WorldWideScience

Sample records for ultrasound coherent imaging

  1. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    Science.gov (United States)

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  2. Perspectives on Imaging the Left Main Coronary Artery Using Intravascular Ultrasound and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Harry C Lowe

    2015-01-01

    Full Text Available Percutaneous Coronary Intervention (PCI for significant left main coronary artery (LMCA stenosis is increasingly being viewed as a viable alternative to Coronary Artery Bypass Grafting (CABG (1. This is leading to an expectation of increasing numbers of such procedures, with a consequent focus on both the ability to image both lesion severity, and assess more accurately the results of PCI. While there have been advances in physiologic assessment of left main severity using fractional flow reserve (FFR, imaging of the LMCA using Intravascular Ultrasound (IVUS and more recently Optical Coherence Tomography (OCT has the specific advantage of being able to provide detailed anatomical information both pre and post PCI, such that it is timely to review briefly the current status of these two imaging technologies in the context of LMCA intervention.

  3. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  4. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Räber, Lorenz; Heo, Jung Ho; Radu, Maria D

    2012-01-01

    To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.......To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images....

  5. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a ... Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview Images related to General Ultrasound Videos ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... What are the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and ... be heard with every heartbeat. top of page What are some common uses of the procedure? Ultrasound ...

  10. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... ultrasound study may be part of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3- ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ultrasound , also called ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ... with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound ... computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... 3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... move through vessels. The movement of blood cells causes a change in pitch of the reflected sound ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... need to be returned to the transducer for analysis. Ultrasound has difficulty penetrating bone and, therefore, can ... ultrasound procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is no ... structure and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... more extensive exams may take up to an hour. When the examination is complete, you may be ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... about this beforehand and be made aware of food and drink restrictions that may be needed prior ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  12. Coherent Multistatic ISAR Imaging

    NARCIS (Netherlands)

    Dorp, Ph. van; Otten, M.P.G.; Verzeilberg, J.M.M.

    2012-01-01

    This paper presents methods for Coherent Multistatic Radar Imaging for Non Cooperative Target Recognition (NCTR) with a network of radar sensors. Coherent Multistatic Radar Imaging is based on an extension of existing monostatic ISAR algorithms to the multistatic environment. The paper describes the

  13. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of General Ultrasound Imaging? Ultrasound waves are ...

  15. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging ...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Children's (pediatric) abdominal ultrasound imaging produces pictures ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  20. Abdominal ultrasound (image)

    Science.gov (United States)

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of the ... abdomen using ultrasound. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of the ... abdomen using ultrasound. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to image by ultrasound because greater amounts of tissue attenuate (weaken) the sound waves as they pass deeper into the body and need to be returned to the transducer for analysis. Ultrasound has difficulty penetrating bone and, therefore, can only see the outer surface ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... women and their unborn babies. Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... General ultrasound procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ... are sometimes the best way to see if treatment is working or if a finding is stable ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... a follow-up exam is done because a potential abnormality needs further evaluation with additional views or ... of soft tissues that do not show up well on x-ray images. Ultrasound is the preferred ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the transducer for analysis. Ultrasound has difficulty penetrating bone and, therefore, can only see the outer surface ... children or adults). For visualizing internal structure of bones or certain joints, other imaging modalities such as ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... heartbeat. top of page What are some common uses of the procedure? Ultrasound examinations can help to ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... time, rather than as a color picture. It can also convert blood flow information into a distinctive ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is General Ultrasound Imaging? What are some common uses of the procedure? How should I prepare? What does the equipment look like? How does the procedure work? How is the procedure performed? What will I ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and Vascular Stenting ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and ... of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... echoes from the tissues in the body. The principles are similar to sonar used by boats and ... work? Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... consist of a console containing a computer and electronics, a video display screen and a transducer that ... the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound ...

  1. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of ... 30 minutes. top of page What will my child experience during and after the procedure? Ultrasound examinations ...

  3. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  4. Spatial smoothing coherence factor for ultrasound computed tomography

    Science.gov (United States)

    Lou, Cuijuan; Xu, Mengling; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    In recent years, many research studies have been carried out on ultrasound computed tomography (USCT) for its application prospect in early diagnosis of breast cancer. This paper applies four kinds of coherence-factor-like beamforming methods to improve the image quality of synthetic aperture focusing method for USCT, including the coherence-factor (CF), the phase coherence factor (PCF), the sign coherence factor (SCF) and the spatial smoothing coherence factor (SSCF) (proposed in our previous work). The performance of these methods was tested with simulated raw data which were generated by the ultrasound simulation software PZFlex 2014. The simulated phantom was set to be water of 4cm diameter with three nylon objects of different diameters inside. The ring-type transducer had 72 elements with a center frequency of 1MHz. The results show that all the methods can reveal the biggest nylon circle with the radius of 2.5mm. SSCF gets the highest SNR among the proposed methods and provides a more homogenous background. None of these methods can reveal the two smaller nylon circles with the radius of 0.75mm and 0.25mm. This may be due to the small number of elements.

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... vomiting in young infants Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ... with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes ...

  7. Coherent imaging using SACLA

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Kimura, Takashi; Suzuki, Akihiro; Joti, Yasumasa; Bessho, Yoshitaka

    2017-01-01

    X-ray free-electron lasers (XFELs) with femtosecond pulse duration offer an innovative solution to transcend the spatial resolution limitation in conventional X-ray imaging for biological samples and soft matters by clearing up the radiation damage problem using the “diffraction-before-destruction” strategy. Building on this strategy, the authors are developing a method to image solution sample under controlled environment, pulsed coherent X-ray solution scattering (PCXSS), using XFELs and phase retrieval algorithms in coherent diffractive imaging (CDI). This article describes the basics of PCXSS and examples of PCXSS measurement, for a living cell and self-assemblies of gold nanoparticles, performed by the authors using SACLA. An attempt toward the industrial application of PCXSS is also described. (author)

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound is the preferred imaging modality for ...

  10. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiation. Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  12. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Children's (pediatric) ... uterus Abdominal ultrasound images can be used to help diagnose appendicitis in children. Except for traumatic injury, ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... kidneys bladder testicles ovaries uterus Abdominal ultrasound images can be used to help diagnose appendicitis in children. ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  15. Ultrasound Imaging Initiative

    Science.gov (United States)

    2003-01-01

    texture mapping hardware," IEEE Tranactions on Information Technology in Biomedicine, Submitted. [14] C.R. Castro Pareja , J.M. Jagadeesh and R. Shekhar...modulation in real-time three-dimensional sparse synthetic aperture ultrasound imaging systems "* Carlos R. Castro Pareja , Masters of Science, The Ohio...C.R. Castro Pareja , "An architecture for real-time image registration," M.S. Thesis, The Ohio State University, March 2002. 14. C.R. Castro Pareja , R

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart ... Articles and Media Angioplasty and Vascular Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements ...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... children. Except for traumatic injury, appendicitis is the most common reason for emergency abdominal surgery. Ultrasound imaging ... of page How is the procedure performed? For most ultrasound exams, you will be positioned lying face- ...

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... placement and fluid drainage for diagnosis and/or relief of patient discomfort. Doppler ultrasound images can help ... tenderness, your child may feel pressure or minor pain from the procedure. If a Doppler ultrasound study ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... abdomen is a safe, noninvasive test that uses sound waves to produce a clear picture of the ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is no ... structure and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound ... from the probe through the gel into the body. The transducer collects the sounds that bounce back ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... imaging produces pictures of the internal organs and blood vessels located within a child's abdomen. A Doppler ultrasound study may be part of a child's abdominal ultrasound ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the best way to see if treatment is working or if a finding is stable or changed ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  7. Deconvolution of ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1992-01-01

    Based on physical models, it is indicated that the received pressure field in ultrasound B-mode images can be described by a convolution between a tissue reflection signal and the emitted pressure field. This result is used in a description of current image formation and in formulating a new...... processing scheme. The suggested estimator can take into account the dispersive attenuation, the temporal and spatial variation of the pulse, and the change in reflection strength and signal-to-noise ratio. Details of the algorithm and the estimation of parameters to be used are given. The performance...

  8. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  9. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... waves from passing into your body. The sonographer (ultrasound technologist) or radiologist then places the transducer on the skin in various locations, sweeping over the area of interest or angling the ... ultrasound images are reviewed. An ultrasound examination is usually ...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... is Abdominal Ultrasound Imaging? What are some common uses of the procedure? How should we prepare for an ultrasound exam? What does the ultrasound equipment look like? How does the procedure work? How is the procedure performed? What will my ...

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... of vomiting in young infants Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page How is the procedure performed? For most ultrasound exams, you will be positioned lying face- ... Ultrasound examinations are painless and easily tolerated by most patients. Ultrasound exams in which the transducer is ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  14. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  15. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... abdomen help determine causes of vomiting in young infants Because ultrasound provides real-time images, images that ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  17. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. top of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - ... computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time ...

  19. Ultrasound Imaging. Chapter 13

    Energy Technology Data Exchange (ETDEWEB)

    Lacefield, J. C. [University of Western Ontario, London (Canada)

    2014-09-15

    In the conventional method of ultrasonography, images are acquired in reflection, or pulse echo, mode. An array of small piezoelectric elements transmits a focused pulse along a specified line of sight known as a scan line. Echoes returning from the tissue are received by the same array, focused via the delay-and-sum beam forming process reviewed in Section 13.2, and demodulated to obtain the magnitude, or envelope, of the echo signal. The scanner measures the arrival time of the echoes relative to the time the pulse was transmitted and maps the arrival time to the distance from the array, using an assumed speed of sound. The earliest ultrasound systems would display the result of a single pulse acquisition in 1-D A-mode (amplitude mode) format by plotting echo magnitude as a function of distance. A 2-D or 3-D B-mode (brightness mode) image is acquired by performing a large number of pulse echo acquisitions, incrementally increasing the scan line direction between each pulse echo operation, to sweep out a 2-D or 3-D field of view (FOV). The term B-mode imaging reflects the fact that the echo magnitude from each point in the FOV is mapped to the grey level, or brightness, of the corresponding pixel in the image.

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... procedure? Ultrasound examinations can help to diagnose a variety of conditions and to assess organ damage following ... the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart conditions, including valve problems and congestive ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... in infections With knowledge about the speed and volume of blood flow gained from a Doppler ultrasound ... the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. top of page ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... color picture. It can also convert blood flow information into a distinctive sound that can be heard ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... care physician, or to the physician or other healthcare provider who requested the exam. Usually, the referring ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... legs, neck and/or brain (in infants and children) or within various body organs such as the ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... sonography is performed using the same transducer. Rarely, young children may need to be sedated in order ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... may produce minimal discomfort. If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured. Most ultrasound examinations ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise ...

  12. Medical Ultrasound Imaging.

    Science.gov (United States)

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  13. Robust Short-Lag Spatial Coherence Imaging.

    Science.gov (United States)

    Nair, Arun Asokan; Tran, Trac Duy; Bell, Muyinatu A Lediju

    2018-03-01

    Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not consider the content of images formed with different lags, and thus does not exploit the differences in tissue texture at each short-lag value. Our proposed method improves SLSC imaging by weighting the addition of lag values (i.e., M-weighting) and by applying robust principal component analysis (RPCA) to search for a low-dimensional subspace for projecting coherence images created with different lag values. The RPCA-based projections are considered to be denoised versions of the originals that are then weighted and added across lags to yield a final robust SLSC (R-SLSC) image. Our approach was tested on simulation, phantom, and in vivo liver data. Relative to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22 dB, 2.54, and 2.36, respectively, when averaged over simulated, phantom, and in vivo data and over all lags considered, which corresponds to mean improvements of 96.4%, 121.2%, and 120.5%, respectively. When compared with SLSC images, the corresponding mean improvements with R-SLSC images were 7.38 dB, 1.52, and 1.30, respectively (i.e., mean improvements of 14.5%, 50.5%, and 43.2%, respectively). Results show great promise for smoothing out the tissue texture of SLSC images and enhancing anechoic or hypoechoic target visibility at higher lag values, which could be useful in clinical tasks such as breast cyst visualization, liver vessel tracking, and obese patient imaging.

  14. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  15. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... within your child’s abdomen. Ultrasound does not use ionizing radiation, has no known harmful effects, and is particularly ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  17. Ultrasound Imaging and its modeling

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2002-01-01

    Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed. The imaging is performed in real time with 20 to 100 images...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... video display screen and a transducer that is used to do the scanning. The transducer is a ... the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... a follow-up exam is done because a potential abnormality needs further evaluation with additional views or ... of soft tissues that do not show up well on x-ray images. Ultrasound provides real-time ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... not use ionizing radiation, has no known harmful effects, and is particularly valuable for ... is no radiation exposure to the patient. Because ultrasound images are captured ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... for traumatic injury, appendicitis is the most common reason for emergency abdominal surgery. Ultrasound imaging can also: ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... need to be returned to the transducer for analysis. top of page This page was reviewed on ... using ultrasound. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... children. Preparation will depend on the type of examination. Ask your doctor if there are specific instructions ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. top of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... various body organs such as the liver or kidneys. top of page What are some common uses ... appendix stomach/ pylorus liver gallbladder spleen pancreas intestines kidneys bladder testicles ovaries uterus Abdominal ultrasound images can ...

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... echoes from the tissues in the body. The principles are similar to sonar used by boats and ... work? Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is used to help diagnose the causes of pain, swelling and infection in the body’s internal organs ... used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in ... Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. top ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain ... are sometimes the best way to see if treatment is working or if a finding is stable ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or ... used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... baby in pregnant women and the brain and hips in infants. It’s also used to help guide ... and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... in infections With knowledge about the speed and volume of blood flow gained from a Doppler ultrasound ... Some exams may use different transducers (with different capabilities) during a single exam. The transducer sends out ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... spleen pancreas kidneys bladder uterus , ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also used to: guide ...

  3. General Ultrasound Imaging

    Science.gov (United States)

    ... spleen pancreas kidneys bladder uterus , ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also used to: guide ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and be made aware of food and drink restrictions that may be needed prior to sedation. Once ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects ... possible charges you will incur. Web page review process: This Web page is reviewed regularly by a ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Videos related to General Ultrasound Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Send us your feedback Did you find the information you were looking for? Yes No Please type your comment or suggestion ... General ultrasound procedure View full size with caption Pediatric ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... heartbeat. top of page What are some common uses of the procedure? Ultrasound examinations can help to ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and ... standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... fitting clothing for your ultrasound exam. You may need to remove all clothing and jewelry in the ... using the same transducer. Rarely, young children may need to be sedated in order to hold still ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... various body organs such as the liver or kidneys. There are three types of Doppler ultrasound: Color ... and its major branches liver gallbladder spleen pancreas kidneys bladder uterus , ovaries , and unborn child ( fetus ) in ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... Transvaginal ultrasound. The transducer is inserted into a woman's vagina to view the uterus and ovaries. top ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  16. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  17. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound provides real-time imaging, making it ...

  19. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  20. Birefringent coherent diffraction imaging

    Science.gov (United States)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ... of page What are the benefits vs. risks? Benefits Most ultrasound scanning is ... with your doctor, the medical facility staff and/or your insurance provider to get a better understanding of the ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... that allows the physician to see and evaluate blood flow through arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such as the liver or kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... body tissue through which the sound travels. A small amount of gel is put on the skin to allow the sound waves to travel from the transducer to the examined area within the body and then back again. Ultrasound ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to General Ultrasound Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... or kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood flow through a blood vessel. Power Doppler is a newer technique that is more ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of examining many of the body's internal organs, including but not limited to the: heart and blood vessels, including the abdominal aorta and its major branches liver gallbladder spleen ...

  8. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  9. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... to evaluate the: appendix stomach/ pylorus liver gallbladder spleen pancreas intestines kidneys bladder testicles ovaries uterus Abdominal ultrasound images can be used to help diagnose appendicitis in children. Except for traumatic injury, appendicitis is the most common reason for emergency ...

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen ...

  12. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... an area of tenderness, your child may feel pressure or minor pain from the procedure. If a Doppler ultrasound study is performed, your child may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured. Once the imaging ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... you! Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America ( ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ... not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiology examinations, will analyze the images and send a signed report to your primary care physician, or to the physician or other healthcare ... information. The costs for specific medical imaging tests, treatments and procedures ... Web page review process: This Web page is reviewed regularly by ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... Patients may be turned to either side to improve the quality of the images. After you are ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... display screen that looks like a computer or television monitor. The image is created based on the amplitude (loudness), ... imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and ...

  18. Recursive Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a new imaging method, applicable for both 2D and 3D imaging. It is based on Synthetic Transmit Aperture Focusing, but unlike previous approaches a new frame is created after every pulse emission. The elements from a linear transducer array emit pulses one after another. The same...... transducer element is used after N-xmt emissions. For each emission the signals from the individual elements are beam-formed in parallel for all directions in the image. A new frame is created by adding the new RF lines to the RF lines from the previous frame. The RF data recorded at the previous emission...... with the same element are subtracted. This yields a new image after each pulse emission and can give a frame rate of e.g. 5000 images/sec. The paper gives a derivation of the recursive imaging technique and compares simulations for fast B-mode imaging with measurements. A low value of N-xmt is necessary...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... graphically, in terms of the distance traveled per unit of time, rather than as a color picture. ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... screen that looks like a computer or television monitor. The image is created based on the amplitude ( ... turn creates a real-time picture on the monitor. One or more frames of the moving pictures ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... display screen that looks like a computer or television monitor. The image is created based on the ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... This website does not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure with your doctor, ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, treatments ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... procedure View full size with caption Pediatric Content Some imaging tests ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index ...

  7. Carotid Ultrasound Imaging

    Science.gov (United States)

    ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... about this beforehand and be made aware of food and drink restrictions that may be needed prior ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... no: Thank you! Do you have a personal story about radiology? Share your patient story here Images × ... Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of North America, Inc. ( ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler ... Do you have a personal ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... be turned to either side to improve the quality of the images. After you are positioned on the examination table, the radiologist (a physician specifically trained to supervise and interpret radiology examinations) or sonographer will apply a warm water-based gel to the area of the body ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... It’s also used to help guide biopsies, diagnose heart conditions, and assess damage after a heart attack. ...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants ...

  14. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  15. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  16. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    .3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS......) with a linear array transducer. The second harmonic imaging is obtained by a pulse inversion technique. The received data is beamformed by the SASB using a Beamformation Toolbox. In the measurements the lateral resolution at -6 dB is improved by 66% compared to the conventional imaging algorithm. There is also...... a 35% improvement for the lateral resolution at -6 dB compared with the sole harmonic imaging and a 46% improvement compared with merely using the SASB....

  17. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... child's abdominal ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  19. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E

    2012-01-01

    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  20. Intrauterine photoacoustic and ultrasound imaging probe

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  1. Transrectal ultrasound imaging and prostate cancer

    NARCIS (Netherlands)

    Goossen, Tjerk; Wijkstra, Hessel

    2003-01-01

    Prostate cancer is one of the most important causes of death from cancer in men. Ultrasound imaging is frequently used in the diagnosis of prostate cancer. This paper presents an overview of currently available ultrasound imaging techniques. The underlying principles and methods are discussed

  2. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect the ... in which needles are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... safe and accurate placement and fluid drainage for diagnosis and/or relief of patient discomfort. Doppler ultrasound ... joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  7. Ultrasound Imaging of Cystic Nephroma

    Directory of Open Access Journals (Sweden)

    Federico Greco

    2017-07-01

    Full Text Available Cystic nephroma is a rare, benign multicystic lesion of the kidney. This tumor occurs both in children and in adults. In children, it is highly prevalent in males; in adults, it is more frequent in women. The term “cystic nephroma” represents two apparently different entities: pediatric cystic nephroma, a benign form thought to originate from metanephric tissue, and adult cystic nephroma, considered as a lesion of mixed epithelial stromal tumor. The clinical presentation may be a palpable mass or nonspecific symptoms such as abdominal pain, hematuria, and urinary tract infections. In this review, we summarize the ultrasound imaging features of cystic nephroma and describe the characteristics of the most common renal cystic lesions and the differential diagnosis of cystic nephroma with other renal cystic lesions.

  8. Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B...

  9. Intrauterine photoacoustic and ultrasound imaging probe.

    Science.gov (United States)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Ultrasound imaging with a micromotor; Micromotor ni yoru choonpa imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, O.; Salimuzzaman, M.; Matani, A.; Chihara, K. [Nara Institute of Science and Technology, Nara (Japan); Asao, M. [Osaka National Hospital, Osaka (Japan)

    1998-03-01

    This paper describes a new ultrasound intravascular imaging system. In this system, an ultrasound probe consists of a micromotor, an ultrasound reflecting mirror attached with the micromotor and an ultrasound transducer. Ultrasound is scanned radially by a micromotor instead of a rotation transmitting wire and the rotation of the micromotor is performed and controlled by an external magnetic field. This ultrasound imaging system with a micromotor was applied to observe the inside of blood vessels through in vitro experiments. The preliminary results suggest that this system has the sufficient ability to define the blood vessel morphology and that the simple image processing enhances signal-to-noise ratio of the reconstructed image. 12 refs., 5 figs.

  11. Coherent diffractive imaging methods for semiconductor manufacturing

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  12. Ultrasound and MR imaging of diabetic mastopathy

    International Nuclear Information System (INIS)

    Wong, K.T.; Tse, G.M.K.; Yang, W.T.

    2002-01-01

    AIM: To review the imaging findings of diabetic mastopathy, and document the colour flow ultrasound and MR imaging features in this benign condition. MATERIALS AND METHODS: Diabetic mastopathy was clinically and histologically diagnosed in eight lesions in six women. All six women underwent conventional mammography and high frequency grey-scale ultrasound. Colour flow ultrasound was performed additionally in six lesions in four women and MR imaging in four lesions in three women before biopsy. The imaging findings were reviewed and correlated with final histological diagnosis. RESULTS: Mammography showed regional asymmetric increased opacity with ill-defined margins in all lesions. A heterogeneously hypoechoic mass with ill-defined margins was identified on high frequency grey-scale ultrasound in all lesions. Marked posterior acoustic shadowing was present in seven of eight (88%) lesions. Six lesions interrogated with colour flow ultrasound showed absence of Doppler signal. MR imaging in three women revealed non-specific stromal enhancement. CONCLUSION: Diabetic mastopathy shows absence of Doppler signal on colour flow ultrasound and non-specific stromal enhancement on MR imaging. Wong K.T. et al. (2002)

  13. Ultrasound and MR imaging of acute myositis

    International Nuclear Information System (INIS)

    Schedel, H.; Reimers, C.D.; Vogl, T.; Lissner, J.

    1992-01-01

    Ultrasound and MR imaging are both methods suitable for imaging neuromuscular diseases; however, contrast media like Gd-DTPA are, to our knowledge, not used so far. In this article we report about our experience of the use of Gd-DTPA in imaging myositis. (orig.)

  14. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  15. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... can be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect ... biopsies, in which needles are used to extract sample cells from an abnormal area for laboratory testing. ...

  17. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... are used to sample cells from organs for laboratory testing help detect the presence and cause of ... extract sample cells from an abnormal area for laboratory testing. Ultrasound may also be used to guide ...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. top ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... to Children's (Pediatric) Ultrasound - Abdomen Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... apparent enlarged abdominal organ identify the location of abnormal fluid in the abdomen help determine causes of ... are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound may also be ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  6. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  7. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ... of page What are the benefits vs. risks? Benefits Most ultrasound scanning is ... with your doctor, the medical facility staff and/or your insurance provider to get a better understanding of the ...

  9. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... particularly valuable for evaluating abdominal, pelvic or scrotal pain in young children. It is also valuable for evaluating the brain, spinal cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... body tissue through which the sound travels. A small amount of gel is put on the skin to allow the sound waves to travel from the transducer to the examined area within the body and then back again. Ultrasound ...

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... young children. It is also valuable for evaluating the brain, spinal cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  12. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Pediatric) Ultrasound - Abdomen Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and ...

  14. Simulation of ultrasound backscatter images from fish

    DEFF Research Database (Denmark)

    Pham, An Hoai

    2011-01-01

    The objective of this work is to investigate ultrasound (US) backscatter in the MHz range from fis to develop a realistic and reliable simulation model. The long term objective of the work is to develop the needed signal processing for fis species differentiation using US. In in-vitro experiments...... is 10 MHz and the Full Width at Half Maximum (FWHM) at the focus point is 0.54 mm in the lateral direction. The transducer model in Field II was calibrated using a wire phantom to validate the simulated point spread function. The inputs to the simulation were the CT image data of the fis converted......, a cod (Gadus morhua) was scanned with both a BK Medical ProFocus 2202 ultrasound scanner and a Toshiba Aquilion ONE computed tomography (CT) scanner. The US images of the fis were compared with US images created using the ultrasound simulation program Field II. The center frequency of the transducer...

  15. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  16. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  17. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  18. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods......, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also...

  19. Improved wavefront correction for coherent image restoration.

    Science.gov (United States)

    Zelenka, Claudius; Koch, Reinhard

    2017-08-07

    Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

  20. Fast simulation of ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2000-01-01

    , and a whole image can take a full day. Simulating 3D images and 3D flow takes even more time. A 3D image of 64 by 64 lines can take 21 days, which is not practical for iterative work. This paper presents a new fast simulation method based on the Field II program. In imaging the same spatial impulse response...

  1. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  2. Ultrasound Imaging Methods for Breast Cancer Detection

    NARCIS (Netherlands)

    Ozmen, N.

    2014-01-01

    The main focus of this thesis is on modeling acoustic wavefield propagation and implementing imaging algorithms for breast cancer detection using ultrasound. As a starting point, we use an integral equation formulation, which can be used to solve both the forward and inverse problems. This thesis

  3. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  4. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  5. Spondylolisthesis Identified Using Ultrasound Imaging.

    Science.gov (United States)

    Beneck, George J; Gard, Andrea N; Fodran, Kimberly A

    2017-12-01

    57-year-old woman was recruited for a research study of muscle activation in persons with low back pain. She described a progressive worsening of left lower lumbar pain, which began 5 years prior without any precipitating incident, and intermittent pain at the left gluteal fold (diagnosed as a proximal hamstring tear 2 years prior). Ultrasound revealed marked anterior displacement of the L3-4 and L4-5 facet joints. The subject was recommended for a radiograph using a lateral recumbent view, which demonstrated a grade II spondylolisthesis. J Orthop Sports Phys Ther 2017;47(12):970. doi:10.2519/jospt.2017.7363.

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... you! Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America ( ...

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... real-time images, images that are renewed continuously, it also can be used to guide procedures such ... of a testicle limiting proper blood flow into it. top of page How should we prepare for ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ... not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic ...

  9. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  10. Sampling system for in vivo ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jorgen Arendt; Mathorne, Jan

    1991-01-01

    Newly developed algorithms for processing medical ultrasound images use the high frequency sampled transducer signal. This paper describes demands imposed on a sampling system suitable for acquiring such data and gives details about a prototype constructed. It acquires full clinical images...... at a sampling frequency of 20 MHz with a resolution of 12 bits. The prototype can be used for real time image processing. An example of a clinical in vivo image is shown and various aspects of the data acquisition process are discussed....

  11. Ultrasound strain imaging using Barker code

    Science.gov (United States)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  12. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiology examinations, will analyze the images and send a signed report to your primary care physician, or to the physician or other healthcare ... information. The costs for specific medical imaging tests, treatments and procedures ... Web page review process: This Web page is reviewed regularly by ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... Patients may be turned to either side to improve the quality of the images. A clear water- ...

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... imaging of the abdomen is a safe, noninvasive test that uses sound waves to produce a clear ...

  15. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  16. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  17. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  18. Deconvolution of in vivo ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1990-01-01

    In an ultrasound image, the influence of the pulse and attenuation should be removed from the picture in order to display a more consistent and uniform image. The author describes an algorithm to remove the influence of the attenuated pulse on the image. The algorithm takes into account the varying...... pulse, noise in the acquired signal, and the changing reflectivity in the tissue. Both one- and two-dimensional processing can be implemented. The algorithm relies on prior knowledge of the pulse and of the covariance of the noise and the reflections. Algorithms to estimate these factors are given...

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... This website does not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure with your doctor, ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, treatments ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children's ( ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... View full size with caption Pediatric Content Some imaging tests ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Send us your feedback Did you find the information you were looking for? Yes No Please type ... facilities database . This website does not provide cost information. The costs for specific medical imaging tests, treatments ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... scans, your doctor may ask you to withhold food and drink for several hours before your child's ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... no: Thank you! Do you have a personal story about radiology? Share your patient story here Images × ... Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of North America, Inc. ( ...

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... to have your child drink several glasses of water, depending on the child's size, two hours prior ... improve the quality of the images. A clear water-based gel is applied to the area of ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... child drink several glasses of water, depending on the child's size, two hours prior to the exam and ... display screen that looks like a computer or television monitor. The image is created based on the amplitude (loudness), ...

  9. Comparison of immersion ultrasonography, ultrasound biomicroscopy and anterior segment optical coherence tomography in the evaluation of traumatic phacoceles

    Directory of Open Access Journals (Sweden)

    Harikrishna Vodapalli

    2012-01-01

    Full Text Available Blunt ocular trauma in the elderly can result in anterior dislocation of the crystalline lens into the subconjunctival space (phacocele. Although rare, this presentation can be missed, especially if the patient presents several days after the injury and if the lid is not everted on examination. While a careful clinical examination is adequate in the diagnosis, imaging techniques can be put to use for the accurate location of the associated sclera rupture. We report three cases of post-traumatic phacocele wherein ultrasound biomicroscopy (UBM was compared to the anterior segment optical coherence tomography (AS-OCT and B-scan ultrasonography (B-scan, in order to establish the best imaging tool for this condition. We concluded, based on image quality, that UBM could be the imaging modality of choice to aid in the diagnosis of phacocele.

  10. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  12. The Lunula: An ultrasound imaging approach

    International Nuclear Information System (INIS)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon; Ahn, Joong Mo

    2001-01-01

    The lunula is the white, half-moon-shaped area seen on some, but not all nails. Usually the lunula is the topographic marker of the distal part of the nail matrix, and known to have the ability of nail production. Ultrasonographic imaging of the lunula has not been reported before. This study was undertaken to demonstrate normal ultrasonographic features of the lunula. Ultrasonographic examination of the lunula was performed in the right thumb of 20 healthy volunteers (10M, 10F, mean age 30, range 26-36 years) with a real-time, high-resolution ultrasound unit (Sequoia 512, Acuson, Mountain view, CA, USA) with 8-15 MHz linear transducers. Gray scale color, and special Doppler imagings were performed with longitudinal scanning. The lunula was not seen inspection in three of the 20 volunteers. The mean size of the lunula in the other 17 volumteen was 3.31 ± 1.24 mm (range 2-6.2 mm). Gray scale ultrasound imaging showed the lunula; ovoid shaped hypo-echoic zone in proximal fingernail in 18 of 20 volunteers (mean size, 6.74 ± 0.98 mm, range 5-8.8 mm). In two of 20 volunteers, the lunula was indistinct on gray scale ultrasound examination. However, all lunula were identifiable on color Doppler imaging by detecting vascularity within the lunula. Spectral wave pattern of the lunula was a bi-directional pulsatile wave. Peak velocity was within 5-15 m/sec (mean 8 m/sec). The lunula is identifiable on ultrasound examination as a hyper-vascular, ovoid shaped, hypo-echoic zone in proximal fingernail. This normal structure should not be misinterpreted as an abnormal sub-ungual lesion.

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler effect). ... Do you have a personal ...

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... an examination table that can be tilted or moved. Patients may be turned to either side to improve the quality of the images. A clear water-based gel is applied to the area of the body being studied to help the transducer make secure contact ...

  15. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be turned to either side to improve the quality of the images. A clear water-based gel is applied to the area of the body being studied to help the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  16. Macular hole: 10 and 20-MHz ultrasound and spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Juliana Mantovani Bottós

    2012-12-01

    Full Text Available PURPOSE: Optical coherence tomography (OCT is valuable for macula evaluation. However, as this technique relies on light energy it cannot be performed in the presence of opaque media. In such cases, the ultrasound (US may predict some macular features. The aim of this study was to characterize images obtained by ultrasound with 10 and 20-MHz transducers comparing to OCT, as well as to analyze the relationship between the vitreous and retina in eyes with macular hole (MH. METHODS: 29 eyes of 22 patients with biomicroscopic evidence of MH at different stages were included. All patients were evaluated using ultrasonography with 10 and 20-MHz transducers and OCT. RESULTS: OCT identified signs of MH in 25 of 29 eyes. The remaining 4 cases not identified by US were pseudoholes caused by epiretinal membranes. In MH stages I (2 eyes and II (1 eye, both transducers were not useful to analyze the macular thickening, but suggestive findings as macular irregularity, operculum or partial posterior vitreous detachment (PVD were highlighted. In stages III (14 eyes and IV (5 eyes, both transducers identified the double hump irregularity and thickening. US could measure the macular thickness and other suggestive findings for MH: operculum, vitreomacular traction and partial or complete PVD. In cases of pseudoholes, US identified irregularities macular contour and a discrete depression. CONCLUSION: 10-MHz US was useful for an overall assessment of the vitreous body as well as its relationship to the retina. The 20-MHz transducer allowed valuable information on the vitreomacular interface and macular contour. OCT provides superior quality for fine morphological study of macular area, except in cases of opaque media. In these cases, and even if OCT is not available, the combined US study is able to provide a valid evaluation of the macular area improving therapeutic approach.

  17. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  18. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  19. Spatial filters for focusing ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gori, Paola

    2001-01-01

    , but the approach always yields point spread functions better or equal to a traditional dynamically focused image. Finally, the process was applied to in-vivo clinical images of the liver and right kidney from a 28 years old male. The data was obtained with a single element transducer focused at 100 mm....... A new method for making spatial matched filter focusing of RF ultrasound data is proposed based on the spatial impulse response description of the imaging. The response from a scatterer at any given point in space relative to the transducer can be calculated, and this gives the spatial matched filter...... for synthetic aperture imaging for single element transducers. It is evaluated using the Field II program. Data from a single 3 MHz transducer focused at a distance of 80 mm is processed. Far from the transducer focal region, the processing greatly improves the image resolution: the lateral slice...

  20. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  1. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  2. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  3. Coincidence Imaging and interference with coherent Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    CAI Yang-jian; ZHU Shi-yao

    2006-01-01

    we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.

  4. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  5. Coherent diffractive imaging using randomly coded masks

    Energy Technology Data Exchange (ETDEWEB)

    Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); D' Aspremont, Alexandre [CNRS and D.I., UMR 8548, École Normale Supérieure, 45 Rue d' Ulm, 75005 Paris (France); Turner, Joshua J. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments.

  6. Optical coherence tomography in anterior segment imaging

    Science.gov (United States)

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  7. Coherent imaging with incoherent light in digital holographic microscopy

    Science.gov (United States)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  8. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  9. WE-D-18C-01: Art of Imaging: Diagnostic Ultrasound Image Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Zagzebski, J [University of Wisconsin, Madison, WI (United States); Lu, Z [University of Chicago, Chicago, IL (United States)

    2014-06-15

    Assumptions followed during construction of B-mode and color flow images are that the pulse-echo transit time can be converted to reflector depth through uniform tissue models, echoes originate only from locations along the transmit-receive axes of pulse propagation, and first order correction schemes adequately account for acoustic wave attenuation and absorption. The latter allows the display brightness to encode tissue echogenicity. This course will challenge participants to identify imaging artifacts whose origins stem from the more complex and realistic propagating and scattering conditions common in clinical ultrasound. Speckle, a very common artifact but a clinically employed feature, originates from simultaneous echoes from diffuse scatterers and is a result of coherent detection of signals. One of the most bothersome artifacts are those due to reverberations especially that originating from superficial tissue interfaces. Methods to overcome these will be discussed. This presentation also will describe and illustrate speed of sound, refraction, enhancement, shadowing, mirroring, beam width, beam-forming, and slice thickness artifacts. All are useful examples of limitations introduced by acoustic waves propagating through complex tissue paths. New formats for physician board certification exams are demanding the inclusion of image-based examples of ultrasound physics. Instructors' knowledge of, and access to examples of ultrasound artifacts are important in this effort. The presentation will incorporate an audience response system to challenge participants in correct identification of some of these artifacts. Learning Objectives: Review basic mechanisms for producing ultrasound images. Identify the etiology of speckle, reverberation noise, beam width and slice thickness artifacts, and artifacts associated with pulse propagation. Discuss methods that reduce the impact of artifacts OR employ artifacts effectively to facilitate clinical diagnosis.

  10. Physics of tissue harmonic imaging by ultrasound

    Science.gov (United States)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  11. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  12. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  13. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  14. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  15. Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features.

    Science.gov (United States)

    Lee, Susan C; Endo, Yoshimi; Potter, Hollis G

    Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Clinical review. Level 4. MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C.

  16. Efficient scatter model for simulation of ultrasound images from computed tomography data

    Science.gov (United States)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  17. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  18. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  19. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  20. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    Science.gov (United States)

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  3. Hybrid simulation using mixed reality for interventional ultrasound imaging training.

    Science.gov (United States)

    Freschi, C; Parrini, S; Dinelli, N; Ferrari, M; Ferrari, V

    2015-07-01

    Ultrasound (US) imaging offers advantages over other imaging modalities and has become the most widespread modality for many diagnostic and interventional procedures. However, traditional 2D US requires a long training period, especially to learn how to manipulate the probe. A hybrid interactive system based on mixed reality was designed, implemented and tested for hand-eye coordination training in diagnostic and interventional US. A hybrid simulator was developed integrating a physical US phantom and a software application with a 3D virtual scene. In this scene, a 3D model of the probe with its relative scan plane is coherently displayed with a 3D representation of the phantom internal structures. An evaluation study of the diagnostic module was performed by recruiting thirty-six novices and four experts. The performances of the hybrid (HG) versus physical (PG) simulator were compared. After the training session, each novice was required to visualize a particular target structure. The four experts completed a 5-point Likert scale questionnaire. Seventy-eight percentage of the HG novices successfully visualized the target structure, whereas only 45% of the PG reached this goal. The mean scores from the questionnaires were 5.00 for usefulness, 4.25 for ease of use, 4.75 for 3D perception, and 3.25 for phantom realism. The hybrid US training simulator provides ease of use and is effective as a hand-eye coordination teaching tool. Mixed reality can improve US probe manipulation training.

  4. Image Inpainting Based on Coherence Transport with Adapted Distance Functions

    KAUST Repository

    Mä rz, Thomas

    2011-01-01

    We discuss an extension of our method image inpainting based on coherence transport. For the latter method the pixels of the inpainting domain have to be serialized into an ordered list. Until now, to induce the serialization we have used

  5. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Săftoiu, Adrian; Gruionu, Lucian G

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound...

  6. The Diamond Beamline I13L for Imaging and Coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-01-01

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  7. 3D ultrasound imaging : Fast and cost-effective morphometry of musculoskeletal tissue

    NARCIS (Netherlands)

    Weide, Guido; Van Der Zwaard, Stephan; Huijing, Peter A.; Jaspers, Richard T.; Harlaar, Jaap

    2017-01-01

    The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows

  8. [Achilles tendon xanthoma imaging on ultrasound and magnetic resonance imaging].

    Science.gov (United States)

    Fernandes, Eloy de Ávila; Santos, Eduardo Henrique Sena; Tucunduva, Tatiana Cardoso de Mello; Ferrari, Antonio J L; Fernandes, Artur da Rocha Correa

    2015-01-01

    The Achilles tendon xanthoma is a rare disease and has a high association with primary hyperlipidemia. An early diagnosis is essential to start treatment and change the disease course. Imaging exams can enhance diagnosis. This study reports the case of a 60-year-old man having painless nodules on his elbows and Achilles tendons without typical gout crisis, followed in the microcrystalline disease clinic of Unifesp for diagnostic workup. Laboratory tests obtained showed dyslipidemia. The ultrasound (US) showed a diffuse Achilles tendon thickening with hypoechoic areas. Magnetic resonance imaging (MRI) showed a diffuse tendon thickening with intermediate signal areas, and a reticulate pattern within. Imaging studies showed relevant aspects to diagnose a xanthoma, thus helping in the differential diagnosis. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  9. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  11. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  12. Computerized Analysis of MR and Ultrasound Images of Breast Lesions

    National Research Council Canada - National Science Library

    Giger, Maryellen Lissak

    2000-01-01

    ...) images of breast lesions to aid radiologists in their workup of suspect lesions. We currently have retrospectively collected over 400 ultrasound cases of mass lesions, all that had gone on to either biopsy or cyst aspiration...

  13. Ultrasound imaging of sports-related musculoskeletal injuries

    International Nuclear Information System (INIS)

    Craig, J.G.; Holsbeek, M.T. van; Gauthier, T.P.; Cook, W.J.

    2006-01-01

    Sports-related injuries of the musculoskeletal system affect millions of individuals every year. Integrating high-frequency Tissue Harmonic Imaging ultrasound with MRI and CT gives the greatest opportunity for diagnosing specific injuries. (orig.)

  14. Ultrasound Vector Flow Imaging: Part II: Parallel Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.

    2016-01-01

    The paper gives a review of the current state-of-theart in ultrasound parallel acquisition systems for flow imaging using spherical and plane waves emissions. The imaging methods are explained along with the advantages of using these very fast and sensitive velocity estimators. These experimental...... ultrasound imaging for studying brain function in animals. The paper explains the underlying acquisition and estimation methods for fast 2-D and 3-D velocity imaging and gives a number of examples. Future challenges and the potentials of parallel acquisition systems for flow imaging are also discussed....

  15. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Ultrasound imaging in urogynecology – state of the art 2016

    Directory of Open Access Journals (Sweden)

    Michał Bogusiewicz

    2016-11-01

    Full Text Available The role of ultrasound imaging in urogynecology is not clearly defined. Despite significant developments in visualization techniques and interpretation of images, pelvic ultrasound is still more a tool for research than for clinical practice. Structures of the lower genitourinary tract and pelvic floor can be visualized from different approaches: transperineal, introital, transvaginal, abdominal or endoanal. According to contemporary guidelines and recommendations, the role of ultrasound in urogynecology is limited to the measurement of post-void residue. However, in many instances, including planning and audit of surgical procedures, management of recurrences or complications, ultrasound may be proposed as the initial examination of choice. Ultrasound may be used for assessment of bladder neck mobility before anti-incontinence procedures. On rare occasions it is helpful in recognition of pathologies mimicking vaginal prolapse such as vaginal cyst, urethral diverticula or rectal intussusception. In patients subjected to suburethral slings, causes of surgery failure or postsurgical voiding dysfunctions can be revealed by imaging. Many reports link the location of a tape close to the bladder neck to unfavorable outcomes of sling surgery. Some postoperative complications, such as urinary retention, mesh malposition, hematoma, or urinary tract injury, can be diagnosed by ultrasound. On the other hand, the clinical value of some applications of ultrasound in urogynecology, for example measurement of the bladder wall thickness as a marker of detrusor overactivity, has not been proved.

  17. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    Science.gov (United States)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    International Nuclear Information System (INIS)

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-01-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization

  19. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: sgcarlier@hotmail.com [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)

    2014-06-15

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  20. Real-Time Implementation of Medical Ultrasound Strain Imaging System

    International Nuclear Information System (INIS)

    Jeong, Mok Kun; Kwon, Sung Jae; Bae, Moo Ho

    2008-01-01

    Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

  1. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  2. Standardized ultrasound templates for diagnosing appendicitis reduce annual imaging costs.

    Science.gov (United States)

    Nordin, Andrew B; Sales, Stephen; Nielsen, Jason W; Adler, Brent; Bates, David Gregory; Kenney, Brian

    2018-01-01

    Ultrasound is preferred over computed tomography (CT) for diagnosing appendicitis in children to avoid undue radiation exposure. We previously reported our experience in instituting a standardized appendicitis ultrasound template, which decreased CT rates by 67.3%. In this analysis, we demonstrate the ongoing cost savings associated with using this template. Retrospective chart review for the time period preceding template implementation (June 2012-September 2012) was combined with prospective review through December 2015 for all patients in the emergency department receiving diagnostic imaging for appendicitis. The type of imaging was recorded, and imaging rates and ultrasound test statistics were calculated. Estimated annual imaging costs based on pretemplate ultrasound and CT utilization rates were compared with post-template annual costs to calculate annual and cumulative savings. In the pretemplate period, ultrasound and CT rates were 80.2% and 44.3%, respectively, resulting in a combined annual cost of $300,527.70. Similar calculations were performed for each succeeding year, accounting for changes in patient volume. Using pretemplate rates, our projected 2015 imaging cost was $371,402.86; however, our ultrasound rate had increased to 98.3%, whereas the CT rate declined to 9.6%, yielding an annual estimated cost of $224,853.00 and a savings of $146,549.86. Since implementation, annual savings have steadily increased for a cumulative cost savings of $336,683.83. Standardizing ultrasound reports for appendicitis not only reduces the use of CT scans and the associated radiation exposure but also decreases annual imaging costs despite increased numbers of imaging studies. Continued cost reduction may be possible by using diagnostic algorithms. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Versatile robotic probe calibration for position tracking in ultrasound imaging

    International Nuclear Information System (INIS)

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-01-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy. (paper)

  4. Versatile robotic probe calibration for position tracking in ultrasound imaging

    Science.gov (United States)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  5. Noncontact ultrasound imaging applied to cortical bone phantoms

    OpenAIRE

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statisti...

  6. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  7. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  8. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  9. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  10. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  11. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  12. Ultrasound versus high field magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tan, York Kiat; Østergaard, Mikkel; Bird, Paul

    2014-01-01

    Over the past decade there have been significant advances in the field of musculoskeletal imaging, especially in the application of ultrasound (US) and magnetic resonance imaging (MRI) to the management of rheumatoid arthritis (RA). Both modalities offer significant advantages over the previous...

  13. Optical coherence tomography for imaging of skin and skin diseases

    DEFF Research Database (Denmark)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    Optical coherence tomography (OCT) is an emerging imaging technology based on light reflection. It provides real-time images with up to 2-mm penetration into the skin and a resolution of approximately 10 μm. It is routinely used in ophthalmology. The normal skin and its appendages have been studi...... technical solutions are being pursued to further improve the quality of the images and the data provided, and OCT is being integrated in multimodal imaging devices that would potentially be able to provide a quantum leap to the imaging of skin in vivo....

  14. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  15. Minimum training requirement in ultrasound imaging of peripheral arterial disease.

    Science.gov (United States)

    Eiberg, J P; Hansen, M A; Grønvall Rasmussen, J B; Schroeder, T V

    2008-09-01

    To demonstrate the minimum training requirement when performing ultrasound of peripheral arterial disease. Prospective and blinded comparative study. 100 limbs in 100 consecutive patients suffering from peripheral arterial disease, 74% suffering critical limb ischemia, were enrolled during a 9 months period. One physician with limited ultrasound experience performed all the ultrasound examinations of the arteries of the most symptomatic limb. Before enrolling any patients 15 duplex ultrasound examinations were performed supervised by an experienced vascular technologist. All patients had a digital subtraction arteriography performed by an experienced vascular radiologist, unaware of the ultrasound result. The number of insufficiently insonated segments (non-diagnostic segments) was significantly reduced during the study; from 9% among the initial 50 limbs to 2% among the last 50 limbs (Pultrasound and arteriography from the initial 50 patients (overall Kappa=0.66, (95%-CI: 0.60-0.72); supragenicular Kappa=0.73 (95%-CI: 0.64-0.82); infragenicular Kappa=0.61 (95%-CI: 0.54-0.69)) to the last 50 patients (overall Kappa=0.66 (95%-CI: 0.60-0.72), supragenicular Kappa=0.67 (95%-CI: 0.57-0.76); infragenicular Kappa=0.66 (95%-CI: 0.58-0.73)). The minimum training requirement in ultrasound imaging of peripheral arterial disease appears to be less than 50 ultrasound examinations (probably only 15 examinations) for the supragenicular segments and 100 examinations for the infragenicular segments.

  16. 3D IMAGING USING COHERENT SYNCHROTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Peter Cloetens

    2011-05-01

    Full Text Available Three dimensional imaging is becoming a standard tool for medical, scientific and industrial applications. The use of modem synchrotron radiation sources for monochromatic beam micro-tomography provides several new features. Along with enhanced signal-to-noise ratio and improved spatial resolution, these include the possibility of quantitative measurements, the easy incorporation of special sample environment devices for in-situ experiments, and a simple implementation of phase imaging. These 3D approaches overcome some of the limitations of 2D measurements. They require new tools for image analysis.

  17. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  18. Experimental evidence for partial spatial coherence in imaging Mueller polarimetry.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Yoo, Sang Hyuk; Garcia-Caurel, Enric; Hingerl, Kurt

    2017-11-15

    We demonstrate experimentally the validity of the partial spatial coherence formalism in Mueller polarimetry and show that, in a finite spatial resolution experiment, the measured response is obtained through convolving the theoretical one with the instrument function. The reported results are of primary importance for Mueller imaging systems.

  19. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  20. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  1. Dual-Modality PET/Ultrasound imaging of the Prostate

    International Nuclear Information System (INIS)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-01-01

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems

  2. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    Science.gov (United States)

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-11-01

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m 2 using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m 2 . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The PSV, EDV, and pixel intensity are valuable in determining moderate to severe CKD. The value of shear wave velocity in

  3. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  5. Comparative study of ultrasound imaging, computed tomography and magnetic resonance imaging in gynecology

    International Nuclear Information System (INIS)

    Ishii, Kenji; Kobayashi, Hisaaki; Hoshihara, Takayuki; Kobayashi, Mitsunao; Suda, Yoshio; Takenaka, Eiichi; Sasa, Hidenori.

    1989-01-01

    We studied 18 patients who were operated at the National Defense Medical College Hospital and confirmed by pathological diagnosis. We compared ultrasound imaging, computed tomography (CT) and magnetic resonance imaging (MRI) of the patients. MRI was useful to diagnose enlargement of the uterine cavity and a small amount of ascites and to understand orientation of the pelvic organs. Ultrasound imaging is the most useful examination to diagnose gynecological diseases. But when it is difficult to diagnose by ultrasound imaging alone, we should employ either CT or MRI, or preferably both. (author)

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  7. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  8. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    International Nuclear Information System (INIS)

    McCarthy, C.L.; Wilson, D.J.; Coltman, T.P.

    2008-01-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  9. Endoscopic optical coherence tomography for imaging the tympanic membrane

    Science.gov (United States)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  10. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  11. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  12. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  13. Ultrasound elastography for imaging tendons and muscles

    Directory of Open Access Journals (Sweden)

    Elena Drakonaki

    2012-06-01

    Full Text Available Ultrasound elastography is a recently developed ultrasound-based method which allows the qualitative or quantitative evaluation of the mechanical properties of tissue. Strain (compression ultrasound elastography is the commonest technique performed by ap‑ plying mild compression with the hand-held transducer to create real-time strain dis‑ tribution maps, which are color-coded and superimposed on the B-mode images. There is increasing evidence that ultrasound elastography can be used in the investigation of muscle, tendon and soft tissue disease in the clinical practice, as a supplementary tool to conventional ultrasound examination. Based on preliminary data, potential clinical appli‑ cations include early diagnosis, staging, and guiding interventions musculotendinous and neuromuscular disease as well as monitoring disease during rehabilitation. Ultrasound elastography could also be used for research into the biomechanics and pathophysiology of musculotendinous disease. Despite the great interest in the technique, there is still limited evidence in the literature and there are several technical issues which limit the reproducibility of the method, including differences in quantification methods, artefacts, limitations and variation in the application of the technique by different users. This re‑ view presents the published evidence on musculoskeletal applications of strain elastogra‑ phy, discusses the technical issues and future perspectives of this method and emphasizes the need for standardization and further research.

  14. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    Science.gov (United States)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  15. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    Science.gov (United States)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  16. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  17. Optical Coherence Tomography in Cancer Imaging

    Science.gov (United States)

    Nam, Ahhyun Stephanie; Vakoc, Benjamin; Blauvelt, David; Chico-Calero, Isabel

    Investigations into the biology of cancer and novel cancer therapies rely on preclinical mouse models and traditional histological endpoints. Drawbacks of this approach include a limit in the number of time points for evaluation and an increased number of animals per study. This has motivated the use of intravital microscopy, which can provide longitudinal imaging of critical tumor parameters. Here, the capabilities of OCT as an intravital microscopy of the tumor microenvironment are summarized, and the state of OCT adoption into cancer research is summarized.

  18. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  19. Head to head comparison of optical coherence tomography, intravascular ultrasound echogenicity and virtual histology for the detection of changes in polymeric struts over time

    DEFF Research Database (Denmark)

    Brugaletta, Salvatore; Gomez-Lara, Josep; Bruining, Nico

    2012-01-01

    To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the A......To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation...

  20. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    Science.gov (United States)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  1. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    International Nuclear Information System (INIS)

    Arvanitis, Costas D; McDannold, Nathan; Livingstone, Margaret S

    2013-01-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood–brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood–brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that

  2. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  3. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    Science.gov (United States)

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  4. Research interface for experimental ultrasound imaging - the CFU grabber project

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    system RASMUS. Furthermore precise scanner settings are stored for inter- and intra-observer studies. The resulting images are used for clinical evaluation. Method and materials The ultrasound scanners research interface is connected to a graphical grabber card in a Windows PC (Grabber PC). The grabber...

  5. Mechanical scanning in intravascular ultrasound imaging: Artifacts and driving mechanisms

    NARCIS (Netherlands)

    H. ten Hoff (H.); E.J. Gussenhoven (Elma); C.M. Korbijn (Carin); F. Mastik (Frits); C.T. Lancée (Charles); N. Bom (Klaas)

    1995-01-01

    textabstractObjective: Currently, intravascular ultrasound (US) imaging catheters are developed and produced to provide a complementary diagnostic method in the treatment of blood vessel obstructive disease. Typical catheter dimensions are a diameter of 1–2.5 mm and a length of 1–1.5 m. A real-time

  6. Fourier beamformation of multistatic synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Moghimirad, Elahe; Villagómez Hoyos, Carlos Armando; Mahloojifar, Ali

    2015-01-01

    A new Fourier beamformation (FB) algorithm is presented for multistatic synthetic aperture ultrasound imaging. It can reduce the number of computations by a factor of 20 compared to conventional Delay-and-Sum (DAS) beamformers. The concept is based on the wavenumber algorithm from radar and sonar...

  7. Parental expectations, experiences and reactions, sense of coherence and grade of anxiety related to routine ultrasound examination with normal findings during pregnancy.

    Science.gov (United States)

    Ekelin, M; Crang Svalenius, E; Larsson, A-K; Nyberg, P; Marsál, K; Dykes, A-K

    2009-10-01

    To investigate parents' expectations, experiences and reactions, sense of coherence and anxiety before and after a second-trimester routine ultrasound examination, with normal findings. Before and after ultrasound questionnaires including the scales parents' expectations, experiences and reactions to routine ultrasound examination (PEER-U state of mind index), sense of coherence (SOC) and state and trait anxiety inventory (STAI), were sent to a 1-year cohort of women and their partners. Replies received were 2183. Both parents had significantly less worried state of mind (PEER-U) after the examination than before. Women had a lower grade of state anxiety after than before, but for men there was no significant change. Before the ultrasound, women had a higher degree of worried state of mind, as well as a higher grade of state and trait anxiety and a lower sense of coherence, than men. The women showed a greater reduction in worried state of mind than the men after the ultrasound examination. There were no significant differences in sense of coherence before and after ultrasound. Women and men are affected in their psychological well-being in relation to a routine ultrasound examination, but their sense of coherence remains stable.

  8. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  9. Coherent multiscale image processing using dual-tree quaternion wavelets.

    Science.gov (United States)

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  10. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  11. Coherent scattering X-ray imaging at the Brazilian National Synchrotron Laboratory: Preliminary breast images

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.R.F. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Barroso, R.C. [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil)]. E-mail: cely@uerij.br; Oliveira, L.F. de [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2005-08-11

    The angular distribution of coherent scatter (low-momentum transfer) carries information about atomic structures, resulting in a pattern, which can be used to reconstruct a series of images. Coherent-scatter computed tomography is a novel imaging method developed to produce cross-sectional images based on the X-ray diffraction properties of an object. A different approach to coherent X-ray imaging is possible by fixing the detector at a given scatter angle {theta}, which produces an interference peak and then, carried out a tomography in the standard way. The cross-sectional images obtained allow determining the spatial dependence of coherent scatter cross-section of selected volume elements of inhomogeneous, extend objects for a single predetermined value of {theta} of interest, leading to a simplification of the data processing and the complexity of the apparatus. This work presents preliminary coherent scattering images carried out at the X-ray Diffraction beamline of the National Synchrotron Light Laboratory in Campinas, Brazil. The specimens were excised human breast tissues fixed in formaline. No frozen procedure was used in order to minimize preferred orientation during sample preparation. About 1mm thick slices cut from each of the fresh samples were mounted in frames without windows and placed on a translator to allow acquisition of scattering spectra. Cylinders containing healthy and cancerous (infiltrating ductal carcinoma) breast tissues were imagined at the characteristic angle for adipose tissue. Transmission and coherent scatter images are compared.

  12. Imaging of common bile duct by linear endoscopic ultrasound

    Institute of Scientific and Technical Information of China (English)

    Malay; Sharma; Amit; Pathak; Abid; Shoukat; Chittapuram; Srinivasan; Rameshbabu; Akash; Ajmera; Zeeshn; Ahamad; Wani; Praveer; Rai

    2015-01-01

    Imaging of common bile duct(CBD) can be done by many techniques. Endoscopic retrograde cholangiopancreaticography is considered the gold standard for imaging of CBD. A standard technique of imaging of CBD by endoscopic ultrasound(EUS) has not been specifically described. The available descriptions mention different stations of imaging from the stomach and duodenum. The CBD lies closest to duodenum and choice of imaging may be restricted to duodenum for many operators. Generally most operators prefer multi station imaging during EUS and the choice of selecting the initial station varies from operator to operator. Detailed evaluation of CBD is frequently the main focus of imaging during EUS and in such situations multi station imaging with a high-resolution ultrasound scanner may provide useful information. Examination of the CBD is one of the primary indications for doing an EUS and it can be done from five stations:(1) the fundus of stomach;(2) body of stomach;(3) duodenal bulb;(4) descending duodenum; and(5) antrum. Following down the upper 1/3rd of CBD can do imaging of entire CBD from the liver window and following up the lower 1/3rd of CBD can do imaging of entire CBD from the pancreatic window. This article aims at simplifying the techniques of imaging of CBD by linear EUS.

  13. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  14. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    Science.gov (United States)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  15. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  16. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  17. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    Science.gov (United States)

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max).

  18. Coherent image layout using an adaptive visual vocabulary

    Science.gov (United States)

    Dillard, Scott E.; Henry, Michael J.; Bohn, Shawn; Gosink, Luke J.

    2013-03-01

    When querying a huge image database containing millions of images, the result of the query may still contain many thousands of images that need to be presented to the user. We consider the problem of arranging such a large set of images into a visually coherent layout, one that places similar images next to each other. Image similarity is determined using a bag-of-features model, and the layout is constructed from a hierarchical clustering of the image set by mapping an in-order traversal of the hierarchy tree into a space-filling curve. This layout method provides strong locality guarantees so we are able to quantitatively evaluate performance using standard image retrieval benchmarks. Performance of the bag-of-features method is best when the vocabulary is learned on the image set being clustered. Because learning a large, discriminative vocabulary is a computationally demanding task, we present a novel method for efficiently adapting a generic visual vocabulary to a particular dataset. We evaluate our clustering and vocabulary adaptation methods on a variety of image datasets and show that adapting a generic vocabulary to a particular set of images improves performance on both hierarchical clustering and image retrieval tasks.

  19. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm

    2017-01-01

    are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer......This paper discusses methods for assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology...... to properly reveal the clinical value. The paper exemplifies the methodology using recent studies of Synthetic Aperture Sequential Beamforming tissue harmonic imaging....

  20. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  1. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  2. Mirizzi Syndrome with Endoscopic Ultrasound Image

    Directory of Open Access Journals (Sweden)

    K. Rayapudi

    2013-05-01

    Full Text Available We describe a 66-year-old Caucasian man with type 1 Mirizzi syndrome diagnosed on endoscopic ultrasound. He presented with acute onset of jaundice, malaise, dark urine over 3-4 days, and was found to have obstructive jaundice on lab testing. CT scan of the abdomen showed intrahepatic biliary ductal dilation, a 1.5 cm common bile duct (CBD above the pancreas, and possible stones in the CBD, but no masses. Endoscopic retrograde cholangiopancreatography (ERCP by a community gastroenterologist failed to cannulate the CBD. At the University Center, type 1 Mirizzi syndrome was noted on endoscopic ultrasound with narrowing of the CBD with extrinsic compression from cystic duct stone. During repeat ERCP, the CBD could be cannulated over the pancreatic duct wire. A mid CBD narrowing, distal CBD stones, proximal CBD and extrahepatic duct dilation were noted, and biliary sphincterotomy was performed. A small stone in the distal CBD was removed with an extraction balloon. The cystic duct stone was moved with the biliary balloon into the CBD, mechanical basket lithotripsy was performed and stone fragments were delivered out with an extraction balloon. The patient was seen 7 weeks later in the clinic. Skin and scleral icterus had cleared up and he is scheduled for an elective cholecystectomy. Mirizzi syndrome refers to biliary obstruction resulting from impacted stone in the cystic duct or neck of the gallbladder and commonly presents with obstructive jaundice. Type 1 does not have cholecystocholedochal fistulas, but they present in types 2, 3 and 4. Surgery is the mainstay of therapy. Endoscopic treatment is effective and can also be used as a temporizing measure or definitive treatment in poor surgical risk candidates.

  3. Deconvolution of In Vivo Ultrasound B-Mode Images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Stage, Bjarne; Mathorne, Jan

    1993-01-01

    An algorithm for deconvolution of medical ultrasound images is presented. The procedure involves estimation of the basic one-dimensional ultrasound pulse, determining the ratio of the covariance of the noise to the covariance of the reflection signal, and finally deconvolution of the rf signal from...... the transducer. Using pulse and covariance estimators makes the approach self-calibrating, as all parameters for the procedure are estimated from the patient under investigation. An example of use on a clinical, in-vivo image is given. A 2 × 2 cm region of the portal vein in a liver is deconvolved. An increase...... in axial resolution by a factor of 2.4 is obtained. The procedure can also be applied to whole images, when it is ensured that the rf signal is properly measured. A method for doing that is outlined....

  4. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  5. Poster - 10: QA of Ultrasound Images for Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Szpala, Stanislaw; Kohli, Kirpal S. [BCCA-Fraser Valley Centre (Canada)

    2016-08-15

    Purpose: The current QA protocol of ultrasound systems used in prostate brachytherapy (TG128) addresses geometrical verifications, but the scope of evaluation of image quality is limited. We recognized importance of the latter in routine practice, and designed a protocol for QA of the images. Methods: Images of an ultrasound prostate phantom (CIRS053) were collected with BK Flex Focus 400. The images were saved as bmp after adjusting the gain to 50% for consistent results. Mean pixel values and signal to noise ratio were inspected in the representative sections of the phantom, including the mock prostate and the unechoic medium. Constancy of these numbers over a one year period was looked at. Results: The typical intensity in the mock prostate region in the transverse images ranged between 95 and 118 (out of 256), and the signal to noise was about 10. The intensity in the urethra region was about 170±40, and the unechoic medium was 2±2. The mean and the signal to noise ratio remained almost unchanged after a year, while the signal in the unechoic medium increased to about 7±4. Similar values were obtained in the sagittal images. Conclusions: The image analysis discussed above allows quick evaluation of constancy of the image quality. This may be also useful in troubleshooting image-quality problems during routine exams, which might not be due to deterioration of the US system, but other reasons, e.g. variations in tissue properties or air being trapped between the probe and the anatomy.

  6. Imaging of Phase Objects using Partially Coherent Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F. L. [Univ. of Arizona, Tucson, AZ (United States)

    2013-01-01

    Screening high-power laser optics for light intensifying phase objects that cause laserinduced damage on downstream optics is critical to sustaining laser operation. Identifying such flaws on large-apertures is quite challenging since they are relatively small and invisible to conventional inspection methods. A Linescan Phase Differential Imaging (LPDI) system was developed to rapidly identify these flaws on large-aperture optics within a single full-aperture dark-field image. We describe a two-step production phase object screening process consisting of LPDI mapping and image analysis, followed by high-resolution interferometry and propagation based evaluation of the downstream damage potential of identified flaws. An image simulation code capable of modeling the LPDI partially coherent illumination was used to optimize its phase object sensitivity.

  7. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    Science.gov (United States)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  8. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Science.gov (United States)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  9. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  10. Ultrasound imaging accurately identifies the intercostobrachial nerve

    Directory of Open Access Journals (Sweden)

    Ahmed K. Thallaj

    2015-10-01

    Full Text Available Objectives: To test the hypothesis that identification and blockade of the intercostobrachial nerve (ICBN can be achieved under ultrasound (US guidance using a small volume of local anesthetic. Methods: Twenty-eight adult male volunteers were examined at King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia from November 2012 to September 2013. Intercostobrachial nerve blockade was performed using one ml of 2% lidocaine under US guidance. A sensory map of the blocked area was developed relative to the medial aspect of the humeral head. Results: The ICBN appears as a hyper-echoic structure. The nerve diameter was 2.3±0.28 mm, and the depth was 9±0.28 mm. The measurements of the sensory-blocked area relative to the medial aspect of the humeral head were as follows: 6.3±1.6 cm anteriorly; 6.2±2.9 cm posteriorly; 9.4±2.9 cm proximally; and 9.2±4.4 cm distally. Intercostobrachial nerve blockade using one ml of local anesthetic was successful in all cases. Conclusion: The present study described the sonographic anatomical details of the ICBN and its sensory distribution to successfully perform selective US-guided ICBN blockade.

  11. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  14. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  15. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  16. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    Science.gov (United States)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  17. Ultrasound imaging in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Christo Naveen Prince

    2012-01-01

    Full Text Available Background and Objectives: To assess the diagnostic capability of real-time ultrasound imaging, together with the application of color power Doppler in the identification and differential diagnosis of the periapical lesions. Materials and Methods: Fifteen patients with periapical lesions of pulpal origin, diagnosed with clinical and conventional radiographic examination, were examined further using ultrasonography. The results from the biopsies of the lesions were compared and statistically analyzed. Results: The differential diagnosis between periapical granulomas and cystic lesions, which were based on the ultrasonographic findings, were confirmed by the results of the histopathologic examination in 13 (86.7% of 15 cases, one being granuloma and 14 being cystic lesion. Interpretation and Conclusion: Ultrasound real-time imaging is a technique that may help make a differential diagnosis between cysts and granulomas by revealing the nature of the content of a bony lesion. This technique may have further applications in the study of other lesions of the jaws.

  18. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  19. Windowed time-reversal music technique for super-resolution ultrasound imaging

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin

    2018-05-01

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  20. Learnable despeckling framework for optical coherence tomography images

    Science.gov (United States)

    Adabi, Saba; Rashedi, Elaheh; Clayton, Anne; Mohebbi-Kalkhoran, Hamed; Chen, Xue-wen; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2018-01-01

    Optical coherence tomography (OCT) is a prevalent, interferometric, high-resolution imaging method with broad biomedical applications. Nonetheless, OCT images suffer from an artifact called speckle, which degrades the image quality. Digital filters offer an opportunity for image improvement in clinical OCT devices, where hardware modification to enhance images is expensive. To reduce speckle, a wide variety of digital filters have been proposed; selecting the most appropriate filter for an OCT image/image set is a challenging decision, especially in dermatology applications of OCT where a different variety of tissues are imaged. To tackle this challenge, we propose an expandable learnable despeckling framework, we call LDF. LDF decides which speckle reduction algorithm is most effective on a given image by learning a figure of merit (FOM) as a single quantitative image assessment measure. LDF is learnable, which means when implemented on an OCT machine, each given image/image set is retrained and its performance is improved. Also, LDF is expandable, meaning that any despeckling algorithm can easily be added to it. The architecture of LDF includes two main parts: (i) an autoencoder neural network and (ii) filter classifier. The autoencoder learns the FOM based on several quality assessment measures obtained from the OCT image including signal-to-noise ratio, contrast-to-noise ratio, equivalent number of looks, edge preservation index, and mean structural similarity index. Subsequently, the filter classifier identifies the most efficient filter from the following categories: (a) sliding window filters including median, mean, and symmetric nearest neighborhood, (b) adaptive statistical-based filters including Wiener, homomorphic Lee, and Kuwahara, and (c) edge preserved patch or pixel correlation-based filters including nonlocal mean, total variation, and block matching three-dimensional filtering.

  1. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  2. Plantar fascia segmentation and thickness estimation in ultrasound images.

    Science.gov (United States)

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  4. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  5. Simulation Study of Effects of the Blind Deconvolution on Ultrasound Image

    Science.gov (United States)

    He, Xingwu; You, Junchen

    2018-03-01

    Ultrasonic image restoration is an essential subject in Medical Ultrasound Imaging. However, without enough and precise system knowledge, some traditional image restoration methods based on the system prior knowledge often fail to improve the image quality. In this paper, we use the simulated ultrasound image to find the effectiveness of the blind deconvolution method for ultrasound image restoration. Experimental results demonstrate that the blind deconvolution method can be applied to the ultrasound image restoration and achieve the satisfactory restoration results without the precise prior knowledge, compared with the traditional image restoration method. And with the inaccurate small initial PSF, the results shows blind deconvolution could improve the overall image quality of ultrasound images, like much better SNR and image resolution, and also show the time consumption of these methods. it has no significant increasing on GPU platform.

  6. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  7. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  8. Estimation of bladder wall location in ultrasound images.

    Science.gov (United States)

    Topper, A K; Jernigan, M E

    1991-05-01

    A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.

  9. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  10. Optical Coherence Tomography Analysis of Attenuated Plaques Detected by Intravascular Ultrasound in Patients with Acute Coronary Syndromes

    Directory of Open Access Journals (Sweden)

    Takashi Kubo

    2011-01-01

    Full Text Available Background. Recent intravascular ultrasound (IVUS studies have demonstrated that hypoechoic plaque with deep ultrasound attenuation despite absence of bright calcium is common in acute coronary syndrome. Such “attenuated plaque” may be an IVUS characteristic of unstable lesion. Methods. We used optical coherence tomography (OCT in 104 patients with unstable angina to compare lesion characteristics between IVUS-detected attenuated plaque and nonattenuated plaque. Results. IVUS-detected attenuated plaque was observed in 41 (39% patients. OCT-detected lipidic plaque (88% versus 49%, <0.001, thin-cap fibroatheroma (48% versus 16%, <0.001, plaque rupture (44% versus 11%, <0.001, and intracoronary thrombus (54% versus 17%, <0.001 were more often seen in IVUS-detected attenuated plaques compared with nonattenuated plaques. Conclusions. IVUS-detected attenuated plaque has many characteristics of unstable coronary lesion. The presence of attended plaque might be an important marker of lesion instability.

  11. Image Inpainting Based on Coherence Transport with Adapted Distance Functions

    KAUST Repository

    März, Thomas

    2011-01-01

    We discuss an extension of our method image inpainting based on coherence transport. For the latter method the pixels of the inpainting domain have to be serialized into an ordered list. Until now, to induce the serialization we have used the distance to boundary map. But there are inpainting problems where the distance to boundary serialization causes unsatisfactory inpainting results. In the present work we demonstrate cases where we can resolve the difficulties by employing other distance functions which better suit the problem at hand. © 2011 Society for Industrial and Applied Mathematics.

  12. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  13. Imaging Cutaneous T-Cell Lymphoma with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hans Christian Ring

    2012-07-01

    Full Text Available Aim: To investigate the presentation of a patch-stage cutaneous T-cell lymphoma (CTCL using optical coherence tomography (OCT. Methods: A patient with a patch caused by CTCL was photographed digitally, OCT-scanned and biopsied. A normal skin area adjacent to the patch was OCT-scanned for comparison, but not biopsied. The OCT image and the histological image were compared. Results: The OCT images illustrated a thickened and hyperreflective stratum corneum. OCT also demonstrated several elongated hyporeflective structures in the dermis. The largest structure was measured to have a width of 0.13 mm. A good immediate correlation was found between histology and OCT imaging of the sample. Conclusion: The aetiology of the elongated structures is thought to be lymphomatous infiltrates. Similar findings have been described in ocular lymphoma and may therefore be an important characteristic of cutaneous lymphoma. It may further be speculated that the differences in OCT images may reflect the biological behaviour of the infiltrate. This observation therefore suggests that OCT imaging may be a relevant tool for the in vivo investigation of mycosis fungoides and other CTCLs, but in order to verify these observed patterns in OCT imaging, further investigations will be required.

  14. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  15. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L'Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-12-15

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  16. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  17. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  18. New image contrast method in magnetic resonance imaging via ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Radicke, Marcus, E-mail: radicke@hiskp.uni-bonn.de; Engelbertz, Andre; Habenstein, Bernd; Lewerenz, Meinert; Oehms, Ole [University of Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (Germany); Trautner, Peter; Weber, Bernd [Life and Brain Research Center, Department Neurocognition (Germany); Wrede, Sarah; Maier, Karl [University of Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (Germany)

    2008-01-15

    When applied to a sample, ultrasound (US) gives rise to a displacement of tissue and a flow in a liquid due to the acoustic radiation pressure. These movements depend on the viscoelastic properties of the sample and can be visualized precisely with an MRI scanner using diffusion- sensitive pulse sequences. In this paper, measurements will be presented, which show the visualization of the US under variation of its parameters in different liquids and in tissue.

  19. Doppler ultrasound imaging techniques for assessment of synovial inflammation

    Directory of Open Access Journals (Sweden)

    Filippucci E

    2013-09-01

    Full Text Available Emilio Filippucci,1 Fausto Salaffi,1 Marina Carotti,2 Walter Grassi1 1Rheumatology Department, Polytechnic University of the Marche, Ancona, Italy; 2Department of Radiology, Polytechnic University of the Marche, Ancona, Italy Abstract: Ultrasound is an evolving technique, and the rapid progress made in ultrasound technology over the past ten years has dramatically increased its range of applications in rheumatology. One of the most exciting advances is the use of Doppler ultrasound imaging in the assessment of blood flow abnormalities at the synovial tissue level in patients with chronic inflammatory arthritis. This review describes the Doppler techniques available and their main applications in patients with inflammatory arthritis, discusses the evidence supporting their use, and outlines the latest advances in hardware and software. Spectral, color, and power Doppler allow sensitive assessment of vascular abnormalities at the synovial tissue level. Use of contrast agents enhances visualization of the small synovial vessels using color or power Doppler ultrasound and allows for accurate characterization of the rheumatoid pannus. Doppler techniques represent a unique method for assessment of synovial inflammation, showing blood flow characteristics in real time. They are safe, noninvasive, cost-effective, and have high sensitivity in revealing and monitoring synovitis. However, several questions still need to be answered. In the near future, the Doppler techniques described here, together with upcoming hardware and software facilities, will be investigated further and a consensus will be reached on their feasibility and appropriate use in daily rheumatologic practice. Keywords: power and color Doppler techniques, ultrasound, contrast media, synovitis, rheumatoid arthritis

  20. Improving the Image Quality of Synthetic Transmit Aperture Ultrasound Images - Achieving Real-Time In-Vivo Imaging

    DEFF Research Database (Denmark)

    Gammelmark, Kim

    in-vivo experiments, showed, that TMS imaging can increase the SNR by as much as 17 dB compared to the traditional imaging techniques, which improves the in-vivo image quality to a highly competitive level. An in-vivo evaluation of convex array TMS imaging for abdominal imaging applications......-vivo imaging, and that the obtained image quality is highly competitive with the techniques applied in current medical ultrasound scanners. Hereby, the goals of the PhD have been successfully achieved.......Synthetic transmit aperture (STA) imaging has the potential to increase the image quality of medical ultrasound images beyond the levels obtained by conventional imaging techniques (linear, phased, and convex array imaging). Currently, however, in-vivo applications of STA imaging is limited...

  1. Monte Carlo modeling of human tooth optical coherence tomography imaging

    International Nuclear Information System (INIS)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-01-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth. (paper)

  2. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Zagzebski, J. [University of Wisconsin (United States)

    2016-06-15

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  3. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    International Nuclear Information System (INIS)

    Zagzebski, J.

    2016-01-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.

  4. Colposcopic imaging using visible-light optical coherence tomography

    Science.gov (United States)

    Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  5. Optical Coherence Tomography Imaging in Acute Coronary Syndromes

    Directory of Open Access Journals (Sweden)

    Takashi Kubo

    2011-01-01

    Full Text Available Optical coherence tomography (OCT is a high-resolution imaging technique that offers microscopic visualization of coronary plaques. The clear and detailed images of OCT generate an intense interest in adopting this technique for both clinical and research purposes. Recent studies have shown that OCT is useful for the assessment of coronary atherosclerotic plaques, in particular the assessment of plaque rupture, erosion, and intracoronary thrombus in patients with acute coronary syndrome. In addition, OCT may enable identifying thin-cap fibroatheroma, the proliferation of vasa vasorum, and the distribution of macrophages surrounding vulnerable plaques. With its ability to view atherosclerotic lesions in vivo with such high resolution, OCT provides cardiologists with the tool they need to better understand the thrombosis-prone vulnerable plaques and acute coronary syndromes. This paper reviews the possibility of OCT for identification of vulnerable plaques in vivo.

  6. Resolution of coherent and incoherent imaging systems reconsidered : Classical criteria and a statistical alternative

    NARCIS (Netherlands)

    Van Aert, S.; Van Dyck, D.; Den Dekker, A.J.

    2006-01-01

    The resolution of coherent and incoherent imaging systems is usually evaluated in terms of classical resolution criteria, such as Rayleigh’s. Based on these criteria, incoherent imaging is generally concluded to be ‘better’ than coherent imaging. However, this paper reveals some misconceptions in

  7. Dual-modal photoacoustic and ultrasound imaging of dental implants

    Science.gov (United States)

    Lee, Donghyun; Park, Sungjo; Kim, Chulhong

    2018-02-01

    Dental implants are common method to replace decayed or broken tooth. As the implant treatment procedures varies according to the patients' jawbone, bone ridge, and sinus structure, appropriate examinations are necessary for successful treatment. Currently, radiographic examinations including periapical radiology, panoramic X-ray, and computed tomography are commonly used for diagnosing and monitoring. However, these radiographic examinations have limitations in that patients and operators are exposed to radioactivity and multiple examinations are performed during the treatment. In this study, we demonstrated photoacoustic (PA) and ultrasound (US) combined imaging of dental implant that can lower the total amount of absorbed radiation dose in dental implant treatment. An acoustic resolution PA macroscopy and a clinical PA/US system was used for dental implant imaging. The acquired dual modal PA/US imaging results support that the proposed photoacoustic imaging strategy can reduce the radiation dose rate during dental implant treatment.

  8. An adaptive Kalman filter for speckle reductions in ultrasound images

    International Nuclear Information System (INIS)

    Castellini, G.; Labate, D.; Masotti, L.; Mannini, E.; Rocchi, S.

    1988-01-01

    Speckle is the term used to describe the granular appearance found in ultrasound images. The presence of speckle reduces the diagnostic potential of the echographic technique because it tends to mask small inhomogeneities of the investigated tissue. We developed a new method of speckle reductions that utilizes an adaptive one-dimensional Kalman filter based on the assumption that the observed image can be considered as a superimposition of speckle on a ''true images''. The filter adaptivity, necessary to avoid loss of resolution, has been obtained by statistical considerations on the local signal variations. The results of the applications of this particular Kalman filter, both on A-Mode and B-MODE images, show a significant speckle reduction

  9. Determination of fish gender using fractal analysis of ultrasound images

    DEFF Research Database (Denmark)

    McEvoy, Fintan J.; Tomkiewicz, Jonna; Støttrup, Josianne

    2009-01-01

    The gender of cod Gadus morhua can be determined by considering the complexity in their gonadal ultrasonographic appearance. The fractal dimension (DB) can be used to describe this feature in images. B-mode gonadal ultrasound images in 32 cod, where gender was known, were collected. Fractal...... by subjective analysis alone. The mean (and standard deviation) of the fractal dimension DB for male fish was 1.554 (0.073) while for female fish it was 1.468 (0.061); the difference was statistically significant (P=0.001). The area under the ROC curve was 0.84 indicating the value of fractal analysis in gender...... result. Fractal analysis is useful for gender determination in cod. This or a similar form of analysis may have wide application in veterinary imaging as a tool for quantification of complexity in images...

  10. Experimental ultrasound system for real-time synthetic imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost

    1999-01-01

    Digital signal processing is being employed more and more in modern ultrasound scanners. This has made it possible to do dynamic receive focusing for each sample and implement other advanced imaging methods. The processing, however, has to be very fast and cost-effective at the same time. Dedicated...... for synthetic aperture imaging, 2D and 3D B-mode and velocity imaging. The system can be used with 128 element transducers and can excite 128 channels and receive and sample data from 64 channels simultaneously at 40 MHz with 12 bits precision. Data can be processed in real time using the system's 80 signal...... chips are used in order to do real time processing. This often makes it difficult to implement radically different imaging strategies on one platform and makes the scanners less accessible for research purposes. Here flexibility is the prime concern, and the storage of data from all transducer elements...

  11. Statistical characterization of speckle noise in coherent imaging systems

    Science.gov (United States)

    Yaroslavsky, Leonid; Shefler, A.

    2003-05-01

    Speckle noise imposes fundamental limitation on image quality in coherent radiation based imaging and optical metrology systems. Speckle noise phenomena are associated with properties of objects to diffusely scatter irradiation and with the fact that in recording the wave field, a number of signal distortions inevitably occur due to technical limitations inherent to hologram sensors. The statistical theory of speckle noise was developed with regard to only limited resolving power of coherent imaging devices. It is valid only asymptotically as much as the central limit theorem of the probability theory can be applied. In applications this assumption is not always applicable. Moreover, in treating speckle noise problem one should also consider other sources of the hologram deterioration. In the paper, statistical properties of speckle due to the limitation of hologram size, dynamic range and hologram signal quantization are studied by Monte-Carlo simulation for holograms recorded in near and far diffraction zones. The simulation experiments have shown that, for limited resolving power of the imaging system, widely accepted opinion that speckle contrast is equal to one holds only for rather severe level of the hologram size limitation. For moderate limitations, speckle contrast changes gradually from zero for no limitation to one for limitation to less than about 20% of hologram size. The results obtained for the limitation of the hologram sensor"s dynamic range and hologram signal quantization reveal that speckle noise due to these hologram signal distortions is not multiplicative and is directly associated with the severity of the limitation and quantization. On the base of the simulation results, analytical models are suggested.

  12. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  13. Three dimensional optical coherence tomography imaging: advantages and advances.

    Science.gov (United States)

    Gabriele, Michelle L; Wollstein, Gadi; Ishikawa, Hiroshi; Xu, Juan; Kim, Jongsick; Kagemann, Larry; Folio, Lindsey S; Schuman, Joel S

    2010-11-01

    Three dimensional (3D) ophthalmic imaging using optical coherence tomography (OCT) has revolutionized assessment of the eye, the retina in particular. Recent technological improvements have made the acquisition of 3D-OCT datasets feasible. However, while volumetric data can improve disease diagnosis and follow-up, novel image analysis techniques are now necessary in order to process the dense 3D-OCT dataset. Fundamental software improvements include methods for correcting subject eye motion, segmenting structures or volumes of interest, extracting relevant data post hoc and signal averaging to improve delineation of retinal layers. In addition, innovative methods for image display, such as C-mode sectioning, provide a unique viewing perspective and may improve interpretation of OCT images of pathologic structures. While all of these methods are being developed, most remain in an immature state. This review describes the current status of 3D-OCT scanning and interpretation, and discusses the need for standardization of clinical protocols as well as the potential benefits of 3D-OCT scanning that could come when software methods for fully exploiting these rich datasets are available clinically. The implications of new image analysis approaches include improved reproducibility of measurements garnered from 3D-OCT, which may then help improve disease discrimination and progression detection. In addition, 3D-OCT offers the potential for preoperative surgical planning and intraoperative surgical guidance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    Science.gov (United States)

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  15. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    Science.gov (United States)

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  16. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  17. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions

    NARCIS (Netherlands)

    Schmitz, A.C.; Gianfelice, D.; Daniel, B.L.; Mali, W.P.T.M.; Bosch, M.A.A.J. van den

    2008-01-01

    Image-guided focussed ultrasound (FUS) ablation is a noninvasive procedure that has been used for treatment of benign or malignant breast tumours. Image-guidance during ablation is achieved either by using real-time ultrasound (US) or magnetic resonance imaging (MRI). The past decade phase I

  18. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds

    OpenAIRE

    Lediju Bell, Muyinatu A.; Kuo, Nathanael; Song, Danny Y.; Boctor, Emad M.

    2013-01-01

    Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery ...

  19. Processed images in human perception: A case study in ultrasound breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Moi Hoon [Department of Computer Science, Loughborough University, FH09, Ergonomics and Safety Research Institute, Holywell Park (United Kingdom)], E-mail: M.H.Yap@lboro.ac.uk; Edirisinghe, Eran [Department of Computer Science, Loughborough University, FJ.05, Garendon Wing, Holywell Park, Loughborough LE11 3TU (United Kingdom); Bez, Helmut [Department of Computer Science, Loughborough University, Room N.2.26, Haslegrave Building, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  20. Processed images in human perception: A case study in ultrasound breast imaging

    International Nuclear Information System (INIS)

    Yap, Moi Hoon; Edirisinghe, Eran; Bez, Helmut

    2010-01-01

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  1. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  2. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  3. Laparoscopic optical coherence tomographic imaging of human ovarian cancer

    Science.gov (United States)

    Hariri, Lida P.; Bonnema, Garret T.; Schmidt, Kathy; Korde, Vrushali; Winkler, Amy M.; Hatch, Kenneth; Brewer, Molly; Barton, Jennifer K.

    2009-02-01

    Ovarian cancer is the fourth leading cause of cancer-related death among women. If diagnosed at early stages, 5-year survival rate is 94%, but drops to 68% for regional disease and 29% for distant metastasis; only 19% of cases are diagnosed at early, localized stages. Optical coherence tomography is a recently emerging non-destructive imaging technology, achieving high axial resolutions (10-20 µm) at imaging depths up to 2 mm. Previously, we studied OCT in normal and diseased human ovary ex vivo. Changes in collagen were suggested with several images that correlated with changes in collagen seen in malignancy. Areas of necrosis and blood vessels were also visualized using OCT, indicative of an underlying tissue abnormality. We recently developed a custom side-firing laparoscopic OCT (LOCT) probe fabricated for in vivo imaging. The LOCT probe, consisting of a 38 mm diameter handpiece terminated in a 280 mm long, 4.6 mm diameter tip for insertion into the laparoscopic trocar, is capable of obtaining up to 9.5 mm image lengths at 10 µm axial resolution. In this pilot study, we utilize the LOCT probe to image one or both ovaries of 17 patients undergoing laparotomy or transabdominal endoscopy and oophorectomy to determine if OCT is capable of differentiating normal and neoplastic ovary. We have laparoscopically imaged the ovaries of seventeen patients with no known complications. Initial data evaluation reveals qualitative distinguishability between the features of undiseased post-menopausal ovary and the cystic, non-homogenous appearance of neoplastic ovary such as serous cystadenoma and endometroid adenocarcinoma.

  4. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  5. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  6. Digital Path Approach Despeckle Filter for Ultrasound Imaging and Video

    Directory of Open Access Journals (Sweden)

    Marek Szczepański

    2017-01-01

    Full Text Available We propose a novel filtering technique capable of reducing the multiplicative noise in ultrasound images that is an extension of the denoising algorithms based on the concept of digital paths. In this approach, the filter weights are calculated taking into account the similarity between pixel intensities that belongs to the local neighborhood of the processed pixel, which is called a path. The output of the filter is estimated as the weighted average of pixels connected by the paths. The way of creating paths is pivotal and determines the effectiveness and computational complexity of the proposed filtering design. Such procedure can be effective for different types of noise but fail in the presence of multiplicative noise. To increase the filtering efficiency for this type of disturbances, we introduce some improvements of the basic concept and new classes of similarity functions and finally extend our techniques to a spatiotemporal domain. The experimental results prove that the proposed algorithm provides the comparable results with the state-of-the-art techniques for multiplicative noise removal in ultrasound images and it can be applied for real-time image enhancement of video streams.

  7. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  8. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  9. Ghost microscope imaging system from the perspective of coherent-mode representation

    Science.gov (United States)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  10. A novel fusion imaging system for endoscopic ultrasound

    DEFF Research Database (Denmark)

    Gruionu, Lucian Gheorghe; Saftoiu, Adrian; Gruionu, Gabriel

    2016-01-01

    BACKGROUND AND OBJECTIVE: Navigation of a flexible endoscopic ultrasound (EUS) probe inside the gastrointestinal (GI) tract is problematic due to the small window size and complex anatomy. The goal of the present study was to test the feasibility of a novel fusion imaging (FI) system which uses...... time was 24.6 ± 6.6 min, while the time to reach the clinical target was 8.7 ± 4.2 min. CONCLUSIONS: The FI system is feasible for clinical use, and can reduce the learning curve for EUS procedures and improve navigation and targeting in difficult anatomic locations....

  11. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ultrasound Image Quality Assessment: A framework for evaluation of clinical image quality

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Pedersen, Mads Møller; Nikolov, Svetoslav Ivanov

    2010-01-01

    Improvement of ultrasound images should be guided by their diagnostic value. Evaluation of clinical image quality is generally performed subjectively, because objective criteria have not yet been fully developed and accepted for the evaluation of clinical image quality. Based on recommendation 50...... information, which is fast enough to get sufficient number of scans under realistic operating conditions, so that statistical evaluation is valid and reliable....

  13. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Sammet, S.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  14. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Lu, Z.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  15. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, S. [University of Chicago Medical Center (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  16. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  17. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  18. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  19. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  20. Photoacoustic and ultrasound dual-modality imaging for inflammatory arthritis

    Science.gov (United States)

    Xu, Guan; Chamberland, David; Girish, Gandikota; Wang, Xueding

    2014-03-01

    Arthritis is a leading cause of disability, affecting 46 million of the population in the U.S. Rendering new optical contrast in articular tissues at high spatial and temporal resolution, emerging photoacoustic imaging (PAI) combined with more established ultrasound (US) imaging technologies provides unique opportunities for diagnosis and treatment monitoring of inflammatory arthritis. In addition to capturing peripheral bone and soft tissue images, PAI has the capability to quantify hemodynamic properties including regional blood oxygenation and blood volume, both abnormal in synovial tissues affected by arthritis. Therefore, PAI, especially when performed together with US, should be of considerable help for further understanding the pathophysiology of arthritis as well as assisting in therapeutic decisions, including assessing the efficacy of new pharmacological therapies. In this paper, we will review our recent work on the development of PAI for application to the diagnostic imaging and therapeutic monitoring of inflammatory arthritis. We will present the imaging results from a home-built imaging system and another one based on a commercial US. The performance of PAI in evaluating pharmacological therapy on animal model of arthritis will be shown. Moreover, our resent work on PAI and US dual-modality imaging of human peripheral joints in vivo will also be presented.

  1. Speckle noise reduction in breast ultrasound images: SMU (srad median unsharp) approch

    International Nuclear Information System (INIS)

    Njeh, I.; Sassi, O. B.; Ben Hamida, A.; Chtourou, K.

    2011-01-01

    Image denoising has become a very essential for better information extraction from the image and mainly from so noised ones, such as ultrasound images. In certain cases, for instance in ultrasound images, the noise can restrain information which is valuable for the general practitioner. Consequently medical images are very inconsistent, and it is crucial to operate case to case. This paper presents a novel algorithm SMU (Srad Median Unsharp) for noise suppression in ultrasound breast images in order to realize a computer aided diagnosis (CAD) for breast cancer.

  2. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  3. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    OpenAIRE

    Dang, J; Lecoq, P; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    International audience; Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allo...

  4. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  5. Wavelet compression algorithm applied to abdominal ultrasound images

    International Nuclear Information System (INIS)

    Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che

    2006-01-01

    We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis

  6. Spatiotemporal matrix image formation for programmable ultrasound scanners

    Science.gov (United States)

    Berthon, Beatrice; Morichau-Beauchant, Pierre; Porée, Jonathan; Garofalakis, Anikitos; Tavitian, Bertrand; Tanter, Mickael; Provost, Jean

    2018-02-01

    As programmable ultrasound scanners become more common in research laboratories, it is increasingly important to develop robust software-based image formation algorithms that can be obtained in a straightforward fashion for different types of probes and sequences with a small risk of error during implementation. In this work, we argue that as the computational power keeps increasing, it is becoming practical to directly implement an approximation to the matrix operator linking reflector point targets to the corresponding radiofrequency signals via thoroughly validated and widely available simulations software. Once such a spatiotemporal forward-problem matrix is constructed, standard and thus highly optimized inversion procedures can be leveraged to achieve very high quality images in real time. Specifically, we show that spatiotemporal matrix image formation produces images of similar or enhanced quality when compared against standard delay-and-sum approaches in phantoms and in vivo, and show that this approach can be used to form images even when using non-conventional probe designs for which adapted image formation algorithms are not readily available.

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  8. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  9. Robust microbubble tracking for super resolution imaging in ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer B.; Villagómez Hoyos, Carlos Armando; Brasen, Jens Christian

    2016-01-01

    Currently ultrasound resolution is limited by diffraction to approximately half the wavelength of the sound wave employed. In recent years, super resolution imaging techniques have overcome the diffraction limit through the localization and tracking of a sparse set of microbubbles through...... the vasculature. However, this has only been performed on fixated tissue, limiting its clinical application. This paper proposes a technique for making super resolution images on non-fixated tissue by first compensating for tissue movement and then tracking the individual microbubbles. The experiment is performed...... on the kidney of a anesthetized Sprage-Dawley rat by infusing SonoVue at 0.1× original concentration. The algorithm demonstrated in vivo that the motion compensation was capable of removing the movement caused by the mechanical ventilator. The results shows that microbubbles were localized with a higher...

  10. High frequency ultrasound imaging in pupillary block glaucoma.

    Science.gov (United States)

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  11. Imaging of plantar fascia disorders: findings on plain radiography, ultrasound and magnetic resonance imaging.

    Science.gov (United States)

    Draghi, Ferdinando; Gitto, Salvatore; Bortolotto, Chandra; Draghi, Anna Guja; Ori Belometti, Gioia

    2017-02-01

    Plantar fascia (PF) disorders commonly cause heel pain and disability in the general population. Imaging is often required to confirm diagnosis. This review article aims to provide simple and systematic guidelines for imaging assessment of PF disease, focussing on key findings detectable on plain radiography, ultrasound and magnetic resonance imaging (MRI). Sonographic characteristics of plantar fasciitis include PF thickening, loss of fibrillar structure, perifascial collections, calcifications and hyperaemia on Doppler imaging. Thickening and signal changes in the PF as well as oedema of adjacent soft tissues and bone marrow can be assessed on MRI. Radiographic findings of plantar fasciitis include PF thickening, cortical irregularities and abnormalities in the fat pad located deep below the PF. Plantar fibromatosis appears as well-demarcated, nodular thickenings that are iso-hypoechoic on ultrasound and show low-signal intensity on MRI. PF tears present with partial or complete fibre interruption on both ultrasound and MRI. Imaging description of further PF disorders, including xanthoma, diabetic fascial disease, foreign-body reactions and plantar infections, is detailed in the main text. Ultrasound and MRI should be considered as first- and second-line modalities for assessment of PF disorders, respectively. Indirect findings of PF disease can be ruled out on plain radiography. Teaching Points • PF disorders commonly cause heel pain and disability in the general population.• Imaging is often required to confirm diagnosis or reveal concomitant injuries.• Ultrasound and MRI respectively represent the first- and second-line modalities for diagnosis.• Indirect findings of PF disease can be ruled out on plain radiography.

  12. Enhancing the dynamic range of Ultrasound Imaging Velocimetry using interleaved imaging

    NARCIS (Netherlands)

    Poelma, C.; Fraser, K.H.

    2013-01-01

    In recent years, non-invasive velocity field measurement based on correlation of ultrasound images has been introduced as a promising technique for fundamental research into disease processes, as well as a diagnostic tool. A major drawback of the method is the relatively limited dynamic range when

  13. Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; Zanette, I.; De Fanis, A.; Zdora, M.

    2016-01-01

    The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modified to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.

  14. Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; Zanette, I. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany); Zdora, M. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom)

    2016-07-27

    The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modified to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.

  15. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    Science.gov (United States)

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills. © 2014 by the American Institute of Ultrasound in Medicine.

  16. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  17. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  18. Optical coherence tomography: imaging architect for dermal microdialysis in psoriasis

    Science.gov (United States)

    O'Connell, M.-L.; O'Connor, W.; Ramsay, B.; Guihen, E.; Ho, W. L.; Leahy, M. J.

    2011-03-01

    Optical coherence tomography (OCT) has been used as part of a ground breaking translational study to shed some light on one of the worlds most prevalent autoimmune diseases; psoriasis. The work successfully integrates the fields of optical imaging, biochemistry and dermatology in conducting a dermal microdialysis (DMD) trial for quantitative histamine assessment amongst a group of psoriasis sufferers. The DMD process involves temporary insertion of microscopic hollow tubes into a layer of skin to measure the levels of histamine and other important biological molecules in psoriasis. For comparison purposes, DMD catheters were implanted into healthy, peri-lesional and lesional skin regions. The catheters' entry and exit points and their precise locations in the epidermal layer of the skin were confirmed using OCT thus obtaining high resolution, wide-field images of the affected skin as well as catheter placement whilst local microdialysis enabled a tissue chemistry profile to be obtained from these three skin regions including histamine, a local immune system activator known to contribute towards itch and inflammation. Together these tools offer a synergistic approach in the clinical assessment of the disease. In addition, OCT delivered a non-invasive and rapid method for analyzing the affected skin architecture.

  19. Ultrasound breast imaging using frequency domain reverse time migration

    Science.gov (United States)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  20. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    Science.gov (United States)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  1. A single-image method of aberration retrieval for imaging systems under partially coherent illumination

    International Nuclear Information System (INIS)

    Xu, Shuang; Liu, Shiyuan; Zhang, Chuanwei; Wei, Haiqing

    2014-01-01

    We propose a method for retrieving small lens aberrations in optical imaging systems under partially coherent illumination, which only requires to measure one single defocused image of intensity. By deriving a linear theory of imaging systems, we obtain a generalized formulation of aberration sensitivity in a matrix form, which provides a set of analytic kernels that relate the measured intensity distribution directly to the unknown Zernike coefficients. Sensitivity analysis is performed and test patterns are optimized to ensure well-posedness of the inverse problem. Optical lithography simulations have validated the theoretical derivation and confirmed its simplicity and superior performance in retrieving small lens aberrations. (fast track communication)

  2. Potential Measurement Errors Due to Image Enlargement in Optical Coherence Tomography Imaging

    Science.gov (United States)

    Uji, Akihito; Murakami, Tomoaki; Muraoka, Yuki; Hosoda, Yoshikatsu; Yoshitake, Shin; Dodo, Yoko; Arichika, Shigeta; Yoshimura, Nagahisa

    2015-01-01

    The effect of interpolation and super-resolution (SR) algorithms on quantitative and qualitative assessments of enlarged optical coherence tomography (OCT) images was investigated in this report. Spectral-domain OCT images from 30 eyes in 30 consecutive patients with diabetic macular edema (DME) and 20 healthy eyes in 20 consecutive volunteers were analyzed. Original image (OR) resolution was reduced by a factor of four. Images were then magnified by a factor of four with and without application of one of the following algorithms: bilinear (BL), bicubic (BC), Lanczos3 (LA), and SR. Differences in peak signal-to-noise ratio (PSNR), retinal nerve fiber layer (RNFL) thickness, photoreceptor layer status, and parallelism (reflects the complexity of photoreceptor layer alterations) were analyzed in each image type. The order of PSNRs from highest to lowest was SR > LA > BC > BL > non-processed enlarged images (NONE). The PSNR was statistically different in all groups. The NONE, BC, and LA images resulted in significantly thicker RNFL measurements than the OR image. In eyes with DME, the photoreceptor layer, which was hardly identifiable in NONE images, became detectable with algorithm application. However, OCT photoreceptor parameters were still assessed as more undetectable than in OR images. Parallelism was not statistically different in OR and NONE images, but other image groups had significantly higher parallelism than OR images. Our results indicated that interpolation and SR algorithms increased OCT image resolution. However, qualitative and quantitative assessments were influenced by algorithm use. Additionally, each algorithm affected the assessments differently. PMID:26024236

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  5. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    Science.gov (United States)

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  6. Ultrasound imaging of the nose in septorhinoplasty patients.

    Science.gov (United States)

    Stenner, Markus; Rudack, Claudia

    2015-10-01

    Detailed preoperative planning based on available clinical information is an essential component of determining septorhinoplasty outcome. In addition to rhinoscopy and airway measurements, preoperative photographs are the only image modalities that are regularly used in septorhinoplasty patients and contribute to the preoperative planning of the surgery. The aim of this study was to evaluate the use of high-resolution ultrasonography in septorhinoplasty patients before surgery and during follow-up. We examined 35 patients before and after open septorhinoplasty using 12- and 15-MHz B-mode, linear array transducer ultrasound in noncontact mode. The patients presented with a variety of different functional and aesthetic problems, and all underwent septorhinoplasty for septal modification, and tip and dorsum refinement. The mean follow-up time for ultrasound after surgery was 4.5 weeks. Soft tissue, cartilaginous, and bony structures of the nose could be well-visualised. In the untreated nose, functional and aesthetic characteristics as well as preoperative anatomy relevant for the planning of the surgery could be documented. Surgical modifications of the treated nose postoperatively, that is, osteotomies, inserted spreader grafts, diced cartilage in fascia, and tip sutures could be visualized and followed. Ultrasonography of the nose with a high-frequency transducer may be a helpful tool during preoperative planning and postoperative follow-up in septorhinoplasty patients and might be a reasonable completion to the common photographic and functional diagnostic.

  7. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Biren J; Longsine, Whitney; Han, Arum; Righetti, Raffaella [Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A and M University, College Station, TX (United States); Sabonghy, Eric P [OneOrtho Orthopedic Surgery Clinic, Houston, TX (United States); Tasciotti, Ennio; Ferrari, Mauro [Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX (United States); Weiner, Bradley K, E-mail: righetti@ece.tamu.ed [Division of Spinal Surgery, Department of Orthopaedic Surgery, Methodist Hospital, Houston, TX 77030 (United States)

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 {mu}m to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  8. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    Science.gov (United States)

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  9. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  10. Strong reflector-based beamforming in ultrasound medical imaging.

    Science.gov (United States)

    Szasz, Teodora; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Beamforming Through Regularized Inverse Problems in Ultrasound Medical Imaging.

    Science.gov (United States)

    Szasz, Teodora; Basarab, Adrian; Kouame, Denis

    2016-12-01

    Beamforming (BF) in ultrasound (US) imaging has significant impact on the quality of the final image, controlling its resolution and contrast. Despite its low spatial resolution and contrast, delay-and-sum (DAS) is still extensively used nowadays in clinical applications, due to its real-time capabilities. The most common alternatives are minimum variance (MV) method and its variants, which overcome the drawbacks of DAS, at the cost of higher computational complexity that limits its utilization in real-time applications. In this paper, we propose to perform BF in US imaging through a regularized inverse problem based on a linear model relating the reflected echoes to the signal to be recovered. Our approach presents two major advantages: 1) its flexibility in the choice of statistical assumptions on the signal to be beamformed (Laplacian and Gaussian statistics are tested herein) and 2) its robustness to a reduced number of pulse emissions. The proposed framework is flexible and allows for choosing the right tradeoff between noise suppression and sharpness of the resulted image. We illustrate the performance of our approach on both simulated and experimental data, with in vivo examples of carotid and thyroid. Compared with DAS, MV, and two other recently published BF techniques, our method offers better spatial resolution, respectively contrast, when using Laplacian and Gaussian priors.

  12. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  13. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2005-01-01

    ...) and receiving at the subharmonic (f0). Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  14. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2002-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  15. Estimation of Tumor Angiogenesis with Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2004-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  16. Estimation of Tumor Angiogenesis With Constrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Fleming

    2003-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between denign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  17. Learning to Diagnose Cirrhosis with Liver Capsule Guided Ultrasound Image Classification

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2017-01-01

    Full Text Available This paper proposes a computer-aided cirrhosis diagnosis system to diagnose cirrhosis based on ultrasound images. We first propose a method to extract a liver capsule on an ultrasound image, then, based on the extracted liver capsule, we fine-tune a deep convolutional neural network (CNN model to extract features from the image patches cropped around the liver capsules. Finally, a trained support vector machine (SVM classifier is applied to classify the sample into normal or abnormal cases. Experimental results show that the proposed method can effectively extract the liver capsules and accurately classify the ultrasound images.

  18. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  19. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  20. Mutual coherent properties of the images of the quasar microlensed by star mass

    International Nuclear Information System (INIS)

    Verkhoglyadova, O.P.; Mandzhos, A.V.

    1988-01-01

    The paper investigates the problem of mutual coherence of the radiation from two quasar images formed by a single point-mass gravitational lens with the mass of the order of solar mass. The expression for coherence degree is derived by asymptotic expansion in frequency. The coherence degree magnitude attains, in some cases, the values of 0.01-0.02 in the radio-frequency range. 9 refs.; 2 figs.; 2 tabs