WorldWideScience

Sample records for ultrasound brain therapy

  1. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    Science.gov (United States)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  2. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    International Nuclear Information System (INIS)

    Arvanitis, Costas D; McDannold, Nathan; Livingstone, Margaret S

    2013-01-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood–brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood–brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that

  3. MRI-controlled interstitial ultrasound brain therapy: An initial in-vivo study

    Science.gov (United States)

    N'Djin, W. Apoutou; Burtnyk, Mathieu; Lipsman, Nir; Bronskill, Michael; Schwartz, Michael; Kucharczyk, Walter; Chopra, Rajiv

    2012-11-01

    The recent emergence at the clinical level of minimally-invasive focal therapy such as laser-induced thermal therapy (LITT) has demonstrated promise in the management of brain metastasis [1], although control over the spatial pattern of heating is limited. Delivery of HIFU from minimally-invasive applicators enables high spatial control of the heat deposition in biological tissues, large treatment volumes and high treatment rate in well chosen conditions [2,3]. In this study, the feasibility of MRI-guided interstitial ultrasound therapy in brain was studies in-vivo in a porcine model. A prototype system originally developed for transurethral ultrasound therapy [4,5,6] was used in this study. Two burr holes of 12 mm in diameter were created in the animal's skull to allow the insertion of the therapeutic ultrasound applicator (probe) into the brain at two locations (right and left frontal lobe). A 4-element linear ultrasound transducer (f = 8 MHz) was mounted at the tip of a 25-cm linear probe (6 mm in diameter). The target boundary was traced to cover in 2D a surface compatible with the treatment of a 2 cm brain tumor. Acoustic power of each element and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary [2,4,5]. Two MRT-controlled ultrasound brain treatments per animal have been performed using a maximal surface acoustic power of 10W.cm-2. In all cases, it was possible to increase accurately the temperature of the brain tissues in the targeted region over the 55°C threshold necessary for the creation of irreversible thermal lesion. Tissue changes were visible on T1w contrast-enhanced images immediately after treatment. These changes were also evident on T2w FSE images taken 2 hours after the 1st treatment and correlated well with the temperature image. On average, the targeted volume was 4.7 ± 2.3 cm3 and the 55°C treated volume was 6.7 ± 4.4 cm3. The volumetric

  4. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    International Nuclear Information System (INIS)

    Martínez, José M; Jarosz, Boguslaw J

    2015-01-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20–32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10–11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m −1 , 115  ±  4 dB m −1 and 175  ±  9 dB m −1 , respectively. The density and acoustic speed determination at room temperature (∼24 °C) gave 1040  ±  40 kg m −3 and 1545  ±  44 m s −1 , respectively. The average thermal conductivity was 0.532 W m −1  K −1 . The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies. (paper)

  5. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  6. Outcome in hyperglycemic stroke with ultrasound-augmented thrombolytic therapy.

    Science.gov (United States)

    Martini, S R; Hill, M D; Alexandrov, A V; Molina, C A; Kent, T A

    2006-08-22

    Hyperglycemia independently predicts poor outcome after acute ischemic stroke. CLOTBUST (Combined Lysis Of Thrombus in Brain ischemia using transcranial Ultrasound and Systemic tPA) demonstrated that ultrasound-augmented thrombolysis improves recanalization and 24-hour outcome in patients with acute ischemic stroke. We hypothesized that ultrasound would preferentially benefit hyperglycemic patients, and reviewed CLOTBUST with respect to admission glucose and good outcome. We found that ultrasound's benefit on 90-day outcome was primarily apparent at higher glucose levels, suggesting that ultrasound therapy may improve outcome following hyperglycemic stroke.

  7. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range

    Science.gov (United States)

    Hughes, Alec; Hynynen, Kullervo

    2017-09-01

    The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.

  8. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    Science.gov (United States)

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. WE-H-209-01: Advances in Ultrasound Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hynynen, K. [University of Toronto (Canada)

    2016-06-15

    Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives: Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.

  10. WE-H-209-01: Advances in Ultrasound Therapy

    International Nuclear Information System (INIS)

    Hynynen, K.

    2016-01-01

    Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives: Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments

  11. Dynamic contrast enhanced ultrasound for therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, John M. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Williams, Ross [Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Tremblay-Darveau, Charles; Sheeran, Paul S. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Milot, Laurent [Department of Medical Imaging, University of Toronto, Toronto, ON (Canada); Bjarnason, Georg A. [Department of Medical Oncology, University of Toronto, and Sunnybrook Odette Cancer Centre, Toronto, ON (Canada); Burns, Peter N., E-mail: burns@sri.utoronto.ca [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON (Canada)

    2015-09-15

    Quantitative imaging is a crucial component of the assessment of therapies that target the vasculature of angiogenic or inflamed tissue. Dynamic contrast-enhanced ultrasound (DCE-US) using microbubble contrast offers the advantages of being sensitive to perfusion, non-invasive, cost effective and well suited to repeated use at the bedside. Uniquely, it employs an agent that is truly intravascular. This papers reviews the principles and methodology of DCE-US, especially as applied to anti-angiogenic cancer therapies. Reproducibility is an important attribute of such a monitoring method: results are discussed. More recent technical advances in parametric and 3D DCE-US imaging are also summarised and illustrated.

  12. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    Science.gov (United States)

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  13. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  14. Evaluation of ultrasound techniques for brain injury detection

    Science.gov (United States)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  15. Efficacy of therapeutic ultrasound and exercise therapy in the ...

    African Journals Online (AJOL)

    Results: Findings of the study revealed no significant difference in VAS, ROM and WOMAC scores in the study and control groups. Conclusions: This study confirms that therapeutic ultrasound is of no additional benefit to exercise therapy in the management of chronic osteoarthritis. Key words: Ultrasound; Exercise; ...

  16. Operation Brain Trauma Therapy

    Science.gov (United States)

    2016-12-01

    Ho, C., Jenkins, L.W., and Kochanek, P.M. (2013). MRI assessment of cerebral blood flow following experimental traumatic brain injury combined with...Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida. 8Center for Pharmaceutical Sciences, University of Pittsburgh School... Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania. 8Center for Innovative Research, Center for Neuroproteomics and

  17. Operation Brain Trauma Therapy

    Science.gov (United States)

    2014-10-01

    some samples double labeled for 3D reconstruction of the obtained confocal images. Although these studies are not fully complete, a detailed...traumatic brain injury in adult rats. Exp Neurol. 2010;224:241-251. 43. Turkoglu OF, Eroglu H, Gurcan O, et al. Local administration of chitosan

  18. Intracavitary ultrasound phased arrays for thermal therapies

    Science.gov (United States)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  19. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  20. Radiation therapy of brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, R; Huenig, R [Kantonsspital Basel (Switzerland). Universitaetsinstitut fuer Medizinische Radiologie

    1975-08-01

    Experiences are reported obtained with radiation therapy of brain metastases in 121 patients during the last 15 years. The treatment to a lesser extent aimed at prolongation of survival but much more at the attempt to alleviate troubles and to spare pain. The indication thus involved medical points of view as well as ethical ones. The radiotherapy of cerebral metastases comprises the whole cranial volume and requires a focal dose of minimally 4,000 R within four weeks. In 53% of the patients, the regression of neurological symptoms was considerable, in 18% even complete, partly beginning already after a few days of treatment. The number of recurrences was small. Under conditions of rigorous indication, the radiation therapy of brain metastases offers a rewarding palliative measure.

  1. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  2. Ultrasound-controlled neuronavigator-guided brain surgery.

    Science.gov (United States)

    Koivukangas, J; Louhisalmi, Y; Alakuijala, J; Oikarinen, J

    1993-07-01

    The development of a unique neurosurgical navigator is described and a preliminary series of seven cases of intracerebral lesions approached with the assistance of this neuronavigation system under ultrasound control is presented. The clinical series included five low-grade astrocytomas, one chronic intracerebral hematoma, and one porencephalic cyst. Management procedures included biopsy in all cases, drainage of the hematoma, and endoscopy and fenestration for the cyst. The features of the neuronavigation system are interactive reconstructions of preoperative computerized tomography and magnetic resonance imaging data, corresponding intraoperative ultrasound images, versatility of the interchangeable end-effector instruments, graphic presentation of instruments on the reconstructed images, and voice control of the system. The principle of a common axis in the reconstructed images served to align the navigational pointer, biopsy guide, endoscope guide, ultrasound transducer, and surgical microscope to the brain anatomy. Intraoperative ultrasound imaging helped to verify the accuracy of the neuronavigator and check the results of the procedures. The arm of the neuronavigation system served as a holder for instruments, such as the biopsy guide, endoscope guide, and ultrasound transducer, in addition to functioning as a navigational pointer. Also, the surgical microscope was aligned with the neuronavigator for inspection and biopsy of the hematoma capsule to rule out tumor etiology. Voice control freed the neurosurgeon from manual exercises during start-up and calibration of the system.

  3. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. WE-H-209-00: Carson/Zagzebski Distinguished Lectureship: Image Guided Ultrasound Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives: Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.

  5. CLINICAL FIELD NOTE - ULTRASOUND THERAPY: GETTING IT ...

    African Journals Online (AJOL)

    user

    Incorporating this vital information has led to a turn around in the evidence of ultrasound research ... in clinical practice, there has not been enough research evidence to support its .... Parameters: 1W/cm , 50% duty cycle (pulsed), 15 minutes,. 2 with a 5cm ... New England Journal of Medicine 317: 141-145. Gam, A.N., F.

  6. Therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jellinger, K [ed.

    1987-01-01

    The tumors of the brain claim for a separate position in scientific medicine regarding biology, morphology, features of clinical manifestation, diagnostics and therapy. During the past years due to rapid progress in medical biotechnics the situation of the neuroclinician in front of brain tumors has been dramatically changed. The prerequisites for early and accurate diagnosis as well as for successful treatment also of malignant neoplasms have increased and remarkably improved. At the same time the information necessary for an appropriate pragmatic use of the available cognitive methods and therapeutic means increased along the same scale. These facts necessitate the preparation of publications in which the state of the art is presented in possible completeness, systematic order and proper dis-posability for rational management and therapeutic strategies. The primary aim of the present book is to serve these purposes. With 8 chapters, two of them are indexed for INIS, the collective of competent authors deal on the biology, pathology and immunology of malignant brain tumors of adults and of children including relevant basic and recent data of experimental research; further on the available methods of therapy: neurosurgery, radiology and chemotherapy, the fundamental principals of their efficacy and the differing models of single respective combined application, in comprehensive critical form. 111 figs.

  7. Therapy of malignant brain tumors

    International Nuclear Information System (INIS)

    Jellinger, K.

    1987-01-01

    The tumors of the brain claim for a separate position in scientific medicine regarding biology, morphology, features of clinical manifestation, diagnostics and therapy. During the past years due to rapid progress in medical biotechnics the situation of the neuroclinician in front of brain tumors has been dramatically changed. The prerequisites for early and accurate diagnosis as well as for successful treatment also of malignant neoplasms have increased and remarkably improved. At the same time the information necessary for an appropriate pragmatic use of the available cognitive methods and therapeutic means increased along the same scale. These facts necessitate the preparation of publications in which the state of the art is presented in possible completeness, systematic order and proper dis-posability for rational management and therapeutic strategies. The primary aim of the present book is to serve these purposes. With 8 chapters, two of them are indexed for INIS, the collective of competent authors deal on the biology, pathology and immunology of malignant brain tumors of adults and of children including relevant basic and recent data of experimental research; further on the available methods of therapy: neurosurgery, radiology and chemotherapy, the fundamental principals of their efficacy and the differing models of single respective combined application, in comprehensive critical form. 111 figs

  8. Radiation therapy of brain tumor

    International Nuclear Information System (INIS)

    Sung, K. J.; Lee, D. H.; Park, C. Y.

    1980-01-01

    One hundred and six cases of brain tumors were treated at the Yonsei Cancer Center from January 1972 to August 1978 by Co-60 teletherapy unit. We analyses their clinical findings, histopathological findings, treatment and results. In those cases which computerized tomography had been used before and after radiation therapy, changes in tumor size and the presence of edema or necrosis following treatment was evaluated. 1. Among 106 cases, 90 cases were primary brain tumors and 16 cases were metastatic brain tumors. Pituitary tumors (38), glioma (34) and pinealoma (10) composed of most of primary brain tumors. 2. Post treatment follow-up was possible in 38 cases more than 1 years. Four among 11 cases of giloma expired and survivors had considerable neurological symptoms except 2 cases. Sixty five percent (12/20) of pituitary tumors showed improvement of visual symptoms and all cases (7) of pinealoma which post treatment follow-up was possible, showed remarkable good response. 3. Findings of CT scan after radiation treatment were compatible with results of clinical findings and post treatment follow-up. It showed complete regression of tumor mass in one case of pinealoma and medulloblastoma. One case of pituitary tumor showed almost complete regression of tumor mass. It also showed large residual lesion in cases of glioblastoma multiforme and cystic astrocytoma.

  9. Ultrasound-guided interventional therapy for recurrent ovarian chocolate cysts.

    Science.gov (United States)

    Wang, Lu-Lu; Dong, Xiao-Qiu; Shao, Xiao-Hui; Wang, Si-Ming

    2011-10-01

    The aim of this study was to determine the effectiveness of ultrasound-guided interventional therapy in the treatment of postoperative recurrent chocolate cysts. The 198 patients enrolled in this study were divided into three groups. In group 1, the saline washing group, the cavity of the cyst was washed thoroughly with warm saline. In group 2, the ethanol short-time retention group, after washing with saline, the cyst was injected with 95% ethanol with a volume of half of the fluid aspirated from the cyst. Ten minutes later, the rest of the ethanol was aspirated. In group 3, the ethanol retention group, the procedures were the same as with the ethanol short-time retention group, except that 95% of the ethanol was retained in the cyst. An ultrasound examination was performed in the third, sixth and 12th months after therapy. The chocolate cyst cure rate was significantly higher in the ethanol retention group (96%, 66/69) than in the ethanol short-time retention group (82%, 56/68) and no case was cured in the first group (saline washing). We conclude that ultrasound-guided injection and 95% ethanol retention are an effective therapy for the treatment of postoperative recurrent chocolate cysts. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  11. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  12. Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound.

    Science.gov (United States)

    Stavarache, Mihaela A; Petersen, Nicholas; Jurgens, Eric M; Milstein, Elizabeth R; Rosenfeld, Zachary B; Ballon, Douglas J; Kaplitt, Michael G

    2018-04-27

    OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent

  13. Targeted Gene Transfer to the Brain via the Delivery of Brain-Penetrating DNA Nanoparticles with Focused Ultrasound

    Science.gov (United States)

    Mead, Brian P.; Mastorakos, Panagiotis; Suk, Jung Soo; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.

    2016-01-01

    Gene therapy holds promise for the treatment of many pathologies of the central nervous system (CNS), including brain tumors and neurodegenerative diseases. However, the delivery of systemically administered gene carriers to the CNS is hindered by both the blood-brain barrier (BBB) and the nanoporous and electrostatically charged brain extracelluar matrix (ECM), which acts as a steric and adhesive barrier. We have previously shown that these physiological barriers may be overcome by, respectively, opening the BBB with MR image-guided focused ultrasound (FUS) and microbubbles and using highly compact “brain penetrating” nanoparticles (BPN) coated with a dense polyethylene glycol corona that prevents adhesion to ECM components. Here, we tested whether this combined approach could be utilized to deliver systemically administered DNA-bearing BPN (DNA-BPN) across the BBB and mediate localized, robust, and sustained transgene expression in the rat brain. Systemically administered DNA-BPN delivered through the BBB with FUS led to dose-dependent transgene expression only in the FUS-treated region that was evident as early as 24 h post administration and lasted for at least 28 days. In the FUS-treated region ~42% of all cells, including neurons and astrocytes, were transfected, while less than 6% were transfected in the contralateral non-FUS treated hemisphere. Importantly, this was achieved without any sign of toxicity or astrocyte activation. We conclude that the image-guided delivery of DNA-BPN with FUS and microbubbles constitutes a safe and non-invasive strategy for targeted gene therapy to the brain. PMID:26732553

  14. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-10-01

    , treatment with MTX-liposome-coupled microbubbles and ultrasound resulted in a significantly higher brain MTX concentration than all other treatments (P<0.01. These results suggest that MTX-liposome-coupled microbubbles may hold great promise as new and effective therapies for primary central nervous system lymphoma and other central nervous system malignancies. Keywords: methotrexate, microbubbles, ultrasound, liposomes, blood–brain barrier

  15. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    Science.gov (United States)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  16. Quantitative analysis of normal fetal brain volume and flow by three-dimensional power Doppler ultrasound

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    2013-09-01

    Conclusion: 3D ultrasound can be used to assess the fetal brain volume and blood flow development quantitatively. Our study indicates that the fetal brain vascularization and blood flow correlates significantly with the advancement of GA. This information may serve as a reference point for further studies of the fetal brain volume and blood flow in abnormal conditions.

  17. Ultrasound therapy applicators for controlled thermal modification of tissue

    Science.gov (United States)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  18. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  19. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advanced techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.

  20. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm 3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  1. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    International Nuclear Information System (INIS)

    Farahani, K.

    2015-01-01

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare

  2. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K. [National Cancer Institute (United States)

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  3. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    Science.gov (United States)

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  4. The science of ultrasound therapy for fracture healing

    Directory of Open Access Journals (Sweden)

    Della Rocca Gregory

    2009-01-01

    Full Text Available Fracture healing involves a complex interplay of cellular processes, culminating in bridging of a fracture gap with bone. Fracture healing can be compromised by numerous exogenous and endogenous patient factors, and intense research is currently going on to identify modalities that can increase the likelihood of successful healing. Low-intensity pulsed ultrasound (LIPUS has been proposed as a modality that may have a benefit for increasing reliable fracture healing as well as perhaps increasing the rate of fracture healing. We conducted a review to establish basic scince evidence of therapeutic role of lipus in fracture healing. An electronic search without language restrictions was accomplished of three databases (PubMed, Embase, Cinahl for ultrasound-related research in osteocyte and chondrocyte cell culture and in animal fracture models, published from inception of the databases through December, 2008. Studies deemed to be most relevant were included in this review. Multiple in vitro and animal in vivo studies were identified. An extensive body of literature exists which delineates the mechanism of action for ultrasound on cellular and tissue signaling systems that may be related to fracture healing. Research on LIPUS in animal fracture models has demonstrated promising results for acceleration of fracture healing and for promotion of fracture healing in compromised tissue beds. A large body of cellular and animal research exists which reveals that LIPUS may be beneficial for accelerating normal fracture healing or for promoting fracture healing in compromised tissue beds. Further investigation of the effects of LIPUS in human fracture healing is warranted for this promising new therapy.

  5. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schad, Kelly C; Hynynen, Kullervo, E-mail: khynynen@sri.utoronto.c [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto (Canada)

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 {mu}m in diameter and diluted to a concentration of 8 x 10{sup 6} droplets mL{sup -1}. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  6. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    International Nuclear Information System (INIS)

    Schad, Kelly C; Hynynen, Kullervo

    2010-01-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 μm in diameter and diluted to a concentration of 8 x 10 6 droplets mL -1 . The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  7. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Science.gov (United States)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  8. Transcranial cavitation-mediated ultrasound therapy at sub-MHz frequency via temporal interference modulation

    Science.gov (United States)

    Sun, Tao; Sutton, Jonathan T.; Power, Chanikarn; Zhang, Yongzhi; Miller, Eric L.; McDannold, Nathan J.

    2017-10-01

    Sub-megahertz transmission is not usually adopted in pre-clinical small animal experiments for focused ultrasound (FUS) brain therapy due to the large focal size. However, low frequency FUS is vital for preclinical evaluations due to the frequency-dependence of cavitation behavior. To maximize clinical relevance, a dual-aperture FUS system was designed for low-frequency (274.3 kHz) cavitation-mediated FUS therapy. Combining two spherically curved transducers provides significantly improved focusing in the axial direction while yielding an interference pattern with strong side lobes, leading to inhomogeneously distributed cavitation activities. By operating the two transducers at slightly offset frequencies to modulate this interference pattern over the period of sonication, the acoustic energy was redistributed and resulted in a spatially homogenous treatment profile. Simulation and pressure field measurements in water were performed to assess the beam profiles. In addition, the system performance was demonstrated in vivo in rats via drug delivery through microbubble-mediated blood-brain barrier disruption. This design resulted in a homogenous treatment profile that was fully contained within the rat brain at a clinically relevant acoustic frequency.

  9. Radiation therapy of brain metastases

    International Nuclear Information System (INIS)

    Obata, Yasunori; Morita, Kozo; Watanabe, Michiko; Niwa, Kokichi

    1982-01-01

    From January 1974 to December 1980, 104 patients with brain metastases were treated by irradiation to the whole brain. The results of treatment and the relation between CT images and effectiveness of irradiation were analized. The lung was the most common site of the primary tumor (67/104, 64.4%). The breast was a distant second in frequency (13/104, 12.5%) and fewer cases had other primary tumors (24/104, 23.1%). There were 63 males and 41 females. Their mean age was 56.0 years old. The interval between onset of symptoms from primary disease and of those from the brain metastases were 26.5 months for the breast cancer, 7.6 months for undifferentiated carcinoma of the lung and 13.2 months for all patients. Significant neurologic improvement was obtained in 85.7% of the patients (86 cases) irradiated as previous plans. The survival for the entire group of patients (86 cases) was 60.5% at 3 months, 31.4% at 6 months, 11.6% at 12 months an 3.5% at 18 months. Multiplicity of the metastatic brain tumror did not affect the prognosis but the control of the primary lesion affected the prognosis. The CT images of 41 cases before treatment revealed the enhanced mass was mainly homogeneous for the case with the breast cancer and mainly ring like for the case with squamous cell carcinoma of the lung. But the characters of the enhanced mass did not affect the prognosis. On the other hand, the analysis of the CT images of 37 cases before and after the treatment revealed the relation between the tumor regression and the improvement in neurologic symptoms. (J.P.N.)

  10. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects

    NARCIS (Netherlands)

    Dasgupta, I.; Liu, M.; Ojha, T.; Storm, Gerrit; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria

    2016-01-01

    The blood–brain barrier (BBB) limits drug delivery to the central nervous system. When combined with microbubbles, ultrasound can transiently permeate blood vessels in the brain. This approach, which can be referred to as sonoporation or sonopermeabilization, holds significant promise for shuttling

  11. Radiosurgery for brain metastases: is whole brain radiation therapy necessary?

    International Nuclear Information System (INIS)

    Forstner, Julie M.; Sneed, Penny K.; Lamborn, Kathleen R.; Shu, H.-K.G.; McDermott, Michael W.; Park, Elaine; Ho, Maria; Chang, Susan; Gutin, Philip H.; Phillips, Theodore L.; Wara, William M.; Larson, David A.

    1996-01-01

    Purpose: Because whole brain radiotherapy (WBRT) carries a significant risk of dementia in long-term survivors, it is desirable to determine if some patients with brain metastases may be managed with radiosurgery (RS) alone, reserving WBRT for salvage therapy as needed. To begin to approach this problem, we retrospectively reviewed freedom from brain failure/progression (Brain FFP) and survival of patients with newly-diagnosed solitary or multiple brain metastases treated with Gamma Knife RS ± WBRT. Materials and Methods: All patients treated at our institution with Gamma Knife RS for newly-diagnosed solitary or multiple (2-8) brain metastases from September 1991 through December 1995 were reviewed. Whether or not WBRT was given depended on physician preference and referral patterns. Brain FFP was measured from the date of RS until development of a new brain metastasis or progression of a treated metastasis, with censoring at the time of the last imaging study. Survival was measured from the date of RS until death or last clinical follow-up. Actuarial curves were estimated using the Kaplan-Meier method and compared with the log rank test. Multivariate analyses to adjust for known prognostic variables (age, KPS, history of extracranial metastases, and total target volume) were performed using the Cox proportional hazards model. Results: From September 1991-December 1995, 90 patients with newly-diagnosed brain metastases underwent RS. Three patients treated palliatively to a small component of their intracranial disease were excluded, leaving 54 treated with RS alone and 33 treated with RS + WBRT. Age ranged from 31-83 years (median, 59 years), KPS from 60-100 (median, 90), and total target volume from 0.15-26.1 cm 3 (median, 5.5 cm 3 ). Fifty patients had a history of extracranial metastases. Results are shown below. In the RS alone group, (22(54)) patients (41%) had a brain failure and (20(54)) (37%) died without evidence of brain failure. In the RS + WBRT group

  12. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    Science.gov (United States)

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  13. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  14. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  15. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  16. Radiopharmaceutical therapy of brain tumours

    International Nuclear Information System (INIS)

    Riva, P.; Franceschi, G.; Frattarelli, M.; Casi, M.; Santimaria, M.; Cremonini, A.M.; Guiducci, G.; Riva, N.

    1999-01-01

    Full text: The loco-regional radioimmunotherapy (RIT) of high-grade malignant glioma may represent a further favourable therapeutic approach, able to ameliorate the ominous prognosis of these diseases. The anti-tenascin monoclonal antibodies (MAbs) are directly injected in the tumoral bed after the operation. In the first pilot study, 81 glioblastoma patients received the MAbs (BC2 and BC4) labelled with 131 I (mean dose 2035 MBq). The toxicity was absent. The median survival was prolonged up to 25 months and the response rate (PR + CR + NED: no evidence of disease in cases with minimal lesions after customary treatments) was 44%. More recently, 90 Y instead of 131 I was employed. The benzyl-DTPA chelator was utilized for 90 Y conjugation. A phase I study was performed in 20 glioblastoma patients, who previously received all conventional regimens, but with progressive tumour. They were intralesionally given escalating 90 Y doses (185, 370, 555, 740, 925 MBq), 4 cases were included in each incremental level. No change in haematology, liver and renal parameters were encountered. The brain MTD was 925 MBq. The radiopharmaceutical remained in high amount only in the neoplastic area and did not diffuse in normal brain region nor in normal organs. The radiation dose to the tumour was, on average, 0.54 Gy per MBq of 90 Y administered (about 4 times higher in comparison to 131 I). Now a phase II study has been initiated. 30 evaluable patients (23 glioblastoma and 7 anaplastic astrocytoma; 8 newly diagnosed and 22 recurrent tumours) who have been already treated with surgery and radiotherapy, underwent loco-regional RIT, by administering a mean 90 Y dose of 740 MBq; in many cases multiple cycles were given. The median survival of patients who had the antibody infusion when their tumour burden was reduced was 28 months. The objective response consisted of 8 PD, 5 SD, 11 PR, 1 CR and 4 NED. The global response rate (PR + CR + NED) was 53.3% (47.8% in glioblastoma and 75.7% in

  17. Effectiveness of using ultrasound therapy and manual therapy in the conservative treatment of calcaneal spur – pilot study

    Directory of Open Access Journals (Sweden)

    Twarowska Natalia

    2016-06-01

    Full Text Available Introduction: Calcaneal spur is a pathology of the fibrocartilage enthesis of the Achilles tendon and plantar fascia or a pathology of the mixed enthesis of the flexor digitorum brevis muscle. Ultrasound therapy is commonly applied in the conservative treatment of a calcaneal spur. Foot muscle strengthening exercises, stretching exercises and soft tissue therapy are indicated as effective methods of conservative treatment. The aim of the study was to compare and assess the effects of ultrasound therapy and selected techniques of manual therapy on pain level and functional state in patients with calcaneal spur.

  18. Ultrasound motion tracking for radiation therapy; Ultraschallbewegungstracking fuer die Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, J. [Fraunhofer-Institut fuer Bildgestuetzte Medizin MEVIS, Bremen (Germany); Mediri GmbH, Heidelberg (Germany); Schwaab, J. [Mediri GmbH, Heidelberg (Germany)

    2015-11-15

    In modern radiotherapy the radiation dose can be applied with an accuracy in the range of 1-2 mm provided that the exact position of the target is known. If, however, the target (the tumor) is located in the lungs or the abdomen, respiration or peristalsis can cause substantial movement of the target. Various methods for intrafractional motion detection and compensation are currently under consideration or are already applied in clinical practice. Sonography is one promising option, which is now on the brink of clinical implementation. Ultrasound is particularly suited for this purpose due to the high soft tissue contrast, real-time capability, the absence of ionizing radiation and low acquisition costs. Ultrasound motion tracking is an image-based approach, i.e. the target volume or an adjacent structure is directly monitored and the motion is tracked automatically on the ultrasound image. Diverse algorithms are presently available that provide the real-time target coordinates from 2D as well as 3D images. Definition of a suitable sonographic window is not, however, trivial and a gold standard for positioning and mounting of the transducer has not yet been developed. Furthermore, processing of the coordinate information in the therapy unit and the dynamic adaptation of the radiation field are challenging tasks. It is not clear whether ultrasound motion tracking will become established in the clinical routine although all technical prerequisites can be considered as fulfilled, such that exciting progress in this field of research is still to be expected. (orig.) [German] In der modernen Strahlentherapie kann die Dosis mit einer Genauigkeit von 1-2 mm appliziert werden, sofern die Position der Zielstruktur genau bekannt ist. Liegt diese Zielstruktur (der Tumor) jedoch in der Lunge oder im Abdomen, koennen u. a. die Atmung oder die Peristaltik zu einer substanziellen Bewegung des Zielvolumens fuehren. Verschiedene Methoden zur intrafraktionellen Bewegungsdetektion

  19. Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro.

    Science.gov (United States)

    Tang, Wei; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Zhang, Jing; Cao, Bing

    2009-12-01

    Sonodynamic therapy employs a combination of ultrasound and a sonosensitizer to enhance the cytotoxic effect of ultrasound and promote apoptosis. However, the mechanism underlying the synergistic effect of ultrasound and hematoporphyrin is still unclear. In this study, we investigated mechanism of the induction of apoptosis by sonodynamic therapy in Sarcoma 180 cells. The cell suspension was treated by 1.75-MHz focused continuous ultrasound at an acoustic power (I(SATA)) of 1.4+/-0.07 W/cm(2) for 3 min in the absence or presence of 20 microg/ml hematoporphyrin. The proportion of apoptotic cells was determined by flow cytometry. We then analyzed the reactive oxygen species generation and localization by confocal microscopy. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the expression of caspase-8, caspase-9, poly(ADP)-ribose polymerase, and nuclear factor-kappaB. The findings of our study indicate that ultrasound treatment induced the activation of nuclear factor-kappaB as an early stress response. When cells were pretreated with hematoporphyrin, the initial response to the therapy was the formation of (1)O(2) in the mitochondria. Our results primarily demonstrate that the mechanisms of induction of apoptosis by ultrasound and hematoporphyrin-sonodynamic therapies are very different. Our findings can provide a basis for explaining the synergistic effect of ultrasound and hematoporphyrin.

  20. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers

    Science.gov (United States)

    Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François

    2018-01-01

    The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N  =  3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.

  1. NMR guided focused ultrasound for myoma therapy - results from the first radiology-gynecology expert meeting

    International Nuclear Information System (INIS)

    Beck, A.; Charite Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin; David, M.; Kroencke, T.; Charite Universitaetsmedizin Berlin, Campus Charite Mitte, Berlin

    2013-01-01

    The contribution on the results from the first radiology-gynecology expert meeting concerning NMR guided focused ultrasound (MRgFUS) for myoma therapy covers the following topics: structural prerequisites for MRgFUS therapy; required examinations before MRgFUS therapy; indication for MRgFUS therapy; success criteria for the MRgFUS therapy; contraindications; MRgFUS therapy for patients that want to have children; side effects and complications of MRgFUS therapy; post-examination after MRgFUS therapy.

  2. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    Science.gov (United States)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  3. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-01-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  4. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  5. Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles

    OpenAIRE

    Meairs, Stephen

    2015-01-01

    Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This techni...

  6. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  7. Beacon signal in transcranial color coded ultrasound: A sign for brain death

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Topçuoğlu

    2014-04-01

    Full Text Available A widely under-recognized brain-death confirming transcranial ultrasonography pattern resembling the red-blue beacon signal was demonstrated. Familiarity to this distinct and characteristic ultrasonic pattern seems to be important in the perspective of point-of-care neurological ultrasound use and knobology.

  8. Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles

    Directory of Open Access Journals (Sweden)

    Stephen Meairs

    2015-08-01

    Full Text Available Medical treatment options for central nervous system (CNS diseases are limited due to the inability of most therapeutic agents to penetrate the blood–brain barrier (BBB. Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer’s disease is presented.

  9. Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles.

    Science.gov (United States)

    Meairs, Stephen

    2015-08-31

    Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood-brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer's disease is presented.

  10. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model.

    Directory of Open Access Journals (Sweden)

    Habib Baghirov

    Full Text Available The treatment of brain diseases is hindered by the blood-brain barrier (BBB preventing most drugs from entering the brain. Focused ultrasound (FUS with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.

  11. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    Science.gov (United States)

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  13. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity

    International Nuclear Information System (INIS)

    McDannold, N; Vykhodtseva, N; Hynynen, K

    2006-01-01

    Acoustic emission was monitored during focused ultrasound exposures in conjunction with an ultrasound contrast agent (Optison (registered) ) in order to determine if cavitation activity is associated with the induction of blood-brain barrier disruption (BBBD). Thirty-four locations were sonicated (frequency: 260 kHz) at targets 10 mm deep in rabbit brain (N = 9). The sonications were applied at peak pressure amplitudes ranging from 0.11 to 0.57 MPa (burst length: 10 ms; repetition frequency of 1 Hz; duration: 20 s). Acoustic emission was recorded with a focused passive cavitation detector. This emission was recorded at each location during sonications with and without Optison (registered) . Detectable wideband acoustic emission was observed only at 0.40 and 0.57 MPa. BBBD was observed in contrast MRI after sonication at 0.29-0.57 MPa. The appearance of small regions of extravasated erythrocytes appeared to be associated with this wideband emission signal. The results thus suggest that BBBD resulting from focused ultrasound pulses in the presence of Optison (registered) can occur without indicators for inertial cavitation in vivo, wideband emission and extravasation. If inertial cavitation is not responsible for the BBBD, other ultrasound/microbubble interactions are likely the source. A significant increase in the emission signal due to Optison (registered) at the second and third harmonics of the ultrasound driving frequency was found to correlate with BBBD and might be useful as an online method to indicate when the disruption occurs

  14. Effects of hormone therapy on brain structure

    OpenAIRE

    Kantarci, Kejal; Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42?56 years, within 5?36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 ?g/d transdermal 17?-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active ...

  15. Cerebral blood flow and brain shrinkage seen on CT during ACTH therapy

    International Nuclear Information System (INIS)

    Futagi, Yasuyuki; Abe, Jiro; Kawahigashi, Kenji

    1986-01-01

    By means of the Doppler ultrasound method, the cerebral blood flow (CBF) was assessed in 21 children with epilepsy undergoing treatment with adrenocorticotrophic hormone (ACTH). The maximum reduction in the internal carotid velocity, as an index of CBF during therapy, was about 35 percent compared with the values before therapy. Furthermore, sequential computed tomography (CT) examinations of the same subjects were performed to evaluate the change in the area of the intracranial brain parenchyma during therapy. The maximum reduction in the parenchymal area during therapy was about 10 percent. This corresponds to a 20 percent reduction in CBF according to Poiseuille's law, however, the remaining reduction in CBF demonstrated by velocity measurement cannot be explained only by that mechanical vascular factor. From these findings, it is concluded that in order to elucidate the mechanism of the CBF reduction, physiological factors such as changes in metabolism during therapy should also be evaluated in addition to the mechanical and physical causes. (author)

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ... page Additional Information and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer ...

  17. Whole-brain radiation therapy for brain metastases: detrimental or beneficial?

    International Nuclear Information System (INIS)

    Gemici, Cengiz; Yaprak, Gokhan

    2015-01-01

    Stereotactic radiosurgery is frequently used, either alone or together with whole-brain radiation therapy to treat brain metastases from solid tumors. Certain experts and radiation oncology groups have proposed replacing whole-brain radiation therapy with stereotactic radiosurgery alone for the management of brain metastases. Although randomized trials have favored adding whole-brain radiation therapy to stereotactic radiosurgery for most end points, a recent meta-analysis demonstrated a survival disadvantage for patients treated with whole-brain radiation therapy and stereotactic radiosurgery compared with patients treated with stereotactic radiosurgery alone. However the apparent detrimental effect of adding whole-brain radiation therapy to stereotactic radiosurgery reported in this meta-analysis may be the result of inhomogeneous distribution of the patients with respect to tumor histologies, molecular histologic subtypes, and extracranial tumor stages between the groups rather than a real effect. Unfortunately, soon after this meta-analysis was published, even as an abstract, use of whole-brain radiation therapy in managing brain metastases has become controversial among radiation oncologists. The American Society of Radiation Oncology recently recommended, in their “Choose Wisely” campaign, against routinely adding whole-brain radiation therapy to stereotactic radiosurgery to treat brain metastases. However, this situation creates conflict for radiation oncologists who believe that there are enough high level of evidence for the effectiveness of whole-brain radiation therapy in the treatment of brain metastases

  18. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy.

    Science.gov (United States)

    Feng, Qianhua; Zhang, Wanxia; Yang, Xuemei; Li, Yuzhen; Hao, Yongwei; Zhang, Hongling; Hou, Lin; Zhang, Zhenzhong

    2018-03-01

    Herein, a pH/ultrasound dual-responsive gas generator is reported, which is based on mesoporous calcium carbonate (MCC) nanoparticles by loading sonosensitizer (hematoporphyrin monomethyl ether (HMME)) and modifying surface hyaluronic acid (HA). After pinpointing tumor regions with prominent targeting efficiency, HMME/MCC-HA decomposes instantaneously under the cotriggering of tumoral inherent acidic condition and ultrasound (US) irradiation, concurrently accompanying with CO 2 generation and HMME release with spatial/temporal resolution. Afterward, the CO 2 bubbling and bursting effect under US stimulus results in cavitation-mediated irreversible cell necrosis, as well as the blood vessel destruction to further occlude the blood supply, providing a "bystander effect." Meanwhile, reactive oxygen species generated from HMME can target the apoptotic pathways for effective sonodynamic therapy. Thus, the combination of apoptosis/necrosis with multimechanisms consequently results in a remarkable antitumor therapeutic efficacy, simultaneously minimizing the side effects on major organs. Moreover, the echogenic property of CO 2 make the nanoplatform as a powerful ultrasound contrast agent to identify cancerous lesions. Based on the above findings, such all-in-one drug delivery platform of HMME/MCC-HA is utilized to provide the US imaging guidance for therapeutic inertial cavitation and sonodynamic therapy simultaneously, which highlights possibilities of advancing cancer theranostics in biomedical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  20. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  1. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    Science.gov (United States)

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  2. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  3. Review Paper: A Review on Brain Stimulation Using Low Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Ehsan Rezayat

    2016-07-01

    Full Text Available Brain stimulation techniques are important in both basic and clinical studies. Majority of well-known brain stimulating techniques have low spatial resolution or entail invasive processes. Low intensity focused ultrasound (LIFU seems to be a proper candidate for dealing with such deficiencies. This review recapitulates studies which explored the effects of LIFU on brain structures and its function, in both research and clinical areas. Although the mechanism of LIFU action is still unclear, its different effects from molecular level up to behavioral level can be explored in animal and human brain. It can also be coupled with brain imaging assessments in future research.

  4. Effects of hormone therapy on brain structure

    Science.gov (United States)

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  5. Low-Frequency Ultrasound Therapy in Combination Treatment of Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    YE.E. LAVRINENKO

    2013-04-01

    Results. The beginning of therapeutic effect was observed after 2 procedures of the ultrasound exposure. The maximum effect is appeared after 8–10 treatment sessions. The positive dynamics of complex treatment is improving the general state of health, a disappearance of asthenization, and a decrease in the symptoms of cardiovascular disorders, achieving faster compensation of carbohydrate metabolism. The course of treatment contributed to the hyperglycemia reduction in patients with newly detected type 2 DM. After ultrasound treatment, the authors noted a positive dynamics of clinical symptoms: an improvement of the general health status, a decrease in fatigue, an improvement of psycho-emotional indices, disappearance of pain in the right upper quadrant, and a decrease in liver size in all the patients under study. Conclusions. The use of low-frequency ultrasound therapy on cutaneous projection of the liver in patients with type 2 DM promotes the normalization both fasting and postprandial glycemia. The effect of low-frequency ultrasound on cutaneous projection of the liver is significantly decreasing parameters that characterize the pancreatic insulin synthesizing function (immunoreactive insulin, C-peptide in patients with newly diagnosed type 2 DM and a BMI > 25 kg/m2. Low-frequency ultrasound reduces the glucagon secretion and thereby positively affects the hepatic gluconeogenesis. Ultrasound therapy can be used in the complex treatment of patients with newly diagnosed type 2 DM.

  6. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    International Nuclear Information System (INIS)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-01-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm -2 . By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled

  7. Feasibility study of local ultrasound hyperthermia in cancer therapy

    International Nuclear Information System (INIS)

    Jones, K.G.; Straube, W.; Emami, B.; Perez, C.A.

    1987-01-01

    This paper describes a retrospective analysis of patients treated at Washington University for recurrent or persistent cancer with Ultrasound Hyperthermia between October 1984 and June 1986. Fifteen of 102 lesions were treated during this time period with Ultrasound Hyperthermia instead of microwave hyperthermia due to the size of the lesion needing heat at depths greater than 4 cm. Also, the patients' lesion could not be implanted for interstitial microwave hyperthermia. Fourteen of the treated patients received concomitant radiotherapy, while one received concomitant Bleomycin. There were 79 total hyperthermia treatments delivered, of which 67 achieved a therapeutic temperature of 43 0 C for 60 minutes. During 15/79 treatments, patients experienced pain; of which 11/15 lead to poor heating. Only one treatment of the twelve poor treatments was secondary to technical difficulties. Complete local control was accomplished in seven patients, a partial response in four patients. The results of therapeutic heating and its relationship to the site of treatment and local control are presented, along with phantom studies of Ultrasound microwave hyperthermia reemphasizing the feasibility of using Ultrasound Hyperthermia

  8. Quantitative head ultrasound measurements to determine thresholds for preterm neonates requiring interventional therapies following intraventricular hemorrhage

    Science.gov (United States)

    Kishimoto, Jessica; Fenster, Aaron; Salehi, Fateme; Romano, Walter; Lee, David S. C.; de Ribaupierre, Sandrine

    2016-04-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure and without treatment, can lead to death. Clinically, 2D ultrasound (US) through the fontanelles ('soft spots') of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up cerebrospinal fluid (CSF) ('ventricle tap', VT) might be indicated for a patient; however, quantitative measurements of the growth of the ventricles are often not performed. There is no consensus on when a neonate with PHVD should have an intervention and often interventions are performed after the potential for brain damage is quite high. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. We will describe the potential utility of quantitative 2D and 3D US to monitor and manage PHVD in neonates. Specifically, we will look to determine image-based measurement thresholds for patients who will require VT in comparison to patients with PHVD who resolve without intervention. Additionally, since many patients who have an initial VT will require subsequent interventions, we look at the potential for US to determine which PHVD patients will require additional VT after the initial one has been performed.

  9. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    Science.gov (United States)

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  10. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  11. Insufficient scientific evidence for efficacy of widely used electrotherapy, laser therapy, and ultrasound treatment in physiotherapy

    NARCIS (Netherlands)

    Bouter, L M

    2000-01-01

    The Dutch Health Council recently published a report on the efficacy of electrotherapy, laser therapy and ultrasound treatment for musculoskeletal disorders. The assessment was based on three systematic reviews, including 169 randomized clinical trials, and focused on a best-evidence synthesis.

  12. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  13. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  14. Development, Characterization, and Implementation of a System for Focused Ultrasound-Mediated Blood-Brain Barrier Opening in Mice

    Science.gov (United States)

    Valdez, Michael Aaron

    The blood-brain barrier BBB refers to the set of specialized endothelial cells that line the vasculature in the brain and effectively control movement of molecules into and out of the brain. While necessary for proper brain function, the BBB blocks 98% of drugs from entering the brain and is the most significant barrier to developing therapies for neurodegenerative diseases. Active transport allows some specific molecules to cross the BBB, but therapeutic development using this route has had limited success. A number of techniques have been used to bypass the BBB, but are often highly invasive and ineffective. Over the last two decades, a minimally invasive technique to transiently open the BBB has been under development that utilizes transcranial focused ultrasound (FUS) in combination with intravascular microbubble contrast agents. This method is often carried out in conjunction with magnetic resonance imaging (MRI) to guide and assess BBB opening and has been referred to as MRI guided FUS (MRgFUS). Because of the utility of mouse models of neurological disease and the exploratory nature of MRgFUS, systems that allow BBB opening in mice are a useful and necessary tool to develop and evaluate this method for clinical application. In this dissertation project, a custom built, cost-effective FUS system for opening the BBB in mice was developed, with the objective of using this device to deliver therapeutics to the brain. Being a custom device, it was necessary to evaluate the ultrasound output, verify in vivo safety, and anticipate the therapeutic effect. The scope of the work herein consists of the design, construction, and evaluation of system that fulfills these requirements. The final constructed system cost was an order of magnitude less than any commercially available MRgFUS system. At this low price point, the hardware could allow the implementation of the methodology in many more research areas than previously possible. Additionally, to anticipate the

  15. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model.

    Science.gov (United States)

    Maxwell, Adam D; Owens, Gabe; Gurm, Hitinder S; Ives, Kimberly; Myers, Daniel D; Xu, Zhen

    2011-03-01

    This study evaluated histotripsy as a noninvasive, image-guided method of thrombolysis in a porcine model of deep vein thrombosis. Histotripsy therapy uses short, high-intensity, focused ultrasound pulses to cause mechanical breakdown of targeted soft tissue by acoustic cavitation, which is guided by real-time ultrasound imaging. This is an in vivo feasibility study of histotripsy thrombolysis. Acute thrombi were formed in the femoral vein of juvenile pigs weighing 30-40 kg by balloon occlusion with two catheters and thrombin infusion. A 10-cm-diameter 1-MHz focused transducer was used for therapy. An 8-MHz ultrasound imager was used to align the clot with the therapy focus. Therapy consisted of five cycle pulses delivered at a rate of 1 kHz and peak negative pressure between 14 and 19 MPa. The focus was scanned along the long axis of the vessel to treat the entire visible clot during ultrasound exposure. The targeted region identified by a hyperechoic cavitation bubble cloud was visualized via ultrasound during treatment. Thrombus breakdown was apparent as a decrease in echogenicity within the vessel in 10 of 12 cases and in 7 cases improved flow through the vein as measured by color Doppler. Vessel histology found denudation of vascular endothelium and small pockets of hemorrhage in the vessel adventitia and underlying muscle and fatty tissue, but perforation of the vessel wall was never observed. The results indicate histotripsy has potential for development as a noninvasive treatment for deep vein thrombosis. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  16. A Numerical Investigation of the Time Reversal Mirror Technique for Trans-skull Brain Cancer Ultrasound Surgery

    Directory of Open Access Journals (Sweden)

    H. Zahedmanesh

    2007-06-01

    Full Text Available Introduction: The medical applications of ultrasound on human brain are highly limited by the phase and amplitude aberrations induced by the heterogeneities of the skull. However, it has been shown that time reversing coupled with amplitude compensation can overcome these aberrations. In this work, a model for 2D simulation of the time reversal mirror technique is proposed to study the possibility of targeting any point within the brain without the need for craniotomy and to calculate the acoustic pressure field and the resulting temperature distribution within the skull and brain during a High Intensity Focused Ultrasound (HIFU transcranial therapy. Materials and Methods: To overcome the sensitivity of the wave pattern to the heterogeneous geometry of the skull, a real MRI derived 2D model is constructed. The model should include the real geometry of brain and skull. The model should also include the couplant medium which has the responsibility of coupling the transducer to the skull for the penetration of ultrasound. The clinical substance used as the couplant is water. The acoustic and thermal parameters are derived from the references. Next, the wave propagation through the skull is computed based on the Helmholtz equation, with a 2D finite element analysis. The acoustic simulation is combined with a 2D thermal diffusion analysis based on Pennes Bioheat equation and the temperature elevation inside the skull and brain is computed. The numerical simulations were performed using the FEMLAB 3.2 software on a PC having 8 GB RAM and a 2.4 MHz dual CPU. Results: It is seen that the ultrasonic waves are exactly focalized at the location where the hydrophone has been previously implanted. There is no penetration into the sinuses and the waves are reflected from their surface because of the high discrepancy between the speed of sound in bone and air.  Under the focal pressure of 2.5 MPa and after 4 seconds of sonication the temperature at the focus

  17. Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound.

    Science.gov (United States)

    Kobus, Thiele; Vykhodtseva, Natalia; Pilatou, Magdalini; Zhang, Yongzhi; McDannold, Nathan

    2016-02-01

    The purpose of this study was to investigate the effects on the brain of multiple sessions of blood-brain barrier (BBB) disruption using focused ultrasound (FUS) in combination with micro-bubbles over a range of acoustic exposure levels. Six weekly sessions of FUS, using acoustical pressures between 0.66 and 0.80 MPa, were performed under magnetic resonance guidance. The success and degree of BBB disruption was estimated by signal enhancement of post-contrast T1-weighted imaging of the treated area. Histopathological analysis was performed after the last treatment. The consequences of repeated BBB disruption varied from no indications of vascular damage to signs of micro-hemorrhages, macrophage infiltration, micro-scar formations and cystic cavities. The signal enhancement on the contrast-enhanced T1-weighted imaging had limited value for predicting small-vessel damage. T2-weighted imaging corresponded well with the effects on histopathology and could be used to study treatment effects over time. This study demonstrates that repeated BBB disruption by FUS can be performed with no or limited damage to the brain tissue. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  19. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.

    Science.gov (United States)

    Stride, E P; Coussios, C C

    2010-01-01

    Microbubbles and cavitation are playing an increasingly significant role in both diagnostic and therapeutic applications of ultrasound. Microbubble ultrasound contrast agents have been in clinical use now for more than two decades, stimulating the development of a range of new contrast-specific imaging techniques which offer substantial benefits in echocardiography, microcirculatory imaging, and more recently, quantitative and molecular imaging. In drug delivery and gene therapy, microbubbles are being investigated/developed as vehicles which can be loaded with the required therapeutic agent, traced to the target site using diagnostic ultrasound, and then destroyed with ultrasound of higher intensity energy burst to release the material locally, thus avoiding side effects associated with systemic administration, e.g. of toxic chemotherapy. It has moreover been shown that the motion of the microbubbles increases the permeability of both individual cell membranes and the endothelium, thus enhancing therapeutic uptake, and can locally increase the activity of drugs by enhancing their transport across biologically inaccessible interfaces such as blood clots or solid tumours. In high-intensity focused ultrasound (HIFU) surgery and lithotripsy, controlled cavitation is being investigated as a means of increasing the speed and efficacy of the treatment. The aim of this paper is both to describe the key features of the physical behaviour of acoustically driven bubbles which underlie their effectiveness in biomedical applications and to review the current state of the art.

  20. Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation.

    Science.gov (United States)

    Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P

    2018-01-01

    Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Subacute posteromedial impingement of the ankle in athletes: MR imaging evaluation and ultrasound guided therapy

    International Nuclear Information System (INIS)

    Messiou, Christina; Robinson, Philip; O'Connor, Philip J.; Grainger, Andrew

    2006-01-01

    To describe the use of MR imaging and efficacy of ultrasound-guided steroid injection in the diagnosis and management of athletes with clinical posteromedial impingement of the ankle. A retrospective analysis of imaging findings on MR was undertaken in nine elite athletes with clinical posteromedial ankle impingement. MR studies from six professional athletes with posterolateral pain were also reviewed as an imaging control group. The two reviewing radiologists were blinded to the clinical details and the proportion of control and study subjects. The nine study athletes also underwent diagnostic ultrasound and ultrasound-guided injection of steroid and anaesthetic into the posteromedial capsular abnormality. Follow-up was by telephone interview. Posteromedial capsular thickening was seen only in athletes with posteromedial impingement (7/9). Posteromedial synovitis was present in all athletes with posteromedial impingement; however, posterior and posterolateral synovitis was also seen in these athletes. Mild posteromedial synovitis was present in two control athletes. Ultrasound identified abnormal posteromedial soft tissue thickening deep to tibialis posterior between the medial malleolus and talus in all nine athletes. After injection all athletes returned to their previous level of sport, with eight of the nine not experiencing any residual or recurrent symptoms. If MR imaging excludes significant coexistent abnormality, ultrasound can localise posteromedial soft tissue abnormality and guide injection therapy, allowing return to athletic activity without surgical intervention. (orig.)

  2. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  3. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  4. Obstacles to Brain Tumor Therapy: Key ABC Transporters

    Directory of Open Access Journals (Sweden)

    Juwina Wijaya

    2017-11-01

    Full Text Available The delivery of cancer chemotherapy to treat brain tumors remains a challenge, in part, because of the inherent biological barrier, the blood–brain barrier. While its presence and role as a protector of the normal brain parenchyma has been acknowledged for decades, it is only recently that the important transporter components, expressed in the tightly knit capillary endothelial cells, have been deciphered. These transporters are ATP-binding cassette (ABC transporters and, so far, the major clinically important ones that functionally contribute to the blood–brain barrier are ABCG2 and ABCB1. A further limitation to cancer therapy of brain tumors or brain metastases is the blood–tumor barrier, where tumors erect a barrier of transporters that further impede drug entry. The expression and regulation of these two transporters at these barriers, as well as tumor derived alteration in expression and/or mutation, are likely obstacles to effective therapy.

  5. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Nhan, Tam; Burgess, Alison; Hynynen, Kullervo; Lilge, Lothar

    2014-01-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant K trans range of 0.01–0.03 min −1 . Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  6. Value of combined exercise and ultrasound as an adjunct to compression therapy in chronic venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Rehab A.E Sallam

    2017-01-01

    Conclusion Combined prescription of exercises and ultrasound as an adjunct to compression therapy would be a more effective means of promoting chronic venous ulcer healing, when standard compression therapy have failed. It is safe, easy and well tolerated and should be considered as adjunctive therapy in patients with venous leg ulcers.

  7. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.

    Science.gov (United States)

    Deng, Lulu; O'Reilly, Meaghan A; Jones, Ryan M; An, Ran; Hynynen, Kullervo

    2016-12-21

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  8. Application of intravascular ultrasound in percutaneous coronary interventional therapy

    International Nuclear Information System (INIS)

    Wang Jingping; Li Bao; An Jian; Yang Bin; Wang Zhongchao; Wang Rijun; Zhang Wutang; Lei Xinyu; Wang Huixian; Lu Lifang; Gao Yongli

    2009-01-01

    Objective: To evaluate intravascular ultrasound (IVUS)in demonstrating the characteristics of coronary plaque and in implanting the coronary stent. Methods: Before stent implantation, IVUS was used to observe the plaque character/sties(soft, fibrotic, calcified or mixed) as well as the eccentric degree in 28 patients with angiographically-proved single coronary branch lesion. The minimal luminal diameter, minimal cross-sectional area and plaque area were measured. After stent deployment the above measurements were repeated, and the location, symmetrical index and expansion of the stent were observed. Results: A total of 36 stents was implanted in 28 patients with coronary disease. After the procedure the minimal luminal diameter and the minimal cross-sectional area was increased, while the plaque area was decreased. The difference between the values before and after the stent implantation was statistically significant (P<0.01). IVUS after stent deployment found that in all cases the stent had a nice location and covered the lesion completely with no interlayer at its both ends. Excellent expansion of the stent was seen in 30 cases (83.3%). Insufficient expansion occurred in 3 cases and undesirable contact of the stent to the arterial wall was found in 3 cases (16.7%). In such circumstances, one size bigger low-compliance balloon dilatation was adopted, or the original balloon was used again with higher pressure (18-22 atm), in order to expand the stent once more, and good results accord with IVUS optimal criteria were obtained. Conclusions: IVUS can clearly demonstrate the pathological features of the coronary lesions, such as plaque type, eccentric degree, luminal diameter, cross-sectional area and plaque area, which are very helpful in guiding the selection of the proper stent before the procedure, and are also very useful in evaluating the location, expansion of the stent as well as the stent-to-wall contact condition after the procedure. (authors)

  9. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  10. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... used to screen for brain conditions associated with prematurity, such as bleeding or brain tissue damage as ... or crying child will slow the examination process. Large patients are more difficult to image by ultrasound, ...

  11. Magnetic resonance guided focalized ultrasound thermo-ablation: A promising oncologic local therapy

    International Nuclear Information System (INIS)

    Iannessi, A.; Doyen, J.; Leysalle, A.; Thyss, A.

    2014-01-01

    Pain management of bone metastases is usually made using systemic and local therapy. Even though radiations are nowadays the gold standard for painful metastases, innovations regarding minimally invasive treatment approaches have been developed because of the existing non-responder patients [1]. Indeed, cementoplasty and thermo-ablations like radiofrequency or cryotherapy have shown to be efficient on pain [2-4]. Among thermo-therapy, magnetic resonance guided focalized ultrasound is now a new non-invasive weapon for bone pain palliation. (authors)

  12. Impact of Decontamination Therapy on Ultrasound Visualization of Ingested Pills

    Directory of Open Access Journals (Sweden)

    Jason Bothwell

    2014-03-01

    Full Text Available Introduction: Acute toxic ingestion is a common cause of morbidity and mortality. Emergency physicians (EP caring for overdose (OD patients are often required to make critical decisions with incomplete information. Point of care ultrasound (POCUS may have a role in assisting EPs manage OD patients. We evaluated the impact of different liquid adjuncts used for gastric decontamination on examiners’ ability to identify the presence of tablets using POCUS, and assessed examiners’ ability to quantify the numbers of tablets in a simulated massive OD. Methods: This prospective, blinded, pilot study was performed at an academic emergency department. Study participants were volunteer resident and staff EPs trained in POCUS. Five non-transparent, sealed bags were prepared with the following contents: 1 liter (L of water, 1 L of water with 50 regular aspirin (ASA tablets, 1 L of water with 50 enteric-coated aspirin tablets (ECA, 1 L of polyethylene glycol (PEG with 50 ECA, and 1 L of activated charcoal (AC with 50 ECA. After performing POCUS on each of the bags using a 10-5 MHz linear array transducer, participants completed a standardized questionnaire composed of the following questions: (1 Were pills present? YES/NO; (2 If tablets were identified, estimate the number (1-10, 11-25, >25. We used a single test on proportions using the binomial distribution to determine if the number of EPs who identified tablets differed from 50% chance. For those tablets identified in the different solutions, another test on proportions was used to determine whether the type of solution made a difference. Since 3 options were available, we used a probability of 33.3%. Results: Thirty-seven EPs completed the study. All (37/37 EP’s correctly identified the absence of tablets in the bag containing only water, and the presence of ECA in the bags containing water and PEG. For Part 2 of the study, most participants - 25/37 (67.5% using water, 23/37 (62.1% using PEG, and

  13. Safety and Efficacy of Ultrasound-Guided Fiducial Marker Implantation for CyberKnife Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Hong, Seong; Sook; Kim, Jung Hoon; Park, Hyun Jeong; Chang, Yun Woo; Chang, A Ram [Soonchunhyang University Seoul Hospital, Seoul (Korea, Republic of); Kwon, Seok Beom [Hallym University College of Medicine, Chuncheon (Korea, Republic of)

    2012-06-15

    To evaluate the safety and technical success rate of an ultrasound-guided fiducial marker implantation in preparation for CyberKnife radiation therapy. We retrospectively reviewed 270 percutaneous ultrasound-guided fiducial marker implantations in 77 patients, which were performed from June 2008 through March 2011. Of 270 implantations, 104 were implanted in metastatic lymph nodes, 96 were in the liver, 39 were in the pancreas, and 31 were in the prostate. During and after the implantation, major and minor procedure-related complications were documented. We defined technical success as the implantation enabling adequate treatment planning and CT simulation. The major and minor complication rates were 1% and 21%, respectively. One patient who had an implantation in the liver suffered severe abdominal pain, biloma, and pleural effusion, which were considered as major complication. Abdominal pain was the most common complication in 11 patients (14%). Among nine patients who had markers inserted in the prostate, one had transient hematuria for less than 24 hours, and the other experienced transient voiding difficulty. Of the 270 implantations, 261 were successful (97%). The reasons for unsuccessful implantations included migration of fiducial markers (five implantations, 2%) and failure to discriminate the fiducial markers (three implantations, 1%). Among the unsuccessful implantation cases, six patients required additional procedures (8%). The symptomatic complications following ultrasound-guided percutaneous implantation of fiducial markers are relatively low. However, careful consideration of the relatively higher rate of migration and discrimination failure is needed when performing ultrasound-guided percutaneous implantations of fiducial markers.

  14. A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.

    Directory of Open Access Journals (Sweden)

    Menglong Xu

    Full Text Available High-intensity focused ultrasound (HIFU therapy has been used to treat uterine fibroids widely and successfully. Uterine fibroid segmentation plays an important role in positioning the target region for HIFU therapy. Presently, it is completed by physicians manually, reducing the efficiency of therapy. Thus, computer-aided segmentation of uterine fibroids benefits the improvement of therapy efficiency. Recently, most computer-aided ultrasound segmentation methods have been based on the framework of contour evolution, such as snakes and level sets. These methods can achieve good performance, although they need an initial contour that influences segmentation results. It is difficult to obtain the initial contour automatically; thus, the initial contour is always obtained manually in many segmentation methods. A split-and-merge-based uterine fibroid segmentation method, which needs no initial contour to ensure less manual intervention, is proposed in this paper. The method first splits the image into many small homogeneous regions called superpixels. A new feature representation method based on texture histogram is employed to characterize each superpixel. Next, the superpixels are merged according to their similarities, which are measured by integrating their Quadratic-Chi texture histogram distances with their space adjacency. Multi-way Ncut is used as the merging criterion, and an adaptive scheme is incorporated to decrease manual intervention further. The method is implemented using Matlab on a personal computer (PC platform with Intel Pentium Dual-Core CPU E5700. The method is validated on forty-two ultrasound images acquired from HIFU therapy. The average running time is 9.54 s. Statistical results showed that SI reaches a value as high as 87.58%, and normHD is 5.18% on average. It has been demonstrated that the proposed method is appropriate for segmentation of uterine fibroids in HIFU pre-treatment imaging and planning.

  15. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy.

    Science.gov (United States)

    Paris, Juan L; de la Torre, Paz; Victoria Cabañas, M; Manzano, Miguel; Grau, Montserrat; Flores, Ana I; Vallet-Regí, María

    2017-05-04

    A new platform constituted by engineered responsive nanoparticles transported by human mesenchymal stem cells is here presented as a proof of concept. Ultrasound-responsive mesoporous silica nanoparticles are coated with polyethylenimine to favor their effective uptake by decidua-derived mesenchymal stem cells. The responsive-release ability of the designed nanoparticles is confirmed, both in vial and in vivo. In addition, this capability is maintained inside the cells used as carriers. The migration capacity of the nanoparticle-cell platform towards mammary tumors is assessed in vitro. The efficacy of this platform for anticancer therapy is shown against mammary tumor cells by inducing the release of doxorubicin only when the cell vehicles are exposed to ultrasound.

  16. Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy.

    Science.gov (United States)

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Goodwin, Andrew P

    2016-08-23

    Ultrasound is widely applied in medical diagnosis and therapy due to its safety, high penetration depth, and low cost. In order to improve the contrast of sonographs and efficiency of the ultrasound therapy, echogenic gas bodies or droplets (with diameters from 200 nm to 10 µm) are often used, which are not very stable in the bloodstream and unable to penetrate into target tissues. Recently, it was demonstrated that nanobubbles stabilized by nanoparticles can nucleate ultrasound responsive microbubbles under reduced acoustic pressures, which is very promising for the development of nanoscale (ultrasound agents. However, there is still very little understanding about the effects of nanoparticle properties on the stabilization of nanobubbles and nucleation of acoustic cavitation by these nanobubbles. Here, a series of mesoporous silica nanoparticles with sizes around 100 nm but with different morphologies were synthesized to understand the effects of nanoparticle porosity, surface roughness, hydrophobicity, and hydrophilic surface modification on acoustic cavitation inception by porous nanoparticles. The chemical analyses of the nanoparticles showed that, while the nanoparticles were prepared using the same silica precursor (TEOS) and surfactant (CTAB), they revealed varying amounts of carbon impurities, hydroxyl content, and degrees of silica crosslinking. Carbon impurities or hydrophobic modification with methyl groups is found to be essential for nanobubble stabilization by mesoporous silica nanoparticles. The acoustic cavitation experiments in the presence of ethanol and/or bovine serum albumin (BSA) demonstrated that acoustic cavitation is predominantly nucleated by the nanobubbles stabilized at the nanoparticle surface not inside the mesopores. Finally, acoustic cavitation experiments with rough and smooth nanoparticles were suggested that a rough nanoparticle surface is needed to largely preserve surface nanobubbles after coating the surface with hydrophilic

  17. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects on ... and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page ...

  19. Experimental investigations of an endoluminal ultrasound applicator for MR-guided thermal therapy of pancreatic cancer

    Science.gov (United States)

    Adams, Matthew; Salgaonkar, Vasant; Jones, Peter; Plata, Juan; Chen, Henry; Pauly, Kim Butts; Sommer, Graham; Diederich, Chris

    2017-03-01

    An MR-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. Minimally invasive ablation or hyperthermia treatment of pancreatic tumor tissue would be performed with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal tissue would be achieved with a water-cooled balloon surrounding the ultrasound transducers. This approach offers the capability of conformal volumetric therapy for fast treatment times, with control over the 3D spatial deposition of energy. Prototype endoluminal ultrasound applicators have been fabricated using 3D printed fixtures that seat two 3.2 or 5.6 MHz planar or curvilinear transducers and contain channels for wiring and water flow. Spiral surface coils have been integrated onto the applicator body to allow for device localization and tracking for therapies performed under MR guidance. Heating experiments with a tissue-mimicking phantom in a 3T MR scanner were performed and demonstrated capability of the prototype to perform volumetric heating through duodenal luminal tissue under real-time PRF-based MR temperature imaging (MRTI). Additional experiments were performed in ex vivo pig carcasses with the applicator inserted into the esophagus and aimed towards liver or soft tissue surrounding the spine under MR guidance. These experiments verified the capacity of heating targets up to 20-25 mm from the GI tract. Active device tracking and automated prescription of imaging and temperature monitoring planes through the applicator were made possible by using Hadamard encoded tracking sequences to obtain the coordinates of the applicator tracking coils. The prototype applicators have been integrated with an MR software suite that performs real-time device tracking and temperature monitoring.

  20. Noninvasive, localized, and transient brain drug delivery using focused ultrasound and microbubbles

    Science.gov (United States)

    Choi, James J.

    In the United States, Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancer caused 72,432, 19,566 and 12,886 deaths in 2006, respectively. Whereas the number of deaths due to major disorders such as heart disease, stroke, and prostate cancer have decreased since 2006, deaths attributed to AD, PD, and brain cancer have not. Treatment options for patients with CNS disorders remain limited despite significant advances in knowledge of CNS disease pathways and development of neurologically potent agents. One of the major obstacles is that the cerebral microvasculature is lined by a specialized and highly regulated blood-brain barrier (BBB) that prevents large agents from entering the brain extracellular space. The purpose of this dissertation is to design a noninvasive, localized, and transient BBB opening system using focused ultrasound (FUS) and determine ultrasound and microbubble conditions that can effectively and safely deliver large pharmacologically-relevant-sized agents to the brain. To meet this end, an in vivo mouse brain drug delivery system using a stereotactic-based targeting method was developed. FUS was applied noninvasively through the intact skin and skull, which allowed for long-term and high-throughput studies. With this system, more than 150 mice were exposed to one of 31 distinct acoustic and microbubble conditions. The feasibility of delivering a large MRI contrast agent was first demonstrated in vivo in both wild-type and transgenic Alzheimer's disease model (APP/PS1) mice. A wide range of acoustic and microbubble conditions were then evaluated for their ability to deliver agents to a target region. Interestingly, the possible design space of parameters was found to be vast and different conditions resulted in distinct spatial distributions and doses delivered. In particular, BBB opening was shown to be dependent on the microbubble diameter, acoustic pressure, pulse repetition frequency (PRF), and pulse length (PL). Each set of

  1. EVALUATION OF ULTRASOUND REMISSION CRITERIA IN PATIENTS WITH RHEUMATOID ARTHRITIS DURING TOCILIZUMAB THERAPY

    OpenAIRE

    Rita Aleksandrovna Osipyants; D E Karateev; E Yu Panasyuk; G V Lukina; A V Smirnov; S I Glukhova; E N Aleksandrova; A V Volkov; E L Nasonov

    2013-01-01

    Objective: to study the association of ultrasound (US) remission criteria with the clinical and laboratory indicators of inflammatory activity, functional status, and X-ray changes in patients with rheumatoid arthritis (RA) during tocilizumab (TCZ) therapy.Subjects and methods. The trial included 36 patients with RA (meeting the 1987 American College of Rheumatology (ACR) criteria) who had received TCZ for 6 months. The authors made a clinical and laboratory assessment of RA activity (DAS28-C...

  2. Learning-based prediction of gestational age from ultrasound images of the fetal brain.

    Science.gov (United States)

    Namburete, Ana I L; Stebbing, Richard V; Kemp, Bryn; Yaqub, Mohammad; Papageorghiou, Aris T; Alison Noble, J

    2015-04-01

    We propose an automated framework for predicting gestational age (GA) and neurodevelopmental maturation of a fetus based on 3D ultrasound (US) brain image appearance. Our method capitalizes on age-related sonographic image patterns in conjunction with clinical measurements to develop, for the first time, a predictive age model which improves on the GA-prediction potential of US images. The framework benefits from a manifold surface representation of the fetal head which delineates the inner skull boundary and serves as a common coordinate system based on cranial position. This allows for fast and efficient sampling of anatomically-corresponding brain regions to achieve like-for-like structural comparison of different developmental stages. We develop bespoke features which capture neurosonographic patterns in 3D images, and using a regression forest classifier, we characterize structural brain development both spatially and temporally to capture the natural variation existing in a healthy population (N=447) over an age range of active brain maturation (18-34weeks). On a routine clinical dataset (N=187) our age prediction results strongly correlate with true GA (r=0.98,accurate within±6.10days), confirming the link between maturational progression and neurosonographic activity observable across gestation. Our model also outperforms current clinical methods by ±4.57 days in the third trimester-a period complicated by biological variations in the fetal population. Through feature selection, the model successfully identified the most age-discriminating anatomies over this age range as being the Sylvian fissure, cingulate, and callosal sulci. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery

    Science.gov (United States)

    Wu, Shih-Ying; Fix, Samantha M.; Arena, Christopher B.; Chen, Cherry C.; Zheng, Wenlan; Olumolade, Oluyemi O.; Papadopoulou, Virginie; Novell, Anthony; Dayton, Paul A.; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet’s sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core. Therefore, in this study, octafluoropropane (OFP) and decafluorobutane (DFB) nanodroplets were used both in vitro for assessing their relative vaporization efficiency with high-speed microscopy, and in vivo for delivering molecules with a size relevant to proteins (40 kDa dextran) to the murine brain. It was found that at low pressures (300-450 kPa), OFP droplets vaporized into a greater number of microbubbles compared to DFB droplets at higher pressures (750-900 kPa) in the in vitro study. In the in vivo study, successful delivery was achieved with OFP droplets at 300 kPa and 450 kPa without evidence of cavitation damage using ¼ dosage, compared to DFB droplets at 900 kPa where histology indicated tissue damage due to inertial cavitation. In conclusion, the vaporization efficiency of nanodroplets positively impacted the amount of molecules delivered to the brain. The OFP droplets due to the higher vaporization efficiency served as better acoustic agents to deliver large molecules efficiently to the brain compared with the DFB droplets.

  4. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    International Nuclear Information System (INIS)

    Haar, Gail ter

    2008-01-01

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients

  5. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J. [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton, London SM2 5PT (United Kingdom)

    2016-01-15

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking

  6. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shumin [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Ordos Center Hospital, Ordos, Inner Mongolia 017000 (China); Dai, Zhifei [Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ke, Hengte [Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Qu, Enze [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Qi, Xiaoxu; Zhang, Kuo [Department of Laboratory Animal Science, Peking University Health Science Center, Beijing 100019 (China); Wang, Jinrui, E-mail: jinrui_wang@sina.com [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China)

    2014-01-15

    Objectives: The purpose of this study was to test whether dual functional gold nano-shelled microcapsules (GNS-MCs) can be used as an ultrasound imaging enhancer and as an optical absorber for photothermal therapy (PTT) in a rodent model of breast cancer. Methods: GNS-MCs were fabricated with an inner air and outer gold nanoshell spherical structure. Photothermal cytotoxicity of GNS-MCs was tested with BT474 cancer cells in vitro and non-obese diabetes-SCID (NOD/SCID) mice with breast cancer. GNS-MCs were injected into the tumor under ultrasound guidance and treated with near-infrared (NIR) laser irradiation. The photothermal ablative effectiveness of GNS-MCs was evaluated by measuring the surface and internal temperature of the tumor as well as the size of the tumor using histological confirmation. Results: NIR laser irradiation resulted in significant tumor cell death in GNS-MCs-treated BT474 cells in vitro. GNS-MCs were able to serve as an ultrasound enhancer to guide the intratumoral injection of GNS-MCs and ensure their uniform distribution. In vivo studies revealed that NIR laser irradiation increased the intratumoral temperature to nearly 70 °C for 8 min in GNS-MCs-treated mice. Tumor volumes decreased gradually and tumors were completely ablated in 6 out of 7 mice treated with GNS-MCs and laser irradiation by 17 days after treatment. Conclusion: This study demonstrates that ultrasound-guided PTT with theranostic GNS-MCs is a promising technique for in situ treatment of breast cancer.

  7. Hyperbaric oxygen therapy in spontaneous brain abscess patients

    DEFF Research Database (Denmark)

    Bartek, Jiri; Jakola, Asgeir S; Skyrman, Simon

    2016-01-01

    BACKGROUND: There is a need to improve outcome in patients with brain abscesses and hyperbaric oxygen therapy (HBOT) is a promising treatment modality. The objective of this study was to evaluate HBOT in the treatment of intracranial abscesses. METHOD: This population-based, comparative cohort...... study included 40 consecutive adult patients with spontaneous brain abscess treated surgically between January 2003 and May 2014 at our institution. Twenty patients received standard therapy with surgery and antibiotics (non-HBOT group), while the remaining 20 patients also received adjuvant HBOT (HBOT...... group). RESULTS: Resolution of brain abscesses and infection was seen in all patients. Two patients had reoperations after HBOT initiation (10 %), while nine patients (45 %) in the non-HBOT group underwent reoperations (p = 0.03). Of the 26 patients who did not receive HBOT after the first surgery, 15...

  8. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  9. Clinical considerations for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr.

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the US in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should not be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam cases gamma rays to be generated when it interacts with tissue, they think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue

  10. A region-based segmentation method for ultrasound images in HIFU therapy

    International Nuclear Information System (INIS)

    Zhang, Dong; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu; Qin, Qianqing

    2016-01-01

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  11. A region-based segmentation method for ultrasound images in HIFU therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan; Xu, Menglong; Yan, Yu [School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Qin, Qianqing [State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072 (China)

    2016-06-15

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentation becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori

  12. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    Science.gov (United States)

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  13. Lipid nano-bubble combined with ultrasound for anti-keloids therapy.

    Science.gov (United States)

    Wang, Xiao Qing; Li, Zhou-Na; Wang, Qi-Ming; Jin, Hong-Yan; Gao, Zhonggao; Jin, Zhe-Hu

    2018-03-01

    Keloids were characterized by excessive growth of fibrous tissues, and shared several pathological characteristics with cancer. They did put physical and emotional stress on patients in that keloids could badly change appearance of patients. N-(4-hydroxyphenyl) retinamide (4HPR) showed cytotoxic activity on a wide variety of invasive-growth cells. Our work was aim to prepare N-(4-hydroxyphenyl) retinamide-loaded lipid microbubbles (4HPR-LM) combined with ultrasound for anti-keloid therapy. 4HPR-loaded liposomes (4HPR-L) were first prepared by film evaporation method, and then 4HPR-LM were manufactured by mixing 4HPR-L and perfluoropentane (PFP) with ultrasonic cavitation method. The mean particle size and entrapment efficiency 4HPR-LM were 113 nm and 95%, respectively. The anti-keloids activity of 4HPR-LM was assessed with BALB/c nude mice bearing subcutaneous xenograft keloids model. 4HPR-LM, combined with ultrasound, could significantly induce apoptosis of keloid fibroblasts in vitro and inhibited growth of keloids in vivo. Thus, 4HPR-LM could be considered as a promising agent for anti-keloids therapy.

  14. Targeted therapy of animal eyes with tumors by laser-generated focused ultrasound (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Demirci, Hakan; Guo, L. Jay

    2016-03-01

    Cavitation therapy based on high-amplitude focused ultrasound (e.g., Histotripsy) has shown great promise in clinical trials. The technique realizes localized treatments of tissues and diseased cells by controlling cavitation zones, which can be even smaller than its acoustic spot sizes. Also, the short pressure pulse used in the technique can minimize the unwanted heat accumulation, which the conventional piezoelectric transducers suffer from due to low operating frequencies and relatively long acoustic pulses. However, this modality requires bulky system composed of array of piezoelectric elements and electric amplifiers in order to obtain high pressure amplitude. Moreover, especially when treating an area much smaller than the acoustic spot size, this approach may be vulnerable to nucleation sites within the focal volume, which can potentially induce cavitation and thus enlarge the total treatment area. Here, we show targeted cell-level therapy by using laser generated ultrasound. By employing a concave lens coated by a carbon nanotube (CNT)-polymer composite, high-amplitude acoustic pressure can be obtained at a tight focal spot (small focal spot, comparable to cavitation zone, lead to controlled cavitation treatment. Such feature can be exploited for treating intraocular tumors but without harming other parts of the eye (e.g. healthy retina and choroid) and therefore preserve the vision of the patients. We demonstrate that the localized disruption effects can be used for cell-level surgery to remove cells and to kill cells. Some experimental examples are shown using animal eyeballs.

  15. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring.

    Science.gov (United States)

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant'Ana, Estela

    2018-01-01

    Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus ® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Twenty healthy women aged 20-40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group ( P <0.05) and in the buttocks ( P <0.05) and the posterior thigh areas ( P <0.05) in the G2. All the treated areas in both groups showed reduction in cellulite degree in the buttocks, G1 ( P <0.05) and G2 ( P <0.05), and in posterior thigh areas, G1 ( P <0.05) and G2 ( P <0.05). Optimal improvement of skin firmness (G1, P <0.0001; G2, P =0.0034) in the treated areas was observed in both groups. We conclude that the synergistic effects of the Combined Therapy (nonfocused ultrasound plus Aussie current) might be a good option with noninvasive body contouring treatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results.

  16. Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumors - a comparative study with computed tomography and histopathology

    International Nuclear Information System (INIS)

    Chacko, A.G.; Rajshekhar, V.; Kumar, N.K.S.; Athyal, R.; Chacko, G.

    2003-01-01

    Radical excision of parenchymal brain tumours is generally associated with a better long-term outcome; however, it is difficult to ascertain the extent of resection at surgery. We used intra-operative ultrasound [IOUS] to help detect residual tumour and define the tumour-brain interface. Thirty-five patients with parenchymal brain lesions including 11 low-grade and 22 high-grade tumours and 2 inflammatory granulomata were included in the study. The IOUS was used to localize tumours not seen on the surface, define their margins and assess the extent of resection at the end of surgery. Multiple samples from the tumour-brain interface which were reported as tumour or normal tissue an IOUS were submitted to histopathology. The IOUS findings were compared with a postoperative contrast enhanced computed tomogram [CT] and with histopathology. All tumours irrespective of histology were hyperechoic an IOUS. IOUS was useful in localizing those tumours not seen on the surface of the brain. In 71.4 % of cases IOUS was useful in defining their margins, however in the remaining cases the margins were ill-defined. The tumour margins were ill-defined in those treated previously by radiation. With regard to the extent of excision, after excluding the cases who were irradiated, it was found that in the 28 patients who had parenchymal neoplasms, there was concordance between the ultrasound findings and the postoperative CT scan in 23 cases. Of the 79 samples taken from the tumor-brain interface which were reported as tumour on ultrasound, 66 had histopathological evidence of tumour while 13 samples were negative for tumour. On the other hand, in the tissue sent from 17 sites where the IOUS showed no residual tumour, 2 were positive for tumour on histopathology while 15 were negative. In conclusion, IOUS is a cheap and useful real-time tool for localizing tumours not seen on the brain surface, for defining their margins and for determining the extent of resection. (author)

  17. The effect of ultrasound on thromboembolic model of brain stroke in rat

    Directory of Open Access Journals (Sweden)

    Shabanzadeh A

    2007-08-01

    Full Text Available Background: Ultrasound (US has been used in neuroprotection after cerebral ischemia; however, its use is controversial. Application of US in combination with fibrinolytic agents may improve fibrinolytic effects. In this study the effects of US, alone or in combination with tissue plasminogen activator (tPA, on brain ischemic injury were examined and we studied whether US is protective in the brain injured by ischemia under normothermic conditions. Methods: We performed two studies. In the first study, rectal and brain temperatures were compared. In the second study, we studied whether US alone or in combination with tPA is neuroprotective in thromboembolic stroke. To induce focal cerebral ischemia, a clot was formed in a catheter. Once the clot had formed, the catheter was advanced 17 mm in the internal carotid artery until its tip was 1-2 mm away from the origin of the middle cerebral artery (MCA. The preformed clot in the catheter was then injected, and the catheter was removed. The wound was then closed and the infarction volume, edema and neurological deficits were measured after MCA occlusion. Results: The temperature in the brain was approximately 0.50 ºC lower than the rectal temperature. In the control, US+low tPA, low tPA, US+high tPA and, high tPA groups, the infarct volume (% was 34.56±4.16, 17.09±6.72, 21.25±7.8, 13.5±10.72 and 20.61±6.17 (mean ±SD at 48 h after MCA occlusion, respectively. The results indicate that US alone reduces the infarct volume by 30% compared to that of the control group (P<0.05. US improved neurological deficits and reduced brain edema significantly (p<0.05. Conclusions: This study indicate that US appears to have a protective effect, alone and in combination with tPA, in an embolic model of stroke.

  18. Boron neutron capture therapy: Brain Tumor Treatment Evaluation Program

    International Nuclear Information System (INIS)

    Griebenow, M.L.; Dorn, R.V. III; Gavin, P.R.; Spickard, J.H.

    1988-01-01

    The United States (US) Department of Energy (DOE) recently initiated a focused, multidisciplined program to evaluate Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumors. The program, centered at the DOE/endash/Idaho National Engineering Laboratory (INEL), will develop the analytical, diagnostic and treatment tools, and the database required for BNCT technical assessment. The integrated technology will be evaluated in a spontaneously-occurring canine brain-tumor model. Successful animal studies are expected to lead to human clinical trials within four to five years. 2 refs., 3 figs

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time imaging, making it a ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs ... or uterine cancers A transvaginal ultrasound is usually performed to view ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... legs, neck and/or brain (in infants and children) or within various body organs such as the ... tumors other disorders of the urinary bladder In children, pelvic ultrasound can help evaluate: pelvic masses pelvic ...

  3. Adjuvant hormone therapy in patients undergoing high-intensity focused ultrasound therapy for locally advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    A. I. Neimark

    2014-01-01

    Full Text Available Objective: to evaluate the efficiency and safety of using the luteinizing hormone releasing hormone leuprorelin with the Atrigel delivery system in doses of 7.5, 22.5, and 45 mg as an adjuvant regimen in high- and moderate-risk cancer patients who have received high-intensity focused ultrasound (HIFU therapy.Subjects and methods. Moderate- and high-risk locally advanced prostate cancer (PC patients treated with HIFU (n = 28 and HIFU in combination with hormone therapy during 6 months (n = 31 were examined.Results. The investigation has shown that leuprorelin acetate monotherapy used within 6 months after HIFU therapy can achieve the highest reduction in prostate-specific antigen levels and positively affect the symptoms of the disease. HIFU in combination with androgen deprivation substantially diminishes the clinical manifestations of the disease and improves quality of life in HIFU-treated patients with PC, by reducing the degree of infravesical obstruction (according to uroflowmetric findings and IPSS scores, and causes a decrease in prostate volume as compared to those who have undergone HIFU only. Treatment with leuprorelin having the Atrigel delivery system has demonstrated the low incidence of adverse reactions and good tolerability.

  4. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  5. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  6. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    Science.gov (United States)

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015

  7. An online three-class Transcranial Doppler ultrasound brain computer interface.

    Science.gov (United States)

    Goyal, Anuja; Samadani, Ali-Akbar; Guerguerian, Anne-Marie; Chau, Tom

    2016-06-01

    Brain computer interfaces (BCI) can provide communication opportunities for individuals with severe motor disabilities. Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocities and can be used to develop a BCI. A previously implemented TCD BCI system used verbal and spatial tasks as control signals; however, the spatial task involved a visual cue that awkwardly diverted the user's attention away from the communication interface. Therefore, vision-independent right-lateralized tasks were investigated. Using a bilateral TCD BCI, ten participants controlled online, an on-screen keyboard using a left-lateralized task (verbal fluency), a right-lateralized task (fist motor imagery or 3D-shape tracing), and unconstrained rest. 3D-shape tracing was generally more discernible from other tasks than was fist motor imagery. Verbal fluency, 3D-shape tracing and unconstrained rest were distinguished from each other using a linear discriminant classifier, achieving a mean agreement of κ=0.43±0.17. These rates are comparable to the best offline three-class TCD BCI accuracies reported thus far. The online communication system achieved a mean information transfer rate (ITR) of 1.08±0.69bits/min with values reaching up to 2.46bits/min, thereby exceeding the ITR of previous online TCD BCIs. These findings demonstrate the potential of a three-class online TCD BCI that does not require visual task cues. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  8. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  9. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.

    Science.gov (United States)

    Hutchinson, E B; Hynynen, K

    1998-12-01

    A 62 element MRI-compatible linear phased array was designed and constructed to investigate the feasibility of using transrectal ultrasound for the thermal therapeutic treatment of prostate cancer and benign prostatic hyperplasia. An aperiodic design technique developed in a previous study was used in the design of this array, which resulted in reduced grating lobe levels by using an optimized random distribution of unequally sized elements. The element sizes used in this array were selected to be favorable for both grating lobe levels as determined by array aperiodicity and array efficiency as determined by width to thickness ratios. The heating capabilities and MRI compatibility of the array were tested with in vivo rabbit thigh muscle heating experiments using MRI temperature monitoring. The array produced therapeutic temperature elevations in vivo at depths of 3-6 cm and axial locations up to 3 cm off the central axis and increased the size of the heated volume with electronic scanning of a single focus. The ability of this array to be used for ultrasound surgery was demonstrated by creating necrosed tissue lesions in vivo using short high-power sonications. The ability of the array to be used for hyperthermia was demonstrated by inducing therapeutic temperature elevations for longer exposures. Based on the acoustic and heating performance of this array, it has the potential to be clinically useful for delivering thermal therapies to the prostate and other target volumes close to body cavities.

  10. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  11. A Comparison of daily megavoltage CT and ultrasound image guided radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Peng Cheng; Kainz, Kristofer; Lawton, Colleen; Li, X. Allen

    2008-01-01

    In order to quantify the differences between ultrasound-imaging and megavoltage-CT (MVCT) daily prostate localization in prostate-cancer radiotherapy and their dosimetric impacts, daily shifts were analyzed for a total of 140 prostate cancer patients; 106 positioned using ultrasound-based imaging [B-mode Acquisition and Targeting (BAT)], and 34 using the MVCT from a TomoTherapy Hi-Art unit. The shifts indicated by the two systems were compared statistically along the right/left (R/L), superior/inferior (S/I), and anterior/posterior (A/P) directions. The systematic and random variations among the daily alignments were calculated. Margins to account for these shifts were estimated. The mean shifts and standard deviations along the R/L, S/I, and A/P directions were -0.11±3.80, 0.67±4.67, and 2.71±6.31 mm for BAT localizations and -0.98±5.13, 0.27±3.35, and 1.00±4.22 mm for MVCT localizations, respectively. The systematic and random variations in daily shifts based on MVCT were generally smaller than those based on BAT, especially along the A/P direction. A t-test showed this difference to be statistically significant. The planning target volume margins in the A/P direction estimated to account for daily variations were 8.81 and 14.66 mm based on MVCT and BAT data, respectively. There was no statistically significant difference in the daily prostate movement pattern between the first few fractions and the remaining fractions. Dosimetric comparison of MVCT and BAT prostate alignments was performed for seven fractions from a patient. The degradation from the plan caused by the MVCT alignment is trivial, while that by BAT is substantial. The MVCT technique results in smaller variations in daily shifts than ultrasound imaging, indicating that MVCT is more reliable and precise for prostate localization. Ultrasound-based localization may overestimate the daily prostate motion, particularly in the A/P direction, negatively impacting prostate dose coverage and rectal

  12. Gallbladder ascariasis in Kosovo - focus on ultrasound and conservative therapy: a case series.

    Science.gov (United States)

    Ismaili-Jaha, Vlora; Toro, Halim; Spahiu, Lidvana; Azemi, Mehmedali; Hoxha-Kamberi, Teuta; Avdiu, Muharrem; Spahiu-Konjusha, Shqipe; Jaha, Luan

    2018-01-13

    Ascaris lumbricoides is one of the most common intestinal infections in developing countries, including Kosovo. In contrast to migration to the bile duct, migration of the worm to the gallbladder, due to the narrow and tortuous nature of the cystic duct, is rare. When it does occur, it incites acalculous cholecystitis. This case series describes a 16-month-old Albanian girl, a 22-month-old Albanian girl, a 4-year-old Albanian girl, and a 10-year-old Albanian boy. Here we report our experience with gallbladder ascariasis including clinical manifestations, diagnostic procedures, and treatment. Fever, diarrhea and vomiting, dehydration, pale appearance, and weakness were the manifestations of the primary disease. In all patients, a physical examination revealed reduced turgor and elasticity of the skin. Abdomen was at the level of the chest, soft, with minimal palpatory pain. The liver and spleen were not palpable. A laboratory examination was not specific except for eosinophilia. There were no pathogenic bacteria in coproculture but Ascaris was found in all patients. At an ultrasound examination in all cases we found single, long, linear echogenic structure without acoustic shadowing containing a central, longitudinal anechoic tube with characteristic movement within the gallbladder. Edema of the gallbladder wall was suggestive of associated inflammation. There were no other findings on adjacent structures and organs. All patients received mebendazole 100 mg twice a day for 3 days. They also received symptomatic therapy for gastroenteritis. Because of elevated markers of inflammation all patients were treated with antibiotics, assuming acute cholecystitis, although ultrasound was able to confirm cholecystitis in only two of our four patients. Since the length of stay was dependent on the primary pathology it was 7 to 10 days. At control ultrasounds on 14th day, third and sixth month, all patients were free of ascariasis. Gallbladder ascariasis should be considered in

  13. A Comparison of daily megavoltage CT and ultrasound image guided radiation therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Peng Cheng; Kainz, Kristofer; Lawton, Colleen; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States)

    2008-12-15

    In order to quantify the differences between ultrasound-imaging and megavoltage-CT (MVCT) daily prostate localization in prostate-cancer radiotherapy and their dosimetric impacts, daily shifts were analyzed for a total of 140 prostate cancer patients; 106 positioned using ultrasound-based imaging [B-mode Acquisition and Targeting (BAT)], and 34 using the MVCT from a TomoTherapy Hi-Art unit. The shifts indicated by the two systems were compared statistically along the right/left (R/L), superior/inferior (S/I), and anterior/posterior (A/P) directions. The systematic and random variations among the daily alignments were calculated. Margins to account for these shifts were estimated. The mean shifts and standard deviations along the R/L, S/I, and A/P directions were -0.11{+-}3.80, 0.67{+-}4.67, and 2.71{+-}6.31 mm for BAT localizations and -0.98{+-}5.13, 0.27{+-}3.35, and 1.00{+-}4.22 mm for MVCT localizations, respectively. The systematic and random variations in daily shifts based on MVCT were generally smaller than those based on BAT, especially along the A/P direction. A t-test showed this difference to be statistically significant. The planning target volume margins in the A/P direction estimated to account for daily variations were 8.81 and 14.66 mm based on MVCT and BAT data, respectively. There was no statistically significant difference in the daily prostate movement pattern between the first few fractions and the remaining fractions. Dosimetric comparison of MVCT and BAT prostate alignments was performed for seven fractions from a patient. The degradation from the plan caused by the MVCT alignment is trivial, while that by BAT is substantial. The MVCT technique results in smaller variations in daily shifts than ultrasound imaging, indicating that MVCT is more reliable and precise for prostate localization. Ultrasound-based localization may overestimate the daily prostate motion, particularly in the A/P direction, negatively impacting prostate dose coverage

  14. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  15. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring

    Science.gov (United States)

    Canela, Vivianne Carvalho; Crivelaro, Cinthia Nicoletti; Ferla, Luciane Zacchi; Pelozo, Gisele Marques; Azevedo, Juliana; Liebano, Richard Eloin; Nogueira, Caroline; Guidi, Renata Michelini; Grecco, Clóvis; Sant’Ana, Estela

    2018-01-01

    Background and objectives Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments. Subjects and methods Twenty healthy women aged 20–40 years participated in the study. Ten patients received Combined Therapy treatment (G1) and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2). Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used. Results Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (Pcellulite degree in the buttocks, G1 (Ptreatment for improving the aspect of the cellulite, skin firmness and localized fat. If used in association with the whole-body vibratory platform, the results can be better, especially in the treatment of localized fat. Further studies with larger sample size should be performed to confirm these results. PMID:29731654

  16. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.

    Science.gov (United States)

    Prada, F; Del Bene, M; Mattei, L; Lodigiani, L; DeBeni, S; Kolev, V; Vetrano, I; Solbiati, L; Sakas, G; DiMeco, F

    2015-04-01

    Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and

  17. Wound healing treatment by high frequency ultrasound, microcurrent, and combined therapy modifies the immune response in rats

    Directory of Open Access Journals (Sweden)

    Raciele I. G. Korelo

    2016-01-01

    Full Text Available BACKGROUND: Therapeutic high-frequency ultrasound, microcurrent, and a combination of the two have been used as potential interventions in the soft tissue healing process, but little is known about their effect on the immune system. OBJECTIVE: To evaluate the effects of therapeutic high frequency ultrasound, microcurrent, and the combined therapy of the two on the size of the wound area, peritoneal macrophage function, CD4+ and CD8+, T lymphocyte populations, and plasma concentration of interleukins (ILs. METHOD: Sixty-five Wistar rats were randomized into five groups, as follows: uninjured control (C, group 1, lesion and no treatment (L, group 2, lesion treated with ultrasound (LU, group 3, lesion treated with microcurrent (LM, group 4, and lesion treated with combined therapy (LUM, group 5. For groups 3, 4 and 5, treatment was initiated 24 hours after surgery under anesthesia and each group was allocated into three different subgroups (n=5 to allow for the use of the different therapy resources at on days 3, 7 and 14 Photoplanimetry was performed daily. After euthanasia, blood was collected for immune analysis. RESULTS: Ultrasound increased the phagocytic capacity and the production of nitric oxide by macrophages and induced the reduction of CD4+ cells, the CD4+/CD8+ ratio, and the plasma concentration of IL-1β. Microcurrent and combined therapy decreased the production of superoxide anion, nitric oxide, CD4+-positive cells, the CD4+/CD8+ ratio, and IL-1β concentration. CONCLUSIONS: Therapeutic high-frequency ultrasound, microcurrent, and combined therapy changed the activity of the innate and adaptive immune system during healing process but did not accelerate the closure of the wound.

  18. Preliminary assessment of one-dimensional MR elastography for use in monitoring focused ultrasound therapy

    International Nuclear Information System (INIS)

    Yuan Le; Glaser, Kevin J; Rouviere, Olivier; Gorny, Krzysztof R; Chen, Shigao; Manduca, Armando; Ehman, Richard L; Felmlee, Joel P

    2007-01-01

    The purpose of this work is to assess a fast technique that measures tissue stiffness and temperature during focused ultrasound thermal therapy (FUS). A one-dimensional (1D) MR elastography (MRE) pulse sequence was evaluated for the purpose of obtaining rapid measurements of thermally induced changes in tissue stiffness and temperature for monitoring FUS treatments. The accuracy of the 1D measurement was studied by comparing tissue displacements measured by 1D MRE with those measured by the well-established 2D MRE pulse sequence. The reproducibility of the 1D MRE measurement was assessed, in gel phantoms and ex vivo porcine tissue, for varied FUS intensity levels (31.5-199.9 W cm -2 ) and over a range of displacements at the focus (0.1-1 μm). Temperature elevations in agarose gel phantoms were measured using 1D MRE and calibrated using fiberoptic-thermometer-based measurements. The 1D MRE displacement measurements are highly correlated with those obtained with the 2D technique (R 2 = 0.88-0.93), indicating that 1D MRE can successfully measure tissue displacement. Ten repeated trials at each FUS power level yielded a minimum detectable displacement change of 0.2 μm in phantoms and 0.4 μm in tissue (at 95% confidence level). The 1D MRE temperature measurements correlated well with temperature changes measured simultaneously with fiberoptic thermometers (R 2 = 0.97). The 1D MRE technique is capable of detecting tissue displacements as low as 0.4 μm, which is an order of magnitude smaller than 5 μm displacements expected during FUS therapy (Le et al 2005 AIP Conf. Proc.: Ther. Ultrasound 829 186-90). Additionally, 1D MRE was shown to provide adequate measurements of temperature elevations in tissue. These findings indicate that 1D MRE may be an effective tool for monitoring FUS treatments

  19. Music Therapy, Acquired Brain Injury and Interpersonal Communication Competencies

    DEFF Research Database (Denmark)

    Hald, Søren

    2012-01-01

    that music is a useful tool to stimulate interaction since musical interaction can be engaged at almost any cognitive and physical level and still be meaningful (Baker & Tamplin, 2006; Gilbertson, 2005; Hald, 2011). In addition, music therapy researchers specialising in ABI have found that: - Music therapy......Acquired brain injury (ABI) often affects physical, cognitive and psychological aspects of a person's functioning (Bateman, et al., 2010). Psychosocial problems associated with ABI may be the major challenge facing the rehabilitation process (Morton & Wehman, 1995) Consequently, interventions...... is a powerful means to improve communication, general behavior, and musical behavior (Purdie, Hamilton & Baldwin, 1997). - Music therapy can increase emotional stability, clarify thoughts, stimulate spontaneous interaction, and increase motivation and cooperation (Nayak, Wheeler, Shiflett & Agostinelli, 2000...

  20. SU-E-J-114: Towards Integrated CT and Ultrasound Guided Radiation Therapy Using A Robotic Arm with Virtual Springs

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K; Zhang, Y; Sen, H; Lediju Bell, M; Goldstein, S; Kazanzides, P; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Currently there is an urgent need in Radiation Therapy for noninvasive and nonionizing soft tissue target guidance such as localization before treatment and continuous monitoring during treatment. Ultrasound is a portable, low cost option that can be easily integrated with the LINAC room. We are developing a cooperatively controlled robot arm that has high intrafraction reproducibility with repositioning of the ultrasound probe. In this study, we introduce virtual springs (VS) to assist with interfraction probe repositioning and we compare the soft tissue deformation introduced by VS to the deformation that would exist without them. Methods: Three metal markers were surgically implanted in the kidney of one dog. The dog was anesthetized and immobilized supine in an alpha cradle. The reference ultrasound probe position and force to ideally visualize the kidney was defined by an experienced ultrasonographer using the Clarity ultrasound system and robot sensor. For each interfraction study, the dog was removed from the cradle and re-setup based on CBCT with bony anatomy alignment to mimic regular patient setup. The ultrasound probe was automatically returned to the reference position using the robot. To accommodate the soft tissue anatomy changes between each setup the operator used the VS feature to adjust the probe and obtain an ultrasound image that matched the reference image. CBCT images were acquired and each interfraction marker location was compared with the first interfraction Result. Results: Analysis of the marker positions revealed that the kidney was displaced by 18.8 ± 6.4 mm without VS and 19.9 ± 10.5 mm with VS. No statistically significant differences were found between two procedures. Conclusion: The VS feature is necessary to obtain matching ultrasound images, and they do not introduce further changes to the tissue deformation. Future work will focus on automatic VS based on ultrasound feedback. Supported in part by: NCI R01 CA161613

  1. SU-E-J-114: Towards Integrated CT and Ultrasound Guided Radiation Therapy Using A Robotic Arm with Virtual Springs

    International Nuclear Information System (INIS)

    Ding, K; Zhang, Y; Sen, H; Lediju Bell, M; Goldstein, S; Kazanzides, P; Iordachita, I; Wong, J

    2014-01-01

    Purpose: Currently there is an urgent need in Radiation Therapy for noninvasive and nonionizing soft tissue target guidance such as localization before treatment and continuous monitoring during treatment. Ultrasound is a portable, low cost option that can be easily integrated with the LINAC room. We are developing a cooperatively controlled robot arm that has high intrafraction reproducibility with repositioning of the ultrasound probe. In this study, we introduce virtual springs (VS) to assist with interfraction probe repositioning and we compare the soft tissue deformation introduced by VS to the deformation that would exist without them. Methods: Three metal markers were surgically implanted in the kidney of one dog. The dog was anesthetized and immobilized supine in an alpha cradle. The reference ultrasound probe position and force to ideally visualize the kidney was defined by an experienced ultrasonographer using the Clarity ultrasound system and robot sensor. For each interfraction study, the dog was removed from the cradle and re-setup based on CBCT with bony anatomy alignment to mimic regular patient setup. The ultrasound probe was automatically returned to the reference position using the robot. To accommodate the soft tissue anatomy changes between each setup the operator used the VS feature to adjust the probe and obtain an ultrasound image that matched the reference image. CBCT images were acquired and each interfraction marker location was compared with the first interfraction Result. Results: Analysis of the marker positions revealed that the kidney was displaced by 18.8 ± 6.4 mm without VS and 19.9 ± 10.5 mm with VS. No statistically significant differences were found between two procedures. Conclusion: The VS feature is necessary to obtain matching ultrasound images, and they do not introduce further changes to the tissue deformation. Future work will focus on automatic VS based on ultrasound feedback. Supported in part by: NCI R01 CA161613

  2. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging.

    Science.gov (United States)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-07

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd(3+) ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T(1)-weighted turbo-spin-echo sequence MR imaging. Heavy T(2)*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T(1)-, T(2)- and T(2)*-weighted MR images. The r(1) and r(2) relaxivities for Gd-DTPA were 7.69 and 21.35 s(-1)mM(-1), respectively, indicating that the MBs represent a positive contrast agent in T(1)-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual

  3. Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI.

    Science.gov (United States)

    Zhou, Heling; Zhao, Dawen

    2014-03-06

    Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page ... to Ultrasound - Prostate Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ... and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on ...

  6. EVALUATION OF ULTRASOUND REMISSION CRITERIA IN PATIENTS WITH RHEUMATOID ARTHRITIS DURING TOCILIZUMAB THERAPY

    Directory of Open Access Journals (Sweden)

    Rita Aleksandrovna Osipyants

    2013-01-01

    Full Text Available Objective: to study the association of ultrasound (US remission criteria with the clinical and laboratory indicators of inflammatory activity, functional status, and X-ray changes in patients with rheumatoid arthritis (RA during tocilizumab (TCZ therapy.Subjects and methods. The trial included 36 patients with RA (meeting the 1987 American College of Rheumatology (ACR criteria who had received TCZ for 6 months. The authors made a clinical and laboratory assessment of RA activity (DAS28-CRP, and SDAI, functional impairments (HAQ index and US verification of wrist joint synovitis (a Voluson-i device, GE, 4-13-MHz linear transducer at baseline and 6 months after therapy. No signs of grey-scale (B-mode and power Doppler (PD synovitis (B = 0; PD = 0 or minimal B-mode synovitis, and not more one PD hypervascular signal (В ≤1; PD ≤1 were arbitrarily taken as US remission criteria. Destruction changes were evaluated by hand and foot X-ray using the Sharp method modified by van der Heijde (SHS.Results. After 6 months of therapy, about 80% of the patients in clinical remission retained moderate or significant synovitis, as evidenced by US studies. There were no clinical differences in clinical activity indices and functional impairments between the patients who were and were not in US remission (p > 0.05. The 12-month follow-up SHS score was significantly higher with the preservation of 6-month therapy signs of B-mode synovitis and PD hypervascularization (of not more than one signal than that in US remission (p < 0.05. There was no relationship of X-ray progression to the clinical and functional statuses (p > 0.05.Conclusion. Subclinical synovitis is observed even in clinical remission of RA. Destruction progression is significantlyrelated to synovitis persistence, as shown by ultrasonography.

  7. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    Science.gov (United States)

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453

  8. Change in brain and lesion volumes after CEE therapies

    Science.gov (United States)

    Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.

    2014-01-01

    Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... legs, neck and/or brain (in infants and children) or within various body organs such as the ...

  10. Synergistic effects of Combined Therapy: nonfocused ultrasound plus Aussie current for noninvasive body contouring

    Directory of Open Access Journals (Sweden)

    Canela VC

    2018-04-01

    Full Text Available Vivianne Carvalho Canela,1 Cinthia Nicoletti Crivelaro,1 Luciane Zacchi Ferla,1 Gisele Marques Pelozo,1 Juliana Azevedo,2 Richard Eloin Liebano,3 Caroline Nogueira,4,5 Renata Michelini Guidi,4,5 Clóvis Grecco,4 Estela Sant’Ana4 1Ibramed Center for Education and Advanced Training (CEFAI, Amparo, SP, Brazil; 2CDE Medical Imaging Department, Brazilian College of Radiology (CBR, Amparo, SP, Brazil; 3Department of Physiotherapy, Federal University of São Carlos (UFSCar, São Carlos, SP, Brazil; 4Research, Development and Innovation Department, Ibramed Research Group (IRG, IBRAMED, Amparo, SP, Brazil; 5Biomedical Engineering Department, Faculty of Electrical Engineering and Computing, University of Campinas (UNICAMP, Campinas, SP, Brazil Background and objectives: Nowadays, there are several noninvasive technologies being used for improving of body contouring. The objectives of this pilot study were to verify the effectiveness of the Heccus® device, emphasizing the synergism between nonfocused ultrasound plus Aussie current in the improvement of body contour, and to determine if the association of this therapy with whole-body vibration exercises can have additional positive effects in the results of the treatments.Subjects and methods: Twenty healthy women aged 20–40 years participated in the study. Ten patients received Combined Therapy treatment (G1 and the other 10 participants received Combined Therapy with additional vibratory platform treatment (G2. Anthropometric and standardized photography analysis, ultrasonography, cutometry and self-adminestered questionnaires of tolerance and satisfaction levels with the treatment were used.Results: Compared with baseline values, reduction of fat thickness was observed by ultrasonography in the posterior thigh area in the G1 group (P<0.05 and in the buttocks (P<0.05 and the posterior thigh areas (P<0.05 in the G2. All the treated areas in both groups showed reduction in cellulite degree in the

  11. Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes.

    Science.gov (United States)

    Espeland, Mark A; Brinton, Roberta Diaz; Manson, JoAnn E; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M

    2015-09-29

    To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65-79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of -18.6 mL (95% confidence interval [CI] -29.6, -7.6). For women without diabetes, this mean decrement was -0.4 (95% CI -3.8, 3.0) (interaction p=0.002). This interaction was evident for total gray matter (pNeurology.

  12. Gadolinium neutron capture therapy for brain tumors. Biological aspects

    International Nuclear Information System (INIS)

    Takagaki, Masao; Oda, Yoshifumi; Matsumoto, Masato; Kikuchi, Haruhiko; Kobayashi, Tooru; Kanda, Keiji; Ujeno, Yowri.

    1994-01-01

    This study investigated the tumoricidal effect of gadolinium neutron capture therapy (Gd-NCT) in in vitro and in vivo systems using Gd-DTPA. In in vitro study, a certain amount of Gd-DTPA, yielding 5000 ppm Gd-n, was added to human glioma cells, T98G, upon which thermal neutrons were exposed. After irradiation, the cells were incubated and the colonies were counted 10 days later. In in vivo study, Fisher-344 rats with experimentally induced gliosarcoma cells (9L) were exposed to thermal neutrons at a fluence rate of 3E+9/s for 1 h immediately after iv injection of Gd-DTPA. Two weeks after irradiation, brain samples were histologically examined. Tumor clearance of Gd-DTPA was also determined. In vitro analysis showed that a 1% survival level was obtained at 3.75E+12 (n/cm 2 ) for the Gd (+) medium and 2.50E+13 (n/cm 2 ) for the Gd (-) medium. In in vivo analysis, the concentration of Gd in 9L-rat brain tumor after iv injection of 0.2 mg/kg Gd-DTPA was found to be less than 100 ppm, but Gd-NCT on 9L-rat brain tumor administered with a ten-fold dose showed a substantial killing effect on tumor without serious injury to the normal brain structure. The killing effect of Gd-NCT was confirmed in in vitro and in vivo systems. (N.K.)

  13. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Sammet, S.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  14. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Lu, Z.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  15. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, S. [University of Chicago Medical Center (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  16. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  17. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  18. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    Science.gov (United States)

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  20. MR imaging assisted radiation therapy planning of brain tumors

    International Nuclear Information System (INIS)

    Just, M.; Roesler, H.P.; Higer, H.P.; Kutzner, J.; Thelen, M.

    1990-01-01

    This paper reports on the improvement of the accuracy of treatment portals in radiation therapy of brain tumors with use of MR imaging. After proper processing, the parasagittal MR image showing the largest tumor size and the midline sagittal image were superimposed. With common anatomic landmarks of midline tomogram and lateral simulation radiograph, commensurate reference grids were laid over both images in identical positions. Tumor coordinates were then transferred from the synthesized MR image to the lateral radiograph. Rectangular fields or individual shielding blocks encompassing the tumor could be drawn directly. This new method was used in 17 patients, and results were compared with CT-assisted results

  1. Target volumes in radiation therapy of childhood brain tumours

    International Nuclear Information System (INIS)

    Habrand, J.L.; Abdulkarim, B.; Beaudre, A.; El Khouri, M.; Kalifa, C.

    2001-01-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  2. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Wei

    Full Text Available The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI-monitored focused ultrasound (FUS-induced blood-brain barrier (BBB disruption to enhance Temozolomide (TMZ delivery for improving Glioblastoma Multiforme (GBM treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI, animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

  3. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    Science.gov (United States)

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-11-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.

  4. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  5. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel

    2016-01-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929

  6. Ultrasound therapy for recalcitrant diabetic foot ulcers: results of a randomized, double-blind, controlled, multicenter study.

    Science.gov (United States)

    Ennis, William J; Foremann, Phil; Mozen, Neal; Massey, Joi; Conner-Kerr, Teresa; Meneses, Patricio

    2005-08-01

    An estimated 15% of patients with diabetes will develop a foot ulcer sometime in their life, making them 30 to 40 times more likely to undergo amputation due to a non-healing foot ulcer than the non-diabetic population. To determine the safety and efficacy of a new, non-contact, kilohertz ultrasound therapy for the healing of recalcitrant diabetic foot ulcers - as well as to evaluate the impact on total closure and quantitative bacterial cultures and the effect on healing of various levels of sharp/surgical debridement - a randomized, double-blinded, sham-controlled, multicenter study was conducted in hospital-based and private wound care clinics. Patients (55 met criteria for efficacy analysis) received standard of care, which included products that provide a moist environment, offloading diabetic shoes and socks, debridement, wound evaluation, and measurement. The "therapy" was either active 40 KHz ultrasound delivered by a saline mist or a "sham device" which delivered a saline mist without the use of ultrasound. After 12 weeks of care, the proportion of wounds healed (defined as complete epithelialization without drainage) in the active ultrasound therapy device group was significantly higher than that in the sham control group (40.7% versus 14.3%, P = 0.0366, Fisher's exact test). The ultrasound treatment was easy to use and no difference in the number and type of adverse events between the two treatment groups was noted. Of interest, wounds were debrided at baseline followed by a quantitative culture biopsy. The results of these cultures demonstrated a significant bioburden (greater than 10(5)) in the majority of cases, despite a lack of clinical signs of infection. Compared to control, this therapeutic modality was found to increase the healing rate of recalcitrant, diabetic foot ulcers.

  7. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    Science.gov (United States)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  8. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model

    International Nuclear Information System (INIS)

    O'Reilly, Meaghan A; Huang Yuexi; Hynynen, Kullervo

    2010-01-01

    Microbubble-mediated disruption of the blood-brain barrier (BBB) for targeted drug delivery using focused ultrasound shows great potential as a therapy for a wide range of brain disorders. This technique is currently at the pre-clinical stage and important work is being conducted in animal models. Measurements of standing waves in ex vivo rat skulls were conducted using an optical hydrophone and a geometry dependence was identified. Standing waves could not be eliminated through the use of swept frequencies, which have been suggested to eliminate standing waves. Definitive standing wave patterns were detected in over 25% of animals used in a single study. Standing waves were successfully eliminated using a wideband composite sharply focused transducer and a reduced duty cycle. The modified pulse parameters were used in vivo to disrupt the BBB in a rat indicating that, unlike some other bioeffects, BBB disruption is not dependent on standing wave conditions. Due to the high variability of standing waves and the inability to correctly estimate in situ pressures given standing wave conditions, attempts to minimize standing waves should be made in all future work in this field to ensure that results are clinically translatable.

  9. Application of a drug delivery system using ultrasound and nano/microbubbles for anti-angiogenic therapy

    International Nuclear Information System (INIS)

    Horie, Sachiko; Kodama, Tetsuya; Sato, Yasushi

    2017-01-01

    The drug delivery system using ultrasound and nano/microbubbles is a molecular delivery approach using the mechanism of sonoporation. With sonoporation, an endothelium-derived negative-feedback regulator of angiogenesis, Vasohibin-1 (VASH1), was introduced specifically into tumor vessels. We found VASH1 in tumor vessels induce normalization of tumor vessels and inhibited tumor growth. A recent topic regarding tumor angiogenesis is vascular normalization. Tumor vessels are abnormal or immature that cause hyperpermeability and impaired blood flow. Tumor vascular normalization improves blood flow and tissue hypoxia, which increase the effectiveness of chemotherapy and radiotherapy and reduce tumor cell malignancy. In this review, application of drug delivery system using ultrasound for an anti-angiogenic therapy, a tumor vessel normalization therapy to treat cancer, is summarized. (author)

  10. Effect of Electroconvulsive Therapy on Cognitive Functions of Rats with Depression-Like Disorders Induced by Ultrasound Exposure.

    Science.gov (United States)

    Ushakova, V M; Zubkov, E A; Morozova, A Y; Gorlova, A V; Pavlov, D A; Inozemtsev, A N; Chekhonin, V P

    2017-09-01

    We studied the effect of electroconvulsive therapy on cognitive functions in rats with depression-like disorder caused by exposure to ultrasound of varying frequency (20-45 kHz). Object recognition and Morris water-maze tests revealed no negative effects of the therapy on memory. Moreover, positive effect of therapy was demonstrated that manifested in amelioration of memory disturbances in depression-like disorders in these behavioral tests. The results of this study do not support the idea about side effects of electroconvulsive therapy, in particular, development of transient amnesia, and are a prerequisite for a more thorough study of internal mechanisms of the effect of the therapy on cognitive sphere.

  11. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n=8 or no therapy (n=6. Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test, and the Nine-Hole Peg Test as well as task-based fMRI scans were conducted before, during, after, and one month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy but not in the absence of therapy to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and nonlesioned hemisphere and that these brain changes are associated with changes in specific motor functions.

  12. Holmium-166-chico intracavitary radiation therapy for cystic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, C. H.; Lee, S. H.; Jang, J. S.; Kim, E. H.; Choi, C. W.; Hong, S. W.; Lim, S. M. [Korea Cancer Center, Seoul (Korea, Republic of)

    1997-07-01

    Holmium-166-chitosan complex (Ho-166-chico) is injected into the unresectable seven cystic brain tumors (2 cases of metastatic brain tumors from lung cancer, 1 case of recurrent trigeminal neurinoma, 3 cases of recurrent low grade cystic astrocytomas, and 1 case of craniopharyngioma). The Ommaya reservoir was installed stereotactically. The cyst volume and wall thickness were measured by MRI before Ho-166-chico injection. The thickness of the cyst wall is up to 4 mm. Ho-166-chico (555-740 MBq) injected into the cyst to result in 25 Gy of dose to a cyst wall at a depth of 4 mm. Dose to the cyst wall was estimated by Monte Carlo simulation using the EGS4 code. All Ho-166-chico injected was assumed to be uniformly distributed in the spherical cyst. After Ho-166-chico injection, the distribution of isotopes was monitored by gamma camera. Two injections were administrated in two cases, and one injection in all the others. The response was evaluated with MRI. Four of 7 cases were shrunk in size with thinning of the cyst wall, 2 of 7 cases showed growth arrest, and one case showed progression. Estimated surface dose of cyst wall was between 78 and 2566 Gy. No one showed systemic absorption of Ho-166-chico, and specific complication associated with isotope injection. Ho-166-chico intracavitary radiation therapy for cystic brain tumor may be safe, and reliable method and deserves further evaluation.

  13. The comparison of manual lymph drainage and ultrasound therapy on the leg swelling caused by wearing high heels.

    Science.gov (United States)

    Lee, Dong-Yeop; Han, Ji-Su; Jang, Eun-Ji; Seo, Dong-Kwon; Hong, Ji-Heon; Lee, Sang-Sook; Lee, Dong-Geol; Yu Lee, Jae-Ho

    2014-01-01

    One of the major symptoms when women are wearing high heels for a long time is leg swelling. The purpose of this study was to compare the effect of manual lymph drainage with ultrasound therapy. The forty-five healthy women of twenties were participated in this study and divided randomly into three groups; manual lymph drainage group (n=15), ultrasound therapy group (n=15) and control group (n=15). Swelling was measured before wearing the high heels (10 cm-height), after one-hour of wearing the high heels, wearing the high heels of one-hour after the intervention of 15 minutes. Also swelling was calculated by using a tape measure, volumeter and body composition analyzer. Statistical analysis of the comparison between the three groups was performed by one-way ANOVA. Also comparison to the mean value in swelling according to the time was performed by repeated measure ANOVA. As the result of this study, a significant changes have emerged within each of manual lymph drainage, ultrasound therapy and control group (p 0.05). But the mean value of manual lymph drainage group showed the tendency of fast recovering before causing swelling. Therefore, we consider that the clinical treatment of manual lymph drainage and ongoing studies will be made since manual lymph drainage is very effective in releasing the leg swelling caused by wearing high heels and standing for a long time at work.

  14. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study

    International Nuclear Information System (INIS)

    Ho, C-S; Ju, K-C; Cheng, T-Y; Chen, Y-Y; Lin, W-L

    2007-01-01

    The purpose of this study is to investigate the feasibility of using a 1 MHz cylindrical ultrasound phased array with multifocus pattern scanning to produce uniform heating for breast tumor thermal therapy. The breast was submerged in water and surrounded by the cylindrical ultrasound phased array. A multifocus pattern was generated and electrically scanned by the phased array to enlarge the treatment lesion in single heating. To prevent overheating normal tissues, a large planning target volume (PTV) would be divided into several planes with several subunits on each plane and sequentially treated with a cooling phase between two successive heatings of the subunit. Heating results for different target temperatures (T tgt ), blood perfusion rates and sizes of the PTV have been studied. Furthermore, a superficial breast tumor with different water temperatures was also studied. Results indicated that a higher target temperature would produce a slightly larger thermal lesion, and a higher blood perfusion rate would not affect the heating lesion size but increase the heating time significantly. The acoustic power deposition and temperature elevations in ribs can be minimized by orienting the acoustic beam from the ultrasound phased array approximately parallel to the ribs. In addition, a large acoustic window on the convex-shaped breast surface for the proposed ultrasound phased array and the cooling effect of water would prevent the skin overheating for the production of a lesion at any desired location. This study demonstrated that the proposed cylindrical ultrasound phased array can provide effective heating for breast tumor thermal therapy without overheating the skin and ribs within a reasonable treatment time

  15. Physical therapy clinic therapeutic ultrasound equipment as a source for bacterial contamination.

    Science.gov (United States)

    Spratt, Henry G; Levine, David; Tillman, Larry

    2014-10-01

    A procedure commonly used in physical therapy (PT) clinics is therapeutic ultrasound (US). This equipment and associated gel comes in contact with patient skin, potentially serving as a reservoir for bacteria. In this study, we sampled US heads, gel bottle tips and gel from nine outpatient PT clinics in Southeastern Tennessee. Samples were collected using sterile swabs. At the microbiology laboratory, these swabs were used to inoculate mannitol salt agar and CHROM-MRSA agar (for Staphylococcal species) and tryptic soy broth to determine non-specific bacterial contamination. US heads, gel bottle tips and gel had variable levels of contamination. Tips of gel bottles had the highest contamination, with 52.7% positive for non-specific bacterial contamination and 3.6% positive for methicillin-resistant Staphylococcus aureus (MRSA). Contamination of gel by non-specific bacteria was found in 14.5% of bottles sampled. US heads (35.5% of those sampled) had non-specific bacterial contamination, with no MRSA detected. Disinfecting US heads after initial swabbing resulted in removal of 90.9% of non-specific contamination. Gel storage at temperatures below 40 °C was found to encourage the growth of mesophilic bacteria. This study demonstrates the need for better cleaning and storage protocols for US heads and gel bottles in PT clinics.

  16. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    Science.gov (United States)

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  17. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    J. Saturnino-Oliveira

    2012-06-01

    Full Text Available We studied the effect of pulsed ultrasound therapy (UST and antibothropic polyvalent antivenom (PAV on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group received a perimuscular injection of venom (1 mg/kg and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode. Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively. Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively. The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.

  18. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    Science.gov (United States)

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  20. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  1. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  2. Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening

    Science.gov (United States)

    Marquet, Fabrice; Tung, Yao-Sheng; Teichert, Tobias; Ferrera, Vincent P.; Konofagou, Elisa E.

    2012-10-01

    The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent CNS disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. The study addresses the focusing properties of single-element transducers at intermediate frequencies (500 kHz) through primate and human skulls, targeting clinically relevant targets extracted from 3D brain atlases such as the hippocampus and the basal ganglia, which are typically affected by early Alzheimer's and Parkinson's disease, respectively. A preliminary in vivo study was performed to study the frequency dependence of BBB opening parameters in mice. Then, feasibility of transcranial ME-FUS BBB opening in non-human primates was demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (custom made 4-5 μm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage.

  3. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  4. Incidence of Leukoencephalopathy After Whole-Brain Radiation Therapy for Brain Metastases

    International Nuclear Information System (INIS)

    Ebi, Junko; Sato, Hisashi; Nakajima, Masaru; Shishido, Fumio

    2013-01-01

    Purpose: To evaluate the incidence of leukoencephalopathy after whole-brain radiation therapy (WBRT) in patients with brain metastases. Methods and Materials: We retrospectively reviewed 111 patients who underwent WBRT for brain metastases from April 2001 through March 2008 and had evaluable computed tomography (CT) and/or magnetic resonance imaging (MRI) at least 1 month after completion of WBRT. We evaluated the leukoencephalopathy according to the Common Terminology Criteria for Adverse Events, version 3.0. The patients who had brain tumor recurrence after WBRT were censored at the last follow-up CT or MRI without recurrence. To evaluate the risk factors for leukoencephalopathy, bivariate analysis was performed using a logistic regression analysis adjusted for follow-up time. Factors included in the analysis were age, gender, dose fractionation, 5-fluorouracil, methotrexate, cisplatin, and other chemotherapeutic agents. Results: The median age of the 111 patients was 60.0 years (range, 23-89 years). The median follow-up was 3.8 months (range, 1.0-38.1 months). Leukoencephalopathy developed in 23 of the 111 patients. Grades 1, 2, and 3 were observed in 8, 7, and 8 patients, respectively. The incidence was 34.4% (11 of 32), 42.9% (6 of 14), 66.7% (2 of 3), and 100% (2 of 2) of the patients who were followed up for ≥6, ≥12, ≥24, and ≥36 months, respectively. In the bivariate analysis, older age (≥65 years) was significantly correlated with higher risk of leukoencephalopathy (odds ratio 3.31; 95% confidence interval 1.15-9.50; P=.03). Conclusions: The incidence of leukoencephalopathy after WBRT was 34.4% with ≥6 months follow-up, and increased with longer follow-up. Older age was a significant risk factor. The schedule of WBRT for patients with brain metastases should be carefully determined, especially for favorable patients

  5. A Systematic Overview of Radiation Therapy Effects in Brain Tumours

    International Nuclear Information System (INIS)

    Berg, Gertrud; Blomquist, Erik; Cavallin-Staahl, Eva

    2003-01-01

    A systematic review of radiation therapy trials in several tumour types was performed by The Swedish Council of Technology Assessment in Health Care (SBU). The procedures for evaluation of the scientific literature are described separately. This synthesis of the literature on radiation therapy for brain tumours is based on data from 9 randomized trials and 1 meta-analysis. Moreover, data from 2 prospective studies, 3 retrospective studies and 4 other articles were used. In total, 19 scientific articles are included, involving 4,266 patients. The results were compared with those of a similar overview from 1996 including 11,252 patients. The conclusions reached can be summarized as follows: The conclusion from SBU 129/2 that curative treatment is not available for patients with high-grade malignant glioma (grade III and IV) is still valid. The survival benefit from postoperative radiotherapy compared to supportive care only or chemotherapy is about 3-4 months, as demonstrated in earlier randomized studies. Quality of life is now currently estimated and considered to be of major importance when reporting the outcome of treatment for patients with brain tumours. There is no scientific evidence that radiotherapy using hyper- and hypofractionation leads to longer survival for patients with high-grade malignant glioma than conventional radiotherapy. There is large documentation, but only one randomized study. There is some documentation to support the view that patients with grade IV glioma and poor prognosis can be treated with hypofractionation and with an outcome similar to that after conventional fractionation. A shorter treatment time should be convenient for the patient. Documentation of the benefit of a radiotherapy boost with brachytherapy is limited and no conclusion can be drawn. There is no scientific evidence that radiotherapy prolongs life for patients with low-grade glioma. There are some data supporting that radiotherapy can be used to treat symptoms in

  6. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    International Nuclear Information System (INIS)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  7. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  8. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  9. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  10. An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging.

    Science.gov (United States)

    Matrone, Giulia; Ramalli, Alessandro; Savoia, Alessandro Stuart; Quaglia, Fabio; Castellazzi, Gloria; Morbini, Patrizia; Piastra, Marco

    2017-09-24

    The possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging. The protocol combines the use of a bovine brain fixed in formalin as the imaging target, which ensures both realism and repeatability of the described procedures, and of neuronavigation techniques borrowed from neurosurgery. The US probe is in fact connected to a motion tracking system which acquires position data and enables the superposition of US images to reference Magnetic Resonance (MR) images of the brain. This provides a means for human experts to perform a visual qualitative assessment of the US probe imaging performance and to compare acquisitions made with different probes. Moreover, the protocol relies on the use of a complete and open research and development system for US image acquisition, i.e. the Ultrasound Advanced Open Platform (ULA-OP) scanner. The manuscript describes in detail the instruments and procedures involved in the protocol, in particular for the calibration, image acquisition and registration of US and MR images. The obtained results prove the effectiveness of the overall protocol presented, which is entirely open (within the limits of the instrumentation involved), repeatable, and covers the entire set of acquisition and processing activities for US images.

  11. Exercise therapy in multiple sclerosis and its effects on function and the brain

    DEFF Research Database (Denmark)

    Dalgas, Ulrik

    2017-01-01

    to clinically relevant improvements in physical function, but should be considered an adjunct to specific task-based training. Exercise has also shown positive effects on the brain, including improvements in brain volume and cognition. In summary, exercise therapy is a safe and potent nonpharmacological...... intervention in MS, with beneficial effects on both functional capacity and the brain....

  12. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis.

    Science.gov (United States)

    Huang, Cuiyuan; Zhang, Hong; Bai, Ruidan

    2017-07-01

    Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble-mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  13. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis

    Directory of Open Access Journals (Sweden)

    Cuiyuan Huang

    2017-07-01

    Full Text Available Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  14. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Science.gov (United States)

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... baby in pregnant women and the brain and hips in infants. It’s also used to help guide ... and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also ...

  16. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Omari, Eenas A.; Erickson, Beth; Noid, George; Li, X. Allen; Ehlers, Christopher; Quiroz, Francisco; Cooper, David T.; Lachaine, Martin

    2016-01-01

    Purpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures were contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. Results: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. Conclusions: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an

  17. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Omari, Eenas A.; Erickson, Beth; Noid, George; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Ehlers, Christopher; Quiroz, Francisco [Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Cooper, David T.; Lachaine, Martin [Elekta Ltd., Montreal, Québec H3A 2J5 (Canada)

    2016-09-15

    Purpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery. Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study. In addition, TAUS and MRI were collected for five healthy volunteers. The portal vein (PV) and the head of the pancreas (HP) along with other structures were contoured on these images. Volume changes, distance between the HP and PV, and motion difference between the HP and PV were measured to examine whether PV can be used as a motion surrogate for HP. TAUS images were acquired and processed using a research version of the Clarity autoscan ultrasound system (CAUS). Motion monitoring was performed with the ultrasound probe mounted on an arm fixed to the couch. Video segments of the monitoring sessions were captured. Results: On TAUS, PV is better visualized than HP. The measured mean volume deviation for all patients for the HP and PV was 1.4 and 0.6 ml, respectively. The distance between the HP and PV was close to a constant with 0.22 mm mean deviation throughout the ten breathing phases. The mean of the absolute motion difference for all patients was 1.7 ± 0.8 mm in LR, 1.5 ± 0.5 mm in AP, and 2.3 ± 0.7 mm in SI, suggesting that the PV is a good surrogate for HP motion estimation. By using this surrogate, the HP motion tracking using TAUS was demonstrated. Conclusions: Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an

  18. Low-level light therapy of the eye and brain

    Directory of Open Access Journals (Sweden)

    Rojas JC

    2011-10-01

    Full Text Available Julio C Rojas1,2, F Gonzalez-Lima1 1Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX; 2Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Low-level light therapy (LLLT using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases

  19. Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders.

    Science.gov (United States)

    Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E

    2018-04-01

    Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Sivan, Sarit S.; Abu-Khalla, Hiba; Benguigui, Madeleine; Shaked, Yuval; Azhari, Haim

    2018-05-01

    Copper oxide nanoparticles (CuO-NPs) are increasingly becoming the subject of investigation exploring their potential use for diagnostic and therapeutic purposes. Recent work has demonstrated their anticancer potential, as well as contrast agent capabilities for magnetic resonance imaging (MRI) and through-transmission ultrasound. However, no capability of CuO-NPs has been demonstrated using conventional ultrasound systems, which, unlike the former, are widely deployed in the clinic. Furthermore, in spite of their potential as multifunctional nano-based materials for diagnosis and therapy, CuO-NPs have been delayed from further clinical application due to their inherent toxicity. Herein, we present the synthesis of a novel nanoscale system, composed of CuO-loaded PLGA nanospheres (CuO-PLGA-NS), and demonstrate its imaging detectability and augmented heating effect by therapeutic ultrasound. The CuO-PLGA-NS were prepared by a double emulsion (W/O/W) method with subsequent solvent evaporation. They were characterized as sphere-shaped, with size approximately 200 nm. Preliminary results showed that the viability of PANC-1, human pancreatic adenocarcinoma cells was not affected after 72 h exposure to CuO-PLGA-NS, implying that PLGA masks the toxic effects of CuO-NPs. A systematic ultrasound imaging evaluation of CuO-PLGA-NS, using a conventional system, was performed in vitro and ex vivo using poultry heart and liver, and also in vivo using mice, all yielding a significant contrast enhancement. In contrast to CuO-PLGA-NS, neither bare CuO-NPs nor blank PLGA-NS possess these unique advantageous ultrasonic properties. Furthermore, CuO-PLGA-NS accelerated ultrasound-induced temperature elevation by more than 4 °C within 2 min. The heating efficiency (cumulative equivalent minutes at 43 °C) was increased approximately six-fold, demonstrating the potential for improved ultrasound ablation. In conclusion, CuO-PLGA-NS constitute a versatile platform, potentially useful for

  1. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    Science.gov (United States)

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  2. Inferring common cognitive mechanisms from brain blood-flow lateralisation data obtained with functional transcranial Doppler ultrasound.

    Directory of Open Access Journals (Sweden)

    Georg eMeyer

    2014-06-01

    Full Text Available Current neuroimaging techniques with high spatial resolution constrain participant motion so that many natural tasks cannot be carried out. The aim of this paper is to show how a time-locked correlation-analysis of cerebral blood flow velocity (CBFV lateralisation data, obtained with functional TransCranial Doppler (fTCD ultrasound, can be used to infer cerebral activation patterns across tasks. In a first experiment we demonstrate that the proposed analysis method results in data that are comparable with the standard Lateralisation Index (LI for within-task comparisons of CBFV patterns, recorded during cued word generation (CWG at two difficulty levels.In the main experiment we demonstrate that the proposed analysis method shows correlated blood-flow patterns for two different cognitive tasks that are known to draw on common brain areas, CWG and Music Synthesis. We show that CBFV patterns for Music and CWG are correlated only for participants with prior musical training.CBFV patterns for tasks that draw on distinct brain areas, the Tower of London and CWG, are not correlated.The proposed methodology extends conventional fTCD analysis by including temporal information in the analysis of cerebral blood-flow patterns to provide a robust, non-invasive method to infer whether common brain areas are used in different cognitive tasks. It complements conventional high resolution imaging techniques.

  3. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    OpenAIRE

    Zhou Weihua; Mukherjee Purna; Kiebish Michael A; Markis William T; Mantis John G; Seyfried Thomas N

    2007-01-01

    Abstract Background Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and su...

  4. MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy

    OpenAIRE

    Kunigiri, Girish; Jayakumar, P. N.; Janakiramaiah, N.; Gangadhar, B. N.

    2007-01-01

    Background: Although electroconvulsive therapy (ECT) causes no structural brain damage, recent studies reported altered brain perfusion acutely following ECT. This is in keeping with brain edema which was noted in animal experiments following electroconvulsive shock. Aim: This study examined alteration in magnetic resonance imaging (MRI) T2 relaxation time, a measure of brain edema, and its relation to therapeutic efficacy, orientation and memory impairment with ECT. Materials and Methods: Fi...

  5. Optimization of the Ultrasound-Induced Blood-Brain Barrier Opening

    OpenAIRE

    Konofagou, Elisa E.

    2012-01-01

    Current treatments of neurological and neurodegenerative diseases are limited due to the lack of a truly non-invasive, transient, and regionally selective brain drug delivery method. The brain is particularly difficult to deliver drugs to because of the blood-brain barrier (BBB). The impermeability of the BBB is due to the tight junctions connecting adjacent endothelial cells and highly regulatory transport systems of the endothelial cell membranes. The main function of the BBB is ion and vol...

  6. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Science.gov (United States)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  7. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  8. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  9. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  10. Mechanisms and Therapy for Cancer Metastasis to the Brain

    Directory of Open Access Journals (Sweden)

    Federica Franchino

    2018-05-01

    Full Text Available Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs. Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy, including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA, have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA. The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT. WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non

  11. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  12. Anticoagulant therapy for venous thromboembolism detected by Doppler ultrasound in patients with metastatic colorectal cancer receiving bevacizumab

    Directory of Open Access Journals (Sweden)

    Suenaga M

    2015-01-01

    Full Text Available Mitsukuni Suenaga, Nobuyuki Mizunuma, Eiji Shinozaki, Satoshi Matsusaka, Masato Ozaka, Mariko Ogura, Keisho Chin, Toshiharu Yamaguchi Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan Background: Doppler ultrasound imaging is useful for management of venous thromboembolism associated with a subclavicular implantable central venous access system in patients receiving bevacizumab (Bev. We investigated the efficacy and safety of our anticoagulant regimen based on Doppler findings.Methods: Patients aged ≤75 years with metastatic colorectal cancer, no history of thromboembolism, and no prior use of Bev received chemotherapy plus Bev. Doppler ultrasound imaging of the deep venous system to detect thrombosis was performed after the first course of Bev and repeated after the third course in patients with asymptomatic thrombosis. Indications for anticoagulant therapy in patients with asymptomatic thrombosis were as follows: enlarging thrombus (E, thrombus >40 mm in diameter (S, thrombus involving the superior vena cava (C, and decreased blood flow (V.Results: Among 79 patients enrolled in this study, asymptomatic thrombosis was detected in 56 patients (70.9% by Doppler ultrasound imaging after the first course of Bev and there was no thrombus in 23 patients (29.1%. Of these 56 patients, 11 (19.6% received anticoagulant therapy with warfarin, including eight after the first course and three after follow-up imaging. S + V was observed in four of 11 patients (36.4%, as well as V in two (18.2%, S + V + C in one (9.1%, E + S + V in one (9.1%, E + C in one (9.1%, E in one (9.1%, and C in one (9.1%. All patients resumed chemotherapy, including seven who resumed Bev. Improvement or stabilization of thrombi was achieved in ten patients (90.9%. Only one patient had symptomatic thromboembolism. Mild bleeding due to anticoagulant therapy occurred in six patients (54.5%, but there were no treatment

  13. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  14. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  15. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases.

    Science.gov (United States)

    Patil, Chirag G; Pricola, Katie; Sarmiento, J Manuel; Garg, Sachin K; Bryant, Andrew; Black, Keith L

    2017-09-25

    Historically, whole brain radiation therapy (WBRT) has been the main treatment for brain metastases. Stereotactic radiosurgery (SRS) delivers high-dose focused radiation and is being increasingly utilized to treat brain metastases. The benefit of adding SRS to WBRT is unclear. This is an updated version of the original Cochrane Review published in Issue 9, 2012. To assess the efficacy of WBRT plus SRS versus WBRT alone in the treatment of adults with brain metastases. For the original review, in 2009 we searched the following electronic databases: CENTRAL, MEDLINE, Embase, and CancerLit in order to identify trials for inclusion in this review. For the first update the searches were updated in May 2012.For this update, in May 2017 we searched CENTRAL, MEDLINE, and Embase in order to identify trials for inclusion in the review. We restricted the review to randomized controlled trials (RCTs) that compared use of WBRT plus SRS versus WBRT alone for upfront treatment of adults with newly diagnosed metastases (single or multiple) in the brain resulting from any primary, extracranial cancer. We used the generic inverse variance method, random-effects model in Review Manager 5 for the meta-analysis. We identified three studies and one abstract for inclusion but we could only include two studies, with a total of 358 participants in a meta-analysis. This found no difference in overall survival (OS) between the WBRT plus SRS and WBRT alone groups (hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.65 to 1.02; 2 studies, 358 participants; moderate-quality evidence). For participants with one brain metastasis median survival was significantly longer in the WBRT plus SRS group (6.5 months) versus WBRT group (4.9 months; P = 0.04). Participants in the WBRT plus SRS group had decreased local failure compared to participants who received WBRT alone (HR 0.27, 95% CI 0.14 to 0.52; 2 studies, 129 participants; moderate-quality evidence). Furthermore, we observed an improvement in

  16. Ultrasound Assessment of Carotid Plaque Echogenicity Response to Statin Therapy: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Ibrahimi, Pranvera; Jashari, Fisnik; Bajraktari, Gani; Wester, Per; Henein, Michael Y.

    2015-01-01

    Objective: To evaluate in a systematic review and meta-analysis model the effect of statin therapy on carotid plaque echogenicity assessed by ultrasound. Methods: We have systematically searched electronic databases (PubMed, MEDLINE, EMBASE and Cochrane Center Register) up to April, 2015, for studies evaluating the effect of statins on plaque echogenicity. Two researchers independently determined the eligibility of studies evaluating the effect of statin therapy on carotid plaque echogenicity that used ultrasound and grey scale median (GSM) or integrated back scatter (IBS). Results: Nine out of 580 identified studies including 566 patients’ carotid artery data were meta-analyzed for a mean follow up of 7.2 months. A consistent increase in the echogenicity of carotid artery plaques, after statin therapy, was reported. Pooled weighted mean difference % (WMD) on plaque echogenicity after statin therapy was 29% (95% CI 22%–36%), p < 0.001, I2 = 92.1%. In a meta-regression analysis using % mean changes of LDL, HDL and hsCRP as moderators, it was shown that the effects of statins on plaque echogenicity were related to changes in hsCRP, but not to LDL and HDL changes from the baseline. The effect of statins on the plaque was progressive; it showed significance after the first month of treatment, and the echogenicity continued to increase in the following six and 12 months. Conclusions: Statin therapy is associated with a favorable increase of carotid plaque echogenicity. This effect seems to be dependent on the period of treatment and hsCRP change from the baseline, independent of changes in LDL and HDL. PMID:25984600

  17. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

    Directory of Open Access Journals (Sweden)

    Ching-Hsiang Fan

    Full Text Available The use of focused ultrasound (FUS with microbubbles has been proven to induce transient blood-brain barrier opening (BBB-opening. However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1-4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use.

  18. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Komatsu, Hisao; Kageji, Teruyoshi; Tsuji, Fumio; Matsumoto, Keizo; Kitamura, Katsuji; Hatanaka, Hiroshi; Minobe, Takashi.

    1993-01-01

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  19. Boron neutron capture therapy for malignant brain tumor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [National Kagawa Children`s Hospital, Takamatsu, Kagawa (Japan)

    1998-03-01

    Since 1968, we have treated 149 patients and performed boron-neutron capture therapy (BNCT) on 164 occasions using 5 reactors in Japan. There were 64 patients with glioblastoma, 39 patients with anaplastic astrocytoma and 17 patients with low grade astrocytoma (grade 1 or 2). There were 30 patients with other types of tumor. The overall response rate in the glioma patients was 64%. Seven patients (12%) of glioblastoma, 22 patients (56%) of anaplastic astrocytoma and 8 patients (62%) of low grade astrocytoma lived more than 2 years Median survival time of glioblastoma was 640 days. Median survival times of patients with anaplastic astrocytoma was 1811 days, and 1669 days in low grade astrocytoma. Six patients (5 glioblastoma and one anaplastic astrocytoma) died within 90 days after BNCT. Six patients lived more than 10 years. Histological grading, age of the patients, neutron fluence at the target point and target depth or size of the tumor were proved to be important factors. BNCT is an effective treatment for malignant brain tumors. We are now became able to radiate the tumor more correctly with a high enough dose of neutron beam even if we use thermal neutron beam. (author)

  20. Efficacy of Ablation Therapy for Secondary Hyperparathyroidism by Ultrasound Guided Percutaneous Thermoablation.

    Science.gov (United States)

    Zhao, Junfeng; Qian, Linxue; Zu, Yuan; Wei, Ying; Hu, Xiangdong

    2016-05-01

    The objective of this study was to explore the value of ultrasound-guided percutaneous microwave thermoablation to treat secondary hyperparathyroidism (SHPT). One hundred and thirty-eight parathyroid glands from 56 patients with SHPT were ablated in this study. All the parathyroid glands were evaluated by real-time contrast-enhanced ultrasound before, during and after ablation. Changes in serum parathyroid hormone (sPTH) levels were measured before treatment and at 1 h, 1 wk, 1 mo and 6 mo after thermoablation treatment. All 56 cases had a 1-mo follow-up, and 34 cases had a 6-mo follow-up. The sPTH level of the 54 cases 1 mo after ablation was significantly lower than that before (p 0.05). Ultrasound-guided percutaneous microwave thermoablation is a feasible and effective non-surgical alternative treatment for SHPT patients. Copyright © 2016. Published by Elsevier Inc.

  1. Comparison of the effects of hamstring stretching using proprioceptive neuromuscular facilitation with prior application of cryotherapy or ultrasound therapy

    Science.gov (United States)

    Magalhães, Francisco Elezier Xavier; Junior, Arlindo Rodrigues de Mesquita; Meneses, Harnold’s Tyson de Sousa; Moreira dos Santos, Rayele Pricila; Rodrigues, Ezaine Costa; Gouveia, Samara Sousa Vasconcelos; Gouveia, Guilherme Pertinni de Morais; Orsini, Marco; Bastos, Victor Hugo do Vale; Machado, Dionis de Castro Dutra

    2015-01-01

    [Purpose] Stretching using proprioceptive neuromuscular facilitation involve physiological reflex mechanisms through submaximal contraction of agonists which activate Golgi organ, promoting the relaxation reflex. The aim of this study was to evaluate the effects of proprioceptive neuromuscular facilitation alone and with prior application of cryotherapy and thermotherapy on hamstring stretching. [Subjects and Methods] The sample comprised of 32 young subjects with hamstring retraction of the right limb. The subjects were randomly allocated to four groups: the control, flexibility PNF, flexibility PNF associated with cryotherapy, flexibility PNF in association with ultrasound therapy. [Results] After 12 stretching sessions, experimental groups showed significant improvements compared to the control group. Moreover, we did not find any significant differences among the experimental groups indicating PNF stretching alone elicits similar results to PNF stretching with prior administration of cryotherapy or thermotherapy. [Conclusion] PNF without other therapy may be a more practical and less expensive choice for clinical care. PMID:26157261

  2. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

    Science.gov (United States)

    Downs, Matthew E.; Buch, Amanda; Karakatsani, Maria Eleni; Konofagou, Elisa E.; Ferrera, Vincent P.

    2015-10-01

    Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  6. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    International Nuclear Information System (INIS)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-01-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  7. Microbubbles in macrocysts - Contrast-enhanced ultrasound assisted sclerosant therapy of a congenital macrocystic lymphangioma: a case report.

    Science.gov (United States)

    Menendez-Castro, Carlos; Zapke, Maren; Fahlbusch, Fabian; von Goessel, Heiko; Rascher, Wolfgang; Jüngert, Jörg

    2017-07-06

    Congenital cystic lymphangiomas are benign malformations due to a developmental disorder of lymphatic vessels. Besides surgical excision, sclerosant therapy of these lesions by intracavitary injection of OK-432 (Picibanil®), a lyophilized mixture of group A Streptococcus pyogenes, is a common therapeutical option. For an appropriate application of OK-432, a detailed knowledge about the structure and composition of the congenital cystic lymphangioma is essential. SonoVue® is a commercially available contrast agent commonly used in sonography by intravenous and intracavitary application. Here we report the case of 2 month old male patient with a large thoracic congenital cystic lymphangioma. Preinterventional imaging of the malformation was performed by contrast-enhanced ultrasound after intracavitary application of SonoVue® immediately followed by a successful sclerotherapy with OK-432. Contrast agent-enhanced ultrasound imaging offers a valuable option to preinterventionally clarify the anatomic specifications of a congenital cystic lymphangioma in more detail than by single conventional sonography. By the exact knowledge about the composition and especially about the intercystic communications of the lymphangioma sclerosant therapy becomes safer and more efficient.

  8. High power phased array prototype for clinical high intensity focused ultrasound : applications to transcostal and transcranial therapy.

    Science.gov (United States)

    Pernot, M; Aubry, J -F; Tanter, M; Marquet, F; Montaldo, G; Boch, A -L; Kujas, M; Seilhean, D; Fink, M

    2007-01-01

    Bursts of focused ultrasound energy three orders of magnitude more intense than diagnostic ultrasound became during the last decade a noninvasive option for treating cancer from breast to prostate or uterine fibroid. However, many challenges remain to be addressed. First, the corrections of distortions induced on the ultrasonic therapy beam during its propagation through defocusing obstacles like skull bone or ribs remain today a technological performance that still need to be validated clinically. Secondly, the problem of motion artifacts particularly important for the treatment of abdominal parts becomes today an important research topic. Finally, the problem of the treatment monitoring is a wide subject of interest in the growing HIFU community. For all these issues, the potential of new ultrasonic therapy devices able to work both in Transmit and Receive modes will be emphasized. A review of the work under achievement at L.O.A. using this new generation of HIFU prototypes on the monitoring, motion correction and aberrations corrections will be presented.

  9. Stereotactic Radiosurgery: Treatment of Brain Metastasis Without Interruption of Systemic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Colette J.; Kummerlowe, Megan N.; Redmond, Kristin J. [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States); Rigamonti, Daniele [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Johns Hopkins Aramco Healthcare, Dhahran (Saudi Arabia); Lim, Michael K. [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland (United States); Kleinberg, Lawrence R., E-mail: kleinla@jhmi.edu [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland (United States)

    2016-06-01

    Purpose: To evaluate the prevalence, outcomes, and toxicities of concurrent delivery of systemic therapy with stereotactic radiosurgery (SRS) for treatment of brain metastases. Methods and Materials: We conducted a retrospective review of 193 patients treated at our institution with SRS without prior whole-brain radiation therapy (WBRT) for brain metastases between 2009 and 2014. Outcome metrics included administration of concurrent systemic therapy, myelosuppression, neurotoxicity, and survival. Results: One hundred ninety-three patients with a median age of 61 years underwent a total of 291 SRS treatments. Thirty-seven percent of SRS treatments were delivered concurrently with systemic therapy, of which 46% were with conventional myelosuppressive chemotherapy, and 54% with targeted and immune therapy agents. Myelosuppression was minimal after treatment with both systemic therapy and SRS, with 14% grade 3-4 toxicity for lymphopenia and 4-9% for leukopenia, neutropenia, anemia, and thrombocytopenia. Neurotoxicity was also minimal after combined therapy, with no grade 4 and <5% grade 3 toxicity, 34% dexamethasone requirement, and 4% radiation necrosis, all similar to treatments with SRS alone. Median overall survival was similar after SRS alone (14.4 months) versus SRS with systemic therapy (12.9 months). In patients with a new diagnosis of primary cancer with brain metastasis, early treatment with concurrent systemic therapy and SRS correlated with improved survival versus SRS alone (41.6 vs 21.5 months, P<.05). Conclusions: Systemic therapy can be safely given concurrently with SRS for brain metastases: our results suggest minimal myelosuppression and neurotoxicity. Concurrent therapy is an attractive option for patients who have both intracranial and extracranial metastatic disease and may be particularly beneficial in patients with a new diagnosis of primary cancer with brain metastasis.

  10. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study.

    Science.gov (United States)

    Aryal, Muna; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-04-28

    Transcranial MRI-guided focused ultrasound is a rapidly advancing method for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). The method's main advantages are that it is both targeted and noninvasive, and that it can be easily repeated. Studies have shown that liposomal doxorubicin (Lipo-DOX), a chemotherapy agent with promise for tumors in the central nervous system, can be delivered into the brain across BBB. However, prior studies have suggested that doxorubicin can be significantly neurotoxic, even at small concentrations. Here, we studied whether multiple sessions of Lipo-DOX administered after FUS-induced BBB disruption (FUS-BBBD) induces severe adverse events in the normal brain tissues. First, we used fluorometry to measure the doxorubicin concentrations in the brain after FUS-BBBD to ensure that a clinically relevant doxorubicin concentration was achieved in the brain. Next, we performed three weekly sessions with FUS-BBBD±Lipo-DOX administration. Five to twelve targets were sonicated each week, following a schedule described previously in a survival study in glioma-bearing rats (Aryal et al., 2013). Five rats received three weekly sessions where i.v. injected Lipo-DOX was combined with FUS-BBBD; an additional four rats received FUS-BBBD only. Animals were euthanized 70days from the first session and brains were examined in histology. We found that clinically-relevant concentrations of doxorubicin (4.8±0.5μg/g) were delivered to the brain with the sonication parameters (0.69MHz; 0.55-0.81MPa; 10ms bursts; 1Hz PRF; 60s duration), microbubble concentration (Definity, 10μl/kg), and the administered Lipo-DOX dose (5.67mg/kg) used. The resulting concentration of Lipo-DOX was reduced by 32% when it was injected 10min after the last sonication compared to cases where the agent was

  11. Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: In Vitro Feasibility

    NARCIS (Netherlands)

    Lajoinie, Guillaume; van Rooij, Tom; Skachkov, Ilya; Blazejewski, Emilie; Veldhuis, Gert; de Jong, Nico; Kooiman, Klazina; Versluis, Michel

    2017-01-01

    Polymeric microcapsules with a light-absorbing dye incorporated in their shell can generate vapor microbubbles that can be spatiotemporally controlled by pulsed laser irradiation. These contrast agents of 6–8 μm in diameter can circulate through the vasculature, offering possibilities for ultrasound

  12. [Music therapy and "brain music": state of the art, problems and perspectives].

    Science.gov (United States)

    Fedotchev, A I; Radchenko, G S

    2013-01-01

    Recent literature on the problem of interaction between music and the brain is reviewed and summarized. Mechanisms and effects of two most popular music therapy applications are picked out, including music listening and music making. Special attention is paid to relatively new line of investigations that is called "music of the brain" and deals with transformation of bioelectric processes of human organism into music. Unresolved questions of music therapy are identified and some promising lines of future investigations are delineated.

  13. Brain hypothermia therapy for childhood acute encephalopathy based on clinical evidence

    OpenAIRE

    IMATAKA, GEORGE; ARISAKA, OSAMU

    2015-01-01

    Although previous studies have reported on the effectiveness of brain hypothermia therapy in childhood acute encephalopathy, additional studies in this field are necessary. In this review, we discussed brain hypothermia therapy methods for two clinical conditions for which sufficient evidences are currently available in the literature. The first condition is known as hypoxic-ischemic encephalopathy and occurs in newborns and the second condition is acute encephalopathy which occurs in adults ...

  14. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo.

    Science.gov (United States)

    Choi, James J; Wang, Shougang; Tung, Yao-Sheng; Morrison, Barclay; Konofagou, Elisa E

    2010-01-01

    Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agent's molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: ek2191@columbia.edu).

  15. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    Science.gov (United States)

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  16. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest.

    Science.gov (United States)

    Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2014-03-25

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.

  17. A brain-computer interface based on bilateral transcranial Doppler ultrasound.

    Directory of Open Access Journals (Sweden)

    Andrew J B Myrden

    Full Text Available In this study, we investigate the feasibility of a BCI based on transcranial Doppler ultrasound (TCD, a medical imaging technique used to monitor cerebral blood flow velocity. We classified the cerebral blood flow velocity changes associated with two mental tasks--a word generation task, and a mental rotation task. Cerebral blood flow velocity was measured simultaneously within the left and right middle cerebral arteries while nine able-bodied adults alternated between mental activity (i.e. word generation or mental rotation and relaxation. Using linear discriminant analysis and a set of time-domain features, word generation and mental rotation were classified with respective average accuracies of 82.9%±10.5 and 85.7%±10.0 across all participants. Accuracies for all participants significantly exceeded chance. These results indicate that TCD is a promising measurement modality for BCI research.

  18. Progetto EURAMET: HLT03 DUTy - Dosimetria per terapie ultrasonore. Confronto tra metodi di misura - EURAMET: HLT03 DUTy - Dosimetry for ultrasound therapy. Intercomparison of methods

    Directory of Open Access Journals (Sweden)

    Giovanni Durando

    2016-03-01

    Full Text Available La mancanza di una definizione della dose ultrasonora rende di fatto impossibile la valutazione della più appropriata “quantità” energia ceduta ai tessuti dal fascio ultrasonoro emesso da un trasduttore durante una terapia. Il progetto di ricerca “Dosimetry for Ultrasound Therapy - DUTy”, finanziato dal programma di ricerca EURAMET EMRP, aveva tra i suoi principali obiettivi, oltre al confronto interlaboratorio che validasse le capacità metrologiche dei laboratori partecipanti, la ricerca della definizione di dose ultrasonora che consentisse la definizione di un piano terapeutico specifico per ogni paziente. ------ Standardized and traceable dose has not yet been developed for medical ultrasound applications. This means that the ‘amount’ of ultrasound required for a particular therapy cannot be calculated and that the ‘amount’ actually delivered quantified. The aim of EURAMET EMRP project “Dosimetry for Ultrasound Therapy - DUTy” project was developing the metrological infrastructure (definitions, validated measurement and modelling methods which underpins the specification of dose for therapeutic ultrasound applications allowing appropriate treatment planning and risk assessment.

  19. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    International Nuclear Information System (INIS)

    Huang, C H; Hsieh, C H; Lee, J D; Huang, W C; Lee, S T; Wu, C T; Sun, Y N; Wu, Y T

    2012-01-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ∼ 12mm, the correction rates can be improved from 32% ∼ 45% to 87% ∼ 95% by using the proposed system.

  20. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  1. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    International Nuclear Information System (INIS)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M; Marsac, L

    2009-01-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  2. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris (France); Marsac, L [Supersonic Imagine, Les Jardins de la Duranne, 510 rue Rene Descartes, 13857 Aix-en-Provence (France)], E-mail: fabrice.marquet@espci.org

    2009-05-07

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  3. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Sahil Bajaj

    2017-11-01

    Full Text Available Mild traumatic brain injury (mTBI is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion and anisotropic fashion (i.e., quantitative anisotropy, QA for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo on the amount of water diffusion (QA for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  4. A case of lung adenocarcinoma with multiple intracranial hemorrhages of brain metastases after whole-brain radiation therapy

    International Nuclear Information System (INIS)

    Nakamichi, Shinji; Hirano, Satoshi; Asao, Tetsuhiko; Takeda, Yuichiro; Sugiyama, Haruhito; Kobayashi, Nobuyuki

    2011-01-01

    Whole-brain radiation therapy (WBRT) is widely applied in cases of brain metastases of non-small cell lung cancer (NSCLC). However, there are few case reports on hemorrhages of brain metastases occurring after WBRT. A 63-year-old woman was given a diagnosis of stage IV (T4N0M1b) lung adenocarcinoma about 4 years previously, and received chemotherapy regimens and gamma knife radiosurgery. However, her brain metastases exacerbated and she received WBRT in November 2010 and docetaxel monotherapy in December 2010. Two weeks after completing WBRT, she experienced dysarthria and an MRI showed multiple hemorrhages within brain metastases. Over a period of careful observation, these hemorrhages repeatedly alternated between improvement and exacerbation. Radiotherapy for metastatic brain tumors is considered to suppress hemorrhagic events of brain metastases. However, multiple intracranial hemorrhages of brain metastases occurred after WBRT in the present case. The accumulation of further studies of similar cases is necessary to identify the exact mechanism of these hemorrhages. (author)

  5. Echocardiographic assessment with right ventricular function improvement following ultrasound-accelerated catheter-directed thrombolytic therapy in submassive pulmonary embolism.

    Science.gov (United States)

    Doheny, Charles; Gonzalez, Lorena; Duchman, Stanley M; Varon, Joseph; Bechara, Carlos F; Cheung, Mathew; Lin, Peter H

    2018-06-01

    Introduction The objective of this study was to evaluate the efficacy of ultrasound-accelerated catheter-directed thrombolytic therapy in patients with submassive pulmonary embolism. Methods Clinical records of 46 patients with submassive pulmonary embolism who underwent ultrasound-accelerated catheter-directed pulmonary thrombolysis using tissue plasminogen activator, from 2007 to 2017, were analyzed. All patients experienced clinical symptoms with computed tomography evidence of pulmonary thrombus burden. Right ventricular dysfunction was present in all patients by echocardiographic finding of right ventricle-to-left ventricle ratio > 0.9. Treatment outcome, procedural complications, right ventricular pressures, and thrombus clearance were evaluated. Follow-up evaluation included echocardiographic assessment of right ventricle-to-left ventricle ratio at one month, six months, and one year. Results Technical success was achieved in all patients ( n = 46, 100%). Our patients received an average of 18.4 ± 4.7 mg of tissue plasminogen activator using ultrasound-accelerated thrombolytic catheter with an average infusion time of 16.5± 5.4 h. Clinical success was achieved in all patients (100%). Significant reduction of mean pulmonary artery pressure occurred following the treatment, which decreased from 36 ± 8 to 21 ± 5 mmHg ( p right ventricular dysfunction based on echocardiographic assessment. The right ventricle-to-left ventricle ratio decreased from 1.32 ± 0.18 to 0.91 ± 0.13 at the time of hospital discharge ( p right ventricular function remained improved at 6 months and 12 months of follow-up, as right ventricle-to-left ventricle ratio were 0.92 ± 0.14 ( p right ventricular function in patients with submassive pulmonary embolism.

  6. Management of Melanoma Brain Metastases in the Era of Targeted Therapy

    International Nuclear Information System (INIS)

    Shapiro, D. G.; Samlowski, W. E.; Samlowski, W. E.; Samlowski, W. E.; Samlowski, W. E.

    2011-01-01

    Disseminated metastatic disease, including brain metastases, is commonly encountered in malignant melanoma. The classical treatment approach for melanoma brain metastases has been neurosurgical resection followed by whole brain radiotherapy. Traditionally, if lesions were either too numerous or surgical intervention would cause substantial neurologic deficits, patients were either treated with whole brain radiotherapy or referred to hospice and supportive care. Chemotherapy has not proven effective in treating brain metastases. Improvements in surgery, radiosurgery, and new drug discoveries have provided a wider range of treatment options. Additionally, recently discovered mutations in the melanoma genome have led to the development of "targeted therapy."These vastly improved options are resulting in novel treatment paradigms for approaching melanoma brain metastases in patients with and without systemic metastatic disease. It is therefore likely that improved survival can currently be achieved in at least a subset of melanoma patients with brain metastases.

  7. Management of melanoma brain metastases in the era of targeted therapy.

    Science.gov (United States)

    Shapiro, Daniela Gonsalves; Samlowski, Wolfram E

    2011-01-01

    Disseminated metastatic disease, including brain metastases, is commonly encountered in malignant melanoma. The classical treatment approach for melanoma brain metastases has been neurosurgical resection followed by whole brain radiotherapy. Traditionally, if lesions were either too numerous or surgical intervention would cause substantial neurologic deficits, patients were either treated with whole brain radiotherapy or referred to hospice and supportive care. Chemotherapy has not proven effective in treating brain metastases. Improvements in surgery, radiosurgery, and new drug discoveries have provided a wider range of treatment options. Additionally, recently discovered mutations in the melanoma genome have led to the development of "targeted therapy." These vastly improved options are resulting in novel treatment paradigms for approaching melanoma brain metastases in patients with and without systemic metastatic disease. It is therefore likely that improved survival can currently be achieved in at least a subset of melanoma patients with brain metastases.

  8. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    Science.gov (United States)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  9. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  10. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    Science.gov (United States)

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  11. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  12. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  13. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  14. Non-invasive focused ultrasound-based synergistic treatment of brain tumors

    Directory of Open Access Journals (Sweden)

    Ya-Jui Lin

    2016-09-01

    The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs, or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.

  15. Impact of statin therapy on coronary plaque composition: A systematic review and meta-analysis of virtual histology intravascular ultrasound studies

    NARCIS (Netherlands)

    M. Banach (Maciej); C. Serban (Corina); A. Sahebkar (Amirhossein); D.P. Mikhailidis (Dimitri P.); S. Ursoniu (Sorin); K.K. Ray (Kausik K.); J. Rysz (Jacek); P.P. Toth (Peter); P. Muntner (Paul); S. Mosteoru (Svetlana); H.M. Garcia-Garcia (Hector); G.K. Hovingh (Kees); J.J.P. Kastelein (John); P.W.J.C. Serruys (Patrick)

    2015-01-01

    textabstractBackground: Virtual histology intravascular ultrasound (VH-IVUS) imaging is an innovative tool for the morphological evaluation of coronary atherosclerosis. Evidence for the effects of statin therapy on VH-IVUS parameters have been inconclusive. Consequently, we performed a systematic

  16. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies

    NARCIS (Netherlands)

    Banach, Maciej; Serban, Corina; Sahebkar, Amirhossein; Mikhailidis, Dimitri P.; Ursoniu, Sorin; Ray, Kausik K.; Rysz, Jacek; Toth, Peter P.; Muntner, Paul; Mosteoru, Svetlana; García-García, Hector M.; Hovingh, G. Kees; Kastelein, John J. P.; Serruys, Patrick W.

    2015-01-01

    Virtual histology intravascular ultrasound (VH-IVUS) imaging is an innovative tool for the morphological evaluation of coronary atherosclerosis. Evidence for the effects of statin therapy on VH-IVUS parameters have been inconclusive. Consequently, we performed a systematic review and meta-analysis

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  18. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    OpenAIRE

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and n...

  19. How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns

    International Nuclear Information System (INIS)

    Doepp, Florian; Schreiber, Stephan J.; Muenster, Thomas von; Rademacher, Joerg; Valdueza, Jose M.; Klingebiel, Randolf

    2004-01-01

    The internal jugular veins are considered to be the main pathways of cerebral blood drainage. However, angiographic and anatomical studies show a wide anatomical variability and varying degrees of jugular and non-jugular venous drainage. The study systematically analyses the types and prevalence of human cerebral venous outflow patterns by ultrasound and MRI. Fifty healthy volunteers (21 females; 29 males; mean age 27±7 years) were studied by color-coded duplex sonography. Venous blood volume flow was measured in both internal jugular and vertebral veins in the supine position. Furthermore, the global arterial cerebral blood volume flow was calculated as the sum of volume flows in both internal carotid and vertebral arteries. Three types of venous drainage patterns were defined: a total jugular volume flow of more than 2/3 (type 1), between 1/3 and 2/3 (type 2) and less than 1/3 (type 3) of the global arterial blood flow. 2D TOF MR-venography was performed exemplarily in one subject with type-1 and in two subjects with type-3 drainage. Type-1 drainage was present in 36 subjects (72%), type 2 in 11 subjects (22%) and type 3 in 3 subjects (6%). In the majority of subjects in our study population, the internal jugular veins were indeed the main drainage vessels in the supine body position. However, a predominantly non-jugular drainage pattern was found in approximately 6% of subjects. (orig.)

  20. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  1. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.

    Science.gov (United States)

    Shin, Jaewoo; Kong, Chanho; Cho, Jae Sung; Lee, Jihyeon; Koh, Chin Su; Yoon, Min-Sik; Na, Young Cheol; Chang, Won Seok; Chang, Jin Woo

    2018-02-01

    OBJECTIVE The application of pharmacological therapeutics in neurological disorders is limited by the ability of these agents to penetrate the blood-brain barrier (BBB). Focused ultrasound (FUS) has recently gained attention for its potential application as a method for locally opening the BBB and thereby facilitating drug delivery into the brain parenchyma. However, this method still requires optimization to maximize its safety and efficacy for clinical use. In the present study, the authors examined several sonication parameters of FUS influencing BBB opening in small animals. METHODS Changes in BBB permeability were observed during transcranial sonication using low-intensity FUS in 20 adult male Sprague-Dawley rats. The authors examined the effects of FUS sonication with different sonication parameters, varying acoustic pressure, center frequency, burst duration, microbubble (MB) type, MB dose, pulse repetition frequency (PRF), and total exposure time. The focal region of BBB opening was identified by Evans blue dye. Additionally, H & E staining was used to identify blood vessel damage. RESULTS Acoustic pressure amplitude and burst duration were closely associated with enhancement of BBB opening efficiency, but these parameters were also highly correlated with tissue damage in the sonicated region. In contrast, MB types, MB dose, total exposure time, and PRF had an influence on BBB opening without conspicuous tissue damage after FUS sonication. CONCLUSIONS The study aimed to identify these influential conditions and provide safety and efficacy values for further studies. Future work based on the current results is anticipated to facilitate the implementation of FUS sonication for drug delivery in various CNS disease states in the near future.

  2. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, I.; Takei, T. (National Sagamihara Hospital, Kanagawa (Japan)); Oota, H.; Maekawa, K.

    1981-07-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in infants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therapy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by high doses of ACTH and in cases where brain atrophy had already been observed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time.

  3. Additional Effect of Static Ultrasound and Diadynamic Currents on Myofascial Trigger Points in a Manual Therapy Program for Patients With Chronic Neck Pain: A Randomized Clinical Trial.

    Science.gov (United States)

    Dibai-Filho, Almir Vieira; de Oliveira, Alessandra Kelly; Girasol, Carlos Eduardo; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2017-04-01

    To assess the additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program to treat individuals with chronic neck pain. A single-blind randomized trial was conducted. Both men and women, between ages 18 and 45, with chronic neck pain and active myofascial trigger points in the upper trapezius were included in the study. Subjects were assigned to 3 different groups: group 1 (n = 20) was treated with manual therapy; group 2 (n = 20) was treated with manual therapy and static ultrasound; group 3 (n = 20) was treated with manual therapy and diadynamic currents. Individuals were assessed before the first treatment session, 48 hours after the first treatment session, 48 hours after the tenth treatment session, and 4 weeks after the last session. There was no group-versus-time interaction for Numeric Rating Scale, Neck Disability Index, Pain-Related Self-Statement Scale, pressure pain threshold, cervical range of motion, and skin temperature (F-value range, 0.089-1.961; P-value range, 0.106-0.977). Moreover, we found no differences between groups regarding electromyographic activity (P > 0.05). The use of static ultrasound or diadynamic currents on myofascial trigger points in upper trapezius associated with a manual therapy program did not generate greater benefits than manual therapy alone.

  4. Brain stem infarction: Imaging diagnosis and endovascular therapy

    International Nuclear Information System (INIS)

    Schulte-Altedorneburg, G.; Mayer, T.E.

    2004-01-01

    This review article describes the vascular anatomy and pathophysiology of the vertebrobasilar ischaemia as well as the most important clinical syndromes of brainstem infarctions. An overview of the literature presents the role of invasive and non-invasive techniques (ultrasound, MRI, MRA, CT, CTA, intraarterial angiography) to diagnose an acute brainstem infarction. Current concepts are described for treating acute vertebrobasilar thrombosis, including local intraarterial fibrinolysis, mechanical recanalization and medical treatment, and for preventing brainstem infarction, including angioplasty and stent-assisted angioplasty of the brainstem supplying arteries. (orig.)

  5. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  6. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Leijser, Lara M.; Veen, Sylvia; Boer, Inge P. de; Walther, Frans J.; Wezel-Meijler, Gerda van [Leiden University Medical Center, Department of Pediatrics, Division of Neonatology, Albinusdreef 2, P.O. Box 9600, Leiden (Netherlands); Liauw, Lishya [Leiden University Medical Center, Department of Radiology, Division of Neuroradiology, Albinusdreef 2, P.O. Box 9600, Leiden (Netherlands)

    2008-09-15

    Periventricular white matter (WM) echodensities, frequently seen in preterm infants, can be associated with suboptimal neurodevelopment. Major WM injury is well detected on cranial ultrasound (cUS). cUS seems less sensitive for diffuse or more subtle WM injury. Our aim was to assess the value of cUS and magnetic resonance imaging (MRI) for evaluating WM changes and the predictive value of cUS and/or MRI findings for neurodevelopmental outcome in very preterm infants with normal to severely abnormal WM on sequential high-quality cUS. Very preterm infants (<32 weeks) who had sequential cUS and one MRI within the first three postnatal months were included. Periventricular WM on cUS and MRI was compared and correlated with neurodevelopmental outcome at 2 years corrected age. Forty preterm infants were studied; outcome data were available in 32. WM changes on sequential cUS were predictive of WM changes on MRI. Severely abnormal WM on cUS/MRI was predictive of adverse outcome, and normal-mildly abnormal WM of favorable outcome. Moderately abnormal WM on cUS/MRI was associated with variable outcome. Additional MRI slightly increased the predictive value of cUS in severe WM changes. Sequential cUS in preterm infants is reliable for detecting WM changes and predicting favorable and severely abnormal outcome. Conventional and diffusion-weighted MRI sequences before term equivalent age in very preterm infants, suggested on cUS to have mild to moderately abnormal WM, do not seem to be warranted. (orig.)

  7. Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants

    International Nuclear Information System (INIS)

    Leijser, Lara M.; Veen, Sylvia; Boer, Inge P. de; Walther, Frans J.; Wezel-Meijler, Gerda van; Liauw, Lishya

    2008-01-01

    Periventricular white matter (WM) echodensities, frequently seen in preterm infants, can be associated with suboptimal neurodevelopment. Major WM injury is well detected on cranial ultrasound (cUS). cUS seems less sensitive for diffuse or more subtle WM injury. Our aim was to assess the value of cUS and magnetic resonance imaging (MRI) for evaluating WM changes and the predictive value of cUS and/or MRI findings for neurodevelopmental outcome in very preterm infants with normal to severely abnormal WM on sequential high-quality cUS. Very preterm infants (<32 weeks) who had sequential cUS and one MRI within the first three postnatal months were included. Periventricular WM on cUS and MRI was compared and correlated with neurodevelopmental outcome at 2 years corrected age. Forty preterm infants were studied; outcome data were available in 32. WM changes on sequential cUS were predictive of WM changes on MRI. Severely abnormal WM on cUS/MRI was predictive of adverse outcome, and normal-mildly abnormal WM of favorable outcome. Moderately abnormal WM on cUS/MRI was associated with variable outcome. Additional MRI slightly increased the predictive value of cUS in severe WM changes. Sequential cUS in preterm infants is reliable for detecting WM changes and predicting favorable and severely abnormal outcome. Conventional and diffusion-weighted MRI sequences before term equivalent age in very preterm infants, suggested on cUS to have mild to moderately abnormal WM, do not seem to be warranted. (orig.)

  8. Pulsed focused ultrasound combined with micro-bubble contrast agent can open the blood-brain barrier of gliblastoma patients and improve the efficacy of Temozolomide treatment

    Directory of Open Access Journals (Sweden)

    Qian DONG

    2017-06-01

    Full Text Available Objective This research examined the effect of microbubble contrast agent plus ultrasound on the permeability of blood-brain barrier, and explored whether it affects the efficacy of chemotherapeutic drugs on cerebral glioblastoma. Methods Wistar rats were divided into three groups to find the optimal concentration of ultrasonic contrast agent. To identify the best ultrasound mode that affected the permeability of blood brain barrier, we employed transmission electron microscopy for study of brain ultrastructure. Western blotting was used to detect the tight junction protein claudin-5. Evans blue staining of brain tissues was utilized to identify the best ultrasonic contrast agent concentration and mode. Rat glioma cells (line 9L were injected into Wistar rats. After temozolomide chemotherapy, the tumor size was measured and the tumor marker GFAP in serum was detected by ELISA. Results The best contrast agent concentration which increases permeability of BBB in rats was found to be 1ml/kg and the best ultrasound mode was intermittently- triggered pulses lasting for 10min (with interval was set at 400ms. More Evans blue passed the blood-brain barrier in ultrasonic cavitation effect group than in control group (P<0.05. After temozolomide chemotherapy, more tumor marker GFAP was detected in ultrasonic cavitation effect group than in control group (P<0.05. Conclusion The permeability of BBB was increased and more temozolomide went through BBB when the rats were subjected to intermittently triggered ultrasonic pulses and were injected at contrast agent at 1ml/kg, which could help to achieve better therapeutic efficacy for glioblastoma. DOI: 10.11855/j.issn.0577-7402.2017.05.06

  9. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  10. Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs

    International Nuclear Information System (INIS)

    Nau, William H; Diederich, Chris J; Shu, Richard

    2005-01-01

    Application of heat in the spine using resistive wire heating devices is currently being used clinically for minimally invasive treatment of discogenic low back pain. In this study, interstitial ultrasound was evaluated for the potential to heat intradiscal tissue more precisely by directing energy towards the posterior annular wall while avoiding vertebral bodies. Two single-element directional applicator design configurations were tested: a 1.5 mm OD direct-coupled (DC) applicator which can be implanted directly within the disc, and a catheter-cooled (CC) applicator which is inserted in a 2.4 mm OD catheter with integrated water cooling and implanted within the disc. The transducers were sectored to produce 90 deg. spatial heating patterns for directional control. Both applicator configurations were evaluated in four human cadaver lumbar disc motion segments. Two heating protocols were employed in this study in which the temperature measured 5 mm away from the applicator was controlled to either T = 52 deg. C, or T > 70 deg. C for the treatment period. These temperatures (thermal doses) are representative of those required for thermal necrosis of in-growing nociceptor nerve fibres and disc cellularity alone, or with coagulation and restructuring of annular collagen in the high-temperature case. Steady-state temperature maps, and thermal doses (t 43 ) were used to assess the thermal treatments. Results from these studies demonstrated the capability of controlling temperature distributions within selected regions of the disc and annular wall using interstitial ultrasound, with minimal vertebral end-plate heating. While directional heating was demonstrated with both applicator designs, the CC configuration had greater directional heating capabilities and offered better temperature control than the DC configuration, particularly during the high-temperature protocol. Further, ultrasound energy was capable of penetrating within the highly attenuating disc tissue to

  11. Structural linear measurements in the newborn brain: accuracy of cranial ultrasound compared to MRI

    International Nuclear Information System (INIS)

    Leijser, Lara M.; Srinivasan, Latha; Cowan, Frances M.; Rutherford, Mary A.; Counsell, Serena J.; Allsop, Joanna M.

    2007-01-01

    Structural size in the neonatal brain is of clinical importance. Cranial ultrasonography (cUS) is the primary method used for evaluating the neonatal brain and it is important to know whether linear measurements made using this technique are accurate. To compare linear measurements of different cerebral structures made from neonatal cUS and contemporaneous MRI. Preterm and term infants studies with cUS and MRI on the same day were studied. Linear measurements made using both techniques from many cerebral structures were compared using a paired t-test. A total of 44 sets of scans from 26 preterm and 8 term infants were assessed. Small but significant differences between the cUS and MRI measurements (P<0.05) were found for the ventricular index, the posterior horn depth of the lateral ventricle, the extracerebral space and interhemispheric fissure, and the cortex of the cingulate gyrus. No significant differences were found for any other measurements. Linear measurements from cUS are accurate for most neonatal cerebral structures. Significant differences compared to MRI were found for a few structures, but only for the cortex were the absolute differences marked and possibly of clinical importance. (orig.)

  12. Remodeling the blood–brain barrier microenvironment by natural products for brain tumor therapy

    Institute of Scientific and Technical Information of China (English)

    Xiao Zhao; Rujing Chen; Mei Liu; Jianfang Feng; Jun Chen; Kaili Hu

    2017-01-01

    Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%–30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system(CNS) damage which endangers the patients’ lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood–brain barrier(BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix(ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.

  13. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  14. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    International Nuclear Information System (INIS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-01-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r 2   =  0.77); (2) the permeability of the opened BBB (r 2   =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r 2   =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  15. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the

  16. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-07

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the BBB opening duration, enabling thus control of opening according to the drug

  17. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    International Nuclear Information System (INIS)

    Tamai, Isamu; Takei, Tadao; Oota, Hideomi; Maekawa, Kihei.

    1981-01-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in intants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therepy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by hight doses of ACTH and in cases where brain atrophy had already been obserbed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time. (author)

  18. Patients with brain metastases from gastrointestinal tract cancer treated with whole brain radiation therapy:Prognostic factors and survival

    Institute of Scientific and Technical Information of China (English)

    Susanne Bartelt; Felix Momm; Christian Weissenberger; Johannes Lutterbach

    2004-01-01

    AIM: To identify the prognostic factors with regard to survival for patients with brain metastasis from primary tumors of the gastrointestinal tract.METHODS: Nine hundred and sixteen patients with brain metastases, treated with whole brain radiation therapy (WBRT) between January 1985 and December 2000 at the Department of Radiation Oncology, University Hospital Freiburg, were analyzed retrospectively.RESULTS: Fifty-seven patients presented with a primary tumor of the gastrointestinal tract (esophagus: n = 0, stomach:n = 10, colorectal: n = 47). Twenty-six patients had a solitary brain metastasis, 31 patients presented with multiple brain metastases. Surgical resection was performed in 25 patients.WBRTwas applied with daily fractions of 2 Gray (Gy) or 3 Gy to a total dose of 50 Gy or 30 Gy, respectively. The interval between diagnoses of the primary tumors and brain metastases was 22.6 mo vs8.0 mo for patients with primary tumors of the colon/rectum vs other primary tumors,respectively (P<0.01, log-rank). Median overall survival for all patients with brain metastases (n = 916) was 3.4 mo and 3.2 mo for patients with gastrointestinal neoplasms.Patients with gastrointestinal primary tumors presented significantly more often with a solitary brain metastasis than patients with other primary tumors (P<0.05, log-rank). In patients with gastrointestinal neoplasms (n = 57), the median overall survival was 5.8 mo for patients with solitary brain metastasis vs 2.7 mo for patients with multiple brain metastases (P<0.01, log-rank). The median overall survival for patients with a Karnofsky performance status (KPS) ≥70was 5.5 mo vs2.1 mo for patients with KPS <70 (P<0.01,log-rank). At multivariate analysis (Cox Model) the performance status and the number of brain metastases were identified as independent prognostic factors for overall survival.CONCLUSION: Brain metastases occur late in the course of gastrointestinal tumors. Pretherapeutic variables like KPS and the

  19. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai [Department of Radiation Oncology, John Hopkins University, Baltimore, MD (United States); Ji, Tianlong [Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning (China); Iordachita, Iulian [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A. [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  20. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai; Ji, Tianlong; Iordachita, Iulian; Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2016-01-01

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  1. Ultrasound-guided stellate ganglion blocks combined with pharmacological and occupational therapy in Complex Regional Pain Syndrome (CRPS): a pilot case series ad interim.

    Science.gov (United States)

    Wei, Karin; Feldmann, Robert E; Brascher, Anne-Kathrin; Benrath, Justus

    2014-12-01

    This preliminary and retrospective pilot case series examines a treatment concept consisting of ultrasound-guided stellate ganglion blocks (SGBs) combined with pharmacological and occupational therapy in patients with complex regional pain syndrome (CRPS) of the hand. Efficacy of combined treatment concepts and safety of ultrasound-guided SGB have not been sufficiently investigated yet. A total number of 156 blocks were evaluated in 16 patients with CRPS in a retrospective analysis. All patients received pharmacotherapy and a standard regimen of occupational therapy offered simultaneously to the SGBs. Changes in both spontaneous and evoked pain levels were assessed by numerical pain rating score before and after the last blockade of a series. Side effects were documented. The overall mean pain reduction was 63.2% regarding spontaneous and 45.3% regarding evoked pain. Mild complications, such as hoarseness or dysphagia, occurred in 13.5% of the blocks (21 SGBs). Serious complications, such as plexus paresis or accidental puncture of vessels or other structures, did not occur. Time between symptom onset and start of treatment did not affect the extent of pain reduction. The combination of ultrasound-guided SGB and simultaneous pharmacological and occupational therapy showed encouraging treatment results under conditions of this pilot case series. Assessment of efficacy of this combined treatment concept and safety of ultrasound-guided SGB require further prospective clinical studies with larger number of participants. Wiley Periodicals, Inc.

  2. Investigation of infant brain with or without hydrocephalous in our environment using anterior transfontanelle ultrasound scan

    Directory of Open Access Journals (Sweden)

    Tobechukwu T Marchie

    2013-01-01

    Full Text Available Aim: A prospective study aimed to suggest easy and simple reproducible ventricular site that will be basic measurement plane and normal dimension determined, correlated to sizes of infants for comparative evaluation of hydrocephalous infants and should be reproducible in follow-up. Materials and Methods: A prospective study done in University of Benin Teaching Hospital Benin, Nigeria. This study used 50 consecutive infants with Ultrasound scan (US diagnosis of hydrocephalus and a control group of 50 US normal from 1 st January 2007 to 30 th June 2008. The infants were scan through the mid-patent anterior fontanelle in sagittal, and transverse planes with minor angulations to properly outline the ventricles and the position of measurement determined at the foramen of Monro of lateral ventricles and the diameter measured. The infants′ weight, crown-heel length, and head circumference were measured and body mass index (BMI calculated and correlated to lateral ventricular measurement. Data analysis was conducted using the Statistical Package for Social Sciences (SPSS Inc, USA, Version 11.0. Results: There was no statistically sex and age-related difference. There is statistically comparative high mean weight and height and lower BMI in hydrocephalic infants as against the control group (P < 0.001. The mean head circumference for hydrocephalus was 45.6 (± 10.5 standard deviation [SD], whereas the control group was 35.9 (± 2.7 SD with P < 0.001. The mean diameter of the anterior horn of left and right lateral ventricles at the level of foramen of Monro in hydrocephalic subjects is 18.4 mm ± 14.3 mm and 20.1 mm ± 16.8 mm with median diameter of 14.1 mm and 15.2 mm, respectively, whereas control group is 2.5 mm ± 0.6 mm and 2.5 mm ± 0.7 mm with median diameter of 2.5 mm and 2.4 mm, respectively. Conclusion: Transfontanelle US was found highly useful in investigation of hydrocephalous in infant.

  3. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Arijit Bhowmik

    2015-01-01

    Full Text Available Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB. BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  4. Clinical application of RapidArc volumetric modulated arc therapy as a component in whole brain radiation therapy for poor prognostic, four or more multiple brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jin Ho; Kim, Hye Young; Lee, Seok Ho; Sung, Ki Hoon; Kim, Yun Mi [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2012-06-15

    To determine feasibility of RapidArc in sequential or simultaneous integrated tumor boost in whole brain radiation therapy (WBRT) for poor prognostic patients with four or more brain metastases. Nine patients with multiple ({>=}4) brain metastases were analyzed. Three patients were classified as class II in recursive partitioning analysis and 6 were class III. The class III patients presented with hemiparesis, cognitive deficit, or apraxia. The ratio of tumor to whole brain volume was 0.8-7.9%. Six patients received 2-dimensional bilateral WBRT, (30 Gy/10- 12 fractions), followed by sequential RapidArc tumor boost (15-30 Gy/4-10 fractions). Three patients received RapidArc WBRT with simultaneous integrated boost to tumors (48-50 Gy) in 10-20 fractions. The median biologically effective dose to metastatic tumors was 68.1 Gy10 and 67.2 Gy10 and the median brain volume irradiated more than 100 Gy3 were 1.9% (24 cm3) and 0.8% (13 cm3) for each group. With less than 3 minutes of treatment time, RapidArc was easily applied to the patients with poor performance status. The follow-up period was 0.3-16.5 months. Tumor responses among the 6 patients who underwent follow-up magnetic resonance imaging were partial and stable in 3 and 3, respectively. Overall survival at 6 and 12 months were 66.7% and 41.7%, respectively. The local progression-free survival at 6 and 12 months were 100% and 62.5%, respectively. RapidArc as a component in whole brain radiation therapy for poor prognostic, multiple brain metastases is an effective and safe modality with easy application.

  5. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain--a primate study.

    Science.gov (United States)

    Hynynen, Kullervo; McDannold, Nathan; Clement, Greg; Jolesz, Ferenc A; Zadicario, Eyal; Killiany, Ron; Moore, Tara; Rosen, Douglas

    2006-08-01

    MRI-guided and monitored focused ultrasound thermal surgery of brain through intact skull was tested in three rhesus monkeys. The aim of this study was to determine the amount of skull heating in an animal model with a head shape similar to that of a human. The ultrasound beam was generated by a 512 channel phased array system (Exablate 3000, InSightec, Haifa, Israel) that was integrated within a 1.5-T MR-scanner. The skin was pre-cooled by degassed temperature controlled water circulating between the array surface and the skin. Skull surface temperature was measured with invasive thermocouple probes. The results showed that by applying surface cooling the skin and skull surface can be protected, and that the brain surface temperature becomes the limiting factor. The MRI thermometry was shown to be useful in detecting the tissue temperature distribution next to the bone, and it should be used to monitor the brain surface temperature. The acoustic intensity values during the 20 s sonications were adequate for thermal ablation in the human brain provided that surface cooling is used.

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in ... Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or ... used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... spleen pancreas kidneys bladder uterus , ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also used to: guide ...

  10. General Ultrasound Imaging

    Science.gov (United States)

    ... spleen pancreas kidneys bladder uterus , ovaries , and unborn child ( fetus ) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also used to: guide ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... Transvaginal ultrasound. The transducer is inserted into a woman's vagina to view the uterus and ovaries. top ...

  12. The study of low level laser irradiation therapy on brain infarction with SPECT

    Institute of Scientific and Technical Information of China (English)

    Xiao Xuechang; Jia Shaowei; Zleng Xiyuan

    2000-01-01

    Objective: Effect of rCBF and brain function on ILIB treating brain infarction will be investigated by SPECT brain perfusion imaging. Method: 3 1 patients with brain infarction, 17 patients were treated by ILIB on standard pharmaceutial treatment. SPECT brain perfusion imaging was performed before and after ILIB therapy with comparison of oneself. They were quantified with BFCR% model effect during ILIB in 14 patients were observed. Result: ILIB 30 rnme SPECT showed the improvement of rCBF and cerebral function in 14 patients with brain infarction, and in 17 patients locus were prominence than mirror regions att er ILIB therapy, both are higher singnitficant difference ( t=4.4052, P<0.0001 ), but mirror regions were not singnificant difference before and after ILIB (t=1.6995, P>0.05). BFCR% quantitative results of locus were higher mirror regions, and higher singnificant difference (t=4.5278 p<0.0001 )。 Conclusion: ILIB can improve the rCBF and cerebral function of patients with brain infarction, and provoke function of brain cells. Some new evidence was provided for ILIB treatment of cerebral ischemia

  13. Pharmacokinetic analysis of 111 in-labeled liposomal Doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted (111In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D induced by focused ultrasound (FUS. An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM 8401 cells was developed in this study. (111In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of (111In-AP-1 Lipo-Dox or (111In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05. Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of (111In-AP-1 Lipo-Dox with sonication. The (111In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.

  14. Effectiveness of Animal Assisted Therapy after brain injury: A bridge to improved outcomes in CRT.

    Science.gov (United States)

    Stapleton, Mary

    2016-06-18

    Animal Assisted Therapy (AAT) has been widely used as a complementary therapy in mental health treatment especially to remediate social skill deficits. The goal of AAT is to improve social, emotional, and cognitive functioning. The purpose of this article is to draw upon the literature on AAT and explore specific applications to cognitive rehabilitation therapy (CRT) and social skills training. This study provides a systematic review of most of the available literature on ATT and assesses that potential uses of ATT for brain injury rehabilitation. Although the efficacy of AAT is not currently well documented by rigorous research, (Kazin, 2010) anecdotal evidence suggests that brain injury survivors may benefit from the combination of AAT and cognitive rehabilitation techniques. Acquired Brain Injury (ABI) survivors with cognitive impairments can benefit from AAT as part of a comprehensive and holistic rehabilitation treatment plan.

  15. Opening the Blood-Brain Barrier with MR Imaging-guided Focused Ultrasound: Preclinical Testing on a Trans-Human Skull Porcine Model.

    Science.gov (United States)

    Huang, Yuexi; Alkins, Ryan; Schwartz, Michael L; Hynynen, Kullervo

    2017-01-01

    Purpose To develop and test a protocol in preparation for a clinical trial on opening the blood-brain barrier (BBB) with magnetic resonance (MR) imaging-guided focused ultrasound for the delivery of chemotherapy drugs to brain tumors. Materials and Methods The procedures were approved by the institutional animal care committee. A trans-human skull porcine model was designed for the preclinical testing. Wide craniotomies were applied in 11 pigs (weight, approximately 15 kg). A partial human skull was positioned over the animal's brain. A modified clinical MR imaging-guided focused ultrasound brain system was used with a 3.0-T MR unit. The ultrasound beam was steered during sonications over a 3 × 3 grid at 3-mm spacing. Acoustic power levels of 3-20 W were tested. Bolus injections of microbubbles at 4 μL/kg were tested for each sonication. Levels of BBB opening, hemorrhage, and cavitation signal were measured with MR imaging, histologic examination, and cavitation receivers, respectively. A cavitation safety algorithm was developed on the basis of logistic regression of the measurements and tested to minimize the risk of hemorrhage. Results BBB openings of approximately 1 cm 3 in volume were visualized with gadolinium-enhanced MR imaging after sonication at an acoustic power of approximately 5 W. Gross examination of histologic specimens helped confirm Evans blue (bound to macromolecule albumin) extravasation, and hematoxylin-eosin staining helped detect only scattered extravasation of red blood cells. In cases where cavitation signals were higher than thresholds, sonications were terminated immediately without causing hemorrhage. Conclusion With a trans-human skull porcine model, this study demonstrated BBB opening with a 230-kHz system in preparation for a clinical trial. © RSNA, 2016 Online supplemental material is available for this article.

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  17. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    Science.gov (United States)

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  18. Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akira [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: yakira@kuhp.kyoto-u.ac.jp; Miki, Yukio [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: mikiy@kuhp.kyoto-u.ac.jp; Adachi, Souichi [Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: sadachi@kuhp.kyoto-u.ac.jp (and others)

    2006-03-15

    Background and purpose: The purpose of this prospective study was to evaluate the hypothesis that magnetization transfer ratio (MTR) histogram analysis of the whole brain could detect early and subtle brain changes nonapparent on conventional magnetic resonance imaging (MRI) in children with acute lymphoblastic leukemia (ALL) receiving methotrexate (MTX) therapy. Materials and methods: Subjects in this prospective study comprised 10 children with ALL (mean age, 6 years; range, 0-16 years). In addition to conventional MRI, magnetization transfer images were obtained before and after intrathecal and intravenous MTX therapy. MTR values were calculated and plotted as a histogram, and peak height and location were calculated. Differences in peak height and location between pre- and post-MTX therapy scans were statistically analyzed. Conventional MRI was evaluated for abnormal signal area in white matter. Results: MTR peak height was significantly lower on post-MTX therapy scans than on pre-MTX therapy scans (p = 0.002). No significant differences in peak location were identified between pre- and post-chemotherapy imaging. No abnormal signals were noted in white matter on either pre- or post-MTX therapy conventional MRI. Conclusions: This study demonstrates that MTR histogram analysis allows better detection of early and subtle brain changes in ALL patients who receive MTX therapy than conventional MRI.

  19. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: In vivo evaluation under MR guidance

    International Nuclear Information System (INIS)

    Kinsey, Adam M.; Diederich, Chris J.; Rieke, Viola; Nau, William H.; Pauly, Kim Butts; Bouley, Donna; Sommer, Graham

    2008-01-01

    The purpose of this study was to explore the feasibility and performance of a multi-sectored tubular array transurethral ultrasound applicator for prostate thermal therapy, with potential to provide dynamic angular and length control of heating under MR guidance without mechanical movement of the applicator. Test configurations were fabricated, incorporating a linear array of two multi-sectored tubular transducers (7.8-8.4 MHz, 3 mm OD, 6 mm length), with three 120 deg. independent active sectors per tube. A flexible delivery catheter facilitated water cooling (100 ml min -1 ) within an expandable urethral balloon (35 mm longx10 mm diameter). An integrated positioning hub allows for rotating and translating the transducer assembly within the urethral balloon for final targeting prior to therapy delivery. Rotational beam plots indicate ∼90 deg. - 100 deg. acoustic output patterns from each 120 deg. transducer sector, negligible coupling between sectors, and acoustic efficiencies between 41% and 53%. Experiments were performed within in vivo canine prostate (n=3), with real-time MR temperature monitoring in either the axial or coronal planes to facilitate control of the heating profiles and provide thermal dosimetry for performance assessment. Gross inspection of serial sections of treated prostate, exposed to TTC (triphenyl tetrazolium chloride) tissue viability stain, allowed for direct assessment of the extent of thermal coagulation. These devices created large contiguous thermal lesions (defined by 52 deg. C maximum temperature, t 43 =240 min thermal dose contours, and TTC tissue sections) that extended radially from the applicator toward the border of the prostate (∼15 mm) during a short power application (∼8-16 W per active sector, 8-15 min), with ∼200 deg. or 360 deg. sector coagulation demonstrated depending upon the activation scheme. Analysis of transient temperature profiles indicated progression of lethal temperature and thermal dose contours

  20. Occupational therapy in patients after the brain injury with neglect syndrome

    OpenAIRE

    Říhová, Petra

    2015-01-01

    OF BACHELOR THESIS Title of bachelor thesis: Occupational therapy in patients after the brain injury with neglect syndrome This bachelor thesis is focused on summarizing the knowledge of the neglect syndrome, very interesting phenomenon accompanying brain injury. Thesis provides information about prevalence, etiopathogenesis, classification, clinical presentation and course of the disease. Special attention is devoted to diagnostic and therapeutic procedures and description of occupational th...

  1. Early effect of external beam radiation therapy on the anal sphincter: A study using anal manometry and transrectal ultrasound

    International Nuclear Information System (INIS)

    Birnbaum, E.H.; Dreznik, Z.; Myerson, R.J.; Lacey, D.L.; Fry, R.D.; Kodner, I.J.; Fleshman, J.W.

    1992-01-01

    The early of pelvic irradiation on the anal sphincter has not been previously investigated. This study prospectively evaluated the acute effect of preoperative radiation on anal function. Twenty patients with rectal carcinoma received 4,500 cGy of preoperative external beam radiation. The field of radiation included the sphincter in 10 patients and was delivered above the anorectal ring in 10 patients. Anal manometry and transrectal ultrasound were performed before and four weeks after radiotherapy. No significant difference in mean maximal squeeze or resting pressure was found after radiation therapy. An increase in mean minimal sensory threshold was significant. Histologic examination revealed minimal radiation changes at the distal margin in 8 of 10 patients who underwent low anterior resection and in 1 of 3 patients who underwent abdominoperineal resection. The authors conclude that preoperative radiation therapy has minimal immediate effect on the anal sphincter and is not a major contributing factor to postoperative incontinence in patients after sphincter-saving operations for rectal cancer

  2. Highly directional transurethral ultrasound applicators with rotational control for MRI-guided prostatic thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Anthony B [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Diederich, Chris J [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Nau, William H [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Gill, Harcharan [Department of Urology, Stanford University, Stanford, CA (United States); Bouley, Donna M [Department of Comparative Medicine, Stanford University, Stanford, CA (United States); Daniel, Bruce [Department of Radiology, Stanford University, Stanford, CA (United States); Rieke, Viola [Department of Radiology, Stanford University, Stanford, CA (United States); Butts, R Kim [Department of Radiology, Stanford University, Stanford, CA (United States); Sommer, Graham [Department of Radiology, Stanford University, Stanford, CA (United States)

    2004-01-21

    Transurethral ultrasound applicators with highly directional energy deposition and rotational control were investigated for precise treatment of benign prostatic hyperplasia (BPH) and adenocarcinoma of the prostate (CaP). Two types of catheter-based applicators were fabricated, using either sectored tubular (3.5 mm OD x 10 mm) or planar transducers (3.5 mm x 10 mm). They were constructed to be MRI compatible, minimally invasive and allow for manual rotation of the transducer array within a 10 mm cooling balloon. In vivo evaluations of the applicators were performed in canine prostates (n 3) using MRI guidance (0.5 T interventional magnet). MR temperature imaging (MRTI) utilizing the proton resonance frequency shift method was used to acquire multiple-slice temperature overlays in real time for monitoring and guiding the thermal treatments. Post-treatment T1-weighted contrast-enhanced imaging and triphenyl tetrazolium chloride stained tissue sections were used to define regions of tissue coagulation. Single sonications with the tubular applicator ) produced coagulated zones covering a wedge of the prostate extending from 1-2 mm outside the urethra to the outer boundary of the gland (16 mm radial coagulation). Single sonications with the planar applicator (15-20 W, 10 min, {approx}8 MHz) generated thermal lesions of {approx}30 extending to the prostate boundary. Multiple sequential sonications (sweeping) of a planar applicator (12 W with eight rotations of 30 each) demonstrated controllable coagulation of a 270 contiguous section of the prostate extending to the capsule boundary. The feasibility of using highly directional transurethral ultrasound applicators with rotational capabilities to selectively coagulate regions of the prostate while monitoring and controlling the treatments with MRTI was demonstrated in this study.

  3. Exercise therapy after ultrasound-guided corticosteroid injections in patients with subacromial pain syndrome

    DEFF Research Database (Denmark)

    Ellegaard, Karen; Christensen, Robin; Rosager, Sara

    2016-01-01

    BACKGROUND: Subacromial pain syndrome (SAPS) accounts for around 50 % of all cases of shoulder pain. The most commonly used treatments are glucocorticosteroid (steroid) injections and exercise therapy; however, despite treatment SAPS patients often experience relapse of their symptoms. Therefore...... the clinical effect of combining steroid and exercise therapy is highly relevant to clarify. The aim of this randomized controlled trial was to investigate if exercise therapy added to steroid injection in patients with SAPS will improve the effect of the injection therapy on shoulder pain. METHODS......: In this two-arm randomized trial running over 26 weeks, patients with unilateral shoulder pain (> 4 weeks) and thickened subacromial bursa (> 2 mm on US) were included. At baseline all participants received two steroid injections into the painful shoulder with an interval of one week. Subsequently they were...

  4. Music Therapy on Anxiety, Stress and Maternal-fetal Attachment in Pregnant Women During Transvaginal Ultrasound

    Directory of Open Access Journals (Sweden)

    Hye Sook Shin, PhD, RN

    2011-03-01

    Conclusions: The finding provides evidence for use of nursing intervention in prenatal care unit to reduce pregnant women's anxiety. Further research is necessary to test the benefits of music therapy with different frequency and duration.

  5. The efficacy of ultrasound-guided extracorporeal shockwave therapy in patients with cervical spondylosis and nuchal ligament calcification

    Directory of Open Access Journals (Sweden)

    Tz-Yan Lin

    2015-07-01

    Full Text Available We investigated the effects of extracorporeal shockwave therapy (ESWT on the rehabilitation of cervical spondylosis with nuchal ligament (NL calcification under X-ray and ultrasound guidance. Sixty patients with cervical spondylosis and calcification of NL were selected and randomly assigned to three groups: A, B, and C. Patients in Group A received rehabilitation with 20 minutes of hot packs and underwent 15 minutes of intermittent cervical traction three times/week for 6 weeks. Patients in Group B received the same rehabilitation as those in Group A and ESWT (2000 impulses, 0.27 mJ/mm2 over the calcified NL guided by X-ray image. Patients in Group C received the same treatment as those in Group B, but the ESWT was guided by musculoskeletal sonography. The therapeutic effects were evaluated by: changes in range of motion (ROM of the cervical spine including flexion, extension, lateral bending, and rotation; visual analog pain scale; and Neck Disability Index before and after treatment and at follow up 3 months later. We found a significant reduction in pain in each treated group after treatment and at follow up. However, patients in Groups B and C showed more improvements in ROM and neck pain relief after treatment and a decrease in Neck Disability Index. Furthermore, patients in Group C showed better cervical ROM at follow up than Group B. ESWT is an adjuvant treatment in the management of cervical spondylosis with calcification of NL and ultrasound-guided ESWT results in more functional improvements.

  6. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.

    Science.gov (United States)

    Ting, Lai-Lei; Chuang, Ho-Chiao; Liao, Ai-Ho; Kuo, Chia-Chun; Yu, Hsiao-Wei; Zhou, Yi-Liang; Tien, Der-Chi; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2018-05-01

    This study proposed respiratory motion compensation system (RMCS) combined with an ultrasound image tracking algorithm (UITA) to compensate for respiration-induced tumor motion during radiotherapy, and to address the problem of inaccurate radiation dose delivery caused by respiratory movement. This study used an ultrasound imaging system to monitor respiratory movements combined with the proposed UITA and RMCS for tracking and compensation of the respiratory motion. Respiratory motion compensation was performed using prerecorded human respiratory motion signals and also sinusoidal signals. A linear accelerator was used to deliver radiation doses to GAFchromic EBT3 dosimetry film, and the conformity index (CI), root-mean-square error, compensation rate (CR), and planning target volume (PTV) were used to evaluate the tracking and compensation performance of the proposed system. Human respiratory pattern signals were captured using the UITA and compensated by the RMCS, which yielded CR values of 34-78%. In addition, the maximum coronal area of the PTV ranged from 85.53 mm 2 to 351.11 mm 2 (uncompensated), which reduced to from 17.72 mm 2 to 66.17 mm 2 after compensation, with an area reduction ratio of up to 90%. In real-time monitoring of the respiration compensation state, the CI values for 85% and 90% isodose areas increased to 0.7 and 0.68, respectively. The proposed UITA and RMCS can reduce the movement of the tracked target relative to the LINAC in radiation therapy, thereby reducing the required size of the PTV margin and increasing the effect of the radiation dose received by the treatment target. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  8. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.

    Science.gov (United States)

    Vonder Haar, Cole; Peterson, Todd C; Martens, Kris M; Hoane, Michael R

    2016-06-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Treatment of Movement Disorders With Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Paul S Fishman

    2017-05-01

    Full Text Available Although the use of ultrasound as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists or neurologists are familiar with this technology. Stereotactic brain lesioning had been widely used as a treatment for medically refractory patients with essential tremor (ET, Parkinson disease (PD, and dystonia but has been largely replaced by deep brain stimulation (DBS surgery, with advantages both in safety and efficacy. However, DBS is associated with complications including intracerebral hemorrhage, infection, and hardware malfunction. The occurrence of these complications has spurred interest in less invasive stereotactic brain lesioning methods including magnetic resonance imaging–guided high intensity–focused ultrasound (FUS surgery. Engineering advances now allow sound waves to be targeted noninvasively through the skull to a brain target. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull, recent Food and Drug Administration approval of unilateral thalamotomy for treatment of ET. Clinical studies of stereotactic FUS for aspects of PD are underway. Moderate intensity, pulsed FUS has also demonstrated the potential to safely open the blood-brain barrier for localized delivery of therapeutics including proteins, genes, and cell-based therapy for PD and related disorders. The goal of this review is to provide basic and clinical neuroscientists with a level of understanding to interact with medical physicists, biomedical engineers, and radiologists to accelerate the application of this powerful technology to brain disease

  10. Wii-habilitation as balance therapy for children with acquired brain injury.

    Science.gov (United States)

    Tatla, Sandy K; Radomski, Anna; Cheung, Jessica; Maron, Melissa; Jarus, Tal

    2014-02-01

    To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury. A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines. Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability. Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.

  11. Possible alternation of the blood-brain barrier by boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Hatanaka, H.; Moritani, M.; Camillo, M.

    1991-01-01

    In the course of re-assessment of boron-neutron capture therapy (BNCT) for malignant brain tumors, fractionation of neutron irradiation has been proposed. The authors have used BNCT with a single fraction technique during the past 21 years and now decided to study some effects of fractionation. Twenty-two healthy mouse brains were irradiated with thermal neutrons after boron-10 injection (mercaptoundecahydrododecaborate). A second dose of boron-10 was administered and its uptake in the boron-neutron-capture-irradiated brains was determined. A tendency towards increased boron uptake in the moderately BNCT-treated brains was noticed, which may result in increased brain damage if fractionated neutron irradiation is used. (orig.)

  12. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy

    OpenAIRE

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-01-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19?21 years) of the Faculty of Agricultur...

  13. The effect of androgen deprivation on the early changes in prostate volume following transperineal ultrasound guided interstitial therapy for localized carcinoma of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Richard; Broderick, Gregory A; Arger, Peter; Malkowicz, S Bruce; Epperson, Robert D; Arjomandy, Bijan; Kassaee, Alireza

    1999-07-15

    Purpose: To determine the change in volume of the prostate as a result of neoadjuvant androgen deprivation prior to prostate implant and in the early postimplant period following transperineal ultrasound guided palladium-103 brachytherapy for early-stage prostate cancer. Methods and Materials: Sixty-nine men received 3 to 6 months of androgen deprivation therapy followed by treatment planning ultrasound followed 4 to 8 weeks later by palladium-103 implant of the prostate. All patients had clinical and radiographic stage T1c-T2b adenocarcinoma of the prostate. A second ultrasound study was carried out 11 to 13 days following the implant to determine the change in volume of the prostate as a result of the implant. The prehormonal and preimplant volumes were compared to the postimplant volume to determine the effect of hormones and brachytherapy on prostate volume. Results: The median decrease in prostate volume as a result of androgen deprivation was 33% among the 54 patients with prostate volume determinations prior to hormonal therapy. The reduction in volume was greatest in the quartile of men with the largest initial gland volume (59%) and least in the quartile of men with smallest glands (10%). The median reduction in prostate volume between the treatment planning ultrasound and the follow-up study after implant was 3%, but 23 (33%) patients had an increase in prostate volume, including 16 (23%) who had an increase in volume >20%; 11 of these patients (16%) had an increase in volume >30%. The time course of development and resolution of this edema is not known. The severity of the edema was not related to initial or preimplant prostate volume or duration of hormonal therapy. Conclusions: Prostate edema may significantly affect the dose delivered to the prostate following transperineal ultrasound guided brachytherapy. The effect on the actual delivered dose will be greater when shorter lived isotopes are used. It remains to be observed whether this edema will

  14. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  18. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  19. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the foot ultrasound scanner reduced precision errors by half (p quantitative ultrasound measurements is feasible. (E-mail: m.daugschies@rad.uni-kiel.de) (C) 2015 World Federation for Ultrasound in Medicine & Biology....

  20. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study

    International Nuclear Information System (INIS)

    Moros, Eduardo G.; Straube, William L.; Klein, Eric E.; Yousaf, Muhammed; Myerson, Robert J.

    1995-01-01

    Purpose: The feasibility of simultaneously delivering external electron beam radiation and superficial hyperthermia using a scanning ultrasound reflector-array system (SURAS) was experimentally investigated and demonstrated. Methods and Materials: A new system uses a scanning reflector to distribute the acoustic energy from a planar ultrasound array over the surface of the target volume. External photon/electron beams can be concurrently delivered with hyperthermia by irradiating through the scanning reflectors. That is, this system enables the acoustic waves and the radiation beams to enter the target volume from the same direction. Reflectors were constructed of air-equivalent materials for maximum acoustic reflection and minimum radiation attenuation. Acoustically, the air reflectors were compared to brass reflectors (assumed ideal) for reflectivity and specular quality using several single transducers ranging in frequency from 0.68 to 4.8 MHz. The relative reflectivity was determined from acoustic power measurements using a force-balance technique. The specular quality was assessed by comparing the acoustic pressure fields reflected by air reflectors with those reflected by brass reflectors. Also, acoustic pressure fields generated by a SURAS prototype for two different arrays (2.24 and 4.5 MHz) were measured to investigate field distribution variations as a function of the distance separating the array and the scanning reflector. All pressure fields were measured with a hydrophone in a degassed water tank. Finally, to determine the effect of the air reflectors on electron dose distributions, these were measured using film in a water-equivalent solid phantom after passage of a 20 MeV electron beam through the SURAS. These measurements were performed with the reflector scanning continuously across the electron beam and at rest within the electron beam. Results: The measurements performed using single ultrasound transducers showed that the air reflectors had

  1. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  2. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Rhone-Alpes (France); Tessier, A [Centre Hospitalier Universitaire, La Tronche, Rhone-Alpes (France); Vautrin, M; Benkebil, M [DOSIsoft, Cachan, Ile de France (France); Sihanath, R [Centre Hospitalier Universitaire, La Tronche, Rhone- Alpes (France)

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator) were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.

  3. Real-Time Ultrasound-Guided Catheter Navigation for Approaching Deep-Seated Brain Lesions: Role of Intraoperative Neurosonography with and without Fusion with Magnetic Resonance Imaging.

    Science.gov (United States)

    Manjila, Sunil; Karhade, Aditya; Phi, Ji Hoon; Scott, R Michael; Smith, Edward R

    2017-01-01

    Brain shift during the exposure of cranial lesions may reduce the accuracy of frameless stereotaxy. We describe a rapid, safe, and effective method to approach deep-seated brain lesions using real-time intraoperative ultrasound placement of a catheter to mark the dissection trajectory to the lesion. With Institutional Review Board approval, we retrospectively reviewed the radiographic, pathologic, and intraoperative data of 11 pediatric patients who underwent excision of 12 lesions by means of this technique. Full data sets were available for 12 lesions in 11 patients. Ten lesions were tumors and 2 were cavernous malformations. Lesion locations included the thalamus (n = 4), trigone (n = 3), mesial temporal lobe (n = 3), and deep white matter (n = 2). Catheter placement was successful in all patients, and the median time required for the procedure was 3 min (range 2-5 min). There were no complications related to catheter placement. The median diameter of surgical corridors on postresection magnetic resonance imaging was 6.6 mm (range 3.0-12.1 mm). Use of real-time ultrasound guidance to place a catheter to aid in the dissection to reach a deep-seated brain lesion provides advantages complementary to existing techniques, such as frameless stereotaxy. The catheter insertion technique described here provides a quick, accurate, and safe method for reaching deep-seated lesions. © 2017 S. Karger AG, Basel.

  4. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.

    Science.gov (United States)

    McDannold, Nathan; Arvanitis, Costas D; Vykhodtseva, Natalia; Livingstone, Margaret S

    2012-07-15

    The blood-brain barrier (BBB) prevents entry of most drugs into the brain and is a major hurdle to the use of drugs for brain tumors and other central nervous system disorders. Work in small animals has shown that ultrasound combined with an intravenously circulating microbubble agent can temporarily permeabilize the BBB. Here, we evaluated whether this targeted drug delivery method can be applied safely, reliably, and in a controlled manner on rhesus macaques using a focused ultrasound system. We identified a clear safety window during which BBB disruption could be produced without evident tissue damage, and the acoustic pressure amplitude where the probability for BBB disruption was 50% and was found to be half of the value that would produce tissue damage. Acoustic emission measurements seem promising for predicting BBB disruption and damage. In addition, we conducted repeated BBB disruption to central visual field targets over several weeks in animals trained to conduct complex visual acuity tasks. All animals recovered from each session without behavioral deficits, visual deficits, or loss in visual acuity. Together, our findings show that BBB disruption can be reliably and repeatedly produced without evident histologic or functional damage in a clinically relevant animal model using a clinical device. These results therefore support clinical testing of this noninvasive-targeted drug delivery method.

  5. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy

    Science.gov (United States)

    McLaughlan, J. R.; Cowell, D. M. J.; Freear, S.

    2018-01-01

    High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19  ±  0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71  ±  0.01 MPa at a fluence of 3.4 mJ cm-2 . Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of 1.5 × 103 a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as

  6. Occupational Therapy and Community Reintegration of Persons with Brain Injury

    Science.gov (United States)

    ... then help clients relearn how to do these activities (remediate) or determine new ways of accomplishing them (compensatory strategies). Through guided, graded instruction within the context of the client’s community, occupational therapy practitioners may work with individuals in real life ...

  7. The role of stereotactic radiation therapy and whole-brain radiotherapy in the treatment of multiple brain metastases

    International Nuclear Information System (INIS)

    Chen Xiujun; Xiao Jianping; Li Xiangpan; Jiang Xuesong; Zhang Ye; Xu Yingjie; Dai Jianrong; Li Yexiong

    2012-01-01

    Objective: To summarize the results of stereotactic radiation therapy (SRT) with or without whole-brain radiotherapy (WBRT) in the treatment of multiple brain metastasis. Methods: From May 1995 to April 2010, totally 98 newly diagnosed multiple (2 - 13 lesions) brain metastases patients were treated in our centre. Forty-four patients were treated with SRT alone and 54 with SRT + WBRT. Dose fractionation schemes were 15 -26 Gy in 1 fraction or 24.0 -52.5 Gy in 2 - 15 fractions with 3.5 - 12.0 Gy per fraction, depending on the tumor volume, location, and history of prior irradiation. Kaplan-Meier and Cox proportional hazards regression analyses were used for survival analysis. The median age of the whole group was 55 years. The survival time was calculated from the date of radiation treatment to the day of death by any cause. Results: The median follow-up time for the whole group was 12 months, and the follow-up rate was 100%. The median overall survival time was 13.5 months for the whole group, there was no difference between SRT alone group and SRT + WBRT group (13.0 months vs. 13.5 months, χ 2 =0.31, P =0.578). The Karnofsky Performance Score (KPS) at the time of treatment (χ 2 =6.25, P =0.012), the interval between the diagnosis of the primary tumor and brain metastases (χ 2 =7.34, P =0.025) and the status of extracranial metastases (χ 2 =4.20, P =0.040) were independent prognosis factors for survival in multivariate analyses. Conclusions: Stereotactic radiation therapy is an effective and alternative treatment choice for multiple brain metastases. (authors)

  8. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2006-07-01

    Full Text Available Lipid-coated perfluorocarbon nanodroplets are submicrometer-diameter liquid-filled droplets with proposed applications in molecularly targeted therapeutics and ultrasound (US imaging. Ultrasonic molecular imaging is unique in that the optimal application of these agents depends not only on the surface chemistry, but also on the applied US field, which can increase receptor-ligand binding and membrane fusion. Theory and experiments are combined to demonstrate the displacement of perfluorocarbon nanoparticles in the direction of US propagation, where a traveling US wave with a peak pressure on the order of megapascals and frequency in the megahertz range produces a particle translational velocity that is proportional to acoustic intensity and increases with increasing center frequency. Within a vessel with a diameter on the order of hundreds of micrometers or larger, particle velocity on the order of hundreds of micrometers per second is produced and the dominant mechanism for droplet displacement is shown to be bulk fluid streaming. A model for radiation force displacement of particles is developed and demonstrates that effective particle displacement should be feasible in the microvasculature. In a flowing system, acoustic manipulation of targeted droplets increases droplet retention. Additionally, we demonstrate the feasibility of US-enhanced particle internalization and therapeutic delivery.

  9. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko [Osaka City General Hospital (Japan)] (and others)

    2002-06-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 {mu}g corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  10. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    International Nuclear Information System (INIS)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko

    2002-01-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 μg corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  11. [Timing of Brain Radiation Therapy Impacts Outcomes in Patients with 
Non-small Cell Lung Cancer Who Develop Brain Metastases].

    Science.gov (United States)

    Wang, Yang; Fang, Jian; Nie, Jun; Dai, Ling; Hu, Weiheng; Zhang, Jie; Ma, Xiangjuan; Han, Jindi; Chen, Xiaoling; Tian, Guangming; Wu, Di; Han, Sen; Long, Jieran

    2016-08-20

    Radiotherapy combined with chemotherapy or molecular targeted therapy remains the standard of treatment for brain metastases from non-small cell lung cancer (NSCLC). The aim of this study is to determine if the deferral of brain radiotherapy impacts patient outcomes. Between May 2003 and December 2015, a total of 198 patients with brain metastases from NSCLC who received both brain radiotherapy and systemic therapy (chemotherapy or targeted therapy) were identified. The rate of grade 3-4 adverse reactions related to chemotherapy and radiotherapy had no significant difference between two groups. 127 patients received concurrent brain radiotherapy and systemic therapy, and 71 patients received deferred brain radiotherapy after at least two cycles of chemotherapy or targeted therapy. Disease specific-graded prognostic assessment was similar in early radiotherapy group and deferred radiotherapy group. Median overall survival (OS) was longer in early radiotherapy group compared to deferred radiotherapy group (17.9 months vs 12.6 months; P=0.038). Progression free survival (PFS) was also improved in patients receiving early radiotherapy compared to those receiving deferred radiotherapy (4.0 months vs 3.0 months; Pbrain metastases as any line therapy improved the OS (20.0 months vs 10.7 months; Pbrain radiotherapy may resulted in inferior OS in patients with NSCLC who develop brain metastases. A prospective multi-central randomized study is imminently needed.

  12. Stereotaxic radiosurgery for therapy of arterivenous malformation of the brain

    International Nuclear Information System (INIS)

    Beraha, J.; Feriancic, C.V.; Scaff, L.A.M.

    1987-01-01

    Since march 1983 we are attempting for the first time in Brazil to develop improvements on stereotactic radiosurgery techniques. We have been using the multifocal irradiation method attaching to this purpose the Barcia IV stereotactic frame to a 4 MV linear accelerator. We show details about the centralization technique and the security patterns in our system. From October 1983 to November 1986, 25 patients with arteriovenous malformations of the brain were submitted to a radiosurgery treatment in our service. Good results obtained on the follow-up from one to three years are analysed. (author)

  13. A review of endocrine late effects in children after brain tumor therapy

    International Nuclear Information System (INIS)

    Marx, M.; Langer, T.; Beck, J.D.; Doerr, H.G.

    1999-01-01

    Background: Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Method: Own data and literature review. Results: Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 G. With some delay, other hypothalamopituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Conclusion: Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved. (orig.) [de

  14. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  15. Fractionated afterloading therapy in inoperable malignant tumours of the brain

    International Nuclear Information System (INIS)

    Sparenberg, A.

    1987-01-01

    With the advent of the method of afterloading the range of uses for fractionated interstitial brady-therapy could be broadened to include malignant cerebral tumours. The mean survival time of 33 female patients was calculated to be 8.3 months for the entire group and 11.3 months for cases not otherwise pretreated. Even though the age, tumour volume, target dose and Karnofsky index obviously tended to influence the survival time, such relationships could not be confirmed statistically. Using the method by Kaplan-Meier it was determined that 65% of the total study group were likely to survive beyond six months and 32% to survive for one year. A separate analysis of patients receiving no previous treatment showed these chances to be 75% and 44%, respectively. The advantages of this therapy are discussed on a comparative basis. (VHE) [de

  16. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K. [National Cancer Institute (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  17. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    International Nuclear Information System (INIS)

    Farahani, K.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  18. Ultrasound Evaluation of Thyroid Gland Pathologies After Radiation Therapy and Chemotherapy to Treat Malignancy During Childhood

    Energy Technology Data Exchange (ETDEWEB)

    Lollert, André, E-mail: andre.lollert@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Medical Center of the Johannes Gutenberg University, Mainz (Germany); Gies, Christina; Laudemann, Katharina [Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Medical Center of the Johannes Gutenberg University, Mainz (Germany); Faber, Jörg [Department of Pediatrics and Adolescent Medicine, Medical Center of the Johannes Gutenberg University, Mainz (Germany); Jacob-Heutmann, Dorothee [Department of Radio-oncology and Radiotherapy, Medical Center of the Johannes Gutenberg University, Mainz (Germany); König, Jochem [Institute for Medical Biostatistics, Epidemiology and Informatics, Medical Center of the Johannes Gutenberg University, Mainz (Germany); Düber, Christoph; Staatz, Gundula [Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Medical Center of the Johannes Gutenberg University, Mainz (Germany)

    2016-01-01

    Purpose: The purpose of this study was to evaluate correlations between treatment of malignancy by radiation therapy during childhood and the occurrence of thyroid gland pathologies detected by ultrasonography in follow-up examinations. Methods and Materials: Reductions of thyroid gland volume below 2 standard deviations of the weight-specific mean value, occurrence of ultrasonographically detectable thyroid gland pathologies, and hypothyroidism were retrospectively assessed in 103 children and adolescents 7 months to 20 years of age (median: 7 years of age) at baseline (1997-2013) treated with chemoradiation therapy (with the thyroid gland dose assessable) or with chemotherapy alone and followed by ultrasonography and laboratory examinations through 2014 (median follow-up time: 48 months). Results: A relevant reduction of thyroid gland volume was significantly correlated with thyroid gland dose in univariate (P<.001) and multivariate analyses for doses above 2 Gy. Odds ratios were 3.1 (95% confidence interval: 1.02-9.2; P=.046) for medium doses (2-25 Gy) and 14.8 (95% confidence interval: 1.4-160; P=.027) for high doses (>25 Gy). Thyroid gland dose was significantly higher in patients with thyroid gland pathologies during follow-up (P=.03). Univariate analysis revealed significant correlations between hypothyroidism and thyroid gland dose (P<.001). Conclusions: Ultrasonographically detectable changes, that is, volume reductions, pathologies, and hypothyroidism, after malignancy treatment during childhood are associated with thyroid gland dose. Both ultrasonography and laboratory follow-up examinations should be performed regularly after tumor therapy during childhood, especially if the treatment included radiation therapy.

  19. Diffuse brain calcification after radiation therapy in infantile cerebral malignant glioma

    International Nuclear Information System (INIS)

    Hondo, Hiroaki; Tanaka, Ryuichi; Yamada, Nobuhisa; Takeda, Norio

    1987-01-01

    We reported a case of infantile cerebral malignant glioma, which showed extensive intracranial calcification following radiation therapy, and reviewed the literature. A 4-month-old female infant was admitted to our hospital because of vomiting, enlargement of the head and convulsive seizures. Computerized tomography (CT) scans demonstrated a heterogeneously contrast-enhanced mass in the right temporo-parieto-occipital region and marked obstructive hydrocephalus. Subsequent to ventriculo-peritoneal shunt, biopsy was performed. The surgical specimen revealed anaplastic glioma. She then underwent whole brain irradiation with 1800 rads before subtotal removal and 3000 rads postoperatively. Calcification was first identified in the right frontal region and left basal ganglia 2.5 months after radiation therapy. At the age of 14 months, CT scans demonstrated extensive intracranial calcification in the cerebral hemispheres, basal ganglias, thalami, pons and cerebellum. A biopsy specimen of the frontal lobe revealed calcospherites of various sizes within and beside the walls of small vessels, but no tumor cells were observed. Cranial radiation therapy is a standard modality for treatment of children with neoplasm in the central nervous system. Since, however this therapy possibly causes long-term complications on the developing brain, it is important to plan radiation therapy for the brain tumor carefully. (author)

  20. Photodynamic therapy (PDT) with endoscopic ultrasound for the treatment of esophageal cancer

    Science.gov (United States)

    Woodward, Timothy A.; Wolfsen, Herbert C.

    2000-05-01

    In 1995, PDT was approved for palliative use in patients with esophageal cancer. We report our experience using PDT to treat esophageal cancer patients previously treated with combination chemotherapy and radiation therapy. In our series, nine patients referred for PDT with persistent esophageal cancer after chemo-radiation therapy. We found: (1) All patients were men with a mean age of 63 years and eight out of nine had adenocarcinoma with Barrett's esophagus; (2) All patients required endoscopic dilation after PDT; (3) At a mean follow up of 4 months, two T2N0 patients had no demonstrable tumor and all three T3N0 patients had greater than 50% tumor reduction (the partially responsive T3N0 patients will be offered repeat PDT); (4) Patients with metastatic disease (T3N1 or M1) had effective dysphagia palliation. Thus, PDT is safe and effective in ablating all or most tumor in patients with persistent esophageal cancer after chemotherapy and radiation therapy.

  1. [Ultrasound dynamics lysis apex thrombus as an objective criterion of effectiveness of anticoagulation therapy in venous thrombosis].

    Science.gov (United States)

    Kalinin, R E; Suchkov, I A; Pshennikov, A S; Agapov, A B

    2016-01-01

    To assess the effectiveness of anticoagulant therapy (ACT) for the treatment of patients with deep venous thrombosis (DVT) of the lower extremities. The study considered ultrasonic characteristics of lysis of the proximal part of thrombus: localization and nature of venous thrombosis, the length and diameter of the proximal floating part of the thrombus, and duration of the venous thrombosis. Depending on the ACT options patients were divided into 3 groups: Group 1 (18 patients) received rivaroxaban, group 2 (19 patients) received enoxaparin sodium with subsequent transition to warfarin, and 3 group (19 patietns) received enoxaparin sodium, followed by administration of rivaroxaban. Treatment with rivaroxaban was preferable over standard ACT with enoxaparin/warfarin with regards to the lysis of thrombus when duration of thrombosis did not exceed 10 days. In 10.5% of patients who received warfarin flotation of thrombi remained for 14 days; the length of the floating part of the thrombi did not exceed 3 cm. Such circumstances and inability to reach a therapeutic INR value required cava filter placement. Treatment with enoxaparin sodium followed by the administration of rivaroxaban was found to be the most efficient ACT regimen as there was no negative dynamics of ultrasound characteristics of lysis of thrombi at any duration of the disease.

  2. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    Science.gov (United States)

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  3. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    Science.gov (United States)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  4. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    Science.gov (United States)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  5. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice

    International Nuclear Information System (INIS)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-01-01

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity (registered) microbubbles (mean diameter range: 1.1-3.3 μm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 μm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity (registered) microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without

  6. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E, E-mail: ek2191@columbia.ed [Department of Biomedical Engineering, Columbia University, New York, NY (United States)

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity (registered) microbubbles (mean diameter range: 1.1-3.3 {mu}m, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 {mu}m in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity (registered) microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected

  7. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.

    Science.gov (United States)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice

  8. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  9. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  10. New insights into amblyopia: binocular therapy and noninvasive brain stimulation.

    Science.gov (United States)

    Hess, Robert F; Thompson, Benjamin

    2013-02-01

    The current approach to the treatment of amblyopia is problematic for a number of reasons. First, it promotes recovery of monocular vision but because it is not designed to promote binocularity, its binocular outcomes often are disappointing. Second, compliance is poor and variable. Third, the effectiveness of the treatment is thought to decrease with increasing age. We discuss 2 new approaches aimed at recovering visual function in adults with amblyopia. The first is a binocular approach to amblyopia treatment that is showing promise in initial clinical studies. The second is still in development and involves the use of well-established noninvasive brain stimulation techniques to temporarily alter the balance of excitation and inhibition in the visual cortex. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  11. Cost-effective immobilization for whole brain radiation therapy.

    Science.gov (United States)

    Rubinstein, Ashley E; Ingram, W Scott; Anderson, Brian M; Gay, Skylar S; Fave, Xenia J; Ger, Rachel B; McCarroll, Rachel E; Owens, Constance A; Netherton, Tucker J; Kisling, Kelly D; Court, Laurence E; Yang, Jinzhong; Li, Yuting; Lee, Joonsang; Mackin, Dennis S; Cardenas, Carlos E

    2017-07-01

    To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. External Validity of a Risk Stratification Score Predicting Early Distant Brain Failure and Salvage Whole Brain Radiation Therapy After Stereotactic Radiosurgery for Brain Metastases.

    Science.gov (United States)

    Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-07-01

    A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A needle guidance system for biopsy and therapy using two-dimensional ultrasound

    International Nuclear Information System (INIS)

    Bluvol, Nathan; Sheikh, Allison; Kornecki, Anat; Del Rey Fernandez, David; Downey, Donal; Fenster, Aaron

    2008-01-01

    Image-guided needle biopsies are currently used to provide a definitive diagnosis of breast cancer; however, difficulties in tumor targeting exist as the ultrasound (United States) scan plane and biopsy needle must remain coplanar throughout the procedure to display the actual needle tip position. The additional time associated with aligning and maintaining this coplanar relationship results in increased patient discomfort. Biopsy procedural efficiency is further hindered since needle pathway interpretation is often difficult, especially for needle insertions at large depths that usually require multiple reinsertions. The authors developed a system that would increase the speed and accuracy of current breast biopsy procedures using readily available two-dimensional (2D) US technology. This system is composed of a passive articulated mechanical arm that attaches to a 2D US transducer. The arm is connected to a computer through custom electronics and software, which were developed as an interface for tracking the positioning of the mechanical components in real time. The arm couples to the biopsy needle and provides visual guidance for the physician performing the procedure in the form of a real-time projected needle pathway overlay on an US image of the breast. An agar test phantom, with stainless steel targets interspersed randomly throughout, was used to validate needle trajectory positioning accuracy. The biopsy needle was guided by both the software and hardware components to the targets. The phantom, with the needle inserted and device decoupled, was placed in an x-ray stereotactic mammography (SM) machine. The needle trajectory and bead target locations were determined in three dimensions from the SM images. Results indicated a mean needle trajectory accuracy error of 0.75±0.42 mm. This is adequate to sample lesions that are <2 mm in diameter. Chicken tissue test phantoms were used to compare core needle biopsy procedure times between experienced radiologists

  14. Reduced quantitative ultrasound bone mineral density in HIV-infected patients on antiretroviral therapy in Senegal.

    Directory of Open Access Journals (Sweden)

    Amandine Cournil

    Full Text Available BACKGROUND: Bone status in HIV-infected patients on antiretroviral treatment (ART is poorly documented in resource-limited settings. We compared bone mineral density between HIV-infected patients and control subjects from Dakar, Senegal. METHODS: A total of 207 (134 women and 73 men HIV-infected patients from an observational cohort in Dakar (ANRS 1215 and 207 age- and sex-matched controls from the general population were enrolled. Bone mineral density was assessed by quantitative ultrasound (QUS at the calcaneus, an alternative to the reference method (i.e. dual X-absorptiometry, often not available in resource-limited countries. RESULTS: Mean age was 47.0 (±8.5 years. Patients had received ART for a median duration of 8.8 years; 45% received a protease inhibitor and 27% tenofovir; 84% had undetectable viral load. Patients had lower body mass index (BMI than controls (23 versus 26 kg/m(2, P<0.001. In unadjusted analysis, QUS bone mineral density was lower in HIV-infected patients than in controls (difference: -0.36 standard deviation, 95% confidence interval (CI: -0.59;-0.12, P = 0.003. Adjusting for BMI, physical activity, smoking and calcium intake attenuated the difference (-0.27, CI: -0.53;-0.002, P = 0.05. Differences in BMI between patients and controls explained a third of the difference in QUS bone mineral density. Among patients, BMI was independently associated with QUS bone mineral density (P<0.001. An association between undetectable viral load and QUS bone density was also suggested (β = 0.48, CI: 0.02;0.93; P = 0.04. No association between protease inhibitor or tenofovir use and QUS bone mineral density was found. CONCLUSION: Senegalese HIV-infected patients had reduced QUS bone mineral density in comparison with control subjects, in part related to their lower BMI. Further investigation is needed to clarify the clinical significance of these observations.

  15. Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study.

    Science.gov (United States)

    Baseri, Babak; Choi, James J; Tung, Yao-Sheng; Konofagou, Elisa E

    2010-09-01

    As a potentially viable method of brain drug delivery, the safety profile of blood-brain barrier (BBB) opening using focused ultrasound (FUS) and ultrasound contrast agents (UCA) needs to be established. In this study, we provide a short-term (30-min or 5-h survival) histological assessment of murine brains undergoing FUS-induced BBB opening. Forty-nine mice were intravenously injected with Definity microbubbles (0.05 microL/kg) and sonicated under the following parameters: frequency of 1.525 MHz, pulse length of 20 ms, pulse repetition frequency of 10 Hz, peak rarefactional acoustic pressures of 0.15-0.98 MPa and two 30-s sonication intervals with an intermittent 30-s delay. The BBB opening threshold was found to be 0.15-0.3 MPa based on fluorescence and magnetic resonance imaging of systemically injected tracers. Analysis of three histological measures in hematoxylin and eosin-stained sections revealed the safest acoustic pressure to be within the range of 0.3-0.46 MPa in all examined time periods post sonication. Across different pressure amplitudes, only the samples 30 min post opening showed significant difference (p < 0.05) in the average number of distinct damaged sites, microvacuolated sites, dark neurons and sites with extravasated erythrocytes. Enhanced fluorescence around severed microvessels was also noted and found to be associated with the largest tissue effects, whereas mildly diffuse BBB opening with uniform fluorescence in the parenchyma was associated with no or mild tissue injury. Region-specific areas of the sonicated brain (thalamus, hippocampal fissure, dentate gyrus and CA3 area of hippocampus) exhibited variation in fluorescence intensity based on the position, orientation and size of affected vessels. The results of this short-term histological analysis demonstrated the feasibility of a safe FUS-UCA-induced BBB opening under a specific set of sonication parameters and provided new insights on the mechanism of BBB opening.

  16. The feasibility and safety of high-intensity focused ultrasound combined with low-dose external beam radiotherapy as supplemental therapy for advanced prostate cancer following hormonal therapy.

    Science.gov (United States)

    Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; Zhang, Bo-Heng; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing

    2011-05-01

    The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam radiotherapy (CRT). We performed a prospective, controlled and non-randomized study on 120 patients with advanced PCa after HT who received HIFU, CRT, HIFU+LRT and HT alone, respectively. CT/MR imaging showed the primary tumours and pelvic lymph node metastases visibly shrank or even disappeared after HIFU+LRT treatment. There were significant differences among four groups with regard to overall survival (OS) and disease-specific survival (DSS) curves (P = 0.018 and 0.015). Further comparison between each pair of groups suggested that the long-term DSS of the HIFU+LRT group was higher than those of the other three groups, but there was no significant difference between the HIFU+LRT group and the CRT group. Multivariable Cox's proportional hazard model showed that both HIFU+LRT and CRT were independently associated with DSS (P = 0.001 and 0.035) and had protective effects with regard to the risk of death. Compared with CRT, HIFU+LRT significantly decreased incidences of radiation-related late gastrointestinal (GI) and genitourinary (GU) toxicity grade ≥ II. In conclusion, long-term survival of patients with advanced PCa benefited from strengthening local control of primary tumour and regional lymph node metastases after HT. As an alternative to CRT, HIFU+LRT showed good efficacy and better safety.

  17. High intensity focused ultrasound (HIFU) therapy for local treatment of hepatocellular carcinoma: Role of partial rib resection

    International Nuclear Information System (INIS)

    Zhu Hui; Zhou Kun; Zhang Lian; Jin Chengbin; Peng Song; Yang Wei; Li Kequan; Su Haibing; Chen Wenzhi; Bai Jin; Wu Feng; Wang, Zhibiao

    2009-01-01

    Objective: It has long been known that high intensity focused ultrasound (HIFU) can kill tissue through coagulative necrosis. However, it is only in recent years that practical clinical applications are becoming possible. Since the ribs have strong reflections to ultrasonic beams, they may affect the deposition of ultrasound energy, decreasing the efficacy of HIFU treatment and increasing the chance of adverse events when the intra-abdominal tumours concealed by ribs are treated. The aim of this study was to evaluate the influence of partial rib resection on the efficacy and safety of HIFU treatment. Methods: This prospective study was approved by the ethics committee at Chongqing University of Medical Sciences. An informed consent form was obtained from each patient and family member. A total of 16 patients with hepatocellular carcinoma (HCC), consisting of 13 males and 3 females, were studied. All patients had the successful HIFU treatment. To create a better acoustic pathway for HIFU treatment, all of the 16 patients had the ribs that shield the tumour mass to be removed. Magnetic resonance imaging (MRI) was used to evaluate the efficacy of HIFU treatment. Results: Sixteen cases had 23 nodules, including 12 cases with a single nodule, 1 case with 2 nodules, 3 cases with 3 nodules. The mean diameter of tumours was 7.0 ± 2.1 cm (5-10 cm). According to TNM classification, 9 patients were diagnosed as stage II, 4 patients were stage III, and 3 patients were stage IV. Follow-up imaging showed an absence of tumour blood supply and shrinkage of all treated lesions. The survival rates at 1, 2, 3, 4, and 5 years were 100%, 83.3%, 69.4%, 55.6%, and 55.6%, respectively. No serious complications were observed in the patients treated with HIFU. Conclusion: Partial rib resection can create a better acoustic pathway of HIFU therapy. Even though it is an invasive treatment, this measure offers patients an improved prospect of complete tumour ablation when no other treatment is

  18. A randomised trial to compare cognitive outcome after gamma knife radiosurgery versus whole brain radiation therapy in patients with multiple brain metastases : Research protocol CAR-study B

    NARCIS (Netherlands)

    Schimmel, W.C.M.; Verhaak, E.; Hanssens, Patrick E. J.; Gehring, K.; Sitskoorn, M.M.

    2018-01-01

    Background Gamma Knife radiosurgery (GKRS) is increasingly applied in patients with multiple brain metastases and is expected to have less adverse effects in cognitive functioning than whole brain radiation therapy (WBRT). Effective treatment with the least negative cognitive side effects is

  19. Prognosis of patients treated with whole brain radiation therapy for metastatic gestational trophoblastic disease

    International Nuclear Information System (INIS)

    Schechter, Naomi R.; Mychalczak, Borys; Jones, Walter; Spriggs, David

    1996-01-01

    Purpose/Objective: To evaluate the effect of multiple treatment and disease related variables on the local control and survival of patients receiving whole brain radiation therapy for metastatic gestational trophoblastic disease. Materials and Methods: Between November 1967 and December 1994, 21 patients were treated at our institution for gestational trophoblastic disease metastatic to the brain. 29% ((6(21))) were diagnosed with their brain metastases before the onset of chemotherapy (early group). 79% ((15(21))) developed their brain metastases during or after the administration of first-line chemotherapy (late group). All patients were treated with whole brain radiation therapy. The total dose ranged from 200 cGy to 3600 cGy (median 2200 cGy). Sixteen patients (76%) received concurrent systemic chemotherapy. None of the patients received intrathecal chemotherapy as a component of their initial treatment. Survival and local control were calculated from the date of diagnosis of brain metastases. Follow-up ranged from 11 months to 170 months with a median of 77 months. Results: The median overall survival was 21 months, with 2- and 5-year actuarial survivals of 46% and 31%, respectively. Neither survival nor local control was significantly affected by age at diagnosis of brain metastases (<35 vs. ≥35 years), time of presentation of brain metastases (early vs. late), or use of concurrent chemotherapy. The total dose of radiation (<2200 cGy vs. ≥2200 cGy) significantly affected initial local control, but not survival. The 5-year actuarial local control of the initial brain metastases with ≥2200 cGy was 91%, as compared to 24% with <2200 cGy (p=0.05). Survival was significantly affected by control of disease at extracranial sites. The 2- and 5-year actuarial survivals of the 9 patients whose disease was controlled at extracranial sites were 100% and 83%, respectively, as compared to 8% and 0% for the 12 whose extracranial disease was not controlled (p=0

  20. Combining stereotactic radiosurgery and systemic therapy for brain metastases: a potential role for temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, Matthew E. [Department of Radiation Oncology, New York University Langone Medical Center, New York, NY (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University Langone Medical Center, New York, NY (United States); Department of Medical Oncology, New York University Langone Medical Center, New York, NY (United States)

    2012-08-09

    Brain metastases are unfortunately very common in the natural history of many solid tumors and remain a life-threatening condition, associated with a dismal prognosis, despite many clinical trials aimed at improving outcomes. Radiation therapy options for brain metastases include whole brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). SRS avoids the potential toxicities of WBRT and is associated with excellent local control (LC) rates. However, distant intracranial failure following SRS remains a problem, suggesting that untreated intracranial micrometastatic disease is responsible for failure of treatment. The oral alkylating agent temozolomide (TMZ), which has demonstrated efficacy in primary malignant central nervous system tumors such as glioblastoma, has been used in early phase trials in the treatment of established brain metastases. Although results of these studies in established, macroscopic metastatic disease have been modest at best, there is clinical and preclinical data to suggest that TMZ is more efficacious at treating and controlling clinically undetectable intracranial micrometastatic disease. We review the available data for the primary management of brain metastases with SRS, as well as the use of TMZ in treating established brain metastases and undetectable micrometastatic disease, and suggest the role for a clinical trial with the aims of treating macroscopically visible brain metastases with SRS combined with TMZ to address microscopic, undetectable disease.

  1. Regression of gastric malt-lymphoma under specific therapy may be predict by endoscopic ultrasound.

    Science.gov (United States)

    Gheorghe, Cristian; Băncilă, Ion; Stoia, Răzvan; Gheorghe, Liana; Becheanu, Gabriel; Dobre, Camelia; Brescan, Raluca

    2004-06-01

    Mucosa-associated lymphoid tissue (MALT) lymphomas represent a relatively new described class of rare lymphomas, characterized by an indolent course and favourable outcome with specific therapy. Gastric MALT lymphomas are associated with chronic Helicobacter pylori (HP) infection. We report the case of a 67 year old man admitted for an 8-month history of epigastric pain, anorexia and progressive weight loss. He was diagnosed with low-grade primary gastric MALT lymphoma by endoscopy, histopathological examination of gastric mucosa (light microscopy and immunohistochemistry) and endoscopic ultrasonography (EUS). The patient received a 2-week course of anti-HP therapy and chemotherapy with Chlorambucil 0.1 mg/kg/day was started. During the follow-up, continuous improvement of clinical status, endoscopic and EUS appearance was noted. We conclude that, facing the trend toward nonsurgical treatment modalities for primary gastric lymphoma, EUS appears an important tool for staging the disease and defining cases suitable for anti-HP, radio- and chemotherapy, as well as for the detection of local recurrence.

  2. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  3. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    International Nuclear Information System (INIS)

    Holtzman, Adam L.; Hoppe, Bradford S.; Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G.; Williams, Christopher R.; Li, Zuofeng; Mendenhall, Nancy P.

    2016-01-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  4. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, Adam L. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Williams, Christopher R. [Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida (United States); Li, Zuofeng; Mendenhall, Nancy P. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  5. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy

    International Nuclear Information System (INIS)

    Mahadevan, Anand; Sampson, Carrie; LaRosa, Salvatore; Floyd, Scott R.; Wong, Eric T.; Uhlmann, Erik J.; Sengupta, Soma; Kasper, Ekkehard M.

    2015-01-01

    Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1–3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V 24 (9 cc vs. 44 cc, p < 0.0000) and V 30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia

  6. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Clement, S.D.; Harling, O.K.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated

  7. CT-stereotactic interstitial Curie-therapy using iodine-125 seeds in inoperable brain tumours

    International Nuclear Information System (INIS)

    Mundinger, F.

    1985-01-01

    Iodine-125 seeds are a new radio-drug featuring favourable physical, biological and radiation protection characteristics and available for interstitial (local) irradiation (Curie-therapy) of non-resectable brain tumours as such (cerebral tumours) or of tumours of the interior of the neuro-cranium (extracerebral tumours). Emitters are inserted right into the tumour or tumour recurrence by means of computerized-tomography stereotaxy either permanently or temporarily with dose release being largely restricted to the tumour and the surrounding brain tissue being spared. (orig.) [de

  8. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  9. Clinical features of brain metastases in breast cancer: an implication for hippocampal-sparing whole-brain radiation therapy

    Directory of Open Access Journals (Sweden)

    Wu S

    2016-12-01

    Full Text Available San-Gang Wu,1,* Jia-Yuan Sun,2,* Qin Tong,3 Feng-Yan Li,2 Zhen-Yu He2 1Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, 2Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 3Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China *These authors contributed equally to this work Objective: The objectives of this study were to describe the distribution of brain metastases (BM in breast cancer patients and investigate the risk factors for perihippocampal metastases (PHM. Patients and methods: Retrospective analysis of the clinicopathological characteristics and patterns of BM was performed. Associations between clinicopathological characteristics and PHM (the hippocampus plus 5 mm margin were evaluated using logistic regression analyses. Results: A total of 1,356 brain metastatic lesions were identified in 192 patients. Patients with 1–3 BM, 4–9 BM, and ≥10 BM accounted for 63.0%, 18.8%, and 18.2%, respectively. There were only 7 (3.6% patients with hippocampal metastases (HM and 14 (7.3% patients with PHM. On logistic regression, the number of BM was an independent risk factor for PHM. Patients with ≥10 BM had a significantly higher risk of PHM compared with those with <10 BM. Breast cancer subtype (BCS was not associated with PHM. The number of BM was significantly correlated with various BCSs. Patients with hormone receptor (HR+/human epidermal growth factor receptor 2 (HER2+, HR-/HER2+, and HR-/HER2- subtypes had a higher probability of ≥10 BM, relative to patients with an HR+/HER2- subtype. Conclusion: Our study suggests that a low incidence of PHM may be acceptable to perform hippocampal-sparing whole-brain radiation therapy for breast cancer patients

  10. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Orton, Nigel; Tome, Wolfgang A.; Chappell, Rick; Ritter, Mark A.

    2003-01-01

    Background and purpose: To compare the rectal wall and bladder volume in the high dose region with or without the use of a balloon catheter with both three-dimensional (3D)-conformal and intensity modulated radiation therapy (CRT, IMRT) approaches in the treatment of prostate cancer. Material and methods: Five patients with a wide range of prostate volumes and treated with primary external beam radiation therapy for localized prostate cancer were selected for analysis. Pinnacle TM treatment plans were generated utilizing a 3D conformal six-field design and an IMRT seven coplanar-field plan with a novel, three-step optimization and with ultrasound localization. Separate plans were devised with a rectal balloon deflated or air inflated with and without inclusion of the seminal vesicles (SV) in the target volume. The prescription dose was 76 Gy in 38 fractions of 2 Gy each. Cumulative dose-volume histograms (DVHs) were analyzed for the planning target volume (PTV), rectal wall, and bladder with an inflated (60 cc air) or deflated balloon with and without SV included. The volumes of rectal wall and bladder above 60, 65, and 70 Gy with each treatment approach were evaluated. Results: Daily balloon placement was well-tolerated with good patient positional reproducibility. Inflation of the rectal balloon in all cases resulted in a significant decrease in the absolute volume of rectal wall receiving greater than 60, 65, or 70 Gy. The rectal sparing ratio (RSR), consisting of a structure's high dose volume with the catheter inflated, divided by the volume with the catheter deflated, was calculated for each patient with and without seminal vesicle inclusion for 3D-CRT and IMRT. For 3D-CRT, RSRs with SV included were 0.59, 0.59, and 0.56 and with SV excluded were 0.60, 0.58, and 0.54 at doses of greater than 60, 65, and 70 Gy, respectively. Similarly, for IMRT, the mean RSRs were 0.59, 0.59, and 0.63 including SV and 0.71, 0.66, and 0.67 excluding SV at these same dose levels

  11. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.

    Science.gov (United States)

    Wairagkar, Maitreyee; McCrindle, Rachel; Robson, Holly; Meteyard, Lotte; Sperrin, Malcom; Smith, Andy; Pugh, Moyra

    2017-03-23

    The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and "integrated", treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks. The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients' engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate. MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group. Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients' performance is monitored through MaLT's reporting facility

  12. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    OpenAIRE

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers non...

  13. New methods of minimally invasive brain modulation as therapies in psychiatry: TMS, MST, VNS and DBS.

    Science.gov (United States)

    George, Mark S

    2002-08-01

    Over the past 20 years, new methods have been developed that have allowed scientists to visualize the human brain in action. Initially positron emission tomography (PET) and now functional magnetic resonance imaging (fMRI) are causing a paradigm shift in psychiatry and the neurosciences. Psychiatry is abandoning the pharmacological model of 'brain as soup', used for much of the past 20 years. Instead, there is new realization that both normal and abnormal behavior arise from chemical processes that occur within parallel distributed networks in specific brain regions. Many of these pathological circuits are becoming well characterized, in disorders ranging from Parkinson's disease, to obsessive-compulsive disorder, to depression. Most recently, there has been an explosion of new techniques that allow for direct stimulation of these brain circuits, without the need for open craniotomy and neurosurgical ablation. The techniques include transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). This review will describe these new tools, and overview their current and future potential for research and clinical neuropsychiatric use. The psychiatry of the future will be better grounded in a firm understanding of neuroanatomy and neurophysiology (as well as pharmacology). These brain stimulation tools, or their next iterations, will play an ever-larger role in clinical neuropsychiatric practice.

  14. Endovascular ultrasound for renal sympathetic denervation in patients with therapy-resistant hypertension not responding to radiofrequency renal sympathetic denervation.

    Science.gov (United States)

    Stiermaier, Thomas; Okon, Thomas; Fengler, Karl; Mueller, Ulrike; Hoellriegel, Robert; Schuler, Gerhard; Desch, Steffen; Lurz, Philipp

    2016-06-12

    Recent studies have reported a considerable number of non-responders after renal sympathetic de-nervation (RSD) with radiofrequency technology. Here we report our results of repeat RSD using ultrasound in these patients. A cohort study was performed in patients who underwent ultrasound RSD after non-response to RSD with radiofrequency. Non-response was defined as mean daytime systolic blood pressure ≥140 mmHg and/or a reduction of ≤10 mmHg in ambulatory blood pressure measurement (ABPM) ≥6 months after radiofrequency denervation. ABPM was recorded at baseline, post radiofrequency RSD as well as at three and six months post ultrasound RSD. A total of 24 non-responders underwent retreatment with the ultrasound device at a mean 15.3±8.2 months after radiofrequency RSD. Ultrasound RSD was performed successfully in all patients without severe adverse events. Mean daytime systolic blood pressure changed from 161.7±14.6 mmHg at baseline to 158.5±9.5 mmHg post radiofrequency RSD and to 150.5±10.4 mmHg and 151.6±11.0 mmHg at three and six months, respectively, post ultrasound RSD (pmeasures analysis of variance). The main results of post hoc testing were as follows: baseline versus post radiofrequency RSD, p=0.83; baseline versus three months post ultrasound RSD, p=0.01; and baseline versus six months post ultrasound RSD, p=0.04. Ultrasound RSD appears to be safe and an effective therapeutic approach in patients not responding to previous RSD with radiofrequency technology.

  15. Computational Modeling of Medical Images of Brain Tumor Patients for Optimized Radiation Therapy Planning

    DEFF Research Database (Denmark)

    Agn, Mikael

    In brain tumor radiation therapy, the aim is to maximize the delivered radiation dose to the targeted tumor and at the same time minimize the dose to sensitive healthy structures – so-called organs-at-risk (OARs). When planning a radiation therapy session, the tumor and the OARs therefore need...... to be delineated on medical images of the patient’s head, to be able to optimize a radiation dose plan. In clinical practice, the delineation is performed manually with limited assistance from automatic procedures, which is both time-consuming and typically suffers from poor reproducibility. There is, therefore...

  16. Concurrent Chemotherapy and Pulsed High-Intensity Focused Ultrasound Therapy for the Treatment of Unresectable Pancreatic Cancer: Initial Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Choi, Byung Ihn; Ryu, Ji Kon; Kim, Yong Tae; Kim, Se Hyung; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of); Hwang, Joo Ha [University of Washington Medical Center, Seattle (United States)

    2011-04-15

    This study was performed to evaluate the potential clinical value of concurrent chemotherapy and pulsed high intensity focused ultrasound (HIFU) therapy (CCHT), as well as the safety of pulsed HIFU, for the treatment of unresectable pancreatic cancer. Twelve patients were treated with HIFU from October 2008 to May 2010, and three of them underwent CCHT as the main treatment (the CCHT group). The overall survival (OS), the time to tumor progression (TTP), the complications and the current performance status in the CCHT and non-CCHT groups were analyzed. Nine patients in the non-CCHT group were evaluated to determine why CCHT could not be performed more than twice. The OS of the three patients in the CCHT group was 26.0, 21.6 and 10.8 months, respectively, from the time of diagnosis. Two of them were alive at the time of preparing this manuscript with an excellent performance status, and one of them underwent a surgical resection one year after the initiation of CCHT. The TTP of the three patients in the CCHT group was 13.4, 11.5 and 9.9 months, respectively. The median OS and TTP of the non-CCHT group were 10.3 months and 4.4 months, respectively. The main reasons why the nine patients of the non-CCHT group failed to undergo CCHT more than twice were as follows: pancreatitis (n = 1), intolerance of the pain during treatment (n = 4), palliative use of HIFU for pain relief (n = 1) and a poor physical condition due to disease progression (n = 3). No major complications were encountered except one case of pancreatitis. This study shows that CCHT is a potentially effective and safe modality for the treatment of unresectable pancreatic cancer

  17. Calcification of the bilateral basal ganglia after radiation therapy for childhood brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Osami; Tajika, Yasuhiko; Sakairi, Mitsuhiko; Katahira, Masako; Shimizu, Takashi; Kitamura, Koichi

    1987-12-01

    Calcification of the basal ganglia subsequent to radiation therapy for childhood brain tumors has rarely been reported. Three cases of this calcification subsequent to radiation are presented here. Case 1 is a 7 year-old boy who underwent irradiation of 5000 rads locally for craniopharyngioma at the age of 4 years. Case 2 is a 4 year-old boy who was treated with irradiation of 4500 rads locally for cerebellar medulloblastoma at the age of 1 year. Case 3 is a 15 year-old girl who was treated with irradiation of 5000 rads to the brain and 3000 rads locally for suprasellar germinoma at the age of 11 years. In all these cases, the interval between radiation and evidence of calcification as detected only by CT scan, was more than 3 years and 2 cases are experiencing mild mental retardation. These findings suggest the possibility of long-term complications due to radiation therapy.

  18. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    International Nuclear Information System (INIS)

    Hartford, Alan C.; Paravati, Anthony J.; Spire, William J.; Li, Zhongze; Jarvis, Lesley A.; Fadul, Camilo E.; Rhodes, C. Harker; Erkmen, Kadir; Friedman, Jonathan; Gladstone, David J.; Hug, Eugen B.; Roberts, David W.; Simmons, Nathan E.

    2013-01-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  3. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Clement, S.D.; Harling, O.K.; Brenner, J.F.; Wazer, D.E.; Madoc-Jones, H.; Yanch, J.C.

    1990-01-01

    Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction

  4. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    OpenAIRE

    Hegde, Shantala

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairm...

  5. Electroconvulsive therapy, hypertensive surge, blood-brain barrier breach, and amnesia

    DEFF Research Database (Denmark)

    Andrade, Chittaranjan; Bolwig, Tom G

    2014-01-01

    Preclinical and clinical evidence show that electroconvulsive therapy (ECT)-induced intraictal surge in blood pressure may result in a small, transient breach in the blood-brain barrier, leading to mild cerebral edema and a possible leach of noxious substances from blood into brain tissues...... convincing evidence of benefits. It is concluded that there is insufficient support, at present, for the hypothesis that the hypertensive surge during ECT and the resultant blood-brain barrier breach contribute meaningfully to ECT-induced cognitive deficits. Future research should address the subset....... These changes may impair neuronal functioning and contribute to the mechanisms underlying ECT-induced cognitive deficits. Some but not all clinical data on the subject suggest that blood pressure changes during ECT correlate with indices of cognitive impairment. In animal models, pharmacological manipulations...

  6. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders

    Science.gov (United States)

    Dukart, Juergen; Regen, Francesca; Kherif, Ferath; Colla, Michael; Bajbouj, Malek; Heuser, Isabella; Frackowiak, Richard S.; Draganski, Bogdan

    2014-01-01

    There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a “barbaric” form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology. PMID:24379394

  7. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy.

    Science.gov (United States)

    Du, Enming; Hu, Xunwu; Roy, Sona; Wang, Peng; Deasy, Kieran; Mochizuki, Toshiaki; Zhang, Ye

    2017-05-30

    The precision and efficacy of photodynamic therapy (PDT) is essential for the treatment of brain tumors because the cancer cells are within or adjacent to the delicate nervous system. Taurine is an abundant amino acid in the brain that serves the central nervous system (CNS). A taurine-modified polypyridyl Ru-complex was shown to have optimized intracellular affinity in cancer cells through accumulation in lysosomes. Symmetrical modification of this Ru-complex by multiple taurine molecules enhanced the efficiency of molecular emission with boosted generation of reactive oxygen species. These characteristic features make the taurine-modified Ru-complex a potentially effective photosensitizer for PDT of target cancer cells, with outstanding efficacy in cancerous brain cells.

  8. Primate study suggests pentobarbital may help protect the brain during radiation therapy

    International Nuclear Information System (INIS)

    Skolnick, A.

    1990-01-01

    Radiation therapy, an often indispensable treatment for a wide range of brain tumors, is a double-edged sword, especially when used to treat children. Research reported at the 72nd Annual Meeting of the Endocrine Society, in Atlanta, Ga., now suggests that pentobarbital and perhaps other barbiturates may help protect the brain from radiation-induced damage, especially to the pituitary and hypothalmus, where such damage can lead to serious, life-long problems for children. Jeffrey J. Olson, MD, now assistant professor of neurosurgery at Emory University School of Medicine, Atlanta, reported the results of a study of the radioprotective effects of pentobarbital on the brain of a primate, which he and colleagues at the National Institute of Neurological Disorders and Stroke recently completed

  9. Self-Reported Cognitive Outcomes in Patients With Brain Metastases Before and After Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Ansa Maer [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany); Scherwath, Angela [Department of Medical Psychology, University Medical Centre Hamburg-Eppendorf, Hamburg (Germany); Ernst, Gundula [Department of Medical Psychology, Medical School Hannover, Hannover (Germany); Lanfermann, Heinrich [Institute for Neuroradiology, Medical School Hannover, Hannover (Germany); Bremer, Michael [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany); Steinmann, Diana, E-mail: steinmann.diana@mh-hannover.de [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany)

    2013-11-15

    Purpose: Patients with brain metastases may experience treatment-related cognitive deficits. In this study, we prospectively assessed the self-reported cognitive abilities of patients with brain metastases from any solid primary cancer before and after irradiation of the brain. Methods and Materials: The treatment group (TG) consisted of adult patients (n=50) with brain metastases who received whole or partial irradiation of the brain without having received prior radiation therapy (RT). The control group (CG) consisted of breast cancer patients (n=27) without cranial involvement who were treated with adjuvant RT. Patients were recruited between May 2008 and December 2010. Self-reported cognitive abilities were acquired before RT and 6 weeks, 3 months, and 6 months after irradiation. The information regarding the neurocognitive status was collected by use of the German questionnaires for self-perceived deficits in attention (FEDA) and subjectively experienced everyday memory performance (FEAG). Results: The baseline data showed a high proportion of self-perceived neurocognitive deficits in both groups. A comparison between the TG and the CG regarding the course of self-reported outcomes after RT showed significant between-group differences for the FEDA scales 2 and 3: fatigue and retardation of daily living activities (P=.002) and decrease in motivation (P=.032) with an increase of attention deficits in the TG, but not in the CG. There was a trend towards significance in FEDA scale 1: distractibility and retardation of mental processes (P=.059) between the TG and the CG. The FEAG assessment presented no significant differences. An additional subgroup analysis within the TG was carried out. FEDA scale 3 showed significant differences in the time-related progress between patients with whole-brain RT and those receiving hypofractionated stereotactic RT (P=.025), with less decrease in motivation in the latter group. Conclusion: Self-reported attention declined in

  10. Self-Reported Cognitive Outcomes in Patients With Brain Metastases Before and After Radiation Therapy

    International Nuclear Information System (INIS)

    Cole, Ansa Maer; Scherwath, Angela; Ernst, Gundula; Lanfermann, Heinrich; Bremer, Michael; Steinmann, Diana

    2013-01-01

    Purpose: Patients with brain metastases may experience treatment-related cognitive deficits. In this study, we prospectively assessed the self-reported cognitive abilities of patients with brain metastases from any solid primary cancer before and after irradiation of the brain. Methods and Materials: The treatment group (TG) consisted of adult patients (n=50) with brain metastases who received whole or partial irradiation of the brain without having received prior radiation therapy (RT). The control group (CG) consisted of breast cancer patients (n=27) without cranial involvement who were treated with adjuvant RT. Patients were recruited between May 2008 and December 2010. Self-reported cognitive abilities were acquired before RT and 6 weeks, 3 months, and 6 months after irradiation. The information regarding the neurocognitive status was collected by use of the German questionnaires for self-perceived deficits in attention (FEDA) and subjectively experienced everyday memory performance (FEAG). Results: The baseline data showed a high proportion of self-perceived neurocognitive deficits in both groups. A comparison between the TG and the CG regarding the course of self-reported outcomes after RT showed significant between-group differences for the FEDA scales 2 and 3: fatigue and retardation of daily living activities (P=.002) and decrease in motivation (P=.032) with an increase of attention deficits in the TG, but not in the CG. There was a trend towards significance in FEDA scale 1: distractibility and retardation of mental processes (P=.059) between the TG and the CG. The FEAG assessment presented no significant differences. An additional subgroup analysis within the TG was carried out. FEDA scale 3 showed significant differences in the time-related progress between patients with whole-brain RT and those receiving hypofractionated stereotactic RT (P=.025), with less decrease in motivation in the latter group. Conclusion: Self-reported attention declined in

  11. Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma.

    Science.gov (United States)

    O'Donnell-Luria, Anne H; Lin, Alexander P; Merugumala, Sai K; Rohr, Frances; Waisbren, Susan E; Lynch, Rebecca; Tchekmedyian, Vatche; Goldberg, Aaron D; Bellinger, Andrew; McFaline-Figueroa, J Ricardo; Simon, Tracey; Gershanik, Esteban F; Levy, Bruce D; Cohen, David E; Samuels, Martin A; Berry, Gerard T; Frank, Natasha Y

    2017-05-01

    Acute idiopathic hyperammonemia in an adult patient is a life-threatening condition often resulting in a rapid progression to irreversible cerebral edema and death. While ammonia-scavenging therapies lower blood ammonia levels, in comparison, clearance of waste nitrogen from the brain may be delayed. Therefore, we used magnetic resonance spectroscopy (MRS) to monitor cerebral glutamine levels, the major reservoir of ammonia, in a gastric bypass patient with hyperammonemic coma undergoing therapy with N-carbamoyl glutamate and the ammonia-scavenging agents, sodium phenylacetate and sodium benzoate. Improvement in mental status mirrored brain glutamine levels, as coma persisted for 48h after plasma ammonia normalized. We hypothesize that the slower clearance for brain glutamine levels accounts for the delay in improvement following initiation of treatment in cases of chronic hyperammonemia. We propose MRS to monitor brain glutamine as a noninvasive approach to be utilized for diagnostic and therapeutic monitoring purposes in adult patients presenting with idiopathic hyperammonemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The role of stereotactic radiation therapy in the management of children with brain tumors.

    Science.gov (United States)

    Lew, C M; LaVally, B

    1995-10-01

    Conventional radiation therapy plays an important role in the management of intracranial tumors in children. For certain tumors radiation therapy serves as the primary mode of treatment, and for others it plays an adjuvant role with surgery and/or chemotherapy. Improvements in long-term survival rates have focused attention on the long-term sequelae of brain tumors and their treatment, and the sequelae, in turn, have become important targets for clinical investigation. Long-term side effects of particular concern in children include cranial nerve damage, memory and intellectual deficits, pituitary-hypothalamic dysfunction, demyelinization of brain tissue, and secondary malignancies. A new form of radiation therapy, stereotactic radiotherapy (SRT), merges the technologies of stereotactic surgery and conventional fractionated radiotherapy. The intent is to deliver maximum tumoricidal doses to the target while limiting the dose to normal surrounding brain tissue. The key feature of SRT is a noninvasive, relocatable immobilization system to assure accurate and reproducible positioning during planning and treatment. The headframes used for children have been modified to address their specific needs. The complexities of this process require careful preparation of patients and their families and the participation of many disciplines. Long-term follow-up will be essential to evaluate the effectiveness of this innovative treatment.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  14. A Phase I Study of Short-Course Accelerated Whole Brain Radiation Therapy for Multiple Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Caravatta, Luciana; Deodato, Francesco; Ferro, Marica [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Cilla, Savino [Medical Physics Unit, Fondazione di Ricerca e Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, The Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, Michigan (United States); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Carrozza, Francesco [Department of Oncology, A. Cardarelli Hospital, Campobasso (Italy); Flocco, Mariano [Madre Teresa di Calcutta Hospice, Larino (Italy); Cantore, Giampaolo [Department of Neurological Sciences, Istituto Neurologico Mediterraneo Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); Buwenge, Milly [Department of Radiotherapy, Mulago Hospital, Kampala (Uganda); and others

    2012-11-15

    Purpose: To define the maximum tolerated dose (MTD) of a SHort-course Accelerated whole brain RadiatiON therapy (SHARON) in the treatment of patients with multiple brain metastases. Methods and Materials: A phase 1 trial in 4 dose-escalation steps was designed: 12 Gy (3 Gy per fraction), 14 Gy (3.5 Gy per fraction), 16 Gy (4 Gy per fraction), and 18 Gy (4.5 Gy per fraction). Eligibility criteria included patients with unfavorable recursive partitioning analysis (RPA) class > or =2 with at least 3 brain metastases or metastatic disease in more than 3 organ systems, and Eastern Cooperative Oncology Group (ECOG) performance status {<=}3. Treatment was delivered in 2 days with twice-daily fractionation. Patients were treated in cohorts of 6-12 to define the MTD. The dose-limiting toxicity (DLT) was defined as any acute toxicity {>=}grade 3, according to the Radiation Therapy Oncology Group scale. Information on the status of the main neurologic symptoms and quality of life were recorded. Results: Characteristics of the 49 enrolled patients were as follows: male/female, 30/19; median age, 66 years (range, 23-83 years). ECOG performance status was <3 in 46 patients (94%). Fourteen patients (29%) were considered to be in recursive partitioning analysis (RPA) class 3. Grade 1-2 acute neurologic (26.4%) and skin (18.3%) toxicities were recorded. Only 1 patient experienced DLT (neurologic grade 3 acute toxicity). With a median follow-up time of 5 months (range, 1-23 months), no late toxicities have been observed. Three weeks after treatment, 16 of 21 symptomatic patients showed an improvement or resolution of presenting symptoms (overall symptom response rate, 76.2%; confidence interval 0.95: 60.3-95.9%). Conclusions: Short-course accelerated radiation therapy in twice-daily fractions for 2 consecutive days is tolerated up to a total dose of 18 Gy. A phase 2 study has been planned to evaluate the efficacy on overall survival, symptom control, and quality of life indices.

  15. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-01-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  16. A Phase III Study of Conventional Radiation Therapy Plus Thalidomide Versus Conventional Radiation Therapy for Multiple Brain Metastases (RTOG 0118)

    International Nuclear Information System (INIS)

    Knisely, Jonathan P.S.; Berkey, Brian; Chakravarti, Arnab; Yung, Al W.K.; Curran, Walter J.; Robins, H. Ian; Movsas, Benjamin; Brachman, David G.; Henderson, Randall H.; Mehta, Minesh P.

    2008-01-01

    Purpose: To compare whole-brain radiation therapy (WBRT) with WBRT combined with thalidomide for patients with brain metastases not amenable to resection or radiosurgery. Patients and Methods: Patients with Zubrod performance status 0-1, MRI-documented multiple (>3), large (>4 cm), or midbrain brain metastases arising from a histopathologically confirmed extracranial primary tumor, and an anticipated survival of >8 weeks were randomized to receive WBRT to a dose of 37.5 Gy in 15 fractions with or without thalidomide during and after WBRT. Prerandomization stratification used Radiation Therapy Oncology Group (RTOG) Recursive Partitioning Analysis (RPA) Class and whether post-WBRT chemotherapy was planned. Endpoints included overall survival, progression-free survival, time to neurocognitive progression, the cause of death, toxicities, and quality of life. A protocol-planned interim analysis documented that the trial had an extremely low probability of ever showing a significant difference favoring the thalidomide arm given the results at the time of the analysis, and it was therefore closed on the basis of predefined statistical guidelines. Results: Enrolled in the study were 332 patients. Of 183 accrued patients, 93 were randomized to receive WBRT alone and 90 to WBRT and thalidomide. Median survival was 3.9 months for both arms. No novel toxicities were seen, but thalidomide was not well tolerated in this population. Forty-eight percent of patients discontinued thalidomide because of side effects. Conclusion: Thalidomide provided no survival benefit for patients with multiple, large, or midbrain metastases when combined with WBRT; nearly half the patients discontinued thalidomide due to side effects

  17. Occupational, Physical, and Speech Therapy Treatment Activities During Inpatient Rehabilitation for Traumatic Brain Injury.

    Science.gov (United States)

    Beaulieu, Cynthia L; Dijkers, Marcel P; Barrett, Ryan S; Horn, Susan D; Giuffrida, Clare G; Timpson, Misti L; Carroll, Deborah M; Smout, Randy J; Hammond, Flora M

    2015-08-01

    To describe the use of occupational therapy (OT), physical therapy (PT), and speech therapy (ST) treatment activities throughout the acute rehabilitation stay of patients with traumatic brain injury. Multisite prospective observational cohort study. Inpatient rehabilitation settings. Patients (N=2130) admitted for initial acute rehabilitation after traumatic brain injury. Patients were categorized on the basis of admission FIM cognitive scores, resulting in 5 fairly homogeneous cognitive groups. Not applicable. Percentage of patients engaged in specific activities and mean time patients engaged in these activities for each 10-hour block of time for OT, PT, and ST combined. Therapy activities in OT, PT, and ST across all 5 cognitive groups had a primary focus on basic activities. Although advanced activities occurred in each discipline and within each cognitive group, these advanced activities occurred with fewer patients and usually only toward the end of the rehabilitation stay. The pattern of activities engaged in was both similar to and different from patterns seen in previous practice-based evidence studies with different rehabilitation diagnostic groups. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury.

    Science.gov (United States)

    Haefeli, Jenny; Ferguson, Adam R; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A; Massa, Stephen M

    2017-02-16

    Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans.

  19. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    Science.gov (United States)

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  20. Primary lymphoma of brain: results of management of a modern cohort with radiation therapy

    International Nuclear Information System (INIS)

    Laperriere, Normand J.; Cerezo, Laura; Milosevic, Michael F.; Wong, C. Shun; Patterson, Bruce; Panzarella, Tony

    1997-01-01

    Purpose: To assess the outcome and prognostic factors for patients with primary lymphoma of brain managed with radiation therapy between 1979 and 1988. Methods and materials: A retrospective review was undertaken of 49 patients referred to Princess Margaret Hospital. There were 25 males and 24 females. Median age was 60 years, with a range of 17-80 years. Tumors were located supratentorially in 35, infratentorially in 10, and both in 4 patients. Single masses were demonstrated on CT brain in 36, and multiple lesions in 13 patients. Cranial irradiation was given in 48, and 11 patients received chemotherapy. All patients in this series were immunocompetent. Results: Over a follow-up range of 3-11 years of surviving patients, with a median of 6 years, (40(49)) patients have died. Overall median survival was 1.4 years (17 months) and 5-year actuarial survival was 26%. Statistical analysis revealed the following significant factors: Karnofsky performance status (KPS), age, and distribution pattern of disease on presenting CT brain. Five-year actuarial survival for patients with a KPS > 60 or 60, 5-year actuarial survival was 42% and 9%, respectively (P = 0.03); for patients with solitary or multiple lesions, 5-year actuarial survival was 30% and 15%, respectively (P = 0.04). Conclusions: We conclude that Karnofsky performance status, age, and distribution pattern on pretreatment CT of brain are significant prognostic factors in primary lymphoma of brain, and that new approaches need to be developed for these patients

  1. Frontal brain asymmetry as a marker of depression and effectiveness of TMS therapy

    International Nuclear Information System (INIS)

    Mani, D.; Lithgow, B.

    2010-01-01

    Full text: Resting frontal brain electroencephalography (EEG) asymmetry has been hypothesi sed as a diagnostic marker for depression. A number of studies have shown that depressed individuals are characterised by diminished left sided activation of the prefrontal cortex, which is indicated by greater left than right alpha-band power. Relative left frontal region activity is believed to be associated with positive approach related behaviour and relative right frontal activity is seen to be linked to negative withdrawal related behaviour. In this study, frontal brain EEG was recorded from 17 depressed and 19 control subjects, from which frontal brain asymmetry ratios were calculated. The results confirmed the trend of relative left anterior hypoaclivation for individuals with depression compared to the healthy controls. This study also looked at beta and theta band ratios and found theta for depressed is predominantly negative, while the control group dis played mainly positive values. Beta comparison showed little significant difference between control and depressed groups. In addition, there have been few studies that examined frontal brain asymmetry in depression soon after treatment to gauge its effectiv ness. In a very preliminary study, the effect of Transcranial Magnetic Stimulation (TMS) therapy on the alpha band frontal brain asymmetry ratio for 5 depl'essed subjects before and after treatment found a slight increase in FBA ratio for 4 subjects. Further research and a larger subject group is required to validate these results.

  2. New three-dimensional moving field radiation therapy for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyama, Fuyuki; Kanno, Tetsuo; Nagata, Yutaka; Koga, Sukehiko [Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan); Jain, V K

    1992-06-01

    A new modified rotation radiation method called 'three-dimensional moving field radiation therapy' is described. The new method uses rotation in many planes while maintaining the same isocenter to achieve a good spatial dose distribution. This delivers a high dose to tumors and spares the surrounding normal structures. This easy method can be carried out using the equipment for conventional rotation radiation therapy. The new method was superior to the one plane rotation radiation therapy using a physical phantom with film, a chemical phantom using the iodine-starch reaction, and a new biological model using tumor cells. Treatment of six brain tumors irradiated with total air doses of 50-60 Gy caused no hair loss or radiation necrosis. (author).

  3. Evaluation of Gene Therapy as an Intervention Strategy to Treat Brain Injury from Stroke

    Directory of Open Access Journals (Sweden)

    Amanda J Craig

    2016-05-01

    Full Text Available Stroke is a leading cause of death and disability, with a lack of treatments available to prevent cell death, regenerate damaged cells and pathways, or promote neurogenesis. The extended period of hours to weeks over which tissue damage continues to occur makes this disorder a candidate for gene therapy. This review highlights the development of gene therapy in the area of stroke, with the evolution of viral administration, in experimental stroke models, from pre-injury to clinically relevant timeframes of hours to days post-stroke. The putative therapeutic proteins being examined include anti-apoptotic, pro-survival, anti-inflammatory, and guidance proteins, targeting multiple pathways within the complex pathology, with promising results. The balance of findings from animal models suggests that gene therapy provides a viable translational platform for treatment of ischaemic brain injury arising from stroke.

  4. Adaptation of vacuum-assisted mouthpiece head immobilization system for precision infant brain radiation therapy.

    Science.gov (United States)

    Wong, Kenneth; Cheng, Justine; Bowlin, Kristine; Olch, Arthur

    Our purpose was to describe an adaptation of a commercially available mouthpiece for vacuum-assisted mouthpiece immobilization for radiation therapy in infants. An infant diagnosed with a brain tumor required radiation therapy. After reviewing dental literature about obturators, we designed a modification for the smallest commercially available mouthpiece tray. The patient was simulated with the adapted mouthpiece tray. We achieved excellent immobilization and had small daily image guided treatment position shifts. Our patient tolerated treatment well without injury to oral cavity or mucosa. Head immobilization with a vacuum-assisted modified mouthpiece has not been described in infants. Our modification is a novel and safe and permits effective and accurate immobilization for infants for radiation therapy. New manufacturing technologies may allow creation of individualized mouthpieces. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  5. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma

    DEFF Research Database (Denmark)

    Blomstrand, M.; Berthelsen, Anne Kiil; Munck af Rosenschöld, Per Martin

    2012-01-01

    to the whole-brain irradiation that is part of standard management. Neurogenesis is very sensitive to radiation, and limiting the radiation dose to the hippocampus and the subventricular zone (SVZ) may preserve neurocognitive function. Radiotherapy plans were created using 4 techniques: standard opposing...... fields, intensity-modulated radiotherapy (IMRT), intensity-modulated arc therapy (IMAT), and intensity-modulated proton therapy (IMPT). Mean dose to the hippocampus and SVZ (mean for both sites) could be limited to 88.3% (range, 83.6%-91.0%), 77.1% (range, 71.5%-81.3%), and 42.3% (range, 26......-modulated proton therapy, thus making this an attractive option to be tested in a prospective clinical trial....

  6. Group Therapy Use and Its Impact on the Outcomes of Inpatient Rehabilitation After Traumatic Brain Injury: Data From Traumatic Brain Injury-Practice Based Evidence Project.

    Science.gov (United States)

    Hammond, Flora M; Barrett, Ryan; Dijkers, Marcel P; Zanca, Jeanne M; Horn, Susan D; Smout, Randall J; Guerrier, Tami; Hauser, Elizabeth; Dunning, Megan R

    2015-08-01

    To describe the amount and content of group therapies provided during inpatient rehabilitation for traumatic brain injury (TBI), and to assess the relations of group therapy with patient, injury, and treatment factors and outcomes. Prospective observational cohort. Inpatient rehabilitation. Consecutive admissions (N=2130) for initial TBI rehabilitation at 10 inpatient rehabilitation facilities (9 in the United States, 1 in Canada) from October 2008 to September 2011. Not applicable. Proportion of sessions that were group therapy (≥2 patients were treated simultaneously by ≥1 clinician); proportion of patients receiving group therapy; type of activity performed and amount of time spent in group therapy, by discipline; rehabilitation length of stay; discharge location; and FIM cognitive and motor scores at discharge. Of the patients, 79% received at least 1 session of group therapy, with group therapy accounting for 13.7% of all therapy sessions and 15.8% of therapy hours. On average, patients spent 2.9h/wk in group therapy. The greatest proportion of treatment time in group format was in therapeutic recreation (25.6%), followed by speech therapy (16.2%), occupational therapy (10.4%), psychology (8.1%), and physical therapy (7.9%). Group therapy time and type of treatment activities varied among admission FIM cognitive subgroups and treatment sites. Several factors appear to be predictive of receiving group therapy, with the treatment site being a major influence. However, group therapy as a whole offered little explanation of differences in the outcomes studied. Group therapy is commonly used in TBI rehabilitation, to varying degrees among disciplines, sites, and cognitive impairment subgroups. Various therapeutic activities take place in group therapy, indicating its perceived value in addressing many domains of functioning. Variation in outcomes is not explained well by overall percentage of therapy time delivered in groups. Copyright © 2015 American Congress

  7. Study on medical economic evaluation methods for metastatic brain tumors therapy

    International Nuclear Information System (INIS)

    Takura, Tomoyuki; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Uetsuka, Yoshio

    2010-01-01

    Treatment design for metastatic brain tumors is required to firstly care about the life and function for which the patient hopes because it is terminal care. Therefore, to discuss the value of the therapy, a viewpoint of the quality of life (QOL) and the socioeconomic factors other than the survival rate is important. However, examination that applies these factors to the therapy needs to be carried out more thoroughly. With this in mind, we discuss cost effectiveness of therapy for metastatic brain tumor, through a pilot study on gamma knife therapy. We studied 18 patients (mean age 61.6 years old) undergoing therapy for metastatic brain tumors. The health rate QOL was assessed by the profile-type measure SF-36 (Short-Form 36-Item Ver1.2) and the preference-based measure EQ-5D (EuroQoL-5D), before and six months after gamma knife therapy. Cost-utility-analysis (yen/Qaly) was carried out from quality adjusted life years (Qalys) and medical fee claims. In addition, we made a correlation analysis of the irradiation procedure and the gains attained. The observation by SF-36 for six months was useful for metastatic brain tumor. As a result, the QOL indicators showed increased mental health (MH: p=0.040) and role emotional (RE: p=0.029) with significant difference. In the measurement of EQ-5D, it was added only for one month based on the significant difference (p=0.022) from the pre-therapy QOL. The utilities that were analyzed became 0.052±0.175 standard deviation (SD) (score), and Qalys were 0.135. Because the cost was 721.4±5.2 SD (thousand yen), the performance of cost-utility-analysis was estimated as 5,330,000 (yen/Qaly). In addition, positive correlation (r=0.845/p=0.034) was found between the EQ-5D utility score and the tumor irradiation energy (mJ), etc. We established a new value over and above mere survival rate concerning metastatic brain tumor therapy. The socioeconomics and efficacy of therapy are more difficult to discuss in this disease than in other

  8. Defense Health Care: Research on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury and Post-Traumatic Stress Disorder

    Science.gov (United States)

    2015-12-01

    Traumatic Brain Injury and Post - Traumatic Stress Disorder Why GAO Did This Study TBI and PTSD are signature...injury (TBI) and post - traumatic stress disorder ( PTSD ), most of which were focused solely on TBI (29 articles). The 32 articles consisted of 7 case...Case Report Articles on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury (TBI) or Post - Traumatic Stress Disorder ( PTSD ),

  9. Evaluating acute effects of Electro Convulsive Therapy (ECT) on brain perfusion with Tc-99m HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Ozguven, M.; Ozturk, E.; Gunalp, B.; Ozgen, F.; Bayhan, H.

    1992-01-01

    Regional cerebral blood flow (rCBF) was measured by Tc-99m HMPAO brain perfusion SPECT in 10 schizophrenes (8 male, 2 female) undergoing electro convulsive therapy (ECT) and the results were compared to those of baseline studies performed 3 days prior to the ECT application to evaluate its acute effect on brain perfusion. ECT caused a redistribution in the tracers uptake. There was a global increase in the rCBF and the uptake became more pronounced in the basal ganglia (left: 44.4+-1.9%, right: 43.1+-19%) and to a degree in the parietal (left: 26.5+-4.1%, right: 25+-3.4%) and temporal (left: 22.9+-4.3%, right: 22.3+-3.6%) cortices. When evaluating the effects of ECT on rCBF, factors like the used perfusion agent, the injection and rCBF measurement times, clinical status of the patient, duration of the illness, used therapeutic agents and variations in the ECT application should be taken into consideration because the obtained data may reflect either the ictal or post-ictal changes on rCBF and is specific to the group of patients undergoing the study

  10. Cost-effectiveness Analysis of Stereotactic Radiosurgery Alone Versus Stereotactic Radiosurgery with Upfront Whole Brain Radiation Therapy for Brain Metastases.

    Science.gov (United States)

    Kim, H; Rajagopalan, M S; Beriwal, S; Smith, K J

    2017-10-01

    Stereotactic radiosurgery (SRS) alone or upfront whole brain radiation therapy (WBRT) plus SRS are the most commonly used treatment options for one to three brain oligometastases. The most recent randomised clinical trial result comparing SRS alone with upfront WBRT plus SRS (NCCTG N0574) has favoured SRS alone for neurocognitive function, whereas treatment options remain controversial in terms of cognitive decline and local control. The aim of this study was to conduct a cost-effectiveness analysis of these two competing treatments. A Markov model was constructed for patients treated with SRS alone or SRS plus upfront WBRT based on largely randomised clinical trials. Costs were based on 2016 Medicare reimbursement. Strategies were compared using the incremental cost-effectiveness ratio (ICER) and effectiveness was measured in quality-adjusted life years (QALYs). One-way and probabilistic sensitivity analyses were carried out. Strategies were evaluated from the healthcare payer's perspective with a willingness-to-pay threshold of $100 000 per QALY gained. In the base case analysis, the median survival was 9 months for both arms. SRS alone resulted in an ICER of $9917 per QALY gained. In one-way sensitivity analyses, results were most sensitive to variation in cognitive decline rates for both groups and median survival rates, but the SRS alone remained cost-effective for most parameter ranges. Based on the current available evidence, SRS alone was found to be cost-effective for patients with one to three brain metastases compared with upfront WBRT plus SRS. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.

    Science.gov (United States)

    Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C

    2009-01-13

    To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.

  12. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    Science.gov (United States)

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  13. MRI tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer

    Science.gov (United States)

    Yuan, Pu; Song, Dongkui

    2018-03-01

    To reduce the side effects of chemotherapy and achieve effective and safe therapy for prostate cancer, herein a simple but multi-functional TiO2:Gd@DOX/FA system activated by ultrasound was developed for the MRI-guided multi-mechanism therapy of prostate cancer. TiO2 nanoparticles served as a sonosensitizer as well as a nanocarrier with the pH-responsive release of DOX. The doping of Gd was not only able to endow the TiO2 with magnetic resonance imaging (MRI) ability, but also further improve the sonodynamic ability of the TiO2. The characterization of the as-prepared TiO2:Gd@DOX/FA showed sensitive pH-responsive drug release, high reactive oxygen species (ROS) production, T 1-MRI contrast performance and excellent biocompatibility. The cytotoxicity assay in vitro showed cell death up to 91.68% after 48 h incubation induced by the TiO2:Gd@DOX + ultrasound group. Meanwhile, in the in vivo synergistic therapy studies, the tumor sizes of all the nanomedicine groups were smaller than for the free DOX (V:V 0 = 4.2). More importantly, the body showed nearly no weight loss. This safety was also confirmed by the H&E staining, biodistribution experiment and serum biochemistry results. Altogether, TiO2:Gd@DOX/FA significantly reduced the side effects of DOX, augmented the levels of ROS and achieved effective and safe therapy, indicating its potential for the multi-mechanism therapy of prostate cancer. There is no conflict of interest in this study and no funding has been received for it. We received the approval of the Research Ethics Committee before conducting this study.

  14. Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver.

    Science.gov (United States)

    Kim, Young-Sun; Park, Min Jung; Rhim, Hyunchul; Lee, Min Woo; Lim, Hyo Keun

    2014-07-01

    The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  16. Investigation of the Safety of Focused Ultrasound-Induced Blood-Brain Barrier Opening in a Natural Canine Model of Aging.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Jones, Ryan Matthew; Barrett, Edward; Schwab, Anthony; Head, Elizabeth; Hynynen, Kullervo

    2017-01-01

    Rationale: Ultrasound-mediated opening of the Blood-Brain Barrier(BBB) has shown exciting potential for the treatment of Alzheimer's disease(AD). Studies in transgenic mouse models have shown that this approach can reduce plaque pathology and improve spatial memory. Before clinical translation can occur the safety of the method needs to be tested in a larger brain that allows lower frequencies be used to treat larger tissue volumes, simulating clinical situations. Here we investigate the safety of opening the BBB in half of the brain in a large aged animal model with naturally occurring amyloid deposits. Methods: Aged dogs naturally accumulate plaques and show associated cognitive declines. Low-frequency ultrasound was used to open the BBB unilaterally in aged beagles (9-11yrs, n=10) in accordance with institutionally approved protocols. Animals received either a single treatment or four weekly treatments. Magnetic resonance imaging(MRI) was used to guide the treatments and assess the tissue effects. The animals underwent neurological testing during treatment follow-up, and a follow-up MRI exam 1 week following the final treatment. Results: The permeability of the BBB was successfully increased in all animals (mean enhancement: 19±11% relative to untreated hemisphere). There was a single adverse event in the chronic treatment group that resolved within 24 hrs. Follow-up MRI showed the BBB to be intact with no evidence of tissue damage in all animals. Histological analysis showed comparable levels of microhemorrhage between the treated and control hemispheres in the prefrontal cortex (single/repeat treatment: 1.0±1.4 vs 0.4±0.5/5.2±1.8 vs. 4.0±2.0). No significant differences were observed in beta-amyloid load (single/repeat: p=0.31/p=0.98) although 3/5 animals in each group showed lower Aβ loads in the treated hemisphere. Conclusion: Whole-hemisphere opening of the BBB was well tolerated in the aged large animal brain. The treatment volumes and frequencies

  17. Retrospective study on therapy options of brain metastases: surgery versus stereotactic radiotherapy with the linear accelerator

    International Nuclear Information System (INIS)

    Fortunati, M.K.S.

    2001-04-01

    Background: in the therapy of brain metastases there has been a great progress in the last years. It was shown, that more aggressive therapies can not only extend the survival of the patients, but also improve quality of life. The major question of this study was, whether surgery or stereotactic radiotherapy with the linear accelerator show better results in behalf of the survival. Beside this major question many parameters regarding the patient or his primary cancer were examined. Methods: from the 1st of January 1995 until the 30th of June 2000 233 patients with one or more brain metastases have been treated in the Wagner Jauregg Landesnervenkrankenhaus Oberoesterreich (WJ LNKH OeO). The LINAC has been established on the 1st of July 1997. The patients have been distributed in three groups: 1. LINAC-group: 81 patients have been treated from the 1st of July 1997 until the 30th of June 2000 with the LINAC. 2. Surgery-group: 81 patients have been operated from the 1st of July 1997 until the 30th June 2000. 3 Control-group: 71 patients have been operated from the 1st of January 1995 until the 30th of June 1997, before the LINAC has been established on the 1st of July 1997. Results: There are shown the mean survival times. Therapy options (0,05): LINAC-group: 377 days. Surgery-group: 195 days. Control-group: 285 days. Primary cancer (0,05): unknown primary: 203 days. Cancer of the colon tract: 218 days. Breast cancer: 314 days. Melanoma: 162 days. Kidney: 466 days. Lung 261 days. Others: 439 days. Metastases in one/in both hemispheres (0,05): in one hemisphere 310 days, in both 184 days. All the other parameters (age, sex, Karnofsky-Index, period between diagnose of the primary and the brain metastases, primary cancer therapy, extra cerebral metastases, number of metastases, localization of metastases supra- or infratentoriell, dose/effect relationship in the LINAC-group, whole brain radiotherapy) showed interesting differences, but the results were not statistically

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... abdomen help determine causes of vomiting in young infants Because ultrasound provides real-time images, images that ...

  19. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  20. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    International Nuclear Information System (INIS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-01-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  1. Radiation-induced brain tumours: potential late complications of radiation therapy for brain tumours

    International Nuclear Information System (INIS)

    Nishio, S.; Morioka, T.; Inamura, T.; Takeshita, I.; Fukui, M.; Sasaki, M.; Nakamura, K.; Wakisaka, S.

    1998-01-01

    The development of neoplasms subsequent to therapeutic cranial irradiation is a rare but serious and potentially fatal complication. In this study, we retrospectively reviewed the clinical and pathological aspects of 11 patients who underwent cranial irradiation (range, 24-110 cGy) to treat their primary disease and thereafter developed secondary tumours within a span of 13 years. All tumours arose within the previous radiation fields, and satisfied the widely used criteria for the definition of radiation-induced neoplasms. There was no sex predominance (M: 5, F: 6) and the patients tended to be young at irradiation (1.3 - 42 years; median age: 22 years). The median latency period before the detection of the secondary tumour was 14.5 years (range: 6.5 - 24 years). Meningiomas developed in 5 patients, sarcomas in 4, and malignant gliomas in 2. A pre-operative diagnosis of a secondary tumour was correctly obtained in 10 patients based on the neuro-imaging as well as nuclear medicine findings. All patients underwent a surgical removal of the secondary tumour, 3 underwent additional chemotherapy, and one received stereotactic secondary irradiation therapy. During a median of 2 years of follow-up review after the diagnosis of a secondary tumour, 3 patients died related to the secondary tumours (2 sarcomas, 1 glioblastoma), one died of a recurrent primary glioma, while the remaining 7 have been alive for from 10 months to 12 years after being treated for the secondary tumours (median: 3 years). Based on these data, the clinicopathological characteristics and possible role of treatment for secondary tumours are briefly discussed. (author)

  2. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    Science.gov (United States)

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  3. Pulsed ultrasounds accelerate healing of rib fractures in an experimental animal model: an effective new thoracic therapy?

    Science.gov (United States)

    Santana-Rodríguez, Norberto; Clavo, Bernardino; Fernández-Pérez, Leandro; Rivero, José C; Travieso, María M; Fiuza, María D; Villar, Jesús; García-Castellano, José M; Hernández-Pérez, Octavio; Déniz, Antonio

    2011-05-01

    Rib fractures are a frequent traumatic injury associated with a relatively high morbidity. Currently, the treatment of rib fractures is symptomatic. Since it has been reported that pulsed ultrasounds accelerates repair of limb fractures, we hypothesized that the application of pulsed ultrasounds will modify the course of healing in an animal model of rib fracture. We studied 136 male Sprague-Dawley rats. Animals were randomly assigned to different groups of doses (none, 50, 100, and 250 mW/cm(2) of intensity for 3 minutes per day) and durations (2, 10, 20, and 28 days) of treatment with pulsed ultrasounds. In every subgroup, we analyzed radiologic and histologic changes in the bone callus. In addition, we examined changes in gene expression of relevant genes involved in wound repair in both control and treated animals. Histologic and radiologic consolidation was significantly increased by pulsed ultrasound treatment when applied for more than 10 days. The application of 50 mW/cm(2) was the most effective dose. Only the 100 and 250 mW/cm(2) doses were able to significantly increase messenger RNA expression of insulin-like growth factor 1, suppressor of cytokine signaling-2 and -3, and vascular endothelial growth factor and decrease monocyte chemoattractant protein-1 and collagen type II-alpha 1. Our findings indicate that pulsed ultrasound accelerates the consolidation of rib fractures. This study is the first to show that pulsed ultrasound promotes the healing of rib fractures. From a translational point of view, this easy, cheap technique could serve as an effective new therapeutic modality in patients with rib fractures. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury

    Science.gov (United States)

    Elkind, Jaclynn A.; Lim, Miranda M.; Johnson, Brian N.; Palmer, Chris P.; Putnam, Brendan J.; Kirschen, Matthew P.; Cohen, Akiva S.

    2015-01-01

    Traumatic brain injury (TBI) results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI), shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs), which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study, mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5, and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM nor BCAAs when dosed 5 days on then 5 days off was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function, which underlie and contribute to hippocampal cognitive impairment, which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy. PMID:25870584

  5. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  6. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    Science.gov (United States)

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  7. Brain expansion in patients with type II diabetes following insulin therapy: a preliminary study with longitudinal voxel-based morphometry.

    Science.gov (United States)

    Chen, Zhiye; Li, Jinfeng; Sun, Jie; Ma, Lin

    2014-01-01

    We performed a longitudinal analysis based on magnetic resonance (MR) imaging to investigate the brain structural and perfusion changes caused by insulin therapy in patients with type II diabetes. High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo images and flow-sensitive alternating inversion recovery (FAIR) images were obtained from 11 patients with type II diabetes before and 1 year after initiation of insulin therapy and 11 normal controls. Brain volume changes were investigated by a longitudinal voxel-based morphometry (VBM), and perfusion changes were evaluated by FAIR imaging between baseline and follow-up data. Significant regional gray matter (GM) expansion located in bilateral frontal, parietal, and left occipital lobes, and regional white matter (WM) expansion was shown in left precentral subcortical WM and right angular subcortical WM after insulin therapy (P Brain hyperperfusion was detected in bilateral frontal cortex, left occipital cortex, and right temporal cortex after insulin therapy (P brain expansion and hyperperfusion were demonstrated 1 year after initiation of insulin therapy, and insulin therapy could contribute to the brain volume gainment in the patients with type II diabetes. Copyright © 2013 by the American Society of Neuroimaging.

  8. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy

    DEFF Research Database (Denmark)

    Galldiks, Norbert; Law, Ian; Pope, Whitney B

    2017-01-01

    Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced MRI. However, the capacity of conventional MRI to differentiate tumor tissue from posttherapeutic effects following neurosurgical resection, chemoradiation, alkylating chemotherapy, radiosurgery, and......),O-(2-[18F]fluoroethyl)-l-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA) and summarizes investigations regarding monitoring of brain tumor therapy......./or immunotherapy may be limited. Metabolic imaging using PET can provide relevant additional information on tumor metabolism, which allows for more accurate diagnostics especially in clinically equivocal situations. This review article focuses predominantly on the amino acid PET tracers11C-methyl-l-methionine (MET...

  9. Boron neutron capture therapy for malignant brain tumor and future potential

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Hatanaka, Hiroshi.

    1994-01-01

    This paper presents therapeutic experience with boron neutron capture therapy (BNCT) for malignant brain tumors. Nine patients who survived for 10 years or more as of 1986 are given in a table. A review of the 9 patients concluded that physical dose of 15 Gy is required. In addition, the following factors are defined to be the most important: (1) to determine tumor size and depth as accurately as possible, (2) to measure neutron doses in the deepest site of the tumor during irradiation, (3) to measure the content of boron within the tumor, and to deliver neutron beams as deeply as possible. Finally, the importance of knowing RBE of alpha particles for tumor cells of the human brain is emphasized. (N.K.)

  10. Is whole brain radiation therapy needed for all patients with newly diagnosed brain metastases undergoing stereotactic radiosurgery?

    International Nuclear Information System (INIS)

    Suh, John H.; Barnett, Gene H.; Miller, David W.; Kupelian, Patrick A.; Cohen, Bruce H.

    1997-01-01

    PURPOSE: Since whole brain radiation therapy (WBRT) carries risks for long term survivors of brain metastases, some have advocated the use of stereotactic radiosurgery (SRS) alone for patients with brain metastases. We retrospectively reviewed our results of stereotactic radiosurgery (SRS) with immediate or delayed WBRT. MATERIALS/METHODS: From March 1990 to December 1996, linear accelerator-based SRS was performed on patients with Karnofsky score ≥ 70 and asymptomatic or mildly symptomatic brain metastases < 4 cm diameter. After excluding those patients with recurrent disease, 87 patients with 106 metastatic lesions (72 pts- single or solitary lesion, 13 pts- 2 lesions, 1 pt- 3 lesions, and 1 pt- 5 lesions) remained for analysis. The use of WBRT was dependent on physician preference but was given to all patients who developed local or regional failure after SRS. Survival was measured from the date of SRS until death or last follow-up using Kaplan-Meier method. Freedom from progression (FFP) was defined as no local or regional brain failure on follow-up radiographs and was measured from the date of SRS. RESULTS: Prognostic variables (age, sex, initial KPS, systemic disease, and extent of surgical resection) were similar for the 40 patients in the immediate WBRT group (iWBRT) and for the 47 patients in the delayed WBRT group (dWBRT). With a median follow-up of 5.8 months, no significant difference in median survival (6.9 months for both groups) was noted. On multivariate analysis, absence of systemic disease (p=0.008) and KPS 90-100 (p=0.001) were the only significant predictors for survival. For the 29 patients with a minimum