilometre scale neutrino telescope KM3NeT will employ a novel type of a Digital Optical Module (DOM), developed during the recent FP6 Design Study. A pressure-resistant glass sphere hosts 31 photomultiplier tubes (PMTs) of 3-in, diameter, together with all the electronics for

  5. Monolithic InP-based fast optical switch module for optical networks of the future

    DEFF Research Database (Denmark)

    Xi, Chen; Regan, James; Durrant, Tim

    2015-01-01

    We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....

  6. A molecular-sized optical logic circuit for digital modulation of a fluorescence signal

    Science.gov (United States)

    Nishimura, Takahiro; Tsuchida, Karin; Ogura, Yusuke; Tanida, Jun

    2018-03-01

    Fluorescence measurement allows simultaneous detection of multiple molecular species by using spectrally distinct fluorescence probes. However, due to the broad spectra of fluorescence emission, the multiplicity of fluorescence measurement is generally limited. To overcome this limitation, we propose a method to digitally modulate fluorescence output signals with a molecular-sized optical logic circuit by using optical control of fluorescence resonance energy transfer (FRET). The circuit receives a set of optical inputs represented with different light wavelengths, and then it switches high and low fluorescence intensity from a reporting molecule according to the result of the logic operation. By using combinational optical inputs in readout of fluorescence signals, the number of biomolecular species that can be identified is increased. To implement the FRET-based circuits, we designed two types of basic elements, YES and NOT switches. An YES switch produces a high-level output intensity when receiving a designated light wavelength input and a low-level intensity without the light irradiation. A NOT switch operates inversely to the YES switch. In experiments, we investigated the operation of the YES and NOT switches that receive a 532-nm light input and modulate the fluorescence intensity of Alexa Fluor 488. The experimental result demonstrates that the switches can modulate fluorescence signals according to the optical input.

  7. Deep sea tests of a prototype of the KM3NeT digital optical module

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Curtil, C.; Destelle, J.J.; Dornic, D.; Gallo, F.; Henry, S.; Keller, P.; Lamare, P.; Royon, J.; Solazzo, M.; Tezier, D.; Theraube, S.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Aharonian, F.; Drury, L. [DIAS, Dublin (Ireland); Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V. [INFN, Sezione di Catania, Catania (Italy); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, IUT de Colmar, Colmar (France); Ameli, F.; De Bonis, G.; Nicolau, C.A.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Anassontzis, E.G. [National and Kapodistrian University of Athens, Deparment of Physics, Athens (Greece); Anghinolfi, M.; Cereseto, R.; Hugon, C.; Kulikovskiy, V.; Musico, P.; Orzelli, A. [INFN, Sezione di Genova, Genoa (Italy); Anton, G.; Classen, L.; Eberl, T.; Enzenhoefer, A.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E. [CEA, Irfu/Sedi, Centre de Saclay, Gif-sur-Yvette (France); Asmundis, R. de; Deniskina, N.; Migliozzi, P.; Mollo, C. [INFN, Sezione di Napoli, Naples (Italy); Balasi, K.; Drakopoulou, E.; Markou, C.; Pikounis, K.; Siotis, I.; Stavropoulos, G.; Tzamariudaki, E. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; Gajana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A. [Nikhef, Amsterdam (Netherlands); Barbarino, G.; Barbato, F.; De Rosa, G.; Garufi, F.; Vivolo, D. [INFN, Sezione di Napoli, Naples (Italy); Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN, Sezione di Bari, Bari (Italy); Baret, B.; Baron, S.; Champion, C.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Van Elewyck, V. [APC,Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Belias, A.; Rapidis, P.A.; Trapierakis, H.I. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); National Observatory of Athens, NESTOR Institute for Deep Sea Research, Technology, and Neutrino Astroparticle Physics, Pylos (Greece); Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van [KVI-CART, University of Groningen, Groningen (Netherlands); Beverini, N. [INFN, Sezione di Pisa, Pisa (Italy); Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Biagi, S.; Cecchini, S.; Fusco, L.A.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Bianucci, S.; Bouhadef, B.; Calamai, M.; Morganti, M.; Raffaelli, F.; Terreni, G. [Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S. [Hellenic Open University, School of Science and Technology, Patras (Greece); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Leiden University, Leiden Institute of Physics, Leiden (Netherlands); Bouche, V.; Fermani, P.; Masullo, R.; Perrina, C. [INFN, Sezione di Roma, Rome (Italy); Universita di Roma La Sapienza, Dipartimento di Fisica, Rome (Italy); Bozza, C.; Grella, G. [Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Universita di Salerno, Dipartimento di Fisica, Fisciano (Italy); Bruijn, R.; Koffeman, E.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); University of Amsterdam, Institute of Physics, Amsterdam (Netherlands); Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; D' Amico, A.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Larosa, G.; Lattuada, D.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M.G.; Piattelli, P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Collaboration: KM3NeT Collaboration; and others

    2014-09-15

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same {sup 40}K decay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions. (orig.)

  8. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam

    International Nuclear Information System (INIS)

    Yuan, G H; Wang, Q; Tan, P S; Lin, J; Yuan, X-C

    2012-01-01

    A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam’s topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips. (paper)

  9. Deep sea tests of a prototype of the KM3NeT digital optical module

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; de Asmundis, R.; Balasi, K.; Band, H.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; Baron, S.; Belias, A.; Berbee, E.; van den Berg, A. M.; Berkien, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Bianucci, S.; Billault, M.; Birbas, A.; Boer Rookhuizen, H.; Bormuth, R.; Bouché, V.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Caruso, F.; Cecchini, S.; Ceres, A.; Cereseto, R.; Champion, C.; Château, F.; Chiarusi, T.; Christopoulou, B.; Circella, M.; Classen, L.; Cocimano, R.; Colonges, S.; Coniglione, R.; Cosquer, A.; Costa, M.; Coyle, P.; Creusot, A.; Curtil, C.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Rosa, G.; Deniskina, N.; Destelle, J.-J.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durand, D.; Eberl, T.; Eleftheriadis, C.; Elsaesser, D.; Enzenhöfer, A.; Fermani, P.; Fusco, L. A.; Gajana, D.; Gal, T.; Galatà, S.; Gallo, F.; Garufi, F.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia Ruiz, R.; Graf, K.; Grasso, R.; Grella, G.; Grmek, A.; Habel, R.; van Haren, H.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hevinga, M. A.; van der Hoek, M.; Hofestädt, J.; Hogenbirk, J.; Hugon, C.; Hößl, J.; Imbesi, M.; James, C.; Jansweijer, P.; Jochum, J.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Kappos, E.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kieft, G.; Koffeman, E.; Kok, H.; Kooijman, P.; Koopstra, J.; Korporaal, A.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Le Provost, H.; Leisos, A.; Lenis, D.; Leonora, E.; Lindsey Clark, M.; Liolios, A.; Llorens Alvarez, C. D.; Löhner, H.; Lo Presti, D.; Louis, F.; Maccioni, E.; Mannheim, K.; Manolopoulos, K.; Margiotta, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Masullo, R.; Michael, T.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C.; Mongelli, M.; Morganti, M.; Mos, S.; Moudden, Y.; Musico, P.; Musumeci, M.; Nicolaou, C.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Petridou, C.; Piattelli, P.; Pikounis, K.; Popa, V.; Pradier, Th.; Priede, M.; Pühlhofer, G.; Pulvirenti, S.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rovelli, A.; Royon, J.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Savvidis, I.; Schmelling, J.; Schnabel, J.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Solazzo, M.; Spitaleri, A.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stolarczyk, T.; Stransky, D.; Taiuti, M.; Terreni, G.; Tézier, D.; Théraube, S.; Thompson, L. F.; Timmer, P.; Trapierakis, H. I.; Trasatti, L.; Trovato, A.; Tselengidou, M.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vernin, P.; Viola, S.; Vivolo, D.; Werneke, P.; Wiggers, L.; Wilms, J.; de Wolf, E.; van Wooning, R. H. L.; Yatkin, K.; Zachariadou, K.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.; Zwart, A.

    2014-09-01

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.

  10. Deep sea tests of a prototype of the KM3NeT digital optical module

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M.; Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Curtil, C.; Destelle, J.J.; Dornic, D.; Gallo, F.; Henry, S.; Keller, P.; Lamare, P.; Royon, J.; Solazzo, M.; Tezier, D.; Theraube, S.; Yatkin, K.; Aharonian, F.; Drury, L.; Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V.; Albert, A.; Drouhin, D.; Racca, C.; Ameli, F.; De Bonis, G.; Nicolau, C.A.; Simeone, F.; Anassontzis, E.G.; Anghinolfi, M.; Cereseto, R.; Hugon, C.; Kulikovskiy, V.; Musico, P.; Orzelli, A.; Anton, G.; Classen, L.; Eberl, T.; Enzenhoefer, A.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M.; Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E.; Asmundis, R. de; Deniskina, N.; Migliozzi, P.; Mollo, C.; Balasi, K.; Drakopoulou, E.; Markou, C.; Pikounis, K.; Siotis, I.; Stavropoulos, G.; Tzamariudaki, E.; Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; Gajana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A.; Barbarino, G.; Barbato, F.; De Rosa, G.; Garufi, F.; Vivolo, D.; Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I.; Baret, B.; Baron, S.; Champion, C.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Van Elewyck, V.; Belias, A.; Rapidis, P.A.; Trapierakis, H.I.; Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van; Beverini, N.; Biagi, S.; Cecchini, S.; Fusco, L.A.; Margiotta, A.; Spurio, M.; Bianucci, S.; Bouhadef, B.; Calamai, M.; Morganti, M.; Raffaelli, F.; Terreni, G.; Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouche, V.; Fermani, P.; Masullo, R.; Perrina, C.; Bozza, C.; Grella, G.; Bruijn, R.; Koffeman, E.; Wolf, E. de; Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Larosa, G.; Lattuada, D.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M.G.; Piattelli, P.

    2014-01-01

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same 40 K decay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions. (orig.)

  11. Theoretical considerations for the selection of electro-optic crystals for the grating-based laser beam modulators-deflectors

    International Nuclear Information System (INIS)

    Ramachandran, V.

    1977-03-01

    The optical properties of a crystal can be altered by the application of an external electric field. The electrically induced changes of the crystal properties may, in some cases, be utilized to modulate an optical beam. The nature of propagation of electromagnetic waves inside an optically anisotropic crystal and the variation of the optical properties with an applied electric field are discussed in this paper. The general criteria that must be satisfied by the crystals for efficient modulation and deflection are analyzed. In particular, the properties and suitable orientations of a Li Nb O 3 crystal are analyzed in some detail for using as an efficient modulator

  12. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    Science.gov (United States)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  13. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    Science.gov (United States)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  14. Automatic modulation format recognition for the next generation optical communication networks using artificial neural networks

    Science.gov (United States)

    Guesmi, Latifa; Hraghi, Abir; Menif, Mourad

    2015-03-01

    A new technique for Automatic Modulation Format Recognition (AMFR) in next generation optical communication networks is presented. This technique uses the Artificial Neural Network (ANN) in conjunction with the features of Linear Optical Sampling (LOS) of the detected signal at high bit rates using direct detection or coherent detection. The use of LOS method for this purpose mainly driven by the increase of bit rates which enables the measurement of eye diagrams. The efficiency of this technique is demonstrated under different transmission impairments such as chromatic dispersion (CD) in the range of -500 to 500 ps/nm, differential group delay (DGD) in the range of 0-15 ps and the optical signal tonoise ratio (OSNR) in the range of 10-30 dB. The results of numerical simulation for various modulation formats demonstrate successful recognition from a known bit rates with a higher estimation accuracy, which exceeds 99.8%.

  15. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.

    Science.gov (United States)

    Kim, Eric G R; Tu, Hongen; Luo, Hao; Liu, Bin; Bao, Shaowen; Zhang, Jinsheng; Xu, Yong

    2015-07-21

    Optogenetics is a powerful modality for neural modulation that can be useful for a wide array of biomedical studies. Penetrating microelectrode arrays provide a means of recording neural signals with high spatial resolution. It is highly desirable to integrate optics with neural probes to allow for functional study of neural tissue by optogenetics. In this paper, we report the development of a novel 3D neural probe coupled simply and robustly to optical fibers using a hollow parylene tube structure. The device shanks are hollow tubes with rigid silicon tips, allowing the insertion and encasement of optical fibers within the shanks. The position of the fiber tip can be precisely controlled relative to the electrodes on the shank by inherent design features. Preliminary in vivo rat studies indicate that these devices are capable of optogenetic modulation simultaneously with 3D neural signal recording.

  16. Modulated (Ga,TM)N structures: optics and magnetism

    International Nuclear Information System (INIS)

    Grois, A.

    2015-01-01

    Gallium nitride and related compounds are not only the building blocks of many state of the art devices (e.g. blue and white LEDs, high electron mobility transistors), but once combined with magnetic dopants (i.e. transition metals and rare earths), further functionalities (e.g. spintronics - the simultaneous utilisation of the electrons electric charge and magnetic moment) are enabled. The incorporation of the magnetic dopants depends on the growth conditions and the type of dopant. As a function of these parameters various phases with quite different properties can be produced. In this work the optical and magnetic properties of three of these phases which are interesting from a technological and fundamental point of view and can be produced by metalorganic vapour phase epitaxy are studied by advanced structural, chemical, spectroscopic and magnetometric techniques as a function of the transition metal concentration, growth temperature and codopant concentration. These phases are dilute (Ga,Mn)N and (Ga,Fe)N, iron nitride and galfenol nanocrystals embedded in (Ga,Fe)N, and Mn-Mgx [Mg tief x] complexes in (Ga,Mn)N:Mg. Dilute (Ga,Mn)N is found to be a superexchange ferromagnet with Mn3+ [Mn hoch 3+] concentration dependent Curie temperature, which is of the order of 1 K for the highest studied Mn concentration of approximately 3 %. The lack of carrier mediated ferromagnetism is explained by confirming the presence of strong coupling between the Mn 3d electrons and valence band holes via giant Zeeman effect measurements. Upon Si donor codoping the charge state of Mn is reduced to 2+, and hints towards superexchange antiferromagnetism between the Mn2+ [Mn hoch 2+] ions are observed. The magnetic properties of a single planar array of [gamma]'-Gax [Ga tief x]Fe4-x [Fe tief 4-x]N nanocrystals embedded in GaN are analysed and a clear uniaxial shape anisotropy is revealed. The puzzling finding of a six-fold in-plane anisotropy is discussed and various possible

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  18. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    Science.gov (United States)

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  19. A 1 MHz BW 34.2 fJ/step Continuous Time Delta Sigma Modulator With an Integrated Mixer for Cardiac Ultrasound.

    Science.gov (United States)

    Kaald, Rune; Eggen, Trym; Ytterdal, Trond

    2017-02-01

    Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.

  20. Optical integrated circuit of a 40-channel electrooptical LiNbO/sub 3/ modulator for data-processing devices

    Energy Technology Data Exchange (ETDEWEB)

    Bukreev, I.N.; Venediktov, V.V.; Gorbatovskii, M.V.; Demina, T.P.; Kashintsev, M.A.

    1988-06-01

    An optical integrated circuit for a 40-channel electrooptical phase modulator has been developed. The channel waveguides are prepared through Ti thermal diffusion into a Y-cut LiNbO/sub 3/ substrate. The half-wave voltage for each channel is 1.6 V at a modulating frequency bandwidth of 0-290 MHz. Results are presented from an experiment concerning the use of the modulator as an input device for the optical processing of radio signals.

  1. RadSensor: Xray Detection by Direct Modulation of an Optical Probe Beam

    International Nuclear Information System (INIS)

    Lowry, M E; Bennett, C V; Vernon, S P; Bond, T; Welty, R; Behymer, E; Petersen, H; Krey, A; Stewart, R; Kobayashi, N P; Sperry, V; Stephan, P; Reinhardt, C; Simpson, S; Stratton, P; Bionta, R; McKernan, M; Ables, E; Ott, L; Bond, S; Ayers, J.; Landen, O L; Bell, P M

    2003-01-01

    We present a new x-ray detection technique based on optical measurement of the effects of x-ray absorption and electron hole pair creation in a direct band-gap semiconductor. The electron-hole pairs create a frequency dependent shift in optical refractive index and absorption. This is sensed by simultaneously directing an optical carrier beam through the same volume of semiconducting medium that has experienced an xray induced modulation in the electron-hole population. If the operating wavelength of the optical carrier beam is chosen to be close to the semiconductor band-edge, the optical carrier will be modulated significantly in phase and amplitude. This approach should be simultaneously capable of very high sensitivity and excellent temporal response, even in the difficult high-energy xray regime. At xray photon energies near 10 keV and higher, we believe that sub-picosecond temporal responses are possible with near single xray photon sensitivity. The approach also allows for the convenient and EMI robust transport of high-bandwidth information via fiber optics. Furthermore, the technology can be scaled to imaging applications. The basic physics of the detector, implementation considerations, and preliminary experimental data are presented and discussed

  2. Giga-bit optical data transmission module for Beam Instrumentation

    CERN Document Server

    Roedne, L T; Cenkeramaddi, L R; Jiao, L

    Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...

  3. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  4. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

    Science.gov (United States)

    Djordjevic, Ivan B; Arabaci, Murat

    2010-11-22

    An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

  5. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  6. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.

    Science.gov (United States)

    Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina

    2017-02-20

    The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.

  7. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A N; Turchin, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  8. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  9. Optical modulation of transgene expression in retinal pigment epithelium

    Science.gov (United States)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  10. Optical Implementation Of The Hopfield Model Using A Spatial Light Modulator Discussion Of Properties And Performance

    Science.gov (United States)

    Torzynski, Marc

    1989-01-01

    In this paper we propose an optical design for implementation of neuronic Hopfield network. We describe the algorithm and its potential possibilities as associative (or content addressable) memory. We then describe the optical set (using a magneto-optic spatial light modulator) and explaning its operating mode: the binary transparency of the SLM does not allow a direct and accurate experimental realisation of the theoretical algorithm. However, there is a particular setup that can implemented it powerfully but with a reduction of the effective number of neurons. The operating speed is then evaluated from the characteristics of the SLM "Sight-Mod" manufactured by SEMETEX corp.: the maximun operating frequency seems limited by the speed of the optical valve.

  11. Two-level modulation scheme to reduce latency for optical mobile fronthaul networks.

    Science.gov (United States)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Chang, Gee-Kung

    2016-10-31

    A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) - amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.

  12. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks

    Science.gov (United States)

    Tan, Yanxia; Gu, Rentao; Ji, Yuefeng

    2017-07-01

    With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.

  13. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    Science.gov (United States)

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  14. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2016-10-01

    Full Text Available Efficient methods to modulate terahertz (THz light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.

  15. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  16. Data transmission optical link for LLRF TESLA project part I: hardware structure of OPT0 module

    Science.gov (United States)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Jalmuzna, Wojciech; Olowski, Krzysztof; Perkuszewski, Karol; Zielinski, Jerzy; Kierzkowski, Krzysztof

    2006-03-01

    It may be predicted now, even assuming a very conservative approach, that the next generation of the Low Level RF control systems for future accelerators will use extensively such technologies like: very fast programmable circuits equipped with DSP, embedded PC and optical communication I/O functionalities, as well as multi-gigabit optical transmission of measurement data and control signals. The paper presents the idea and realization of a gigabit synchronous data distributor designed to work in the LLRF control system of TESLA technology based X-ray FEL. The design bases on a relatively simple and cheap FPGA chip Cyclone. Commercially available SERDES (serializer/deserializer) and optical transceiver chips were applied. The optoelectronic module is embedded on the main LLRF BMB (backbone mother board). The MB provides communication with the outside computer control system, programmable chip configuration, integration with other functional modules and power supply. The hardware implementation is here described and the used software for BER (bit-error-rate) testing of the multi-gigabit optical link. The measurement results are presented. The appendix contains a comparison between the available protocols of serial data transmission for FPGA technology. This paper is a partial contribution to the next version of the SIMCON system which is expected to be released this year. The SIMCON, ver 3.0 will contain 8 channels and multi-gigabit optical transmission capability. It will be a fully modular construction.

  17. Sub-cycle QAM modulation for VCSEL-based optical fiber links

    DEFF Research Database (Denmark)

    Pham, Tien-Thang; Rodes Lopez, Roberto; Jensen, Jesper Bevensee

    2013-01-01

    QAM modulation utilizing subcarrier frequency lower than the symbol rate is both theoretically and experimentally investigated. High spectral efficiency and concentration of power in low frequencies make sub-cycle QAM signals attractive for optical fiber links with direct modulated light sources....... Real-time generated 10-Gbps 4-level QAM signal in a 7.5-GHz bandwidth utilizing subcarrier frequency at a half symbol rate was successfully transmitted over 20-km SMF using an un-cooled 1.5-μm VCSEL. Only 2.5-dB fiber transmission power penalty was observed with no equalization applied....

  18. 12.5 Gb/s carrier-injection silicon Mach—Zehnder optical modulator

    International Nuclear Information System (INIS)

    Chen Hongtao; Ding Jianfeng; Yang Lin

    2012-01-01

    We demonstrate a 12.5 Gb/s carrier-injection silicon Mach—Zehnder optical modulator. Under a nonreturn-zero (NRZ) pre-emphasized electrical drive signal with voltage swing of 6.3 V and forward bias of 0.7 V, the eye is clearly opened with an extinction ratio of 8.4 dB. The device exhibits high modulation efficiency, with a figure of merit V π L of 0.036 V·mm. (semiconductor devices)

  19. Pulse-amplitude modulation of optical injection-locked quantum-dot lasers

    Science.gov (United States)

    Zhou, Yue-Guang; Wang, Cheng

    2018-02-01

    This work theoretically investigates the four-level pulse-amplitude modulation characteristics of quantum dot lasers subject to optical injection. The rate equation model takes into account carrier dynamics in the carrier reservoir, in the excited state, and in the ground state, as well as photon dynamics and phase dynamics of the electric field. It is found that the optical injection significantly improves the eye diagram quality through suppressing the relaxation oscillation, while the extinction ratio is reduced as well. In addition, both the adiabatic chirp and the transient chirp of the signal are substantially suppressed.

  20. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    Science.gov (United States)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  1. 10 and 20 Gb/s all-optical RZ to NRZ modulation format and wavelength converter based on nonlinear optical loop mirror

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel; Karásek, Miroslav

    2010-01-01

    Roč. 283, č. 10 (2010), s. 2061-2065 ISSN 0030-4018 R&D Projects: GA AV ČR 1ET300670502; GA MŠk OE08021; GA ČR GAP102/10/0120 Institutional research plan: CEZ:AV0Z20670512 Keywords : RZ-to-NRZ modulation format conversion * Fiber cross phase modulation * Nonlinear optical loop mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.517, year: 2010

  2. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  3. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  5. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    Directory of Open Access Journals (Sweden)

    Zeshu Zhang

    Full Text Available Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  6. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  7. Gray Scale Operation Of A Multichannel Optical Convolver Using The Semetex Magnetooptic Spatial Light Modulator

    Science.gov (United States)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang; Davis, J. A.; Day, T.; Lilly, R. A.; Taber, D. B.; Liu, H.-K.

    1988-02-01

    We present a new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator (AOLM) for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels. Details of the anamorphic optical system are discussed. Experimental results illustrate use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  8. Design and mass production of the optical modules for KM3NeT-Italia project

    Directory of Open Access Journals (Sweden)

    Leonora Emanuele

    2016-01-01

    Full Text Available The KM3NeT European project aims at constructing a km3 underwater neutrino telescope in the depths of the Mediterranean Sea. The first phase that is under construction will comprise eight tower-like detection structures (KM3NeT-Italia, which will form the internal core of a km3-scale detector. The detection element of KM3NeT-Italia, the optical module, is made of a 13-inch pressure-resistant glass-vessel that contains a single 10-inch photomultiplier and the relative electronics. The design of the whole optical module, the main results obtained from the massive photomultipliers measurements, and the foremost phases of the mass production procedure performed at the production site of Catania are also presented.

  9. Progress on the WOM (Wavelength-shifting optical module) development for IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Dustin [DESY Zeuthen (Germany)

    2015-07-01

    For ongoing studies for the extension of the IceCube neutrino observatory to low energies (PINGU) and high energies the noise rate of the optical modules should be decreased and the effective area increased in order to improve energy resolution and overall sensitivity. The WOM (Wavelength-shifting optical module) targets this points by expanding the capture area while decreasing the size of the PMT and thus decreasing the noise rate. Photons are first captured in an organic wavelength-shifting material (WLS) that is coated on light guiding material to guide the light to two smaller PMTs. This allows to achieve a very large collection area and reduces the noise to the order of 10 Hz in comparison to 600-800 Hz (IceCube DOM). The progress on the necessary WLS paint development and substrate selection will be presented. Also a brief status / outlook on the prototype assembly will be given.

  10. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  11. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  12. Electrical excitation and optical detection of ultrasounds in PZT based piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Babilotte, P; Diallo, O; Hue, L-P Tran Hu; Feuillard, G [University Francois Rabelais de Tours, Laboratory Imaging and Brain, Team Ultrasonic Characterisation and Piezoelectricity, ENIVL, Rue de la Chocolaterie, 41034 BLOIS CEDEX (France); Kosec, M; Kuscer, D, E-mail: philippe.babilotte@univ-tours.fr [Josef Stefan Institute, Jamova cesta 39, 1000 LJUBLJANA (Slovenia)

    2011-01-01

    The displacement response of piezoelectric PZT thick films fabricated by means of electrophoretic deposition and laid down an alumina substrate is investigated using coherent optical detection. According to thickness properties determined by electrical impedance measurements, the film presents a resonance around 40 MHz. Other resonance peaks are observed that correspond to eigen modes of the film substrate couple structure. Uniformity of the response of the integrated structure is studied across the surface of the sample when excited by either a continuous or impulse electrical voltage. Results on the amplitude of the detected signal versus the frequency and the input excitation voltage are reported. The optical detection used in these experiments is complementary to conventional techniques of characterization of piezoelectric devices such as electrical impedance measurements and allows getting information on the displacement response of the device.

  13. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects

    International Nuclear Information System (INIS)

    Fisher, R.A.; Suydam, B.R.; Yevick, D.

    1983-01-01

    We show that the temporal distortion and spectral broadening of a pulse generated by the combined effects of group-velocity dispersion and self-phase modulation is removed by reflection of a cw-pumped, broadband, unity-reflecting Kerr-like optical phase conjugator followed by retraversal of the nonlinear medium. We also examine numerically the effects of finite linear loss in the material, of nonunity conjugate reflectivity, and of finite conjugator thickness

  14. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    OpenAIRE

    R., Ishikawa; Jongsuck, Bae; K., Mizuno

    2001-01-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analy...

  15. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    Science.gov (United States)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  16. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    Science.gov (United States)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  17. Super-resolution with an optically-addressable liquid crystal spatial light modulator

    International Nuclear Information System (INIS)

    McOrist, J.; Sharma, M.D.; Sheppard, C.J.R.

    2002-01-01

    Full text: An optically-addressable liquid crystal spatial light modulator has been used to generate super-resolving masks. This approach avoids problems of low efficiency and coupling between amplitude and phase modulation, that occur when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. The device used is not pixellated, with a spatial resolution of 30 line pairs/mm over an area 18mm X 18mm, and can achieve continuously-variable phase modulation up to 1.5 wavelengths. The system consists of a write-beam that is collimated from a white-light source. An input mask was used in our experiments determines the modulation pattern of the read-beam. The read-beam from a HeNe laser reflects from the modulator and is focused by a microscope objective. The value of the phase change induced by the transparent regions of the mask can be altered continuously by adjusting the brightness of the write-beam. We have used this system to attain super-resolution by simple Toraldo filters, consisting of arrays of rings. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Feng; Spring, Andrew M. [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Sato, Hiromu [Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke [Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507 (Japan); Aoki, Isao; Otomo, Akira [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yokoyama, Shiyoshi, E-mail: s-yokoyama@cm.kyushu-u.ac.jp [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan); Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580 (Japan)

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.

  19. Characterization benches for neutrino telescope Optical Modules at the APC laboratory

    Science.gov (United States)

    Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine

    2016-04-01

    As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.

  20. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  1. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study.

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-11-19

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.

  2. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Directory of Open Access Journals (Sweden)

    Bertsche David

    2016-01-01

    Full Text Available The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP 2015 [1].

  3. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  4. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  5. A study on the optical parts for a semiconductor laser module

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jun-Girl; Lee, Dong-Kil; Kim, Yang-Gyu; Lee, Kwang-Hoon; Park, Young-Sik [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Jang, Kwang-Ho [Hanvit Optoline, Gwangju (Korea, Republic of); Kang, Seung-Goo [COSET, Gwangju (Korea, Republic of)

    2014-11-15

    A semiconductor laser module consists of a LD (laser diode) chip that generates a laser beam, two cylindrical lenses to collimate the laser beam, a high-reflection mirror to produce a large output by collecting the laser beam, a collimator lens to guide the laser beam to an optical fiber and a protection filter to block reflected laser light that might damage the LD chip. The cylindrical lenses used in a semiconductor laser module are defined as FACs (fast axis collimators) and SACs (slow axis collimators) and are attached to the system module to control the shape of the laser beam. The FAC lens and the SAC lens are made of a glass material to protect the lenses from thermal deformation. In addition, they have aspheric shapes to improve optical performances. This paper presents a mold core grinding process for an asymmetrical aspheric lens and a GMP (glass molding press), what can be used to make aspheric cylindrical lenses for use as FACs or SACs, and a protection filter made by using IAD (ion-beam-assisted deposition). Finally, we developed the aspheric cylindrical lenses and the protection filter for a 10-W semiconductor laser module.

  6. A fast method for optical simulation of flood maps of light-sharing detector modules

    International Nuclear Information System (INIS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  7. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  8. Spatial light modulators for full cross-connections in optical networks

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  9. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  10. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  11. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    Science.gov (United States)

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  12. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  16. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  17. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation

    Directory of Open Access Journals (Sweden)

    Chi Alexander

    2013-01-01

    Full Text Available Abstract Purpose To assess if intensity-modulated radiotherapy (IMRT can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. Methods and materials A literature search in the PubMed databases was conducted in July, 2012. Results Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy’s influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. Conclusion IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.

  18. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  19. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  20. Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport

    Science.gov (United States)

    2009-03-03

    detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over

  1. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Ilander, Aki; Vaeisaenen, Ari

    2007-01-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min -1 , auxiliary gas flow of 0.2 L min -1 and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min)

  2. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  3. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  4. A new direction-sensitive optical module for deep-sea neutrino telescopy

    International Nuclear Information System (INIS)

    Brunoldi, Marco

    2009-01-01

    Within the KM3NeT framework, the NEMO (NEutrino Mediterranean Observatory) project is studying new technologies for a km 3 -scale neutrino telescope in the Mediterranean Sea. The telescope goal will be the investigation of the high-energy component of the cosmic neutrino spectrum: a promising tool to better understand the mechanisms that originate extreme-energy cosmic rays. Neutrino energy and direction will be reconstructed using the Cherenkov light produced in water by muons coming from neutrino interactions. Two prototypes of a new large-area (10 in.) 4-anode photomultipliers, manufactured by Hamamatsu at the request of the NEMO Collaboration, have been extensively studied. These tubes will be integrated into spherical glass pressure-resistant optical modules and used for the first time to detect the direction of the detected Cherenkov light at the NEMO deep-sea (3600 m) site near Capo Passero in Sicily. The photocathode surface in these optical modules will be effectively divided into four quadrants by a pair of crescent-shaped mirrors embedded in the optical gel linking the PMT to the glass pressure sphere. A series of measurements was performed at the testing facility of the NEMO group at the INFN Sezione di Catania. The single photoelectron peak, the transit time spread, the gain and the cross-talk of the prototype have been studied, to have a complete characterization and make feasible a comparison with previous models. The first prototype of direction-sensitive optical module has been assembled and tested with a dedicated experimental setup at the INFN Sezione di Genova. First results of tests of the prototype are presented.

  5. Analysis of optical vortices with suppressed sidelobes using modified Bessel-like function and trapezoid annulus modulation structures.

    Science.gov (United States)

    Guo, Jian; Wei, Zhongchao; Liu, Yuebo; Huang, Aili

    2015-02-01

    Two amplitude modulation methods, including modified Bessel-like function modulation structure and trapezoid annulus structure, for suppressing sidelobes of optical vortices are studied. In the former approach, we propose that the order of the Bessel-like function can be an additional parameter to modulate diffraction patterns of optical vortices motivated by the idea of conventional annulus structures. Furthermore, new Bessel-like modulation functions are introduced to solve the problem of low diffraction efficiency of the original one. Trapezoid annulus structure is proposed as a compromise structure between the modified Bessel-like modulation structure and the conventional annulus one, and has advantages of both. It is demonstrated that these two approaches can achieve high-quality optical vortices with suppressed sidelobes effectively, and the relative structures behave as more flexible and applicable structures for producing optical vortices with large coverage of topological charges, which suggests great potential in simplifying the structure designing procedure. These reliable and generalized structures for generating high-quality optical vortices will help to promote the development of future optical communication and optical manipulation significantly.

  6. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  7. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  8. Influence of current pulse shape on directly modulated system performance in metro area optical networks

    Science.gov (United States)

    Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo

    2011-03-01

    Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.

  9. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    Science.gov (United States)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  10. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    Science.gov (United States)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  11. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  12. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  13. Space evaluation of optical modulators for microwave photonic on-board applications

    Science.gov (United States)

    Le Kernec, A.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N.

    2017-11-01

    Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted.

  14. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  15. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    Science.gov (United States)

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  16. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

    2009-03-21

    This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

  17. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Arunachalam Thirunavukkarasu

    2018-03-01

    Full Text Available Cerium oxide nanoparticles (CONPs were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis, particle size analyzer (PSA, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and high-resolution transmission electron microscopy (HRTEM. From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg = 3.62 eV was slightly increased as compared to the bulk ceria (Eg = 3.19 eV. The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrumshowed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesizednanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+ and Ce4+ in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+ state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+ bacteria (Staphylococcus aureus, Streptococcus pneumonia and Gram negative (G- bacteria (Pseudomonas aeruginosa, Proteus vulgaris. The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.

  18. Statistics of errors in fibre communication lines with a phase-modulation format and optical phase conjugation

    International Nuclear Information System (INIS)

    Shapiro, Elena G; Fedoruk, Mikhail P

    2011-01-01

    Analytical formulas are derived to approximate the probability density functions of 'zero' and 'one' bits in a linear communication channel with a binary format of optical signal phase modulation. Direct numerical simulation of the propagation of optical pulses in a communication line with optical phase conjugation is performed. The results of the numerical simulation are in good agreement with the analytical approximation. (fibreoptic communication lines)

  19. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.

    Science.gov (United States)

    Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P

    2012-01-01

    Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.

  20. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  1. Photonic packaging sourcebook fiber-chip coupling for optical components, basic calculations, modules

    CERN Document Server

    Fischer-Hirchert, Ulrich H P

    2015-01-01

    This book serves as a guide on photonic assembly techniques. It provides an overview of today's state-of-the-art technologies for photonic packaging experts and professionals in the field. The text guides the readers to the practical use of optical connectors. It also assists engineers to find a way to an effective and inexpensive set-up for their own needs. In addition, many types of current industrial modules and state-of-the-art applications from single fiber to multi fiber are described in detail. Simulation techniques such as FEM, BPM and ray tracing are explained in depth. Finally, all recent reliability test procedures for datacom and telecom modules are illustrated in combination with related standardization aspects.

  2. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  3. 10 Gb/s operation of photonic crystal silicon optical modulators.

    Science.gov (United States)

    Nguyen, Hong C; Sakai, Yuya; Shinkawa, Mizuki; Ishikura, Norihiro; Baba, Toshihiko

    2011-07-04

    We report the first experimental demonstration of 10 Gb/s modulation in a photonic crystal silicon optical modulator. The device consists of a 200 μm-long SiO2-clad photonic crystal waveguide, with an embedded p-n junction, incorporated into an asymmetric Mach-Zehnder interferometer. The device is integrated on a SOI chip and fabricated by CMOS-compatible processes. With the bias voltage set at 0 V, we measure a V(π)L pseudo-random bit sequence signal. An open eye pattern is observed at bitrates of 10 Gb/s and 2 Gb/s, with and without pre-emphasis of the drive signal, respectively.

  4. Hardware Module for the Security Enhancement of Optical Telecom Network Equipment

    International Nuclear Information System (INIS)

    Nadeem; Ali, M.

    2015-01-01

    The telecommunication equipment physical security threats have increased not only in Pakistan but also anywhere in the world and hence, reducing the revenue. This new challenging and alarming situation is created for the telecom network provider. The main focus of this paper is to provide a low cost economical design for reducing the theft of the costly telecommunication equipment like optical network units (ONU). This system is based on instant messaging on the mobile in the event of theft through GSM modem. The proposed security module is dynamic, flexible and can also be integrated in the existing networks and separately having its own independent low power consumption source. The module will continuously work successfully under different scenarios such as completely isolated from other devices by power break down or by fibre cut. (author)

  5. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  6. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    Science.gov (United States)

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  7. Efficient illumination of spatial light modulators for optical trapping and manipulation

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Kopylov, Oleksii; Raaby, Peter

    Energy efficiency is always desirable. This is particularly true with lasers that find many applications in research and industry. Combined with spatial light modulators (SLMs) lasers are used for optical trapping and manipulation, sorting, microscopy or biological stimulation1. Besides efficiency....... We have also shown dynamic SLM-generated patterns for materials processing and biological research. To efficiently illuminate an SLM, we used a compact pen-sized GPC-LS in place of an iris. For the same input power, hologram reconstructions are ~3x brighter or alternatively ~3x more focal spots can...... be addressed. This allows better response or increased parallel addressing for e.g. optical manipulation and sorting. Simple yet effective, a GPC-LS could save substantial power in applications that truncate lasers to a specific shape....

  8. Lobster eye X-ray optics: Data processing from two 1D modules

    Science.gov (United States)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  9. Visible light communication using DC-biased optical filter bank multi-carrier modulation

    KAUST Repository

    Chen, Rui

    2018-03-19

    Filter bank multicarrier (FBMC) has become a promising candidate to replace conventional orthogonal frequency-division multiplexing (OFDM) scheme in 5G technology due to its better spectral confinement which results in a reduced inter-channel interference (ICI). However, the viability of using FBMC in visible light communication has not been verified. In this work we present the first experimental validation of the DC-biased optical filter bank multicarrier (DCO-FBMC) modulation scheme over a free-space optical channel. Under different receiving powers, up to three times bit error rate performance improvement has been achieved using DCO-FBMC with different overlapping factors compared to that of conventional DCO-OFDM.

  10. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  11. Experimental study of the reversible behavior of modulational instability in optical fibers

    Science.gov (United States)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  12. Visible light communication using DC-biased optical filter bank multi-carrier modulation

    KAUST Repository

    Chen, Rui; Park, Kihong; Shen, Chao; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Filter bank multicarrier (FBMC) has become a promising candidate to replace conventional orthogonal frequency-division multiplexing (OFDM) scheme in 5G technology due to its better spectral confinement which results in a reduced inter-channel interference (ICI). However, the viability of using FBMC in visible light communication has not been verified. In this work we present the first experimental validation of the DC-biased optical filter bank multicarrier (DCO-FBMC) modulation scheme over a free-space optical channel. Under different receiving powers, up to three times bit error rate performance improvement has been achieved using DCO-FBMC with different overlapping factors compared to that of conventional DCO-OFDM.

  13. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    Science.gov (United States)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  14. Optical readout in a multi-module system test for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Nderitu Kirichu, Simon; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector, which is presently under construction. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. It consists of detector modules, optoboards, optical fibres, Back of Crate cards, Readout Drivers, and control computers. In this paper, the system test setup and the operation of the readout chain are described. Also, some results of tests using the final pixel detector readout chain are given

  15. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing...... a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up...

  16. Investigations of Polarization Dependent Loss in Polarization Modulated Analog Optical Links

    Science.gov (United States)

    2015-12-29

    performance analog optical links for military applications primarily rely on the most common link architecture employing intensity modulation with...axis as bisector of DD and Ss•) PP = fl i p ( rr, PPO] ; (• flip the P vector imaqe on the PA •) PPh a t = unit[PP ) ; PHI = ArcCos [ PPha t .unit...DD ) ); AA = ((Cos ( PHI / 2])𔃼 • t p (Sin [ PHI / 2 ])𔃼 ) PP • tpDDhat / 2 ; CC2 =- ( MM · AA . SS • (AA . I!M) (I!M. SS)) ; CC3 = AA . SS; ln

  17. A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors

    Directory of Open Access Journals (Sweden)

    H. Haddad

    2018-02-01

    Full Text Available This study proposes a new approach to flatten retrodirective corner reflectors. The proposed method enables compact reflectors via Transformation Optics (TO combined with Surface Impedance Modulation (SIM. This combination permits to relax the constraints on the anisotropic material resulting from the TO. Phase gradient approach is generalized to be used within anisotropic media and is implemented with SIM. Different reflector setups are designed, simulated and compared for fop = 8GHz using ANSYS® HFSS® in order to validate the use of such a combination.

  18. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  19. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni

    2016-06-06

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump-probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response. © 2016 American Chemical Society.

  20. Digital optical modules for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Kalekin, Oleg [Universitaet Erlangen, ECAP (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2015-07-01

    KM3NeT is multi-cubic-kilometer neutrino telescope under construction in the Mediterranean Sea. In the currently running Phase 1 of the project, almost 30 detection units - 700 m tall vertical structures holding 18 Digital Optical Modules (DOMs) each - will be produced and deployed. A KM3NeT DOM consists of a pressure resistant glass sphere encapsulating 31 photomultiplier tubes of 80 mm diameter, readout electronics and additional instrumentation for calibration and monitoring. The Erlangen Centre for Astroparticle Physics is one of the DOM integration sites of the project. This contribution describes the design, functionality and integration procedure of the KM3NeT DOM.

  1. Microring resonator based modulator made by direct photodefinition of an electro-optic polymer

    Science.gov (United States)

    Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.

    2008-04-01

    A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.

  2. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  3. Contrast and resolution enhancement of a near-field optical microscope by using a modulation technique

    International Nuclear Information System (INIS)

    Flaxer, Eli; Palachi, Eldad

    2005-01-01

    A new design of a tunneling near-field optical microscope (TNOM) combined with an atomic force microscope (AFM) is presented. This design can be used to generate three different images of the sample's surface: a non-contact (tapping mode) AFM image, a conventional TNOM and an image of a modulation signal of the conventional TNOM, which we call AC-TNOM. The images are obtained simultaneously, using a single light source. It is shown that the AC-TNOM has better resolution (∼200 A) and contrast compared to conventional TNOM (∼400 A)

  4. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    Science.gov (United States)

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  5. Effect of body mass index on shifts in ultrasound-based image-guided intensity-modulated radiation therapy for abdominal malignancies

    International Nuclear Information System (INIS)

    Choi, Mehee; Fuller, Clifton D.; Wang, Samuel J.; Siddiqi, Ather; Wong, Adrian; Thomas, Charles R.; Fuss, Martin

    2009-01-01

    Background and purpose: We investigated whether corrective shifts determined by daily ultrasound-based image-guidance correlate with body mass index (BMI) of patients treated with image-guided intensity-modulated radiation therapy (IG-IMRT) for abdominal malignancies. The utility of daily image-guidance, particularly for patients with BMI > 25.0, is examined. Materials and methods: Total 3162 ultrasound-directed shifts were performed in 86 patients. Direction and magnitude of shifts were correlated with pretreatment BMI. Bivariate statistical analysis and analysis of set-up correction data were performed using systematic and random error calculations. Results: Total 2040 daily alignments were performed. Average 3D vector of set-up correction for all patients was 12.1 mm/fraction. Directional and absolute shifts and 3D vector length were significantly different between BMI cohorts. 3D displacement averaged 4.9 mm/fraction and 6.8mm/fraction for BMI ≤ 25.0 and BMI > 25.0, respectively. Systematic error in all axes and 3D vector was significantly greater for BMI > 25.0. Differences in random error were not statistically significant. Conclusions: Set-up corrections derived from daily ultrasound-based IG-IMRT of abdominal tumors correlated with BMI. Daily image-guidance may improve precision of IMRT delivery with benefits assessed for the entire population, particularly patients with increased habitus. Requisite PTV margins suggested in the absence of daily image-guidance are significantly greater in patients with BMI > 25.0.

  6. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  7. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    Science.gov (United States)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    International Nuclear Information System (INIS)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-01-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization

  9. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: sgcarlier@hotmail.com [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)

    2014-06-15

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  10. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Choi, Kyoung Sun; Byun, Young Tae; Lee, Seok; Jhon, Young Min

    2010-01-01

    An OR/NOR bi-functional all-optical logic gate has been experimentally demonstrated at 10 Gbit/s by using cross-gain modulation (XGM) in only 2 semiconductor optical amplifiers (SOAs). One SOA was used for NOR operation and the other SOA was used for inversion to obtain OR operation. Numerical simulation has also been performed, which coincided well with the experimental results.

  11. Simulink models for performance analysis of high speed DQPSK modulated optical link

    International Nuclear Information System (INIS)

    Sharan, Lucky; Rupanshi,; Chaubey, V. K.

    2016-01-01

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  12. Simulink models for performance analysis of high speed DQPSK modulated optical link

    Energy Technology Data Exchange (ETDEWEB)

    Sharan, Lucky, E-mail: luckysharan@pilani.bits-pilani.ac.in; Rupanshi,, E-mail: f2011222@pilani.bits-pilani.ac.in; Chaubey, V. K., E-mail: vkc@pilani.bits-pilani.ac.in [EEE Department, BITS-Pilani, Rajasthan, 333031 (India)

    2016-03-09

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  13. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    Science.gov (United States)

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  14. Low power laser generated ultrasound: Signal processing for time domain data acquisition

    International Nuclear Information System (INIS)

    Cleary, A; Thursby, G; McKee, C; Armstrong, I; Culshaw, B; Veres, I; Pierce, S G

    2011-01-01

    The use of low power modulated laser diode systems has previously been established as a suitable method for non-destructive laser generation of ultrasound. Using a quasi-continuous optical excitation amplified by an erbium-doped fibre amplifier (EDFA) allows flexible generation of ultrasonic waves, offering control of further parameters such as the frequency content or signal shape. In addition, pseudo-random binary sequences (PRBS) can be used to improve the detected impulse response. Here we compare two sequences, the m-sequence and the Golay code, and discuss the advantages and practical limits of their application with laser diode based optical excitation of ultrasound.

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  19. Low-Intensity Pulsed Ultrasound Protects Retinal Ganglion Cell From Optic Nerve Injury Induced Apoptosis via Yes Associated Protein

    Directory of Open Access Journals (Sweden)

    Jia-Xing Zhou

    2018-06-01

    Full Text Available Background: Low-intensity pulsed ultrasound (LIPUS has been used in clinical studies. But little is known about its effects on the central nervous system (CNS, or its mechanism of action. Retinal ganglion cells (RGCs are CNS neuronal cells that can be utilized as a classic model system to evaluate outcomes of LIPUS protection from external trauma-induced retinal injury. In this study, we aim to: (1 determine the pulse energy and the capability of LIPUS in RGC viability, (2 ascertain the protective role of LIPUS in optic nerve (ON crush-induced retinal injury, and 3 explore the cellular mechanisms of RGC apoptosis prevention by LIPUS.Methods: An ON crush model was set up to induce RGC death. LIPUS was used to treat mice eyes daily, and the retina samples were dissected for immunostaining and Western blot. The expression of yes-associated protein (YAP and apoptosis-related proteins was detected by immunostaining and Western blot in vitro and in vivo. Apoptosis of RGCs was evaluated by TUNEL staining, the survival of RGCs and retained axons were labeled by Fluoro-gold and Tuj1 antibody, respectively. Rotenone was used to set up an in vitro cellular degenerative model and siYAP was used to interfering the expression of YAP to detect the LIPUS protective function.Results: LIPUS protected RGC from loss and apoptosis in vivo and in vitro. The ratio of cleaved/pro-caspase3 also decreased significantly under LIPUS treatment. As a cellular mechanical sensor, YAP expression increased and YAP translocated to nucleus in LIPUS stimulation group, however, phospho-YAP was found to be decreased. When YAP was inhibited, the LIPUS could not protect RGC from caspase3-dependent apoptosis.Conclusion: LIPUS prevented RGCs from apoptosis in an ON crush model and in vitro cellular degenerative model, which indicates a potential treatment for further traumatic ON injury. The mechanism of protection is dependent on YAP activation and correlated with caspase-3 signaling.

  20. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    Science.gov (United States)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  1. Non-binary coded modulation for FMF-based coherent optical transport networks

    Science.gov (United States)

    Lin, Changyu

    The Internet has fundamentally changed the way of modern communication. Current trends indicate that high-capacity demands are not going to be saturated anytime soon. From Shannon's theory, we know that information capacity is a logarithmic function of signal-to-noise ratio (SNR), but a linear function of the number of dimensions. Ideally, we can increase the capacity by increasing the launch power, however, due to the nonlinear characteristics of silica optical fibers that imposes a constraint on the maximum achievable optical-signal-to-noise ratio (OSNR). So there exists a nonlinear capacity limit on the standard single mode fiber (SSMF). In order to satisfy never ending capacity demands, there are several attempts to employ additional degrees of freedom in transmission system, such as few-mode fibers (FMFs), which can dramatically improve the spectral efficiency. On the other hand, for the given physical links and network equipment, an effective solution to relax the OSNR requirement is based on forward error correction (FEC), as the response to the demands of high speed reliable transmission. In this dissertation, we first discuss the model of FMF with nonlinear effects considered. Secondly, we simulate the FMF based OFDM system with various compensation and modulation schemes. Thirdly, we propose tandem-turbo-product nonbinary byte-interleaved coded modulation (BICM) for next-generation high-speed optical transmission systems. Fourthly, we study the Q factor and mutual information as threshold in BICM scheme. Lastly, an experimental study of the limits of nonlinearity compensation with digital signal processing has been conducted.

  2. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  3. Theoretical and experimental study on fiber-optic displacement sensor with bowknot bending modulation

    Science.gov (United States)

    Zheng, Yong; Huang, Da; Zhu, Zheng-Wei

    2018-03-01

    A novel and simple fiber-optic sensor for measuring a large displacement range in civil engineering has been developed. The sensor incorporates an extremely simple bowknot bending modulation that increases its sensitivity in bending, light source and detector. In this paper, to better understand the working principle and improve the performance of the sensor, the transduction of displacement to light loss is described analytically by using the geometry of sensor and principle of optical fiber loss. Results of the calibration tests show a logarithmic function relationship between light loss and displacement with two calibrated parameters. The sensor has a response over a wide displacement range of 44.7 mm with an initial accuracy of 2.65 mm, while for a small displacement range of 34 mm it shows a more excellent accuracy of 0.98 mm. The direct shear tests for the six models with the same dimensions were conducted to investigate the application of the sensor for warning the shear and sliding failure in civil engineering materials or geo-materials. Results address that the sliding displacement of sliding body can be relatively accurately captured by the theory logarithmic relation between sliding distance and optical loss in a definite structure, having a large dynamic range of 22.32 mm with an accuracy of 0.99 mm, which suggests that the sensor has a promising prospect in monitoring civil engineering, especially for landslides.

  4. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  5. Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links

    International Nuclear Information System (INIS)

    Larsson, Anders; Carlsson, Christina; Gustavsson, Johan; Haglund, Asa; Modh, Peter; Bengtsson, Joergen

    2004-01-01

    With the rapid development of wireless communication networks there is an increasing demand for efficient and cost-effective transmission and distribution of RF signals. Fibre optic RF links, employing directly modulated semiconductor lasers, provide many of the desired characteristics for such distribution systems and in the search for cost-effective solutions, the vertical cavity surface emitting laser (VCSEL) is of interest. It has therefore been the purpose of this work to investigate whether 850 nm VCSELs fulfil basic performance requirements for fibre optic RF links operating in the low-GHz range. The performance of single- and multimode oxide confined VCSELs has been compared, in order to pin-point limitations and to find the optimum design. Fibre optic RF links using VCSELs and multimode fibres have been assembled and evaluated with respect to performance characteristics of importance for wireless communication systems. We have found that optimized single-mode VCSELs provide the highest performance and that links using such VCSELs and high-bandwidth multimode fibres satisfy the requirements in a number of applications, including cellular systems for mobile communication and wireless local area networks

  6. Optical zoom lens module using MEMS deformable mirrors for portable device

    Science.gov (United States)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  7. Measurement of Chromatic Dispersion using the Baseband Radio-Frequency Response of a Phase-Modulated Analog Optical Link Employing a Reference Fiber

    National Research Council Canada - National Science Library

    McKinney, Jason D; Diehl, John

    2007-01-01

    In this work we demonstrate a new technique for measuring the chromatic dispersion of an optical fiber using the baseband RF response of a phase-modulated analog optical link in concert with a well...

  8. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    Science.gov (United States)

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  10. Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures

    Science.gov (United States)

    Law, K.-K.; Simes, R. J.; Coldren, L. A.; Gossard, A. C.; Maserjian, J.

    1989-01-01

    An optically controlled reflection modulator has been demonstrated that consists of a combination of a GaAs-AlGaAs n-i-p-i doping structure with a multiple-quantum-well structures on top of a distributed Bragg reflector, all grown by MBE. A modulation of approximately 60 percent is obtained on the test structure, corresponding to a differential change of absorption coefficient in the quantum wells of approximately 7500/cm. Changes in reflectance can be observed with a control beam power as low as 1.5 microW. This device structure has the potential of being developed as an optically addressed spatial light modulator for optical information processing.

  11. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  12. Analysis of physical layer performance of data center with optical wavelength switches based on advanced modulation formats

    Science.gov (United States)

    Ahmad, Iftikhar; Chughtai, Mohsan Niaz

    2018-05-01

    In this paper the IRIS (Integrated Router Interconnected spectrally), an optical domain architecture for datacenter network is analyzed. The IRIS integrated with advanced modulation formats (M-QAM) and coherent optical receiver is analyzed. The channel impairments are compensated using the DSP algorithms following the coherent receiver. The proposed scheme allows N2 multiplexed wavelengths for N×N size. The performance of the N×N-IRIS switch with and without wavelength conversion is analyzed for different Baud rates over M-QAM modulation formats. The performance of the system is analyzed in terms of bit error rate (BER) vs OSNR curves.

  13. All-Optical 40 Gbit/s Regenerative Wavelength Conversion Based on Cross-Phase Modulation in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Hu, Hao; Ji, Hua

    2013-01-01

    We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration.......We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration....

  14. Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2008-01-01

    In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown. The wa....... The wavelength conversion scheme is demonstrated at the record-high bit rate of 640 Gb/s.......In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown...

  15. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  16. Using Paraffin PCM to Make Optical Communication Type of Payloads Thermally Self-Sufficient for Operation in Orion Crew Module

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    An innovative concept of using paraffin phase change material with a melting point of 28 C to make Optical Communication type of payload thermally self-sufficient for operation in the Orion Crew Module is presented. It stores the waste heat of the payload and permits it to operate for about one hour by maintaining its temperature within the maximum operating limit. It overcomes the problem of relying on the availability of cold plate heat sink in the Orion Crew Module.

  17. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  18. Development of two U.H.F. band resonators for application to CO2 laser electro-optical modulation

    International Nuclear Information System (INIS)

    Egan, M.G.; Blanc, P.; Sexton, M.C.

    1980-01-01

    The purpose of this report is to describe the design and testing of two U.H.F. band resonators destined for use in the linear electro-optical modulator of the CO 2 Laser Rapid Interferometer diagnostic at present under development for the WEGA Tokamak. The resonators take the form of a re-entrant coaxial line cavity and an interdigital line filter, both of which possess the regions of high electric field necessary to activate the linear electro-optical effect

  19. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    Science.gov (United States)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  20. Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator

    Science.gov (United States)

    Chen, Ming; Peng, Miao; Zhou, Hui; Zheng, Zhiwei; Tang, Xionggui; Maivan, Lap

    2017-12-01

    To further improve receiver sensitivity of spectrally-efficient guard-band direct-detection optical orthogonal frequency-division multiplexing (OFDM) with twin single-side-band (SSB) modulation technique, an optical IQ modulator (IQM) is employed to optimize optical carrier-to-signal power ratio (CSPR). The CSPRs for the guard-band twin-SSB-OFDM signal generated by using dual-drive Mach-Zehnder modulator (DD-MZM) and optical IQM are theoretically analyzed and supported by simulations. The optimal CSPR for the two types of guard-band twin-SSB-OFDM are identified. The simulations exhibit that the error vector magnitude (EVM) performance of the IQM-enabled guard-band twin-SSB-OFDM is improved by more than 4-dB compared to that of the twin-SSB-OFDM enabled by DD-MZM after 80-km single-mode fiber (SMF) transmission. In addition, more than 3-dB and 10 dB receiver sensitivity improvements in terms of received optical power (ROP) and optical signal-to-noise ratio (OSNR) are also achieved, respectively.

  1. Monitoring of Optical Emission from High Temperature Plasma Based on Chromatic Modulation

    International Nuclear Information System (INIS)

    Dimitrios, Tomtsis

    2009-01-01

    An integrated experimental approach is presented for processing the optical emission produced from electric arc plasma. The method is based on chromatic modulation techniques to provide a holistic measurement of the persistence of particle decays within the environment of high power circuit breakers. Chromaticity changes in a number of chromatic parameters are related to changes in physical electric arc plasma environment (e.g. particle concentration). The results are in the form of chromatic maps which show how the overall electric arc plasma and its environment behave and respond. Such maps show the totality of information which can be accessed about the arcing event and the level of monitoring discrimination which is achievable with the chromatic methodology in a simple and easy to understand manner. The suggested method provides easier data analysis and high levels of data compression.

  2. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    Science.gov (United States)

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  3. Citric acid induced W18O49 electrochromic films with enhanced optical modulation

    Science.gov (United States)

    Xie, Junliang; Song, Bin; Zhao, Gaoling; Han, Gaorong

    2018-06-01

    Electrochromic materials exhibit promising applications in energy-saving fields for their ability to control heat from outdoors. Nanostructured W18O49 has drawn attention for its one-dimensional structure to transfer charge efficiently as a remarkable electrochromic material. W18O49 bi-layer films were fabricated through a facile one-step solvothermal process with citric acid as a chelating agent. The addition of citric acid improved the deposition on the substance, and a nanostructured film with a denser layer at the bottom and a tussock-like upper layer was obtained. The bi-layer film exhibited an enhanced optical modulation of 68.7%, a coloration efficiency of 82.1 cm2/C with stability over 400 cycles, and fast response times (1.4 s and 2.3 s for bleaching and coloring), with expectation to be applied in the electrochromic field.

  4. Frequency-modulated impulse response photothermal detection through optical reflectance. 2: Experimental.

    Science.gov (United States)

    Power, J F; Mandelis, A

    1988-08-15

    A fast thermoreflectance impulse response photothermal imager was assembled and tested with several solid materials [quartz, stainless steel, and polyvinylidene difluoride (PVDF)I. The instrument was found to yield quantitative data in agreement with Green's function theoretical models of time domain heat conduction. The FM chirp laser intensity modulation technique used in these experiments gave wide bandwidth photothermal signals and was found to be only limited by the FFT instrumentation frequency response (100 kHz). Thermal diffusivities were calculated, while thermal lensing and thermoelastic effects were further observed. The imager was thus shown to be capable of replacing pulsed laser devices for truly nondestructive applications with materials with low damage threshold to optical pulses.

  5. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field

  6. Speckle-modulating optical coherence tomography in living mice and humans

    Science.gov (United States)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  7. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    Science.gov (United States)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  8. Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers

    International Nuclear Information System (INIS)

    Ganapathy, R.; Malomed, Boris A.; Porsezian, K.

    2006-01-01

    Instability of continuous-wave (CW) states is investigated in a system of two parallel-coupled fibers, with a pumped (active) nonlinear dispersive core and a lossy (passive) linear one. Modulational instability (MI) conditions are found from linearized equations for small perturbations, the results being drastically different for the normal and anomalous group-velocity dispersion (GVD) in the active core. Simulations of the full system demonstrate that the development of the MI in the former regime leads to establishment of a regular or chaotic array of pulses, if the MI saturates, or a chain of well-separated peaks with continuously growing amplitudes if the instability does not saturate. In the anomalous-GVD regime, a chain of return-to-zero (RZ) peaks, or a single RZ peak emerge, also with growing amplitudes. The latter can be used as a source of RZ pulses for optical telecommunications

  9. The mDOM. A multi-PMT optical module for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Lew; Kappes, Alexander [Institut fur Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Karg, Timo; Kretzschmann, Axel [DESY, Zeuthen (Germany); Koelpin, Alexander; Lindner, Stefan; Roeber, Juergen [LTE, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    Following the discovery of an astrophysical neutrino flux by IceCube in 2013, planning is under way for the next generation neutrino telescope at the South Pole, IceCube-Gen2, which will significantly enhance and expand IceCube's sensitivity both towards high neutrino energies as well as in the low-energy regime. In the scope of these efforts, a novel multi-PMT optical sensor is being developed which, following the KM3NeT design, consists of an array of several small PMTs inside a transparent pressure vessel. This design provides some significant advantages compared to the conventional single-PMT module design, such as an increased effective area, homogeneous coverage of the full solid angle, and intrinsic angular sensitivity. The talk presents an overview of the project and its current status, featuring hardware development, testing, and simulation efforts.

  10. Ultrafast self-modulation of the optical absorption spectrum under conditions of both the ultrashort optical pumping and superluminescence in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Krivonosov, A. N.; Stegantsov, S. V.

    2006-01-01

    Self-modulation of the optical absorption spectrum is observed during the picosecond photogeneration of charge carriers and intense superluminescence in GaAs. As the picosecond delay τ of the probing pulse with respect to the pump pulse is varied in the region of τ < 0, the local points of the absorption intensification (juts) shift along the spectrum (the modulation resembles a running wave). As the value of τ is varied in the vicinity of τ = 0, the juts in the spectrum arise and disappear at approximately fixed photon energies (the modulation resembles a standing wave). At certain photon energies, the dependence of the rate of variation in the absorption coefficient dα/dτ on τ is found to be modulated by pulsations, similarly to the previously observed modulation of the picosecond stimulated emission from GaAs. Presumably, the spectrum self-modulation represents (and, thus, reveals) the modulation of the electron distribution in the conduction band. This modulation is caused by the fact that the evolution of the electron-population depletion at the bottom of the conduction band during superluminescence reflects (due to the electron-phonon interaction) on the population of the upper energy levels in the band

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  13. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10-4 J/m2, respectively.

  14. X-ray verification of an optically-aligned off-plane grating module

    Science.gov (United States)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  15. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  16. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.

    Science.gov (United States)

    Zarella, Mark D; Ts'o, Daniel Y

    2017-01-01

    Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.

  17. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Eppstein, Margaret J; Zhang, Chaoyang; Theru, Sangeeta; Thompson, Alan B; Gurfinkel, Michael; Sevick-Muraca, Eva M

    2003-01-01

    A novel image-intensified charge-coupled device (ICCD) imaging system has been developed to perform 3D fluorescence tomographic imaging in the frequency-domain using near-infrared contrast agents. The imager is unique since it (i) employs a large tissue-mimicking phantom, which is shaped and sized to resemble a female breast and part of the extended chest-wall region, and (ii) enables rapid data acquisition in the frequency-domain by using a gain-modulated ICCD camera. Diffusion model predictions are compared to experimental measurements using two different referencing schemes under two different experimental conditions of perfect and imperfect uptake of fluorescent agent into a target. From these experimental measurements, three-dimensional images of fluorescent absorption were reconstructed using a computationally efficient variant of the approximate extended Kalman filter algorithm. The current work represents the first time that 3D fluorescence-enhanced optical tomographic reconstructions have been achieved from experimental measurements of the time-dependent light propagation on a clinically relevant breast-shaped tissue phantom using a gain-modulated ICCD camera

  18. Correlation between cup-to-disc ratio and cup/retrobulbar optic nerve diameter proportion assessed by high-resolution ultrasound in glaucomatous eyes

    Directory of Open Access Journals (Sweden)

    Wilian Silva Queiroz

    2013-10-01

    Full Text Available PURPOSE: To investigate the correlation between the measurements of the cup/retrobulbar optic nerve diameter (C/OND proportion obtained by high-resolution 20-MHz B-mode ultrasound (US and those of the cup/disc ratio (C/D obtained by fundus biomicroscopy (BIO and optical coherence tomography (OCT. METHODS: Thirty eyes of 15 glaucomatous patients with any C/D proportion were studied. All patients underwent examination of the vertical C/D by BIO with a 78D lens and time-domain OCT analysis, as well as the vertical C/OND proportion using 20-MHz US measurements. All data were analyzed by correlation and agreement tests. RESULTS: The Spearman test showed a strong correlation between C/D results obtained by BIO and the measurements of C/OND (US (r=0.788, p<0.0001, and with C/D obtained by OCT (r=0.8529, p<0.0001. However, comparison of C/D results obtained with OCT to those obtained by with C/OND (US showed only a moderate correlation (r=0.6727, p<0.0001. Bland-Altman analysis did not show good agreement between C/D (BIO and C/OND (US. CONCLUSIONS: The results demonstrate that B-mode ultrasound examination with a 20 MHz probe can be a good additional method for the evaluation of the C/D ratio in glaucomatous patients, and may be considered as an alternative gross tool in glaucomatous patients with optic media opacities.

  19. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  20. 40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation

    NARCIS (Netherlands)

    Yang, H.; Lee, S.C.J.; Tangdiongga, E.; Breyer, F.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    Spectral-efficient 40-Gb/s discrete multitone transmission over 100m of graded-index plastic optical fiber is experimentally demonstrated by intensity-modulation of a 10-GHz DFB-laser (1302nm) and direct-detection with a 25-µm large diameter photodetector.

  1. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.; Li, Changping; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed

  2. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    NARCIS (Netherlands)

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.

    2011-01-01

    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  3. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  4. Study Modules for Calculus-Based General Physics. [Includes Modules 38-40: Optical Instruments; Diffraction; and Alternating Current Circuits].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  5. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  6. Contrast enhancement in an optical time-domain reflectometer via self-phase modulation compensation by chirped probe pulses

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Vdovenko, V S; Simikin, D E; Gorshkov, B G

    2016-01-01

    In the present paper we propose a novel method for optical time-domain reflectometer (OTDR)–reflectogram contrast enhancement via compensation of nonlinear distortions of propagating probe pulse, which arise due to the self-phase modulation (SPM) effect in optical fiber. The compensation is performed via preliminary frequency modulation (chirp) of the initial probe pulse according to the specific law. As a result the OTDR contrast at some distant predefined fiber point is fully restored to the value of non-distorted probe pulse at the beginning of the fiber line. As a result, the performance of the phase OTDR increases. The point of full SPM compensation could be shifted to any other point of the fiber line via preliminary frequency modulation index change. The feasibility of the proposed method is theoretically proved and experimentally demonstrated. (paper)

  7. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    Science.gov (United States)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  8. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  9. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated

  10. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    Science.gov (United States)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  11. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  12. Flexible treatment of gestational diabetes modulated on ultrasound evaluation of intrauterine growth: a controlled randomized clinical trial.

    Science.gov (United States)

    Bonomo, M; Cetin, I; Pisoni, M P; Faden, D; Mion, E; Taricco, E; Nobile de Santis, M; Radaelli, T; Motta, G; Costa, M; Solerte, L; Morabito, A

    2004-06-01

    In order to prevent abnormalities of fetal growth still characterizing pregnancies complicated by Gestational Diabetes (GDM), in the present study we evaluated a therapeutic strategy for GDM based on ultrasound (US) measurement of fetal insulin-sensitive tissues. All GDM women diagnosed before 28th week immediately started diet and self-monitoring of blood glucose; after 2 weeks they were randomized to conventional (C) or modified (M) management. In C the glycemic target (GT) was fixed at 90 fasting/120 post-prandial mg/dl; in M GT varied, according to US measurement of the Abdominal Circumference (AC) centile performed every 2 weeks: 80/100 if AC > or =75th, 100/140 if AC or =75th c. Mean metabolic data were similar in the 2 groups, but in M a tightly-optimized subgroup, resulting from the lowering of GT due to AC > or =75th, coexisted with a less-controlled one, whose higher GT was justified by ACgrowth, with clear advantages on global pregnancy outcome.

  13. Comparison of Central Corneal Thickness Measured by Standard Ultrasound Pachymetry, Corneal Topography, Tono-Pachymetry and Anterior Segment Optical Coherence Tomography.

    Science.gov (United States)

    González-Pérez, Javier; Queiruga Piñeiro, Juan; Sánchez García, Ángelx; González Méijome, José Manuel

    2018-04-10

    To compare central corneal thickness (CCT) measured by standard ultrasound pachymetry (USP), and three non-contact devices in healthy eyes. A cross-sectional study of CCT measurement in 52 eyes of 52 healthy volunteers was done by a single examiner at Ocular Surface and Contact Lens Laboratory. Three consecutive measurements were done by standard USP, non-contact tono-pachymeter, Pentacam corneal topographer, and Anterior Segment Optical Coherence Tomography (AS-OCT). The mean values were used for assessment. The results were compared using multivariate ANOVA, linear regression, and Pearson correlation. Agreement among the devices was analyzed using mean differences and Bland-Altman analysis with 95% limits of agreement (LoA). Finally, reliability was analyzed using intraclass correlation coefficient (ICC). Mean CCT by ultrasound pachymeter, tono-pachymeter, corneal topographer and AS-OCT were 558.9 ± 31.2 µm, 525.8 ± 43.1 µm, 550.4 ± 30.5 µm, and 545.9 ± 30.5 µm respectively. There was a significant positive correlation between AS-OCT and USP (Pearson correlation = 0.957, p device, and USP. Mean CCT among USP, Pentacam and AS-OCT were comparable and had significant linear correlations. In clinical practice, these three modalities could be interchangeable in healthy patients.

  14. Improved ultrasonic detection of fatigue cracks in Ti-6A1-4V by thermo-optical modulation

    International Nuclear Information System (INIS)

    Yan Zhongyu; Nagy, Peter B.

    2000-01-01

    Pulsed infrared laser irradiation was used to positively identify small fatigue cracks on the surface of fatigue damaged Ti-6Al-4V specimens. The resulting transient thermoelastic deformation perceptibly changes the opening of partially closed surface cracks without affecting other scatterers, such as surface grooves, corrosion pits, coarse grains, etc., that might hide the fatigue crack from ultrasonic detection. We found that this method, which was previously shown to be very effective in 2024 aluminum alloy, must be modified in order to successfully adapt it to Ti-6Al-4V titanium alloy, where significant thermo-optical modulation was found even from straight corners or open notches. This spurious modulation is caused by direct thermal modulation of the sound velocity in the intact material rather than thermal stresses via crack closure. Different methods have been developed to distinguished direct thermal modulation from crack-closure modulation due to thermoelastic stresses. It was found that the modified thermo-optical modulation method can increase the detectability of hidden fatigue cracks in Ti-6Al-4V specimens by approximately one order of magnitude. - This effort was sponsored by the Defense Advanced Research Projects Agency (DARPA) Multidisciplinary University Research Initiative (MURI), under Air Force Office of Scientific Research grant number F49620-96-1-0442

  15. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  16. Novel optical solitary waves and modulation instability analysis for the coupled nonlinear Schrödinger equation in monomode step-index optical fibers

    Science.gov (United States)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper addresses the coupled nonlinear Schrödinger equation (CNLSE) in monomode step-index in optical fibers which describes the nonlinear modulations of two monochromatic waves, whose group velocities are almost equal. A class of dark, bright, dark-bright and dark-singular optical solitary wave solutions of the model are constructed using the complex envelope function ansatz. Singular solitary waves are also retrieved as bye products of the in integration scheme. This naturally lead to some constraint conditions placed on the solitary wave parameters which must hold for the solitary waves to exist. The modulation instability (MI) analysis of the model is studied based on the standard linear-stability analysis. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CNLSE.

  17. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    Science.gov (United States)

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  18. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector

    NARCIS (Netherlands)

    Lee, M.J.; Youn, J.S.; Park, K.Y.; Choi, W.Y.

    2014-01-01

    We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche

  19. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2

    Directory of Open Access Journals (Sweden)

    Zarella MD

    2017-04-01

    Full Text Available Mark D Zarella, Daniel Y Ts’o Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA Abstract: Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. Keywords: striate, extrastriate, segmentation, figure–ground, functional organization

  20. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    Directory of Open Access Journals (Sweden)

    Apratim Majumder

    2016-03-01

    Full Text Available Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL, a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.