WorldWideScience

Sample records for ultrasound applications thermal

  1. Ultrasound therapy applicators for controlled thermal modification of tissue

    Science.gov (United States)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  2. Experimental investigations of an endoluminal ultrasound applicator for MR-guided thermal therapy of pancreatic cancer

    Science.gov (United States)

    Adams, Matthew; Salgaonkar, Vasant; Jones, Peter; Plata, Juan; Chen, Henry; Pauly, Kim Butts; Sommer, Graham; Diederich, Chris

    2017-03-01

    An MR-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. Minimally invasive ablation or hyperthermia treatment of pancreatic tumor tissue would be performed with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal tissue would be achieved with a water-cooled balloon surrounding the ultrasound transducers. This approach offers the capability of conformal volumetric therapy for fast treatment times, with control over the 3D spatial deposition of energy. Prototype endoluminal ultrasound applicators have been fabricated using 3D printed fixtures that seat two 3.2 or 5.6 MHz planar or curvilinear transducers and contain channels for wiring and water flow. Spiral surface coils have been integrated onto the applicator body to allow for device localization and tracking for therapies performed under MR guidance. Heating experiments with a tissue-mimicking phantom in a 3T MR scanner were performed and demonstrated capability of the prototype to perform volumetric heating through duodenal luminal tissue under real-time PRF-based MR temperature imaging (MRTI). Additional experiments were performed in ex vivo pig carcasses with the applicator inserted into the esophagus and aimed towards liver or soft tissue surrounding the spine under MR guidance. These experiments verified the capacity of heating targets up to 20-25 mm from the GI tract. Active device tracking and automated prescription of imaging and temperature monitoring planes through the applicator were made possible by using Hadamard encoded tracking sequences to obtain the coordinates of the applicator tracking coils. The prototype applicators have been integrated with an MR software suite that performs real-time device tracking and temperature monitoring.

  3. Highly directional transurethral ultrasound applicators with rotational control for MRI-guided prostatic thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Anthony B [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Diederich, Chris J [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Nau, William H [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Gill, Harcharan [Department of Urology, Stanford University, Stanford, CA (United States); Bouley, Donna M [Department of Comparative Medicine, Stanford University, Stanford, CA (United States); Daniel, Bruce [Department of Radiology, Stanford University, Stanford, CA (United States); Rieke, Viola [Department of Radiology, Stanford University, Stanford, CA (United States); Butts, R Kim [Department of Radiology, Stanford University, Stanford, CA (United States); Sommer, Graham [Department of Radiology, Stanford University, Stanford, CA (United States)

    2004-01-21

    Transurethral ultrasound applicators with highly directional energy deposition and rotational control were investigated for precise treatment of benign prostatic hyperplasia (BPH) and adenocarcinoma of the prostate (CaP). Two types of catheter-based applicators were fabricated, using either sectored tubular (3.5 mm OD x 10 mm) or planar transducers (3.5 mm x 10 mm). They were constructed to be MRI compatible, minimally invasive and allow for manual rotation of the transducer array within a 10 mm cooling balloon. In vivo evaluations of the applicators were performed in canine prostates (n 3) using MRI guidance (0.5 T interventional magnet). MR temperature imaging (MRTI) utilizing the proton resonance frequency shift method was used to acquire multiple-slice temperature overlays in real time for monitoring and guiding the thermal treatments. Post-treatment T1-weighted contrast-enhanced imaging and triphenyl tetrazolium chloride stained tissue sections were used to define regions of tissue coagulation. Single sonications with the tubular applicator ) produced coagulated zones covering a wedge of the prostate extending from 1-2 mm outside the urethra to the outer boundary of the gland (16 mm radial coagulation). Single sonications with the planar applicator (15-20 W, 10 min, {approx}8 MHz) generated thermal lesions of {approx}30 extending to the prostate boundary. Multiple sequential sonications (sweeping) of a planar applicator (12 W with eight rotations of 30 each) demonstrated controllable coagulation of a 270 contiguous section of the prostate extending to the capsule boundary. The feasibility of using highly directional transurethral ultrasound applicators with rotational capabilities to selectively coagulate regions of the prostate while monitoring and controlling the treatments with MRTI was demonstrated in this study.

  4. A thermal technique for local ultrasound intensity measurement: part 2. Application to exposimetry on a medical diagnostic device

    International Nuclear Information System (INIS)

    Wilkens, V

    2010-01-01

    Acoustic output measurements on medical ultrasound equipment are usually performed using radiation force balances to determine the output power and using hydrophones to determine pressure and intensity parameters. The local temporal-average ultrasound intensity can be measured alternatively by thermal sensors. The technique was described and prototype sensors were characterized in a preceding paper. Here, the application of such a thermal intensity sensor to the output beam characterization of a typical medical diagnostic device is described. Two transducers, a 7.5 MHz linear array and a 3.5 MHz convex array were investigated in different operating modes. For comparison, hydrophone measurements were also performed. If the spatial averaging effect is taken into account, good agreement is found between both measurement methods. The maximum deviations of the spatial-peak temporal-average intensities I SPTA obtained with the thermal sensor from the corresponding hydrophone-based results were below 12%. The simple thermal technique offers advantages for intensity measurements especially in the case of scanning and combined modes of the diagnostic device, where the synchronization between hydrophone measurements and the complex pulse emission pattern can be difficult

  5. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: In vivo evaluation under MR guidance

    International Nuclear Information System (INIS)

    Kinsey, Adam M.; Diederich, Chris J.; Rieke, Viola; Nau, William H.; Pauly, Kim Butts; Bouley, Donna; Sommer, Graham

    2008-01-01

    The purpose of this study was to explore the feasibility and performance of a multi-sectored tubular array transurethral ultrasound applicator for prostate thermal therapy, with potential to provide dynamic angular and length control of heating under MR guidance without mechanical movement of the applicator. Test configurations were fabricated, incorporating a linear array of two multi-sectored tubular transducers (7.8-8.4 MHz, 3 mm OD, 6 mm length), with three 120 deg. independent active sectors per tube. A flexible delivery catheter facilitated water cooling (100 ml min -1 ) within an expandable urethral balloon (35 mm longx10 mm diameter). An integrated positioning hub allows for rotating and translating the transducer assembly within the urethral balloon for final targeting prior to therapy delivery. Rotational beam plots indicate ∼90 deg. - 100 deg. acoustic output patterns from each 120 deg. transducer sector, negligible coupling between sectors, and acoustic efficiencies between 41% and 53%. Experiments were performed within in vivo canine prostate (n=3), with real-time MR temperature monitoring in either the axial or coronal planes to facilitate control of the heating profiles and provide thermal dosimetry for performance assessment. Gross inspection of serial sections of treated prostate, exposed to TTC (triphenyl tetrazolium chloride) tissue viability stain, allowed for direct assessment of the extent of thermal coagulation. These devices created large contiguous thermal lesions (defined by 52 deg. C maximum temperature, t 43 =240 min thermal dose contours, and TTC tissue sections) that extended radially from the applicator toward the border of the prostate (∼15 mm) during a short power application (∼8-16 W per active sector, 8-15 min), with ∼200 deg. or 360 deg. sector coagulation demonstrated depending upon the activation scheme. Analysis of transient temperature profiles indicated progression of lethal temperature and thermal dose contours

  6. Intracavitary ultrasound phased arrays for thermal therapies

    Science.gov (United States)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  7. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  8. Applications of ultrasound in food and bioprocessing.

    Science.gov (United States)

    Ashokkumar, Muthupandian

    2015-07-01

    Improving the quality and nutritional aspects of food is one of the key issues for healthy life of human beings. The stability during storage is an important parameter in quality assurance of food products. Various processing techniques such as high pressure, thermal, pulsed electric field and microwave have been used to prolong the shelf-life of food products. In recent years, ultrasound technology has been found to be a potential food processing technique. The passage of ultrasound in a liquid matrix generates mechanical agitation and other physical effects due to acoustic cavitation. Owing to its importance, a number of review articles and book chapters on the applications of ultrasound in food processing have been published in recent years. This article provides an overview of recent developments in ultrasonic processing of food and dairy systems with a particular focus on functionality of food and dairy ingredients. More specifically, the use of high frequency ultrasound in fat separation from milk and viscosity modification in starch systems and the use of low frequency ultrasound in generating nutritional food emulsions, viscosity modification and encapsulation of nutrients have been highlighted. The issues associated with the development of large scale ultrasonic food processing equipment have also been briefly discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Matthew S., E-mail: matt.adams@ucsf.edu; Diederich, Chris J. [Thermal Therapy Research Group, University of California, San Francisco, 2340 Sutter Street, S341, San Francisco, California 94115 and The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, California 94115 (United States); Salgaonkar, Vasant A.; Jones, Peter D. [Thermal Therapy Research Group, University of California, San Francisco, 2340 Sutter Street, S341, San Francisco, California 94115 (United States); Plata-Camargo, Juan; Sommer, Graham; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pascal-Tenorio, Aurea; Bouley, Donna M. [Department of Comparative Medicine, Stanford University, Stanford, California 94305 (United States); Chen, Hsin-Yu [The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, California 94115 (United States)

    2016-07-15

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise

  10. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    International Nuclear Information System (INIS)

    Adams, Matthew S.; Diederich, Chris J.; Salgaonkar, Vasant A.; Jones, Peter D.; Plata-Camargo, Juan; Sommer, Graham; Pauly, Kim Butts; Pascal-Tenorio, Aurea; Bouley, Donna M.; Chen, Hsin-Yu

    2016-01-01

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise

  11. Applications of ultrasound in dentistry.

    Science.gov (United States)

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  12. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-01-01

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  13. Practical sonochemistry power ultrasound uses and applications

    CERN Document Server

    Mason, T J

    2002-01-01

    This updated version of Practical Sonochemistry for advanced students and teachers in chemistry and chemical engineering conveys the increasing growth in applications and equipment to power ultrasound. Equipment now on the market offers a wider range of frequencies with more reproducible experimentation and a variety of scale-up systems. The book provides detailed descriptions of newer ultrasonic equipment and its applications, and practical laboratory uses of ultrasound technology for industrial scale performance.Modern exercises familiarise readers with recent sonochemical operations

  14. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Application of Ultrasound in the Food Industry

    Directory of Open Access Journals (Sweden)

    Javier Orlando Delgado

    2012-06-01

    Full Text Available Ultrasound is an emerging technology with more research and development for food preservation, one of the qualities of is the reduction of the concentration of microorganisms, inhibition of enzyme activity without altering the physical, chemical and nutritional foods.It was conducted direffent literature sources analysis to develop a document with ultrasound applications in main food technology processing, the benefits of cavitation effect, intensity and frequency applied in each of researching works that have been made today.

  16. Therapeutic ultrasound - Exciting applications and future challenges

    Science.gov (United States)

    Saffari, Nader

    2018-04-01

    This paper presents an overview of the applications of ultrasound for the treatment of an ever-growing range of medical conditions. After presenting a brief history of the development of therapeutic ultrasound, the different mechanisms by which beneficial bio-effects are triggered will be discussed. This will be followed by a discussion of some of the more promising applications, some of which have already been licensed and introduced into the clinic. The case of liver tumour ablation will be discussed to demonstrate some of the engineering challenges that still need to be overcome before this technology finds wider uptake in the medical world.

  17. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  18. OW FREQUENCY ULTRASOUND APPLICATION IN KNEE ARTHROSCOPY

    Directory of Open Access Journals (Sweden)

    V. V. Pedder

    2016-01-01

    Full Text Available Purpose: in vitro study of ultrasound dissection devices' impact on meniscus and knee cartilage as well as comparison of outcomes with familiar arthroscopic techniques.Materials and methods. Meniscus and joint cartilage specimen obtained during total knee replacement were placed in a normal saline. All experiments were conducted no later than in 2 hours after obtaining and followed by histology of biopsy specimens. In the first series of experiment the authors performed meniscus dissection with ultrasound instrument «Scalpel», cold plasm ablator and surgical scalpel.Results. The first series of experiments demonstrated disruption of fibers orientation on meniscus rim after dissection with scalpel; necrosis depth after coblation is 0,7-0,8 mm. Ultrasound dissection devices leave necrosis depth of 0,1-0,2 mm and smooth cartilage surface. The second series of experiments proved that after shaver application cartilage surface was coarse; certain necrosis sections of 16-90 nm were observed on relatively smooth cartilage surface after coblation. Application of ultrasound «Miller» device leaves smooth cartilage surface with no fibers, no signs of cartilage thinning and necrosis not exceeding 15 nm.Conclusion. The results of experiments confirm that use of low frequency ultrasound dissection devices is advantageous as compared to mechanical and ablation cutting techniques while ensuring histologically proven atraumatic handling of biopsy specimens of meniscus and hyaline cartilage.

  19. Applications of ultrasound in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Silva Martinez, Susana

    1997-10-01

    The effect of the ultrasound on electrochemical processes has been investigated employing a microelectrode within the cavitating media. Transient mass transport was strongly enhanced in the presence of ultrasound. High rates of mass transfer of up to 1.5 cm s-1 were observed. These high rates of mass transfer were attributed to two cavitation processes. First, bubble collapse at or near the solid-liquid interface with the consequent formation of a high speed liquid microjet directed at the electrode surface. Second, bubble motion near or within the diffusion layer or the electrode. Single current transients were also recorded at high time resolution. These single current transients were attributed to the short-time perturbation of the diffusion field of the microelectrode due to impacts of cavitation bubble collapse followed by a long time relaxation of the diffusion field back to the steady state. The influence of the ultrasonic source to electrode separation, temperature of the bulk solution, electrode potential and electrode size on the magnitude of current transients was also studied. All of these parameters affected markedly the magnitude of the current transients recorded at microelectrode in the presence of ultrasound. An alternative approach is presented to characterise fast heterogeneous electron transfer reactions employing ultrasound as a mass transport enhancement tool. Two innovative techniques, sampled-current voltammetry and sampled-mean current voltammetry, were developed during the course of this thesis. The technique of sample-current voltammetry reported values of the standard rate constant of heterogeneous electron transfer of up to 1.2 cm s-1 in the presence of ultrasound. This technique focuses on the electrochemical phenomena under investigation at the point of impact of the ultrasonic event, produced by asymmetric cavitation bubble collapse near the electrode surface. Bubble dynamics were also examined under the experimental conditions

  20. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Moros, Eduardo G [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Novak, Petr [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Straube, William L [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Kolluri, Prashant [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States); Yablonskiy, Dmitriy A [Department of Radiology, Washington University, St Louis, MO 63108 (United States); Myerson, Robert J [Department of Radiation Oncology, Washington University, St Louis, MO 63108 (United States)

    2004-03-21

    The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater

  1. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    International Nuclear Information System (INIS)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-01-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm -2 . By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled

  2. Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs

    International Nuclear Information System (INIS)

    Nau, William H; Diederich, Chris J; Shu, Richard

    2005-01-01

    Application of heat in the spine using resistive wire heating devices is currently being used clinically for minimally invasive treatment of discogenic low back pain. In this study, interstitial ultrasound was evaluated for the potential to heat intradiscal tissue more precisely by directing energy towards the posterior annular wall while avoiding vertebral bodies. Two single-element directional applicator design configurations were tested: a 1.5 mm OD direct-coupled (DC) applicator which can be implanted directly within the disc, and a catheter-cooled (CC) applicator which is inserted in a 2.4 mm OD catheter with integrated water cooling and implanted within the disc. The transducers were sectored to produce 90 deg. spatial heating patterns for directional control. Both applicator configurations were evaluated in four human cadaver lumbar disc motion segments. Two heating protocols were employed in this study in which the temperature measured 5 mm away from the applicator was controlled to either T = 52 deg. C, or T > 70 deg. C for the treatment period. These temperatures (thermal doses) are representative of those required for thermal necrosis of in-growing nociceptor nerve fibres and disc cellularity alone, or with coagulation and restructuring of annular collagen in the high-temperature case. Steady-state temperature maps, and thermal doses (t 43 ) were used to assess the thermal treatments. Results from these studies demonstrated the capability of controlling temperature distributions within selected regions of the disc and annular wall using interstitial ultrasound, with minimal vertebral end-plate heating. While directional heating was demonstrated with both applicator designs, the CC configuration had greater directional heating capabilities and offered better temperature control than the DC configuration, particularly during the high-temperature protocol. Further, ultrasound energy was capable of penetrating within the highly attenuating disc tissue to

  3. MR-guided focused ultrasound. Current and future applications

    International Nuclear Information System (INIS)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M.; Napoli, A.; Matzko, M.

    2013-01-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [de

  4. [MR-guided focused ultrasound. Current and future applications].

    Science.gov (United States)

    Trumm, C G; Napoli, A; Peller, M; Clevert, D-A; Stahl, R; Reiser, M; Matzko, M

    2013-03-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier.

  5. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    Science.gov (United States)

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  6. Thermal management for LED applications

    CERN Document Server

    Poppe, András

    2014-01-01

    Thermal Management for LED Applications provides state-of-the-art information on recent developments in thermal management as it relates to LEDs and LED-based systems and their applications. Coverage begins with an overview of the basics of thermal management including thermal design for LEDs, thermal characterization and testing of LEDs, and issues related to failure mechanisms and reliability and performance in harsh environments. Advances and recent developments in thermal management round out the book with discussions on advances in TIMs (thermal interface materials) for LED applications, advances in forced convection cooling of LEDs, and advances in heat sinks for LED assemblies. This book also: Presents a comprehensive overview of the basics of thermal management as it relates to LEDs and LED-based systems Discusses both design and thermal management considerations when manufacturing LEDs and LED-based systems Covers reliability and performance of LEDs in harsh environments Has a hands-on applications a...

  7. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    Science.gov (United States)

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage.

    Science.gov (United States)

    Monteiro, Sara H M C; Silva, Eric Keven; Alvarenga, Verônica O; Moraes, Jeremias; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant'Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G

    2018-04-01

    This study presents the emerging high-intensity ultrasound (HIUS) processing as a non-thermal alternative to high-temperature short-time pasteurization (HTST). Chocolate milk beverage (CMB) was subjected to different ultrasound energy densities (0.3-3.0 kJ/cm 3 ), as compared to HTST pasteurization (72 °C/15 s) aimed to verify the effect of the HIUS processing on the microbiological and physicochemical characteristics of the beverage. The application of HIUS at an energy density of 3.0 kJ/cm 3 was able to reduce 3.56 ± 0.02 logarithmic cycles in the total aerobic counts. In addition, the ultrasound energy density affected the physical properties of the beverage as the size distribution of fat globule and rheological behavior, as well as the chemical properties such as antioxidant activity, ACE inhibitory activity, fatty acid profile, and volatile profile. In general, the different energetic densities used as a non-thermal method of pasteurization of CMB were more effective when compared to the conventional pasteurization by HTST, since they improved the microbiological and physicochemical quality, besides preserving the bioactive compounds and the nutritional quality of the product. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advantages and disadvantages of high power ultrasound application in the dairy industry

    Directory of Open Access Journals (Sweden)

    Mislav Muža

    2009-12-01

    Full Text Available Preservation of food with thermal sterilisation is usually the most common way nowadays. Besides the positive aim of preservation regarding microorganisms’ reduction, elevated temperature in processing simultaneously causes serious changes in nutritive and organoleptical properties of food. Loss of food quality is related to structure and texture deformations, modification of macromolecules and creation of new compounds coming from reactions that are catalised with temperature. One of the new non-thermal processes that can in large scale improve different processes in food industry is ultrasound. In the last five years, new applications of high power ultrasound (HPU include inactivation of enzymes and microorganisms, assistance in membrane processes, improvement of dairy product texture, improvement of functional properties of proteins etc. High power ultrasound application is used in emulsification and milk homogenization, but in these processes the most important thing is to monitor possible negative effect like oxidation of fats, inactivation of valuable enzymes and denaturation of proteins. Controled and optimized application of ultrasound demands application of specific ultrasound frequency and optimal treatment time. Treatments should be performed at lower temperatures to avoid negative side effects on treated materials.

  10. Ultrasound in obstetric anaesthesia: a review of current applications.

    LENUS (Irish Health Repository)

    Ecimovic, P

    2010-07-01

    Ultrasound equipment is increasingly used by non-radiologists to perform interventional techniques and for diagnostic evaluation. Equipment is becoming more portable and durable, with easier user-interface and software enhancement to improve image quality. While obstetric utilisation of ultrasound for fetal assessment has developed over more than 40years, the same technology has not found a widespread role in obstetric anaesthesia. Within the broader specialty of anaesthesia; vascular access, cardiac imaging and regional anaesthesia are the areas in which ultrasound is becoming increasingly established. In addition to ultrasound for neuraxial blocks, these other clinical applications may be of value in obstetric anaesthesia practice.

  11. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  12. Clinical applications of dynamic functional musculoskeletal ultrasound

    Directory of Open Access Journals (Sweden)

    Petscavage-Thomas J

    2014-02-01

    Full Text Available Jonelle Petscavage-Thomas Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA Abstract: There is an increasing trend in medicine to utilize ultrasound for diagnosis of musculoskeletal pathology. Although magnetic resonance imaging provides excellent spatial resolution of musculoskeletal structures in multiple imaging planes and is generally the cross-sectional modality of choice, it does not provide dynamic functional assessment of muscles, tendons, and ligaments. Dynamic maneuvers with ultrasound provide functional data and have been shown to be accurate for diagnosis. Ultrasound is also less expensive, portable, and more readily available. This article will review the common snapping, impingement, and friction syndromes imaged with dynamic ultrasound. It will also discuss future areas of research, including musculoskeletal sonoelastography. Keywords: snapping, dynamic, ultrasound, functional, musculoskeletal

  13. Ultrasound applicability in Speech Language Pathology and Audiology.

    Science.gov (United States)

    Barberena, Luciana da Silva; Brasil, Brunah de Castro; Melo, Roberta Michelon; Mezzomo, Carolina Lisbôa; Mota, Helena Bolli; Keske-Soares, Márcia

    2014-01-01

    To present recent studies that used the ultrasound in the fields of Speech Language Pathology and Audiology, which evidence possibilities of the applicability of this technique in different subareas. A bibliographic research was carried out in the PubMed database, using the keywords "ultrasonic," "speech," "phonetics," "Speech, Language and Hearing Sciences," "voice," "deglutition," and "myofunctional therapy," comprising some areas of Speech Language Pathology and Audiology Sciences. The keywords "ultrasound," "ultrasonography," "swallow," "orofacial myofunctional therapy," and "orofacial myology" were also used in the search. Studies in humans from the past 5 years were selected. In the preselection, duplicated studies, articles not fully available, and those that did not present direct relation between ultrasound and Speech Language Pathology and Audiology Sciences were discarded. The data were analyzed descriptively and classified subareas of Speech Language Pathology and Audiology Sciences. The following items were considered: purposes, participants, procedures, and results. We selected 12 articles for ultrasound versus speech/phonetics subarea, 5 for ultrasound versus voice, 1 for ultrasound versus muscles of mastication, and 10 for ultrasound versus swallow. Studies relating "ultrasound" and "Speech Language Pathology and Audiology Sciences" in the past 5 years were not found. Different studies on the use of ultrasound in Speech Language Pathology and Audiology Sciences were found. Each of them, according to its purpose, confirms new possibilities of the use of this instrument in the several subareas, aiming at a more accurate diagnosis and new evaluative and therapeutic possibilities.

  14. Using ultrasound technology for the inactivation and thermal sensitization of peroxidase in green coconut water.

    Science.gov (United States)

    Rojas, Meliza Lindsay; Trevilin, Júlia Hellmeister; Funcia, Eduardo Dos Santos; Gut, Jorge Andrey Wilhelms; Augusto, Pedro Esteves Duarte

    2017-05-01

    Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    International Nuclear Information System (INIS)

    Nabili, Marjan; Geist, Craig; Zderic, Vesna

    2015-01-01

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm 2 , and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm 2 (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this

  16. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Nabili, Marjan, E-mail: mnabili@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street NW, Room 5000, Washington, DC 20052 (United States); Geist, Craig, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Ophthalmology, The George Washington University, 2150 Pennsylvania Avenue NW, Floor 2A, Washington, DC 20037 (United States); Zderic, Vesna, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Room 6670, Washington, DC 20052 (United States)

    2015-10-15

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety

  17. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    Science.gov (United States)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  18. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    Science.gov (United States)

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1

  19. Ultrasound applications and ionizing radiations in water treatment

    International Nuclear Information System (INIS)

    Al-Oraby, M.N.A.

    2013-01-01

    Application of ultrasound irradiation is one of the innovative techniques that was used for improvement of water treatment process and lowering levels of contaminants in waste water. The main mechanism of sonication is based on the cavitation phenomenon which includes the whole procedure of creation, expansion and collapsing of micro bubbles throughout liquid phase when negative pressure is applied to the medium during sonication. Consequently, hydroxyl and hydrogen radicals would be formed by thermal dissociation of water and hydrogen. These radicals penetrate into water and oxidize dissolved organic compounds. Hydrogen peroxide is formed as a consequence of hydroxyl and water radical recombination. During the free radical attack, the cell membranes of microorganisms are ruptured physically. The application of ionizing radiation for the removal of odorific substances and organic pollutants from water is an advanced oxidation process based on fast reactions with hydroxyl radicals formed as a result of radiolysis of water. GEO and MIB are the main responsible organic composites for the taste and odor in water. These compounds and other organic pollutants such as herbicide 2,4-DCP can be removed by different doses of gamma rays depending on magnitude, rate of radiation dose, chemical condition of the process and other factors. (author)

  20. Emergency point-of-care ultrasound applications

    African Journals Online (AJOL)

    pneumothoraces led to the development of the extended FAST (EFAST) and can be used in abdominal (blunt) and chest (blunt and penetrating) trauma. The operator obtains six views to systematically evaluate the unstable trauma patient (Fig. 1). Ultrasound uses no contrast media and is rapid, repeatable, portable, non-.

  1. Application of power ultrasound in radiochemistry

    International Nuclear Information System (INIS)

    Moisy, Ph.; Venault, L.; Blanc, P.; Madic, C.; Nikitenko, S.

    1998-01-01

    The chemical effects of ultrasound are related to cavitation process: nucleation, bubble growth and cavitation collapse. Sono-chemical reactions occur due to the rapid heating of the contents of cavitation bubbles. The shock-waves generated by cavitation collapse cause intense emulsification of the immiscible liquids. The CEA/Marcoule research group investigated the effect of power ultrasound on the homogeneous and heterogeneous (liquid-liquid) actinide reactions, in aqueous nitric acid media. It was found that U(IV), Np(V) and Pu(III) can be rapidly oxidized in HNO 3 solutions by HNO 2 , generated by the effect of power ultrasound on HNO 3 solutions. HNO 2 , formed during HNO 3 sono-lysis, decomposes hydrazinium nitrate within the cavitation bubbles. This makes it possible to the control actinide oxidation states without adding any side chemical reagents (NaNO 2 , for example). The quantitative data on the effect in the ultrasonic field in nitric acid medium are discussed, and sono-chemical mechanisms are proposed for nitrous acid formation and hydrazinium nitrate decomposition. In the presence of anti-nitrous reagents, such as hydrazinium nitrate and sulfamic acid, U(IV) was found to be oxidized and Pu(IV) reduced by H 2 O 2 formed as the result of aqueous nitric acid sono-lysis. The kinetics of H 2 O 2 formation is faster than in water, for the same sono-chemical conditions. Np(V) is rapidly oxidized, by aqueous phase HNO 2 , under the effect of ultrasound on the two-phase system TBP-dodecane/HNO 3 . Intense emulsification of the liquid/liquid system accelerates the mass transfer, of Np(VI) formed, into the organic phase. The quantitative effect of power ultrasound in aqueous nitric acid, with or without anti-nitrous reagents, can be used to predict the behavior of actinides in the ultrasonic field in nitric acid medium. (author)

  2. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  3. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    Science.gov (United States)

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review.

    Science.gov (United States)

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2017-11-01

    The application of airborne ultrasound is a promising technology in the drying of foods, particularly to fruits and vegetables. In this paper, designs of dryers using ultrasound to combine the convective drying process are described. The main factors affecting the drying kinetics with the ultrasound application are discussed. The results show that the ultrasound application accelerated the drying kinetics. Ultrasound application during the convective drying of fruits and vegetables shorten the drying time. Ultrasound application can produce an increase of the effective moisture diffusivity and the mass transfer coefficient. The influence of ultrasound on physical and chemical parameters evaluating the product quality is reviewed. Ultrasound application can decrease the total color change, reveal a low water activity and reduce the loss of some nutrient elements. Meanwhile, ultrasound application can also better preserve the microstructure of fruits and vegetables in comparison to convective drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers

    NARCIS (Netherlands)

    State, M.; Brands, P.J.; Vosse, van de F.N.

    2010-01-01

    Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast1265), a commonly used backing material, was considered reference material and

  6. The Application of Ultrasound in 3D Bio-Printing.

    Science.gov (United States)

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  7. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2016-05-01

    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  8. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  9. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    Science.gov (United States)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  10. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  11. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  12. Ultrasound applicability in Speech Language Pathology and Audiology

    OpenAIRE

    Barberena,Luciana da Silva; Brasil,Brunah de Castro; Melo,Roberta Michelon; Mezzomo,Carolina Lisbôa; Mota,Helena Bolli; Keske-Soares,Márcia

    2014-01-01

    PURPOSE: To present recent studies that used the ultrasound in the fields of Speech Language Pathology and Audiology, which evidence possibilities of the applicability of this technique in different subareas. RESEARCH STRATEGY: A bibliographic research was carried out in the PubMed database, using the keywords "ultrasonic," "speech," "phonetics," "Speech, Language and Hearing Sciences," "voice," "deglutition," and "myofunctional therapy," comprising some areas of Speech Language Pathology and...

  13. Ultrasound applicability in Speech Language Pathology and Audiology

    OpenAIRE

    Barberena, Luciana da Silva; Brasil, Brunah de Castro; Melo, Roberta Michelon; Mezzomo, Carolina Lisbôa; Mota, Helena Bolli; Keske-Soares, Márcia

    2014-01-01

    PURPOSE: To present recent studies that used the ultrasound in the fields of Speech Language Pathology and Audiology, which evidence possibilities of the applicability of this technique in different subareas. RESEARCH STRATEGY: A bibliographic research was carried out in the PubMed database, using the keywords "ultrasonic," "speech," "phonetics," "Speech, Language and Hearing Sciences," "voice," "deglutition," and "myofunctional therapy," comprising some areas of Speech Language Patholog...

  14. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  15. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry

    International Nuclear Information System (INIS)

    Smith, Nadine Barrie; Buchanan, Mark T.; Hynynen, Kullervo

    1999-01-01

    Purpose: For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. Methods and Materials: A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 deg. C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. Results: The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34 ± 0.36 deg. C. Conclusions: The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution

  16. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  17. Applications of thermal neutron scattering

    International Nuclear Information System (INIS)

    Kostorz, G.

    1978-01-01

    Although in the past neutrons have been used quite frequently in the study of condensed matter, a more recent development has lead to applications of thermal neutron scattering in the investigation of more practical rather than purely academic problems. Physicists, chemists, materials scientists, biologists, and others have recognized and demonstrated that neutron scattering techniques can yield supplementary information which, in many cases, could not be obtained with other methods. The paper illustrates the use of neutron scattering in these areas of applied research. No attempt is made to present all the aspects of neutron scattering which can be found in textbooks. From the vast amount of experimental data, only a few examples are presented for the study of structure and atomic arrangement, ''extended'' structure, and dynamic phenomena in substances of current interest in applied research. (author)

  18. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues

    International Nuclear Information System (INIS)

    Maleke, C; Konofagou, E E

    2008-01-01

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 deg. C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 μm deg. C -1 (r = 0.93, p -1 , r = -0.92, p -1 , prior to and after lesion formation in seven bovine liver samples, respectively. This technique was thus capable of following the protein-denatured lesion formation based on the

  19. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  20. Endoscopic ultrasound in pancreatic cancer: innovative applications beyond the basics.

    Science.gov (United States)

    Yoo, Joseph; Kistler, C Andrew; Yan, Linda; Dargan, Andrew; Siddiqui, Ali A

    2016-12-01

    Endoscopic ultrasound (EUS) has become a mainstay in assisting in the diagnosis and staging of pancreatic cancer. In addition, EUS provides a modality to treat chronic pain through celiac plexus neurolysis. Currently, there is growing data and utilization of EUS in more diverse and innovative applications aimed at providing more sophisticated diagnostic, prognostic and therapeutic options for patients with pancreatic cancer. EUS delivery of chemotherapy, viral and biological vectors and fiducial markers may eventually revolutionize the way clinicians approach the care of a patient with pancreatic cancer.

  1. Ultrasound Burst Phase Thermography (UBP) for applications in the automotive industry

    International Nuclear Information System (INIS)

    Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.

    2003-01-01

    The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented

  2. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    Science.gov (United States)

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  3. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  4. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  5. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  6. Impact of Power Ultrasound on Antihypertensive Activity, Functional Properties, and Thermal Stability of Rapeseed Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Asif Wali

    2017-01-01

    Full Text Available The effects of power ultrasound pretreatments on the degree of hydrolysis (DH, angiotensin-I-converting enzyme (ACE inhibitory activity, amino acid composition, surface hydrophobicity, protein solubility, and thermal stability of ACE inhibition of rapeseed protein hydrolysates were evaluated. Ultrasonic pretreatments before enzymolysis in terms of power and exposure time increased the DH and ACE inhibitory activities over the control (without sonication. In this study, maximum DH 22.07% and ACE inhibitory activity 72.13% were achieved at 600 W and 12 min pretreatment. Compared to the hydrolysates obtained without sonication, the amino acid profile of ultrasound pretreated hydrolysates showed significant changes particularly in the proline content and hydrophobic amino acids with an increased rate of 2.47% and 6.31%, respectively. Ultrasound pretreatment (600 watts, 12 min improved functional properties of protein hydrolysates over control by enhancing surface hydrophobicity and solubility index with an increased rate of 130.76% and 34.22%. Moreover, the stability test showed that the ACE inhibitory activity remains stable against heat treatments. However, extensive heat, prolonged heating time, and alkaline conditions were not in the favor of stability test, while under mild heat and acidic conditions their ACE inhibitory activities were not significantly different from unheated samples.

  7. High definition ultrasound imaging for battlefield medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M. [Sandia National Labs., Albuquerque, NM (United States); Rogers, B; Walsh, N. [Texas Univ. Health Science Center, San Antonio, TX (United States)

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  8. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.

    Science.gov (United States)

    Hutchinson, E B; Hynynen, K

    1998-12-01

    A 62 element MRI-compatible linear phased array was designed and constructed to investigate the feasibility of using transrectal ultrasound for the thermal therapeutic treatment of prostate cancer and benign prostatic hyperplasia. An aperiodic design technique developed in a previous study was used in the design of this array, which resulted in reduced grating lobe levels by using an optimized random distribution of unequally sized elements. The element sizes used in this array were selected to be favorable for both grating lobe levels as determined by array aperiodicity and array efficiency as determined by width to thickness ratios. The heating capabilities and MRI compatibility of the array were tested with in vivo rabbit thigh muscle heating experiments using MRI temperature monitoring. The array produced therapeutic temperature elevations in vivo at depths of 3-6 cm and axial locations up to 3 cm off the central axis and increased the size of the heated volume with electronic scanning of a single focus. The ability of this array to be used for ultrasound surgery was demonstrated by creating necrosed tissue lesions in vivo using short high-power sonications. The ability of the array to be used for hyperthermia was demonstrated by inducing therapeutic temperature elevations for longer exposures. Based on the acoustic and heating performance of this array, it has the potential to be clinically useful for delivering thermal therapies to the prostate and other target volumes close to body cavities.

  9. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  10. Perspectives for solar thermal applications in Taiwan

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Leu, Tzong-Shyng; Chung, Kung-Ming

    2016-01-01

    Taiwan has long depended on imported fossil energy. The government is thus actively promoting the use of renewable energy. Since 2000, domestic installations of solar water heaters have increased substantially because of the long-term subsidies provided for such systems. However, data on the annual installation area of solar collectors in recent years indicated that the solar thermal industry in Taiwan has reached a bottleneck. The long-term policy providing subsidies must thus be revised. It is proposed that future thermal applications in Taiwan should focus on building-integrated solar thermal, photovoltaic/thermal, and industrial heating processes. Regarding building-integrated solar thermal systems, the current subsidy model can be continued (according to area of solar collectors); nevertheless, the application of photovoltaic/thermal and industrial heating systems must be determined according to the thermal output of such systems. - Highlights: •The long-term subsidization for solar water heaters has lost effectiveness. •Solar thermal applications include BIST, PV/T and industrial heating process. •A performance-based subsidy policy should be implemented.

  11. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  12. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    International Nuclear Information System (INIS)

    Martínez, José M; Jarosz, Boguslaw J

    2015-01-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20–32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10–11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m −1 , 115  ±  4 dB m −1 and 175  ±  9 dB m −1 , respectively. The density and acoustic speed determination at room temperature (∼24 °C) gave 1040  ±  40 kg m −3 and 1545  ±  44 m s −1 , respectively. The average thermal conductivity was 0.532 W m −1  K −1 . The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies. (paper)

  13. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    Science.gov (United States)

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  15. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  16. The principles of ultrasound and its application in freezing related processes of food materials: A review.

    Science.gov (United States)

    Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai

    2015-11-01

    Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A framework for continuous target tracking during MR-guided high intensity focused ultrasound thermal ablations in the abdomen

    NARCIS (Netherlands)

    Zachiu, Cornel; Denis de Senneville, Baudouin; Dmitriev, Ivan D.; Moonen, Chrit T.W.; Ries, Mario

    2017-01-01

    Background: During lengthy magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU) thermal ablations in abdominal organs, the therapeutic work-flow is frequently hampered by various types of physiological motion occurring at different time-scales. If left un-addressed this can lead to

  18. Alternative Ultrasound Gel for a Sustainable Ultrasound Program: Application of Human Centered Design.

    Directory of Open Access Journals (Sweden)

    Margaret Salmon

    Full Text Available This paper describes design of a low cost, ultrasound gel from local products applying aspects of Human Centered Design methodology. A multidisciplinary team worked with clinicians who use ultrasound where commercial gel is cost prohibitive and scarce. The team followed the format outlined in the Ideo Took Kit. Research began by defining the challenge "how to create locally available alternative ultrasound gel for a low-resourced environment? The "End-Users," were identified as clinicians who use ultrasound in Democratic Republic of the Congo and Ethiopia. An expert group was identified and queried for possible alternatives to commercial gel. Responses included shampoo, oils, water and cornstarch. Cornstarch, while a reasonable solution, was either not available or too expensive. We then sought deeper knowledge of locally sources materials from local experts, market vendors, to develop a similar product. Suggested solutions gleaned from these interviews were collected and used to create ultrasound gel accounting for cost, image quality, manufacturing capability. Initial prototypes used cassava root flour from Great Lakes Region (DRC, Rwanda, Uganda, Tanzania and West Africa, and bula from Ethiopia. Prototypes were tested in the field and resulting images evaluated by our user group. A final prototype was then selected. Cassava and bula at a 32 part water, 8 part flour and 4 part salt, heated, mixed then cooled was the product design of choice.

  19. Alternative Ultrasound Gel for a Sustainable Ultrasound Program: Application of Human Centered Design.

    Science.gov (United States)

    Salmon, Margaret; Salmon, Christian; Bissinger, Alexa; Muller, Mundenga Mutendi; Gebreyesus, Alegnta; Geremew, Haimanot; Wendel, Sarah K; Wendell, Sarah; Azaza, Aklilu; Salumu, Maurice; Benfield, Nerys

    2015-01-01

    This paper describes design of a low cost, ultrasound gel from local products applying aspects of Human Centered Design methodology. A multidisciplinary team worked with clinicians who use ultrasound where commercial gel is cost prohibitive and scarce. The team followed the format outlined in the Ideo Took Kit. Research began by defining the challenge "how to create locally available alternative ultrasound gel for a low-resourced environment? The "End-Users," were identified as clinicians who use ultrasound in Democratic Republic of the Congo and Ethiopia. An expert group was identified and queried for possible alternatives to commercial gel. Responses included shampoo, oils, water and cornstarch. Cornstarch, while a reasonable solution, was either not available or too expensive. We then sought deeper knowledge of locally sources materials from local experts, market vendors, to develop a similar product. Suggested solutions gleaned from these interviews were collected and used to create ultrasound gel accounting for cost, image quality, manufacturing capability. Initial prototypes used cassava root flour from Great Lakes Region (DRC, Rwanda, Uganda, Tanzania) and West Africa, and bula from Ethiopia. Prototypes were tested in the field and resulting images evaluated by our user group. A final prototype was then selected. Cassava and bula at a 32 part water, 8 part flour and 4 part salt, heated, mixed then cooled was the product design of choice.

  20. Obstetrical Ultrasound

    Science.gov (United States)

    ... heartbeat can be seen as an ongoing ultrasound movie. Ultrasound devices also use Doppler, a special application ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  1. MRI-guided therapeutic ultrasound: Temperature feedback control for extracorporeal and endoluminal applicators

    Science.gov (United States)

    Salomir, Rares

    2005-09-01

    Therapeutic ultrasound is a mini-invasive and promising tool for in situ ablation of non-resectable tumors in uterus, breast, esophagus, kidney, liver, etc. Extracorporeal, endoluminal, and interstitial applicators have been successfully tested to date. Magnetic resonance imaging (MRI) is the only available technique providing non-invasive temperature mapping, together with excellent contrast of soft tissue. Coupling of these two technologies offers the advantage of both: (1) on line spatial guidance to the target region, and (2) thermal dose control during the treatment. This talk will provide an overview of the author's experience with automatic, active feedback control of the temperature evolution in tissues, which has been demonstrated with MRI compatible extracorporeal transducers (focused beam) or endoluminal applicators (plane waves). The feedback loop is based on fast switching capabilities of the driving electronics and real time data transfer out of the MR scanner. Precision of temperature control was typically better than 1°C. This approach is expected to improve the efficacy of the treatment (complete tumor ablation) and the thermal security of the critical regions crossed by the acoustic beam. It also permits one to reach an under-lethal heating regime for local drug delivery using thermosensitive liposomes or gene expression control based on hsp promoters.

  2. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  3. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-01-01

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p -2 ± 0.01 μm and 1.99 x 10 -2 ± 0.004 μm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  4. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  5. Ultrasound spectroscopy: application on MMC and PMC materials

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Ricardo B [Los Alamos National Laboratory; Vuorinen, Jyki [TAMPERE UNIV TECHNOLOGY; Kuokkala, Veli - Tapani [TAMPERE UNIV TECHNOLOGY

    2010-01-01

    Resonant Ultrasound Spectroscopy (RUS) is a simple technique for measuring the second-order elastic constants and ultrasonic attenuation of solids. The technique is based on measuring the spectrum of mechanical resonances for a sample of known shape (usually a sphere, cylinder, or parallelepiped). This spectrum cannot be deconvoluted to deduce the elastic constants. Instead, an approximate spectrum is calculated from the known sample dimensions, its mass, and a set of 'guessed' elastic constants. A multidimensional minimization of the rms difference between the measured and calculated spectra enables us to deduce all the elastic constants of the solid from a single frequency scan. Currently, the technique can be applied to crystals of orthorhombic symmetry (9 elastic constants) or higher using desktop computers and software developed for this purpose. Composite materials, especially fiber composites, can take full advantage of the RUS technique as they typically have low symmetry. In this paper we summarize the RUS technique and provide examples of its application to the elastic characterization of both fiber reinforced MMC's, and fiber reinforced PMC's.

  6. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  7. Ultrasound signs of acute appendicitis in children - clinical application

    International Nuclear Information System (INIS)

    Vegar-Zubovic, S.; Lincender, L.; Dizdarevic, S.; Sefic, I.; Dalagija, F.

    2005-01-01

    Background. Acute appendicitis is a leading cause of the abdominal pain in children that need an urgent surgical treatment. Neither of individually clinical variables doesn't have a real discriminational nor predictive strength to be used as the only diagnostic test. A goal of this study is to define ultrasound criteria of the acute appendicitis by appointing of ultrasound parameters for this pathological condition, determine the relation between ultrasound signs and pathohistological finding, determine the connection of several ultrasound signs with a degree of the inflammation of the acute appendicitis. Methods. In the prospective study with an ultrasound method we examine 50 patients with clinical signs of the acute abdomen. In these patients, the sonographic diagnosis is confirmed by the surgical finding, in fact with a pathohistological diagnosis. A basic, positive sonograph finding of the acute appendicitis was the identification of tubular, noncompresive, aperistaltic bowel which demonstrates a connection with coecum and blind terminal. In our work we analysed the lasting of the symptoms until the hospital intervention in patients stratified according to the pathohistological finding. We used ultrasound equipment- Toshiba Sonolayer with convex 3.75 MHz and linear 8 MHz probes. Results. From 8 ultrasound signs of the acute appendicitis, only an anterior-posterior (AP) diameter of appendices, FAT (width of periappendicular fat tissue) and a peristaltic absence are positive ultrasound signs of the acute appendicitis. Appendicitis phlegmonosa is the most common pathohistological finding in our study (44%). Perforate gangrenous appendicitis and gangrenous appendicitis are represented in more than half of patients (30% + 22%), which suggests a long period of persisting symptoms until a hospital treatment. A statistic analysis shows a great possibility for using values of AP diameter, width of periapendicular fat tissue, just like the values of mural thickness in

  8. A Review of Lawsuits Related to Point-of-Care Emergency Ultrasound Applications

    Directory of Open Access Journals (Sweden)

    Stolz, Lori

    2014-12-01

    Full Text Available Introduction: New medical technology brings the potential of lawsuits related to the usage of that new technology. In recent years the use of point-of-care (POC ultrasound has increased rapidly in the emergency department (ED. POC ultrasound creates potential legal risk to an emergency physician (EP either using or not using this tool. The aim of this study was to quantify and characterize reported decisions in lawsuits related to EPs performing POC ultrasound. Methods: We conducted a retrospective review of all United States reported state and federal cases in the Westlaw database. We assessed the full text of reported cases between January 2008 and December 2012. EPs with emergency ultrasound fellowship training reviewed the full text of each case. Cases were included if an EP was named, the patient encounter was in the emergency department, the interpretation or failure to perform an ultrasound was a central issue and the application was within the American College of Emergency Physician (ACEP ultrasound core applications. In order to assess deferred risk, cases that involved ultrasound examinations that could have been performed by an EP but were deferred to radiology were included. Results: We identified five cases. All reported decisions alleged a failure to perform an ultrasound study or a failure to perform it in a timely manner. All studies were within the scope of emergency medicine and were ACEP emergency ultrasound core applications. A majority of cases (n=4 resulted in a patient death. There were no reported cases of failure to interpret or misdiagnoses. Conclusion: In a five-year period from January 2008 through December 2012, five malpractice cases involving EPs and ultrasound examinations that are ACEP core emergency ultrasound applications were documented in the Westlaw database. All cases were related to failure to perform an ultrasound study or failure to perform a study in a timely manner and none involved failure to

  9. Ultrasound assisted simultaneous reduction and direct functionalization of graphene oxide with thermal and cytotoxicity profile.

    Science.gov (United States)

    Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Thermal dependence of ultrasound contrast agents scattering efficiency for echographic imaging techniques

    Science.gov (United States)

    Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano

    2015-06-01

    Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.

  11. Exposure criteria for medical diagnostic ultrasound: 1, Criteria based on thermal mechanisms

    International Nuclear Information System (INIS)

    1992-01-01

    A previous report (NCRP, 1983) contains a comprehensive review of biological effects and mechanisms of action of ultrasound and an analysis of their implications for medical ultrasound. This Report presents background material for a scientifically-based approach to safety assessment of ultrasound. It is intended to help the medical community take advantage of new developments, while maintaining the excellent safety record which now exists for diagnostic ultrasound

  12. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  13. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    Science.gov (United States)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  14. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  15. Therapeutic ultrasound - The healing sound and its applications in oral diseases: The review of literature

    Directory of Open Access Journals (Sweden)

    Jyothirmai Koneru

    2012-01-01

    Full Text Available The application of medical ultrasound was mainly centered on the soft tissue diagnostic imaging until now. Recently, its use has been widened and adopted for various therapeutic purposes. It has been reported to facilitate the healing of bone fractures, wounds, apthous ulcers and temporomandibular disorders. In addition, ultrasound has also been shown to facilitate delivery of chemotherapeutic drugs into tumors, promote gene therapy to targeted tissues, and deliver thrombolytic drugs into blood clots. This article reviews the principles and current status of ultrasound-based treatments.

  16. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study

    International Nuclear Information System (INIS)

    Ho, C-S; Ju, K-C; Cheng, T-Y; Chen, Y-Y; Lin, W-L

    2007-01-01

    The purpose of this study is to investigate the feasibility of using a 1 MHz cylindrical ultrasound phased array with multifocus pattern scanning to produce uniform heating for breast tumor thermal therapy. The breast was submerged in water and surrounded by the cylindrical ultrasound phased array. A multifocus pattern was generated and electrically scanned by the phased array to enlarge the treatment lesion in single heating. To prevent overheating normal tissues, a large planning target volume (PTV) would be divided into several planes with several subunits on each plane and sequentially treated with a cooling phase between two successive heatings of the subunit. Heating results for different target temperatures (T tgt ), blood perfusion rates and sizes of the PTV have been studied. Furthermore, a superficial breast tumor with different water temperatures was also studied. Results indicated that a higher target temperature would produce a slightly larger thermal lesion, and a higher blood perfusion rate would not affect the heating lesion size but increase the heating time significantly. The acoustic power deposition and temperature elevations in ribs can be minimized by orienting the acoustic beam from the ultrasound phased array approximately parallel to the ribs. In addition, a large acoustic window on the convex-shaped breast surface for the proposed ultrasound phased array and the cooling effect of water would prevent the skin overheating for the production of a lesion at any desired location. This study demonstrated that the proposed cylindrical ultrasound phased array can provide effective heating for breast tumor thermal therapy without overheating the skin and ribs within a reasonable treatment time

  17. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    Science.gov (United States)

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  18. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Treatment time reduction for large thermal lesions by using a multiple 1D ultrasound phased array system

    International Nuclear Information System (INIS)

    Liu, H.-L.; Chen, Y.-Y.; Yen, J.-Y.; Lin, W.-L.

    2003-01-01

    To generate large thermal lesions in ultrasound thermal therapy, cooling intermissions are usually introduced during the treatment to prevent near-field heating, which leads to a long treatment time. A possible strategy to shorten the total treatment time is to eliminate the cooling intermissions. In this study, the two methods, power optimization and acoustic window enlargement, for reducing power accumulation in the near field are combined to investigate the feasibility of continuously heating a large target region (maximally 3.2 x 3.2 x 3.2 cm 3 ). A multiple 1D ultrasound phased array system generates the foci to scan the target region. Simulations show that the target region can be successfully heated without cooling and no near-field heating occurs. Moreover, due to the fact that there is no cooling time during the heating sessions, the total treatment time is significantly reduced to only several minutes, compared to the existing several hours

  20. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  1. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    Science.gov (United States)

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  2. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  3. A study on changes in body surface temperature and thermal effect according to ultrasound mode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung Hee [Dept. of Radiology, Ilsin Christian Hospital, Busan (Korea, Republic of); Lee, Jin Soo [Dept. of Radiology, University Haeundae Paik Hospital, Busan (Korea, Republic of)

    2017-06-15

    Recently, as the number of high-risk pregnancies increases, the use of new techniques such as Doppler, which have higher acoustic power than in the past, has been increasingly used in prenatal diagnosis and guidelines have been set up by various organizations to prevent excessive exposure. Therefore, in this study, we tried to investigate the temperature change of the body surface for each test mode according to the long time ultrasound examination and to examine the exposure time which is not influenced by the thermal effect. B mode, C mode, and PD mode according to time, and the temperature difference between exposed and unexposed sites were compared. As a result, the B mode showed a significant difference in the temperature change from 10 minutes, 50 minutes after exposed, 20 minutes from the C mode, and 30 minutes from the PD mode (p<0.01). In all three modes, the temperature difference was different(p<0.000), and PD mode was the most sensitive to temperature change. Also, it was found that the temperature rise time was shortened with the increase of the ultrasonic exposure time. Therefore, it is recommended that ultrasonography to observe the embryo or fetus should be used only for diagnostic purposes, avoiding excessive test time.

  4. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  5. Carbon nanotube thermal interfaces and related applications

    Science.gov (United States)

    Hodson, Stephen L.

    compressive load. The thermal performance was further improved by infiltrating the CNT TIM with paraffin wax, which serves as an alternate pathway for heat conduction across the interface that ultimately reduces the bulk thermal resistance of the CNT TIM. For CNT TIMs synthesized at the Birck Nanotechnology Center at Purdue University, the thermal resistance was shown to scale linearly with their aggregate, as-grown height. Thus, the bulk thermal resistance can alternatively be tuned by adjusting the as-grown height. The linear relationship between thermal resistance and CNT TIM height provides a simple and efficient methodology to estimate the contact resistance and effective thermal conductivity of CNT TIMs. In this work, the contact resistance and effective thermal conductivity were estimated using two measurement techniques: (i) one-dimensional, steady-state reference bar and (ii) photoacoustic technique. A discrepancy in the estimated contact resistance exists between the two measurement techniques, which is due to the difficulty in measuring the true contact area. In contrast, the effective thermal conductivities estimated from both measurement techniques moderately agreed and were estimated to be on the order of O(1 W/mK). The final chapter is in collaboration with Sandia National Laboratories and focuses on the development of an apparatus to measure the thermal conductivity of insulation materials critical for the operation of molten salt batteries. Molten salt batteries are particularly useful power sources for radar and guidance systems in military applications such as guided missiles, ordinance, and other weapons. Molten salt batteries are activated by raising the temperature of the electrolyte above its melting temperature using pyrotechnic heat pellets. The battery will remain active as long as the electrolyte is molten. As a result, the thermal processes within the components and interactions between them are critical to the overall performance of molten salt

  6. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Partanen, A [Philips Healthcare, Andover, Massachusetts (United States); Ghoshal, G; Burdette, E [Acoustic MedSystems Inc., Savoy, IL (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360° of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al

  7. Application of ultrasound in the diagnosis of posterior vitreous detachment

    Directory of Open Access Journals (Sweden)

    Hui-Wei Wang

    2013-12-01

    Full Text Available AIM: To investigate the utility of ultrasound in the diagnosis of posterior vitreous detachment(PVD. METHODS: From September 2011 to September 2012, 506 eyes of 305 cases(male 191, female 114of PVD patients in our hospital were checked and analyzed with ultrasound.RESULTS: Totally, 179 eyes were diagnosed as partial PVD, the proportion was 35.4%. And 327 eyes were diagnosed as complete PVD, the proportion was 64.6%. Among the 61 eyes(12.1%with a small amount of hemorrhage of vitreous humor,retinal breaks of 26 eyes(5.1%were founded. Given the photocoagulation nicely heal to the breaks and then recovered. CONCLUSION:Ultrasonography can accurately diagnose PVD. It has non-invasive,convenience, and other characteristics, and it is worthy of clinical popularization.

  8. Thermal energy storage for smart grid applications

    Science.gov (United States)

    Al-Hallaj, Said; Khateeb, Siddique; Aljehani, Ahmed; Pintar, Mike

    2018-01-01

    Energy consumption for commercial building cooling accounts for 15% of all commercial building's electricity usage [1]. Electric utility companies charge their customers time of use consumption charges (/kWh) and additionally demand usage charges (/kW) to limit peak energy consumption and offset their high operating costs. Thus, there is an economic incentive to reduce both the electricity consumption charges and demand charges by developing new energy efficient technologies. Thermal energy storage (TES) systems using a phase change material (PCM) is one such technology that can reduce demand charges and shift the demand from on-peak to off-peak rates. Ice and chilled water have been used in thermal storage systems for many decades, but they have certain limitations, which include a phase change temperature of 0 degrees Celsius and relatively low thermal conductivity in comparison to other materials, which limit their applications as a storage medium. To overcome these limitations, a novel phase change composite (PCC) TES material was developed that has much higher thermal conductivity that significantly improves the charge / discharge rate and a customizable phase change temperature to allow for better integration with HVAC systems. Compared to ice storage, the PCC TES system is capable of very high heat transfer rate and has lower system and operational costs. Economic analysis was performed to compare the PCC TES system with ice system and favorable economics was proven. A 4.5 kWh PCC TES prototype system was also designed for testing and validation purpose.

  9. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.

    Science.gov (United States)

    Chemat, Farid; Rombaut, Natacha; Sicaire, Anne-Gaëlle; Meullemiestre, Alice; Fabiano-Tixier, Anne-Sylvie; Abert-Vian, Maryline

    2017-01-01

    This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) in food ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It provides the necessary theoretical background and some details about extraction by ultrasound, the techniques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, and sonoporation), applications from laboratory to industry, security, and environmental impacts. In addition, the ultrasound extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assisted extraction is a research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that ultrasound-assisted extraction is a green and economically viable alternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO 2 emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    International Nuclear Information System (INIS)

    Mahmoud, Ahmed M; Ding, Xuan; Dutta, Debaditya; Kim, Kang; Singh, Vijay P

    2014-01-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5–14 MHz) for both imaging and heating and a high-frequency (13–24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼3 s and ∼9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (−0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (−0.124

  11. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  12. Airborne ultrasound surface motion camera: Application to seismocardiography

    Science.gov (United States)

    Shirkovskiy, P.; Laurin, A.; Jeger-Madiot, N.; Chapelle, D.; Fink, M.; Ing, R. K.

    2018-05-01

    The recent achievements in the accelerometer-based seismocardiography field indicate a strong potential for this technique to address a wide variety of clinical needs. Recordings from different locations on the chest can give a more comprehensive observation and interpretation of wave propagation phenomena than a single-point recording, can validate existing modeling assumptions (such as the representation of the sternum as a single solid body), and provide better identifiability for models using richer recordings. Ultimately, the goal is to advance our physiological understanding of the processes to provide useful data to promote cardiovascular health. Accelerometer-based multichannel system is a contact method and laborious for use in practice, and also even ultralight accelerometers can cause non-negligible loading effects. We propose a contactless ultrasound imaging method to measure thoracic and abdominal surface motions, demonstrating that it is adequate for typical seismocardiogram (SCG) use. The developed method extends non-contact surface-vibrometry to fast 2D mapping by originally combining multi-element airborne ultrasound arrays, a synthetic aperture implementation, and pulsed-waves. Experimental results show the ability of the developed method to obtain 2D seismocardiographic maps of the body surface 30 × 40 cm2 in dimension, with a temporal sampling rate of several hundred Hz, using ultrasound waves with the central frequency of 40 kHz. Our implementation was validated in-vivo on eight healthy human participants. The shape and position of the zone of maximal absolute acceleration and velocity during the cardiac cycle were also observed. This technology could potentially be used to obtain more complete cardio-vascular information than single-source SCG in and out of clinical environments, due to enhanced identifiability provided by the distributed measurements, and observation of propagation phenomena.

  13. Incremental value of thoracic ultrasound in intensive care units: Indications, uses, and applications.

    Science.gov (United States)

    Liccardo, Biagio; Martone, Francesca; Trambaiolo, Paolo; Severino, Sergio; Cibinel, Gian Alfonso; D'Andrea, Antonello

    2016-05-28

    Emergency physicians are required to care for unstable patients with life-threatening conditions, and thus must make decisions that are both quick and precise about unclear clinical situations. There is increasing consensus in favor of using ultrasound as a real-time bedside clinical tool for clinicians in emergency settings alongside the irreplaceable use of historical and physical examinations. B-mode sonography is an old technology that was first proposed for medical applications more than 50 years ago. Its application in the diagnosis of thoracic diseases has always been considered limited, due to the presence of air in the lung and the presence of the bones of the thoracic cage, which prevent the progression of the ultrasound beam. However, the close relationship between air and water in the lungs causes a variety of artifacts on ultrasounds. At the bedside, thoracic ultrasound is based primarily on the analysis of these artifacts, with the aim of improving accuracy and safety in the diagnosis and therapy of the various varieties of pulmonary pathologic diseases which are predominantly "water-rich" or "air-rich". The indications, contraindications, advantages, disadvantages, and techniques of thoracic ultrasound and its related procedures are analyzed in the present review.

  14. Application of high intensity ultrasound treatment on Enterobacteriae count in milk

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-06-01

    Full Text Available Ultrasonication is a non-thermal method of food preservation that has the advantage of inactivating microbes in food without causing the common side-effects associated with conventional heat treatments, such as nutrient and flavour loss. In this work high intensity ultrasound was used to investigate inactivation Enterobacteriae count in raw milk. Raw milk with 4% of milk fat was treated with ultrasonic probe that was 12 mm in diameter and with 20 kHz frequency immerged in milk directly. For ultrasounds treatment, three parameters varied according to the statistical experimental design. Centre composite design was used to optimize and design experimental parameters: temperature (20, 40 and 60 °C, amplitude (120, 90 and 60 μm and time (6, 9 and 12 minutes. All analyses were performed immediately after sonication and after 3 and 5 days of storage in refrigeration at 4 °C. The facts that substantially affect the inactivation of microorganisms using ultrasound are the amplitude of the ultrasonic waves, the exposure/contact time with the microorganisms, and the temperatureof treatment. The achieved results indicate significant inactivation of microorganisms under longer period of treatments with ultrasonic probe particularly in combination with higher temperature andamplitude. Output optimal value of Enterobacteriae count has been defined by Statgraphics where lowest Enterobacteriae count (1.06151 log CFU mL-1 was as follows for specific ultrasound parameters: amplitude of 120 μm, treatment time for 12 min and temperature of 60 °C.

  15. Design and Control of Functional Microbubbles for Medical Applications of Ultrasound

    Science.gov (United States)

    Takagi, Shu; Osaki, Taichi; Ariyoshi, Takuya; Azuma, Takashi; Ichiyanagi, Mitsuhisa; Kinefuchi, Ikuya

    2015-11-01

    Microbubbles are used as a contrast agent for ultrasound diagnosis. It is also expected to be use for the treatment. One of the possible applications is microbubble DDS. For that purpose, microbubbles need to be well-controlled for the generating process and manipulation. In this talk, for the design and control of the functional microbubbles, an experimental study on generation and surface modification of microbubbles are explained. Using a T-junction type microchannel, small bubbles about 5 μm size are successfully generated. For the surface modification, Biotin-coated microbubbles are tried to adhere the Avidin-coated wall. Furthermore, the manipulation of the microbubbles using ultrasound is also discussed. Plane-wave and focused ultrasound is used to manipulate a microbubble and bubble clusters. The experimental results are shown in the presentation. Supported by JSPS KAKENHI Grant Number 15K13865.

  16. Point-of-care ultrasound in aerospace medicine: known and potential applications.

    Science.gov (United States)

    Wagner, Michael S; Garcia, Kathleen; Martin, David S

    2014-07-01

    Since its initial introduction into the bedside assessment of the trauma patient via the Focused Assessment with Sonography for Trauma (FAST) exam, the use of point-of-care ultrasound has expanded rapidly. A growing body of literature demonstrates ultrasound can be used by nonradiologists as an extension of the physical exam to accurately diagnose or exclude a variety of conditions. These conditions include, but are not limited to, hemoperitoneum, pneumothorax, pulmonary edema, long-bone fracture, deep vein thrombosis, and elevated intracranial pressure. As ultrasound machines have become more compact and portable, their use has extended outside of hospitals to places where the physical exam and diagnostic capabilities may be limited, including the aviation environment. A number of studies using focused sonography have been performed to meet the diagnostic challenges of space medicine. The following article reviews the available literature on portable ultrasound use in aerospace medicine and highlights both known and potential applications of point-of-care ultrasound for the aeromedical clinician.

  17. Applications of thermal lens spectrometry in food industry and agriculture.

    NARCIS (Netherlands)

    Franko, M.; Bicanic, D.; Gibkes, J.; Bremer, M.; Akkermans, E.

    1996-01-01

    Applications of CO laser dual beam thermal lens spectrometry (TLS) for detection and characterization of fatty acids, aldehydes, pesticides, and herbicides in liquid samples are described. Also reported is the first TLS measurement of thermal conductivity for oleic acid.

  18. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  19. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications.

    Science.gov (United States)

    Duco, Walter; Grosso, Viviana; Zaccari, Daniel; Soltermann, Arnaldo T

    2016-10-15

    The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO 2 ) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO 2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO 2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D. E-mail: lumd@21cn.com; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours{<=}2.0, 2.1-3.9 and {>=}4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up.

  1. Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation

    International Nuclear Information System (INIS)

    Xu, H.-X.; Xie, X.-Y.; Lu, M.-D.; Chen, J.-W.; Yin, X.-Y.; Xu, Z.-F.; Liu, G.-J.

    2004-01-01

    AIM: To investigate the therapeutic efficacy of thermal ablation for treatment of hepatocellular carcinoma (HCC) using microwave and radiofrequency (RF) energy application. MATERIALS AND METHODS: A total of 190 nodules in 97 patients (84 male, 13 female; mean age 53.4 years, range 24-74 years) with HCC were treated with microwave or RF ablation in the last 4 years. The applicators were introduced into the tumours under conscious analgesic sedation by intravenous administration of fentanyl citrate and droperidol and local anaesthesia in both thermal ablation procedures. The patients were then followed up with contrast-enhanced computed tomography (CT) to evaluate treatment response. Survival was analysed using the Kaplan-Meier method. RESULTS: Complete ablation was obtained in 92.6% (176/190) nodules. The complete ablation rates were 94.6% (106/112) in microwave ablation and 89.7% (70/78) in RF ablation. The complete ablation rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm were 93.1, 93.8 and 86.4%, respectively. Local recurrence was found in 9.5% nodules and the rates in tumours≤2.0, 2.1-3.9 and ≥4.0 cm in diameter were 3.4, 9.9 and 31.8%, respectively. In the follow-up period, 7.1% nodules ablated by microwave and 12.8% by RF presented local recurrence. The 1, 2 and 3-year distant recurrence-free survivals were 47.2, 34.9 and 31.0%, respectively. Estimated mean survival was 32 months, and 1, 2 and 3-year cumulative survivals were 75.6, 58.5, and 50.0%, respectively. One and 2 years survivals of Child-Pugh class A, B and C patients were 83.8 and 70.4%, 78.2 and 53.2%, 36.3 and 27.3%, respectively. CONCLUSION: Thermal ablation therapy by means of microwave and RF energy application is an effective and safe therapeutic technique for hepatocellular carcinoma. Large tumours can be completely ablated, but have a significantly higher risk of local recurrence at follow-up

  2. Pharmaceutical applications of dynamic mechanical thermal analysis.

    Science.gov (United States)

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.

  3. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  4. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    Science.gov (United States)

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  6. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  7. Application of intravascular ultrasound in percutaneous coronary interventional therapy

    International Nuclear Information System (INIS)

    Wang Jingping; Li Bao; An Jian; Yang Bin; Wang Zhongchao; Wang Rijun; Zhang Wutang; Lei Xinyu; Wang Huixian; Lu Lifang; Gao Yongli

    2009-01-01

    Objective: To evaluate intravascular ultrasound (IVUS)in demonstrating the characteristics of coronary plaque and in implanting the coronary stent. Methods: Before stent implantation, IVUS was used to observe the plaque character/sties(soft, fibrotic, calcified or mixed) as well as the eccentric degree in 28 patients with angiographically-proved single coronary branch lesion. The minimal luminal diameter, minimal cross-sectional area and plaque area were measured. After stent deployment the above measurements were repeated, and the location, symmetrical index and expansion of the stent were observed. Results: A total of 36 stents was implanted in 28 patients with coronary disease. After the procedure the minimal luminal diameter and the minimal cross-sectional area was increased, while the plaque area was decreased. The difference between the values before and after the stent implantation was statistically significant (P<0.01). IVUS after stent deployment found that in all cases the stent had a nice location and covered the lesion completely with no interlayer at its both ends. Excellent expansion of the stent was seen in 30 cases (83.3%). Insufficient expansion occurred in 3 cases and undesirable contact of the stent to the arterial wall was found in 3 cases (16.7%). In such circumstances, one size bigger low-compliance balloon dilatation was adopted, or the original balloon was used again with higher pressure (18-22 atm), in order to expand the stent once more, and good results accord with IVUS optimal criteria were obtained. Conclusions: IVUS can clearly demonstrate the pathological features of the coronary lesions, such as plaque type, eccentric degree, luminal diameter, cross-sectional area and plaque area, which are very helpful in guiding the selection of the proper stent before the procedure, and are also very useful in evaluating the location, expansion of the stent as well as the stent-to-wall contact condition after the procedure. (authors)

  8. Carbon nanotube thermal interfaces and related applications

    OpenAIRE

    Hodson, Stephen L

    2016-01-01

    The development of thermal interface materials (TIMs) is necessitated by the temperature drop across interfacing materials arising from macro and microscopic irregularities of their surfaces that constricts heat through small contact regions as well as mismatches in their thermal properties. Similar to other types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical cond...

  9. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    Science.gov (United States)

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  10. Applicator for in-vitro ultrasound-activated targeted drug delivery

    Science.gov (United States)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  11. Prehospital Ultrasound in Trauma: A Review of Current and Potential Future Clinical Applications

    Directory of Open Access Journals (Sweden)

    Tharwat El Zahran

    2018-01-01

    Full Text Available Ultrasound (US is an essential tool for evaluating trauma patients in the hospital setting. Many previous in-hospital studies have been extrapolated to out of hospital setting to improve diagnostic accuracy in prehospital and austere environments. This review article presents the role of prehospital US in blunt and penetrating trauma management with emphasis on its current clinical applications, challenges, and future implications of such use.

  12. A simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound

    Science.gov (United States)

    Hadjisavvas, V.; Damianou, C.

    2011-09-01

    In this paper a simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound is presented. A single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was considered. The power field was estimated using the KZK model. The temperature was estimated using the bioheat equation. The goal was to extract the acoustic parameters (power, pulse duration, duty factor and pulse repetition frequency) that maintain a temperature increase of less than 1 °C during the application of a pulse ultrasound protocol. It was found that the temperature change increases linearly with duty factor. The higher the power, the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. The higher the frequency the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. Finally, the deeper the target, the higher the duty factor needed to keep the temperature change to the safe limit of 1 °C. The simulation model was tested in brain tissue during the application of pulse ultrasound and the measured temperature was in close agreement with the simulated temperature. This simulation model is considered to be very useful tool for providing acoustic parameters (frequency, power, duty factor, pulse repetition frequency) during the application of pulsed ultrasound at various depths in tissue so that a safe temperature is maintained during the treatment. This model could be tested soon during stroke clinical trials.

  13. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    Science.gov (United States)

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  14. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model.

    Science.gov (United States)

    Dupré, Aurélien; Melodelima, David; Pflieger, Hannah; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Langonnet, Stéphan; Rivoire, Michel

    2017-02-01

    New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.

  15. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  16. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    International Nuclear Information System (INIS)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo

    2011-01-01

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose ≥ 240 equivalent minutes at 43 deg. C (T 43 )) and 'transition' and 'unsafe' regions (both defined as 5 min 43 < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  17. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Kullervo Hynynen

    2011-01-01

    Full Text Available Recent works on focused ultrasound (FUS have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU.

  18. Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications

    International Nuclear Information System (INIS)

    Teng Xu-Dong; Guo Xia-Sheng; Tu Juan; Zhang Dong

    2016-01-01

    Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. (special topic)

  19. MR-guided focused ultrasound. Current and future applications; MR-gesteuerter fokussierter Ultraschall. Aktuelle und potenzielle Indikationen

    Energy Technology Data Exchange (ETDEWEB)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen-Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Napoli, A. [Sapienza Universitaet Rom, Abteilung fuer Radiologie (Department of Radiological Sciences), MRgFUS and Cardiovascular Imaging Unit, Rom (Italy); Matzko, M. [Klinikum Dachau, Abteilung fuer diagnostische und interventionelle Radiologie, Dachau (Germany)

    2013-03-15

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [German] MRT-gesteuerter hochintensiver fokussierter Ultraschall (MRgFUS bzw. MR-HIFU) ist ein nichtinvasives Verfahren zur praezisen Thermoablation eines Zielgewebes. Bei dieser Methode werden benachbarte Gewebe und Organe geschont. Die Kombination des fokussierten Ultraschalls (FUS) mit der MRT zwecks Planung und Monitoring (nahezu) in Echtzeit sowie zur Erfolgskontrolle von Behandlungen traegt wesentlich zur Sicherheit dieser Methode bei. MRgFUS ist klinisch v. a. zur Behandlung von symptomatischen Uterusmyomen etabliert, gefolgt von der palliativen Ablation von Knochenmetastasen. Weitere vielversprechende Anwendungsgebiete des MRgFUS sind die Adenomyose des Uterus, die Behandlung von Prostata-, Mamma- und Lebertumoren sowie der intrakranielle Einsatz. (orig.)

  20. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  1. Safety of Medical Diagnostic Ultrasound

    International Nuclear Information System (INIS)

    Breyer, B.

    1998-01-01

    Large numbers of people (both sick and healthy) are routinely exposed to ultrasound waves. We shall discuss wave parameters and scanner properties that are relevant to the safety aspect. This includes central pulse frequency, pulse length, intensity (ISPTA and others), focusing, pulse repetition frequency, pulse pressure, etc. Since the transmitted ultrasound power has steadily been increasing during the last two decades, the problems are becoming more serious with time. Doppler methods have gained importance and 'popularity, which additionally increases ultrasound power requirements since the reflectivity of red blood cells is so small that the backscattered pressure is about 100 times less than that from soft tissue structures in the body. Main mechanisms that can potentially present hazard are heating and cavitation. The basic parameter used to assess thermal hazard is ISPTA and the optimal predictor of cavitation hazard is the peak rarefractional pressure. The hazard of heating-up can be summarized in saying that temperatures up to 38.5 o C are safe, while temperatures above 41 o C are definitely not. Care must be taken to stay within the safe zone. However, there does not exist a confirmed report of any type of hazardous effects on humans using intensities presently applied in diagnostic ultrasound scanners. Taking this into account, various international bodies have put limits to the application of ultrasound, which is best summarized in the FDA (USA) regulation that diagnostic apparatus may have an output of maximally 720 mW/cm 2 (derated) provided thermal and mechanical properties are indicated (onscreen) by properly defined Thermal Indices (TI) and Mechanical Index (MI). These aspects shall be discussed in some detail. We shall give the rules for the operator to apply ultrasound with minimal hazard. The general conclusion is that diagnostic ultrasound, as presently known, may be used whenever a qualified expert expects essential medical benefit for the

  2. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  3. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni, Pejman; Halpern, Casey H.; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Elias, Jeff [Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-09-15

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses

  4. Statistical and thermal physics with computer applications

    CERN Document Server

    Gould, Harvey

    2010-01-01

    This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the

  5. Thermal creep force: analysis and application

    OpenAIRE

    Wolfe, David M.

    2016-01-01

    Approved for public release; distribution is unlimited The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force, in particular, has been subject to differing interpretations of the direction in which it acts and its order of magnitude. A horizontal vane radiometer design is provided, which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kin...

  6. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    Science.gov (United States)

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  7. Ultrasound imaging

    International Nuclear Information System (INIS)

    Wells, P.N.T.

    1983-01-01

    Ultrasound is a form of energy which consists of mechanical vibrations the frequencies of which are so high that they are above the range of human hearing. The lower frequency limit of the ultrasonic spectrum may generally be taken to be about 20 kHz. Most biomedical applications of ultrasound employ frequencies in the range 1-15 MHz. At these frequencies, the wavelength is in the range 1.5 - 0.1 mm in soft tissues, and narrow beams of ultrasound can be generated which propagate through such tissues without excessive attenuation. This chapter begins with brief reviews of the physics of diagnostic ultrasound pulse-echo imaging methods and Doppler imaging methods. The remainder of the chapter is a resume of the applications of ultrasonic imaging to physiological measurement

  8. Enhancement of convective drying by application of airborne ultrasound - a response surface approach.

    Science.gov (United States)

    Beck, Svenja M; Sabarez, Henry; Gaukel, Volker; Knoerzer, Kai

    2014-11-01

    Drying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality. Therefore, an investigation of whether the drying time and temperature can be reduced with the assistance of an airborne ultrasound intervention is of interest. Previous studies have shown that contact ultrasound can accelerate the drying process. It is assumed that mechanical vibrations, creating micro channels in the food matrix or keeping these channels from collapsing upon drying, are responsible for the faster water removal. In food samples, due to their natural origin, drying is also influenced by fluctuations in tissue structure, varying between different trials. For this reason, a model food system with thermo-physical properties and composition (water, cellulose, starch, fructose) similar to those of plant-based foods has been used in this study. The main objective was, therefore, to investigate the influence of airborne ultrasound conditions on the drying behaviour of the model food. The impact of airborne ultrasound at various power levels, drying temperature, relative humidity of the drying air, and the air speed was analysed. To examine possible interactions between these parameters, the experiments were designed with a Response Surface Method using Minitab 16 Statistical Software (Minitab Inc., State College, PA, USA). In addition, a first attempt at improving the process conditions and performance for better suitability and applicability in industrial scale processing was undertaken by non-continuous/intermittent sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  12. Nonthermal effects in thermal treatment applications of nonionizing irradiation

    Science.gov (United States)

    Thomsen, Sharon

    2005-04-01

    Several non-thermal factors influence the primary and secondary effects of interstitial thermal treatments using various types of non-ionizing irradiation. Recognition and understanding of the influences of these various factors are important in choice of energy source, the configuration of the application instrument and the design of treatments.

  13. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhof, Hendrik, E-mail: Hendrik.Kohlhof@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Heidt, Christoph, E-mail: Christoph.heidt@kispi.uzh.ch [Department of Orthopedic Surgery, University Children' s Hospital Zurich, Steinwiesstrasse 74, 8032 Switzerland (Switzerland); Bähler, Alexandrine, E-mail: Alexandrine.baehler@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Kohl, Sandro, E-mail: sandro.kohl@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Gravius, Sascha, E-mail: sascha.gravius@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Friedrich, Max J., E-mail: Max.Friedrich@ukb.uni-bonn.de [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Ziebarth, Kai, E-mail: kai.ziebarth@insel.ch [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Stranzinger, Enno, E-mail: Enno.Stranzinger@insel.ch [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland)

    2015-06-15

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  14. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    International Nuclear Information System (INIS)

    Kohlhof, Hendrik; Heidt, Christoph; Bähler, Alexandrine; Kohl, Sandro; Gravius, Sascha; Friedrich, Max J.; Ziebarth, Kai; Stranzinger, Enno

    2015-01-01

    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  15. First applications of the EXTASE thermal probe

    Science.gov (United States)

    Schröer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.

    2003-04-01

    EXTASE is a spin-off project from the MUPUS (Rosetta Lander) thermal probe, both funded by DLR. The thermal probe will be tested in various environments and fields, e.g. in snow research, agriculture, permafrost, monitoring waste deposits and the heat released by decomposition, ground truth for remote sensing etc. The probe is a glass-fibre tube of 1cm diameter, about 32 cm long and carries of 16 sensors for measuring temperature profiles. Each of the sensors can also be heated for in situ measurements of the thermal diffusivity of the penetrated layers, from which we can derive the thermal conductivity. All necessary connections and the sensors itself are printed on a foil which is rolled and glued to the inner wall of the tube. This design results in the significant advantage that the measurements can be done in-situ. No excavation of material is required to measure the thermal conductivity, for instance. Presently we are concentrating on soil science and snow research.We made several measurements in different conditions with prototypes of the probe so far. Among other things, we measured soil temperatures together with meteorological boundary conditions in cooperation with the local Institute of Agrophysics in Lublin (Poland). The first measurements in snow under natural conditions were made on Svalbard (Spitzbergen) together with the Alfred-Wegener-Institute in Bremerhaven (Germany). First results of the measuring campaigns are shown.

  16. Quantitative remote sensing in thermal infrared theory and applications

    CERN Document Server

    Tang, Huajun

    2014-01-01

    This comprehensive technical overview of the core theory of thermal remote sensing and its applications in hydrology, agriculture, and forestry includes a host of illuminating examples and covers everything from the basics to likely future trends in the field.

  17. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  18. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound.

    Science.gov (United States)

    Devarakonda, Surendra Balaji; Myers, Matthew R; Giridhar, Dushyanth; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak Kumar

    2017-01-01

    Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.

  19. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  20. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  1. Percutaneous Thermal Ablation with Ultrasound Guidance. Fusion Imaging Guidance to Improve Conspicuity of Liver Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Yevich, Steven; Tselikas, Lambros; Deschamps, Frederic [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France); Petrover, David [Imagerie Médicale Paris Centre, IMPC (France); Baere, Thierry De [Gustave Roussy - Cancer Campus, Interventional Radiology Department (France)

    2017-05-15

    PurposeTo assess whether fusion imaging-guided percutaneous microwave ablation (MWA) can improve visibility and targeting of liver metastasis that were deemed inconspicuous on ultrasound (US).Materials and MethodsMWA of liver metastasis not judged conspicuous enough on US was performed under CT/US fusion imaging guidance. The conspicuity before and after the fusion imaging was graded on a five-point scale, and significance was assessed by Wilcoxon test. Technical success, procedure time, and procedure-related complications were evaluated.ResultsA total of 35 patients with 40 liver metastases (mean size 1.3 ± 0.4 cm) were enrolled. Image fusion improved conspicuity sufficiently to allow fusion-targeted MWA in 33 patients. The time required for image fusion processing and tumors’ identification averaged 10 ± 2.1 min (range 5–14). Initial conspicuity on US by inclusion criteria was 1.2 ± 0.4 (range 0–2), while conspicuity after localization on fusion imaging was 3.5 ± 1 (range 1–5, p < 0.001). Technical success rate was 83% (33/40) in intention-to-treat analysis and 100% in analysis of treated tumors. There were no major procedure-related complications.ConclusionsFusion imaging broadens the scope of US-guided MWA to metastasis lacking adequate conspicuity on conventional US. Fusion imaging is an effective tool to increase the conspicuity of liver metastases that were initially deemed non visualizable on conventional US imaging.

  2. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  4. Simple Spreadsheet Thermal Models for Cryogenic Applications

    Science.gov (United States)

    Nash, Alfred

    1995-01-01

    Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.

  5. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    Science.gov (United States)

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  6. Thermal conductivity analysis and applications of nanocellulose materials

    Science.gov (United States)

    Uetani, Kojiro; Hatori, Kimihito

    2017-01-01

    Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020

  7. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  8. Application of phase change materials in thermal management of electronics

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2007-01-01

    Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications

  9. Clinical diagnostic ultrasound

    International Nuclear Information System (INIS)

    Barnett, E.; Morley, P.

    1986-01-01

    This textbook on diagnostic ultrasound covers the main systems, with emphasis being placed on the clinical application of diagnostic ultrasound in everyday practice. It provides not only a textbook for postgraduates (particularly FRCR candidates), but also a reference work for practitioners of clinical ultrasound and clinicians generally

  10. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  11. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  12. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  13. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  14. Thermal energy harvesting for application at MEMS scale

    CERN Document Server

    Percy, Steven; McGarry, Scott; Post, Alex; Moore, Tim; Cavanagh, Kate

    2014-01-01

    This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power.  A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.

  15. [Clinical application and optimization of HEAD-US quantitative ultrasound assessment scale for hemophilic arthropathy].

    Science.gov (United States)

    Li, J; Guo, X J; Ding, X L; Lyu, B M; Xiao, J; Sun, Q L; Li, D S; Zhang, W F; Zhou, J C; Li, C P; Yang, R C

    2018-02-14

    Objective: To assess the feasibility of HEAD-US scale in the clinical application of hemophilic arthropathy (HA) and propose an optimized ultrasound scoring system. Methods: From July 2015 to August 2017, 1 035 joints ultrasonographic examinations were performed in 91 patients. Melchiorre, HEAD-US (Hemophilic Early Arthropathy Detection with UltraSound) and HEAD-US-C (HEAD-US in China) scale scores were used respectively to analyze the results. The correlations between three ultrasound scales and Hemophilia Joint Health Scores (HJHS) were evaluated. The sensitivity differences of the above Ultrasonic scoring systems in evaluation of HA were compared. Results: All the 91 patients were male, with median age of 16 (4-55) years old, including 86 cases of hemophilia A and 5 cases hemophilia B. The median ( P 25 , P 75 ) of Melchiorre, HEAD-US and HEAD-US-C scores of 1 035 joints were 2(0,6), 1(0,5) and 2(0,6), respectively, and the correlation coefficients compared with HJHS was 0.747, 0.762 and 0.765 respectively, with statistical significance ( P cases of asymptomatic joints, the positive rates of Melchiorre, HEAD-US-C and HEAD-US scale score were 25.0% (95% CI 20.6%-29.6%), 17.0% (95% CI 12.6%-21.1%) and 11.9% (95% CI 8.4%-15.7%) respectively, and the difference was statistically significant ( P joints of 40 patients. The difference in variation amplitude of HEAD-US-C scores and HEAD-US scores before and after joint bleeding was statistically significant ( P <0.001). Conclusion: Compared with Melchiorre, there were similar good correlations between HEAD-US, HEAD-US-C and HJHS. HEAD-US ultrasound scoring system is quick, convenient and simple to use. The optimized HEAD-US-C scale score is more sensitive than HEAD-US, especially for patients with HA who have subclinical state, which make up for insufficiency of sensitivity in HEAD-US scoring system.

  16. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  17. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  18. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  19. Evaluation of critical thinking application in medical ultrasound practice among sonographers in south-eastern Nigeria

    International Nuclear Information System (INIS)

    Agwu, K.K.; Ogbu, S.O.I.; Okpara, E.

    2007-01-01

    Purpose: To investigate the application of critical thinking (CT) in medical ultrasound by sonographers in south-eastern Nigeria as a measure of the quality of practice. Methods: A semi-structured questionnaire based on six elements of CT was distributed to 82 sonographers selected through a simple random sampling. The questionnaire investigated the application of the elements of interpretation, analysis, evaluation, inference, explanation and self-regulation involved in CT by medical sonographers. The data for each respondent were categorized into age, experience and the elements of CT. Statistical analyses were done using mean and Spearman's Rank correlation. Results: The overall mean score of the practitioners on all the elements of CT application was 8.65 ± 6.76 against a total of 60. The application of CT did not show any correlation with age or clinical experience using Spearman's Rank correlation (r = -0.017; p > 0.05 and r = -0.086; p > 0.05, respectively). Conclusions: The results show that there is poor application of CT by medical sonographers in the locality which may impact negatively on the outcome of this diagnostic process. Increase in the number of formal training programmes in sonography and inclusion of CT skills in the curriculum are recommended

  20. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  1. Application of ultrasound to improve lees ageing processes in red wines.

    Science.gov (United States)

    Del Fresno, Juan Manuel; Loira, Iris; Morata, Antonio; González, Carmen; Suárez-Lepe, Jose Antonio; Cuerda, Rafael

    2018-09-30

    Ageing on lees (AOL) is a technique that increases volatile compounds, promotes colour stability, improves mouthfeel and reduces astringency in red wines. The main drawback is that it is a slow process. Several months are necessary to obtain perceptible effects in wines. Different authors have studied the application of new techniques to accelerate the AOL process. Ultrasound (US) has been used to improve different food industry processes; it could be interesting to accelerate the yeast autolysis during AOL. This work evaluates the use of the US technique together with AOL and oak chips for this purpose studying the effects of different oenological parameters of red wines. The results obtained indicate an increase of polysaccharides content when US is applied in wine AOL. In addition, total polyphenol index (TPI) and volatile acidity were not affected. However, this treatment increases the dissolved oxygen affecting the volatile compounds and total anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Application of ultrasound biomicro-scopy in the planning of cataract surgery in anterior megalophthalmos

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zare

    2011-01-01

    Full Text Available Anterior megalophthalmos, a rare hereditary disorder, is macrocornea (horizontal corneal diameter more than 13 mm in association with enlarged lens-iris diaphragm and ciliary ring. One of the major challenging issues in the cataract surgery of these patients is preventing intraocular lens (IOL malposition, because of probable large capsular bag. Several approaches have been selected by previous surgeons, such as, custom-made anterior chamber IOLs. In this study, we show a normal capsular bag diameter despite ciliary ring enlargement, with application of ultrasound biomicroscopy (UMB. We suggest that in cases of anterior megalophthalmos without phacodonesis, UBM could measure the actual size of the capsular bag and obviate the need for further procedures.

  3. Production of free fatty acids from waste oil by application of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Larissa P.; Santos, Francisco F.P.; Costa, Enio; Fernandes, Fabiano A.N. [Universidade Federal do Ceara, Departamento de Engenharia Quimica, Fortaleza, CE (Brazil)

    2012-12-15

    This paper evaluates the production of free fatty acids (FFAs) from waste oil by means of low-frequency high-intensity ultrasound application under atmospheric pressure. To evaluate the potential of this technology, the reaction between waste palm oil and ethanol was carried out. Response surface methodology (RSM) was used to evaluate the influence of alcohol-to-oil weight ratio, potassium hydroxide-to-oil weight ratio, and temperature on the yield of waste oil into FFA. Analysis of the operating conditions by RSM showed that the most important operating conditions affecting the reaction were ethanol-to-oil weight ratio and potassium hydroxide-to-oil weight ratio. The highest yield observed was of 97.3 % after 45 min of reaction. The best operating condition was obtained by applying an ethanol-to-oil weight ratio of 2.4, a potassium hydroxide-to-oil weight ratio of 0.3, and temperature of 60 C. (orig.)

  4. A derating method for therapeutic applications of high intensity focused ultrasound

    Science.gov (United States)

    Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-05-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  6. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  7. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    Science.gov (United States)

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Application of thermal-hydraulic codes in the nuclear sector

    International Nuclear Information System (INIS)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-01-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  9. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  10. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  11. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  12. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  13. Application of ultrasound echography and magnetic resonance imaging to diagnosis of fetoplacental insufficiency

    International Nuclear Information System (INIS)

    Parashchuk, Yu.S.; Merenkova, Yi.M.

    1998-01-01

    Eighty pregnant women underwent complex clinico laboratory investigation, of them 20 with normal gestation cause (the controls) and 60 with iron deficiency anemia of different degree. The function of fetoplacental complex was evaluated with ultrasound echography, cardiotocography, MRI, ultrasound placentography. Iron deficiency anemia in pregnant is accompanied by development of fetoplacental insufficiency. To diagnose the latter it is necessary to use ultrasound echography and MRI

  14. Use of cadaver models in point-of-care emergency ultrasound education for diagnostic applications.

    Science.gov (United States)

    Zaia, Brita E; Briese, Beau; Williams, Sarah R; Gharahbaghian, Laleh

    2012-10-01

    As the use of bedside emergency ultrasound (US) increases, so does the need for effective US education. To determine 1) what pathology can be reliably simulated and identified by US in human cadavers, and 2) feasibility of using cadavers to improve the comfort of emergency medicine (EM) residents with specific US applications. This descriptive, cross-sectional survey study assessed utility of cadaver simulation to train EM residents in diagnostic US. First, the following pathologies were simulated in a cadaver: orbital foreign body (FB), retrobulbar (RB) hematoma, bone fracture, joint effusion, and pleural effusion. Second, we assessed residents' change in comfort level with US after using this cadaver model. Residents were surveyed regarding their comfort level with various US applications. After brief didactic sessions on the study's US applications, participants attempted to identify the simulated pathology using US. A post-lab survey assessed for change in comfort level after the training. Orbital FB, RB hematoma, bone fracture, joint effusion, and pleural effusion were readily modeled in a cadaver in ways typical of a live patient. Twenty-two residents completed the pre- and post-lab surveys. After training with cadavers, residents' comfort improved significantly for orbital FB and RB hematoma (mean increase 1.6, pcadavers helpful. Cadavers can simulate orbital FB, RB hematoma, bone fracture, joint effusion, and pleural effusion, and in our center improved the comfort of residents in identifying all but pleural effusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  18. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  19. Surgical Workflow Analysis: Ideal Application of Navigated Linear Array Ultrasound in Low-Grade Glioma Surgery.

    Science.gov (United States)

    Lothes, Thomas Ernst; Siekmann, Max; König, Ralph Werner; Wirtz, Christian Rainer; Coburger, Jan

    2016-11-01

    Background  Intraoperative imaging in low-grade glioma (LGG) surgery can facilitate residual tumor control and improve surgical outcome. The aim of the study was to evaluate the ideal application and typical interactions of intraoperative MRI (iMRI), conventional low-frequency intraoperative ultrasound (cioUS), and high-frequency linear array intraoperative ultrasound (lioUS) to optimize surgical workflow. Methods  Prospectively, we included 11 patients with an LGG. Typical procedural workflow in the iMRI suite was recorded with a compatible software. We took notes of duration, frequency of application, the surgeon's evaluation of image quality, and the respective benefit of lioUS (15 MHz), cioUS (7 MHz), and iMRI (1.5 T). With the help of the workflow software, we meticulously analyzed ∼ 55 hours of surgery. Results  During the interventions, lioUS was used more often (76.3%) than cioUS (23.7%) and showed a better mean image quality (1 = best to 6 = worst) of 2.08 versus 3.26 with cioUS. The benefit of the lioUS application was rated with an average of 2.27, whereas the cioUS probe only reached a mean value of 3.83. The most common application of lioUS was resection control (42.6%); cioUS was used mainly for orientation (63.2%). Overall, lioUS was used more often and was rated better for both the purposes just described regarding image quality and benefit. Estimated residual tumor based on lioUS alone was lower than the final residual tumor detected with iMRI (7.5% versus 14.5%). The latter technique was rated as the best imaging modality for resection control in all cases followed by lioUS. Conclusion  We provide proof of principle for workflow assessment in cranial neurosurgery. Although iMRI remains the imaging method of choice, lioUS has shown to be beneficial in a combined setup. Evaluation of lioUS was significantly superior to cioUS in most indications except for subcortical lesions. Georg Thieme Verlag KG Stuttgart · New York.

  20. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  1. Thermal mapping of mountain slopes on Mars by application of a Differential Apparent Thermal Inertia technique

    Science.gov (United States)

    Kubiak, Marta; Mège, Daniel; Gurgurewicz, Joanna; Ciazela, Jakub

    2015-04-01

    J. A. Sobrino, ed., Second Recent Advances in Quantitative Remote Sensing, Publicacions de la Universitat de València,Spain, ISBN: 84-370-6533-X ; 978-84-370-6533-5, 193-198. Fergason, R. L., Christensen, P. R., Kieffer, H. H., 2006. High resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications, J. Geophys. Res., 111, E12004, doi:10.1029/2006JE002735.

  2. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  3. CFD and thermal analysis applications at General Motors

    International Nuclear Information System (INIS)

    Johnson, J.P.

    2002-01-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  4. Application of the ultrasound hyperthermia model for a multi-layered tissue system

    International Nuclear Information System (INIS)

    Loerincz, A

    2004-01-01

    This work models the thermal effect of several planar transducers targeting the tumour interactively in a ceramics-coupling-skin-muscle-tumour system. The most important inputs of the model include the following: emitted electric output, J/s; mechanical efficiency, %; number of transducers, pieces; surface area of the transducer, m 2 ; area, m 2 and temperature, K of the cooling surface, attenuation coefficients, Np/cm MHz; specific heats, J/gK; densities, g/cm 3 ; heat conductivities, J/msK; sound velocities m/s; flow rate of blood in the tissues, ml/gtissue/min; sound path in the tissues and in the blood flowing through the tissues, m. From the inputs, a number of intermediate data are determined, e.g. the geometry of the irradiated bodies that are in the path of ultrasound, acoustic hardness, Pas/m; sound reflection and sound transmission occurring at the interfaces, Np; heat exchanger wall thickness of the irradiated bodies, m; heat dissipation and heat exchanger surface areas, m 2 ; flow rate of blood in the tissues located in the path of ultrasound, ml/tissue mass in g/min; and the sound attenuation of the tissues, Np. The amount of generated heat, K/s decreased by the heat energy transported, J/s to the surrounding tissues by blood and heat conductivity, and the actual temperature, K of the irradiated tissue are the output parameters calculated by the model. The output results are available in the form of functions. The expected temperature of the target area, K can be set to either the denaturation temperature or to the respiratory decomposition temperature (43.5 deg. C) without damaging the surrounding tissues by setting in the following parameters properly: electric output power, W; the number and surface area, m 2 of the transducers; the area, m 2 and temperature, K of the cooling surfaces. After further development, the model will be suitable for handling more than three tissue layers, increased blood flow rates different angles of incidence, and

  5. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  6. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  7. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-05-15

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75

  8. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    Science.gov (United States)

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  9. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    Science.gov (United States)

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  10. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2006-07-01

    Full Text Available Lipid-coated perfluorocarbon nanodroplets are submicrometer-diameter liquid-filled droplets with proposed applications in molecularly targeted therapeutics and ultrasound (US imaging. Ultrasonic molecular imaging is unique in that the optimal application of these agents depends not only on the surface chemistry, but also on the applied US field, which can increase receptor-ligand binding and membrane fusion. Theory and experiments are combined to demonstrate the displacement of perfluorocarbon nanoparticles in the direction of US propagation, where a traveling US wave with a peak pressure on the order of megapascals and frequency in the megahertz range produces a particle translational velocity that is proportional to acoustic intensity and increases with increasing center frequency. Within a vessel with a diameter on the order of hundreds of micrometers or larger, particle velocity on the order of hundreds of micrometers per second is produced and the dominant mechanism for droplet displacement is shown to be bulk fluid streaming. A model for radiation force displacement of particles is developed and demonstrates that effective particle displacement should be feasible in the microvasculature. In a flowing system, acoustic manipulation of targeted droplets increases droplet retention. Additionally, we demonstrate the feasibility of US-enhanced particle internalization and therapeutic delivery.

  11. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  12. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  13. Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization.

    Science.gov (United States)

    Sharma, Sachin; Kumar Poddar, Maneesh; Moholkar, Vijayanand S

    2017-05-01

    This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1-5wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T 10% =320°C (4wt%), T 50 =373°C (4wt%), maximum degradation temperature=384°C (4wt%); glass transition temperature=64.8°C (4wt%); tensile strength=20MPa (2wt%), Young's modulus=1.31GPa (2wt%), Percentage elongation=17.5% (1wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young's modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior - which is typical of the neat copolymer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    Science.gov (United States)

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  15. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  16. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    Science.gov (United States)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  17. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  18. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  19. Rationalization of thermal injury quantification methods: application to skin burns.

    Science.gov (United States)

    Viglianti, Benjamin L; Dewhirst, Mark W; Abraham, John P; Gorman, John M; Sparrow, Eph M

    2014-08-01

    Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  20. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    Science.gov (United States)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  1. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound

    International Nuclear Information System (INIS)

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-01-01

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, γ, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at γ = 1.55 and 1:3.5 at γ = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at γ = 1, to 0.162 MPa, at γ 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s -1 , at γ = 1, to 36 m s -1 , at γ = 1.55. For γ < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound

  2. Comparison of thermal solar collector technologies and their applications

    OpenAIRE

    Alarcón Villamil, Alexander; Hortúa, Jairo Eduardo; López, Andrea

    2013-01-01

    This paper presents the operation of different thermal solar collector technologies and their main characteristics. It starts by providing a brief description of the importance of using solar collectors as an alternative to reduce the environmental impact caused by the production of non-renewable sources like coal and oil. Subsequently, it focuses on each solar concentrator technology and finishes with a theoretical analysis hub application in different industrial processes. En este artícu...

  3. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    Energy Technology Data Exchange (ETDEWEB)

    Slapa, Rafal Z., E-mail: rz.slapa@gmail.com [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Kasperlik–Zaluska, Anna A. [Endocrinology Department, Center for Postgraduate Medical Education, Bielanski Hospital, Warsaw (Poland); Migda, Bartosz [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Otto, Maciej [Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, First Faculty of Medicine, Warsaw (Poland); Jakubowski, Wiesław S. [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland)

    2015-08-15

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients.

  4. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    International Nuclear Information System (INIS)

    Slapa, Rafal Z.; Kasperlik–Zaluska, Anna A.; Migda, Bartosz; Otto, Maciej; Jakubowski, Wiesław S.

    2015-01-01

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients

  5. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit

    OpenAIRE

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-01-01

    Background The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the am...

  6. Application of ultrasound in fetal cardiac abnormalitis screening and analyzing of influencing factors

    International Nuclear Information System (INIS)

    Wu Wei; Chen Hui; Guo Hua; Fu Lijuan

    2009-01-01

    Objective: To identify the application value of ultrasound in the screening of fetal cardiac abnormalities and to reduce its affecting factors, in order to maximally decrease the birth of oaf. Methods: Adopting the method of four chamber hearts cross-section and sound beam plane head laterodeviation, 3821 fetal hearts were screened by ultrasonocardiography in middle and late fetal period. The influencing factors were also analyzed. Screening results were compared with the autopsy following induced labor and the ultrasonocardiogram after borne. Results: Total 23 cases of the cardiac anomalies were confirmed by odinopoeia or after borned, 21 cases were diagnosed by antepartum ultrasonocardiography, the detectable rate were 91.3%(21/23). And the complex cardiac anomalies were 19 cases, accounted for 82.61%(19/23), the general malformation were 4 cases, accounted for 17.39%(4/23). In 19 cases of the complex anomalies, 17 cases were diagnosed by antepartum examination in the first time, 2 cases were diagnosed by reexamination, the total detectable rate were 100%(19/19). Conclusion: Ultrasonography is not only non-invasive but also unique method in detecting fetal heart defects. It will help to diagnose definitely the vast majority of congenital malformation in the fetal heart, especially complex malformation in the middle and later fetal period. There are some limitations and chronergy in ultrasonography for the screening of fetal heart defects, which should be followed-up when the fetal appeared 'normal' in the early screening. (authors)

  7. Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications

    International Nuclear Information System (INIS)

    Raj, Balasubramaniam Gnana Sundara; Ramprasad, Rajasekharan Nair Radhika; Asiri, Abdullah M.; Wu, Jerry J; Anandan, Sambandam

    2015-01-01

    Highlights: • Room temperature synthesis of Mn 3 O 4 –graphene (MG) composite via ultra sound assisted method. • TEM images shows Mn 3 O 4 nanoparticles are uniformly distributed on the surface of graphene nanosheets. • MG composite exhibited high specific capacitance of 312 F g −1 in 1 M Na 2 SO 4 which was three times greater than pristine Mn 3 O 4 . • 76% of the initial capacitance was retained even after 1000 cycles. • The higher specific capacitance of the MG nanocomposite due to the synergistic effect between the Mn 3 O 4 nanoparticles and graphene nanosheets. - Abstract: Mn 3 O 4 nanoparticles anchored graphene nanosheets (MG) have been successfully synthesized by a simple ultrasound assisted synthesis at room temperature without the use of any templates or surfactants for supercapacitor applications. Upon ultrasound assisted synthesis, the formation of Mn 3 O 4 nanoparticles and the graphene oxide reduction occurs simultaneously. The crystalline structure of thus prepared MG nanocomposite have been characterized by the powder X-ray diffraction (XRD) analysis. Thermo Gravimetric Analysis (TGA) is used to determine the mass content of graphene (17 wt%) in the MG nanocomposite. Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) studies shows that the Mn 3 O 4 nanoparticles (4–8 nm) were uniformly anchored on the surface of graphene nanosheets. The electrochemical properties of the MG nanocomposite were investigated by employing cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The capacitive properties of MG nanocomposite studied in the presence of 1 M Na 2 SO 4 exhibited high specific capacitance of 312 F g −1 which was approximately three times greater than that of pristine Mn 3 O 4 (113 F g −1 ) at the same current density of 0.5 mA cm −2 in the potential range from -0.1 to +0.9 V. About 76% of the initial capacitance was retained even after 1000 cycles

  8. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  9. Applicable value of real time interventional ultrasound guidance in family planning reproduction operation

    International Nuclear Information System (INIS)

    Wu Guoping; Zou Dongfang; Sun Jian; Dong Weihua

    2007-01-01

    Objective: To determine the clinical value of real time interventional ultrasound guidance in family planning reproduction operation. Methods: Under the guidance of ultrasound monitoring, 522 cases with high risk and difficult uterine operation were undertaken in our department. Results: The abdominal endoscopic contraceptive uterine operation under real time ultrasound monitoring was carried out for 522 cases in 4 years, with successful rates for high risk pregnancy as 287/289 cases, high risk troublesome withdrawal of contraceptive ring as 129/130 cases and puzzling uterine operation as 103/103 cases. The total successful rate reached 99.42%, without uterine rupture and other complications. Conclusion: The former complex, blind and difficult uterine operations turn to be simple, safe and reliable under the guidance of real time ultrasound. (authors)

  10. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    ultrasound presents design methods of linear FM signals and mismatched filters, in order to meet the higher demands on resolution in ultrasound imaging. It is shown that for the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces....... The method is evaluated first for resolution performance and axial sidelobes through simulations with the program Field II. A coded excitation ultrasound imaging system based on a commercial scanner and a 4 MHz probe driven by coded sequences is presented and used for the clinical evaluation of the coded...... excitation/compression scheme. The clinical images show a significant improvement in penetration depth and contrast, while they preserve both axial and lateral resolution. At the maximum acquisition depth of 15 cm, there is an improvement of more than 10 dB in the signal-to-noise ratio of the images...

  11. Application of focused ultrasounds to the measurement of the dimensions of defects in welds

    International Nuclear Information System (INIS)

    Foulquier, H.; Roule, M.; Saglio, R.; Touffait, A.M.

    1976-01-01

    Non destructive testing using ultrasounds must not only detect eventual defects but also give their nature and dimensions. C.E.A. has studied and developed focused transducers which permit the sizing of defects with high precision [fr

  12. Experiments in the application of ultrasound diffraction tomography for nondestructive testing

    International Nuclear Information System (INIS)

    Azevedo, S.G.; Fitch, J.P.

    1988-07-01

    We have designed computer programs to simulate ultrasound projection scans and to reconstruct the tomographic planar image. We have also used the reconstruction algorithm on actual test data and have obtained a crude but promising image. 11 refs., 9 figs

  13. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  14. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  15. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  16. Evaluation of thermal cooling mechanisms for laser application to teeth.

    Science.gov (United States)

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  17. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  18. Application of ultrasound in the assessment of plantar fascia in patients with plantar fasciitis: a systematic review.

    Science.gov (United States)

    Mohseni-Bandpei, Mohammad Ali; Nakhaee, Masoomeh; Mousavi, Mohammad Ebrahim; Shakourirad, Ali; Safari, Mohammad Reza; Vahab Kashani, Reza

    2014-08-01

    Plantar fasciitis (PFS) is one of the most common causes of heel pain, estimated to affect 10% of the general population during their lifetime. Ultrasound (US) imaging technique is increasingly being used to assess plantar fascia (PF) thickness, monitor the effect of different interventions and guide therapeutic interventions in patients with PFS. The purpose of the present study was to systematically review previously published studies concerning the application of US in the assessment of PF in patients with PFS. A literature search was performed for the period 2000-2012 using the Science Direct, Scopus, PubMed, CINAHL, Medline, Embase and Springer databases. The key words used were: ultrasound, sonography, imaging techniques, ultrasonography, interventional ultrasonography, plantar fascia and plantar fasciitis. The literature search yielded 34 relevant studies. Sixteen studies evaluated the effect of different interventions on PF thickness in patients with PFS using US; 12 studies compared PF thickness between patients with and without PFS using US; 6 studies investigated the application of US as a guide for therapeutic intervention in patients with PFS. There were variations among studies in terms of methodology used. The results indicated that US can be considered a reliable imaging technique for assessing PF thickness, monitoring the effect of different interventions and guiding therapeutic interventions in patients with PFS. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  20. Application of a drug delivery system using ultrasound and nano/microbubbles for anti-angiogenic therapy

    International Nuclear Information System (INIS)

    Horie, Sachiko; Kodama, Tetsuya; Sato, Yasushi

    2017-01-01

    The drug delivery system using ultrasound and nano/microbubbles is a molecular delivery approach using the mechanism of sonoporation. With sonoporation, an endothelium-derived negative-feedback regulator of angiogenesis, Vasohibin-1 (VASH1), was introduced specifically into tumor vessels. We found VASH1 in tumor vessels induce normalization of tumor vessels and inhibited tumor growth. A recent topic regarding tumor angiogenesis is vascular normalization. Tumor vessels are abnormal or immature that cause hyperpermeability and impaired blood flow. Tumor vascular normalization improves blood flow and tissue hypoxia, which increase the effectiveness of chemotherapy and radiotherapy and reduce tumor cell malignancy. In this review, application of drug delivery system using ultrasound for an anti-angiogenic therapy, a tumor vessel normalization therapy to treat cancer, is summarized. (author)

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  5. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    Science.gov (United States)

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration

    International Nuclear Information System (INIS)

    Wang Junhu; Zhang Jielin; Liu Dechang

    2011-01-01

    With the continual development of new thermal infrared sensors and thermal radiation theory, the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration, especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature, thermal inertia and thermal infrared spectrum. What's more, the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides, based on the thermal infrared ASTER data, the paper applies this technology to the granite-type uranium deposits in South China and achieves good result. Above all, the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. (authors)

  7. Capillary Two-Phase Thermal Devices for Space Applications

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    This is the presentation file for an invited seminar for Department of Mechanical and Aerospace Engineering at the Case Western Reserve University. The seminar is scheduled for April 1, 2016.Description: This presentation will discuss operating principles and performance characteristics of heat pipes (HPs) and loop heat pipes (LHPs) and their application for spacecraft thermal control. Topics include: 1) HP operating principles; 2) HP performance characteristics; 3) LHP pressure profiles; 4) LHP operating temperature; 5) LHP operating temperature control; and 6) Examples of using HPs and LHPs on NASA flight projects.

  8. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  10. Point of Care Ultrasound

    DEFF Research Database (Denmark)

    Dietrich, Christoph F; Goudie, Adrian; Chiorean, Liliana

    2017-01-01

    Over the last decade, the use of portable ultrasound scanners has enhanced the concept of point of care ultrasound (PoC-US), namely, "ultrasound performed at the bedside and interpreted directly by the treating clinician." PoC-US is not a replacement for comprehensive ultrasound, but rather allows...... and critical care medicine, cardiology, anesthesiology, rheumatology, obstetrics, neonatology, gynecology, gastroenterology and many other applications. In the future, PoC-US will be more diverse than ever and be included in medical student training....

  11. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.

    Science.gov (United States)

    Xu, Zhiyuan; Carlson, Carissa; Snell, John; Eames, Matt; Hananel, Arik; Lopes, M Beatriz; Raghavan, Prashant; Lee, Cheng-Chia; Yen, Chun-Po; Schlesinger, David; Kassell, Neal F; Aubry, Jean-Francois; Sheehan, Jason

    2015-01-01

    In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as

  12. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FAN HongYi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is"squeezed" under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.

  13. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is “squeezed” under the thermal transformation.The thermal Wigner operator provides us with a new direct and neat approach for deriving Wigner functions of thermal states.

  14. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  15. Applications of sand control technology in thermal recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Rensvold, R F

    1982-01-01

    The ever-increasing application of thermal methods to recover low gravity crude oil has warranted the review of existing sand control techniques relative to their compatibility with high temperature environments. The advantages and limitations of a large number of materials are considered. Carrying fluids, granular pack solids, clay stabilizers, and resin-coated pack sands are discussed. Resins used for in situ sand consolidation processes also are reviewed, and their suitability for application in a high temperature steam environment is evaluated. The effects of highly deviated boreholes on the placement of pressure packs also are considered. Full scale gravel pack model studies have provided valuable clues to the procedures and materials that help to create optimum pressure packs. 58 references.

  16. Thermal Imaging Systems for Real-Time Applications in Smart Cities

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.; Nielsen, Søren Zebitz

    2016-01-01

    of thermal imaging in real-time Smart City applications. Thermal cameras operate independently of light and measure the radiated infrared waves representing the temperature of the scene. In order to showcase the possibilities, we present five different applications which use thermal imaging only...

  17. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  18. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    Science.gov (United States)

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Bio-based polyurethane foams toward applications beyond thermal insulation

    International Nuclear Information System (INIS)

    Gama, Nuno V.; Soares, Belinda; Freire, Carmen S.R.; Silva, Rui; Neto, Carlos P.; Barros-Timmons, Ana; Ferreira, Artur

    2015-01-01

    Highlights: • Coffee grounds wastes were successfully liquefied yielding a bio-based polyol. • Coffee grounds derived foams formulations were optimized by tuning reagents’ contents. • The viscoelastic properties of these foams are promising to expand their applications. - Abstract: In this work the preparation of viscoelastic bio-based polyurethane foams (PUFs) using polyols obtained via acid liquefaction of coffee grounds wastes has been optimized. In a first stage, the effect of different ratios of isocyanate content to hydroxyl number (0.6, 0.7 and 0.8) and of three distinct percentages of catalyst (3%, 5% and 7%) on the extent of the polymerization reaction was studied by infrared spectroscopy. Next, different percentages of surfactant (14%, 16% and 18%) and blowing agent (12%, 14% and 16%) were used to assess their effect on the density, thermal conductivity and mechanical properties of the foams, including their recovery time. The mechanical properties of the ensuing foams proved to be very interesting due to their viscoelastic behavior. PUFs were also characterized by scanning electron microscopy (SEM) revealing a typical cellular structure and by thermogravimetric analysis (TGA) which proved that these materials are thermally stable up to 190 °C. These results suggest other potential applications for these materials beyond heat insulation in areas where damping properties can be an added value

  20. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices.

    Science.gov (United States)

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2016-06-01

    A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the phytochemical and antioxidant activities of juices from carambola (Averrhoa carambola L.), black jamun (Syzygium cumuni L.Skeels.), watermelon (Citrullus lanatus var lanatus), pineapple (Ananas comosus L. Merr) and litchi (Litchi chinensis Sonn.) was carried out. Depending on the type of fruit sample and treatment, increase or decrease in phytochemical values was observed. Overall, sonication had a positive effect on the total flavonoid content in all the juice samples followed by microwave treatment with exceptions in some cases. High-performance liquid chromatography study showed the presence of different phenolic acids depending on the sample type. The phenolic acids in some processed carambola juice samples showed decrease or complete destruction, while in some cases, an increase or appearance of newer phenolic acid originally not detected in the fresh juice was observed as seen in conventional thermal pasteurisation, microwaved at 600 W and sonicated juices. Both microwaved and sonicated samples were found to have positive effect on the phenolic content and antioxidant activity with exceptions in some cases. Therefore, microwave and sonication treatment could be used in place of thermal pasteurisation depending on the sample requirements. © The Author(s) 2015.

  1. Microwave and ultrasound-assisted synthesis of poly(vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties.

    Science.gov (United States)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Azimi, Faezeh

    2018-03-01

    This study focused on the preparation and investigation of physicochemical features of new poly(vinyl chloride) (PVC) nanocomposites (NCs) including different amounts of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) functionalized with riboflavin (RIB). Firstly, to increase the hydrophilicity of MWCNTs, the surface of them was functionalized by incorporating and formation of ester groups with RIB as a low cost and environmentally friendly biomolecule through ultrasound and microwave irradiations. Afterwards, PVC/RIB-MWCNTs NCs were fabricated via the solution casting and ultrasonic dispersion methods. Prepared NCs were examined by X-ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, transmission electron micrograph, and Raman spectroscopy. The PVC/RIB-MWCNTs NCs (12wt%) showed the higher mechanical and thermal behavior as compared to other concentration of MWCNTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    Science.gov (United States)

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  3. SU-F-J-215: Non-Thermal Pulsed High Intensity Focused Ultrasound Therapy Combined with 5-Aminolevulinic Acid: An in Vivo Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; He, W; Cvetkovic, D; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: It has recently been shown that non-thermal pulsed high intensity focused ultrasound (pHIFU) has a cell-killing effect. The purpose of the study is to investigate the sonosensitizing effect of 5-Aminolevulinic Acid (5-ALA) in non-thermal pHIFU cancer therapy. Methods: FaDu human head and neck squamous cell carcinoma cells were injected subcutaneously in the flanks of nude mice. After one to two weeks, the tumors reached the volume of 112 ± 8 mm3 and were assigned randomly into a non-thermal pHIFU group (n=9) and a non-thermal sonodynamic therapy (pHIFU after 5-ALA administration) group (n=7). The pHIFU treatments (parameters: 1 MHz frequency; 25 W acoustic power; 0.1 duty cycle; 60 seconds duration) were delivered using an InSightec ExAblate 2000 system with a GE Signa 1.5T MR scanner. The mice in the non-thermal sonodynamic group received 5-ALA tail-vein injection 4 hours prior to the pHIFU treatment. The tumor growth was monitored using the CT scanner on a Sofie-Biosciences G8 PET/CT system. Results: The tumors in this study grew very aggressively and about 60% of the tumors in this study developed ulcerations at various stages. Tumor growth delay after treatments was observed by comparing the treated (n=9 in pHIFU group; n=7 in sonodynamic group) and untreated tumors (n=17). However, no statistically significant differences were found between the non-thermal pHIFU and non-thermal sonodynamic group. The mean normalized tumor volume of the untreated tumors on Day 7 after their first CT scans was 7.05 ± 0.54, while the normalized volume of the treated tumors on Day 7 after treatment was 5.89 ± 0.79 and 6.27 ± 0.47 for the sonodynamic group and pHIFU group, respectively. Conclusion: In this study, no significant sonosensitizing effects of 5-ALA were obtained on aggressive FaDu tumors despite apparent tumor growth delay in some mice treated with non-thermal sonodynamic therapy.

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  6. Industrial applications of plasma, microwave and ultrasound techniques : nitrogen-fixation and hydrogenation reactions

    NARCIS (Netherlands)

    Hessel, V.; Cravotto, G.; Fitzpatrick, P.; Patil, B.S.; Lang, J.; Bonrath, W.

    2013-01-01

    The MAPSYN project (Microwave, Acoustic and Plasma assisted SYNtheses) aims at nitrogen-fixation reactions intensified by plasma catalysis and selective hydrogenations intensified by microwaves, possibly assisted by ultrasound. Energy efficiency is the key motif of the project and the call of the

  7. The application of ultrasound and enzymes in textile processing of greige cotton

    Science.gov (United States)

    Research progress made at the USDA’s Southern Regional Research Center to provide an ultrasound and enzymatic alternative to the current textile processing method of scouring greige cotton textile with caustic chemicals is reported. The review covers early efforts to measure pectin and wax removal ...

  8. Development of Mitsubishi high thermal performance grid 1 - CFD applicability for thermal hydraulic design

    International Nuclear Information System (INIS)

    Ikeda, K.; Hoshi, M.

    2001-01-01

    Mitsubishi applied the Computational Fluid Dynamics (CFD) evaluation method for designing of the new lower pressure loss and higher DNB performance grid spacer. Reduction of pressure loss of the grid has been estimated by CFD. Also, CFD has been developed as a design tool to predict the coolant mixing ability of vane structures, that is to compare the relative peak spot temperatures around fuel rods at the same heat flux condition. These evaluations have been reflected to the new grid spacer design. The prototype grid was manufactured and some flow tests were performed to examine the thermal hydraulic performance, which were predicted by CFD. The experimental data of pressure loss was in good agreement with CFD prediction. The CFD prediction of flow behaviors at downstream of the mixing vanes was verified by detail cross-flow measurements at rod gaps by the rod LDV system. It is concluded that the applicability of the CFD evaluation method for the thermal hydraulic design of the grid is confirmed. (authors)

  9. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence

  10. Engineering thermal engine rocket adventurer for space nuclear application

    International Nuclear Information System (INIS)

    Nam, Seung H.; Suh, Kune Y.; Kang, Seong G.

    2008-01-01

    The conceptual design for the first-of-a-kind engineering of Thermal Engine Rocket Adventure (TERA) is described. TERA comprising the Battery Omnibus Reactor Integral System (BORIS) as the heat resource and the Space Propulsion Reactor Integral System (SPRIS) as the propulsion system, is one of the advanced Nuclear Thermal Rocket (NTR) engine utilizing hydrogen (H 2 ) propellant being developed at present time. BORIS in this application is an open cycle high temperature gas cooled reactor that has eighteen fuel elements for propulsion and one fuel element for electricity generation and propellant pumping. Each fuel element for propulsion has its own small nozzle. The nineteen fuel elements are arranged into hexagonal prism shape in the core and surrounded by outer Be reflector. The TERA maximum power is 1,000 MW th , specific impulse 1,000 s, thrust 250,000 N, and the total mass is 550 kg including the reactor, turbo pump and auxiliaries. Each fuel element comprises the fuel assembly, moderators, pressure tube and small nozzle. The TERA fuel assembly is fabricated of 93% enriched 1.5 mm (U, Zr, Nb)C wafers in 25.3% voided Square Lattice Honeycomb (SLHC). The H 2 propellant passes through these flow channels. This study is concerned with thermohydrodynamic analysis of the fuel element for propulsion with hypothetical axial power distribution because nuclear analysis of TERA has not been performed yet. As a result, when the power distribution of INSPI's M-SLHC is applied to the fuel assembly, the local heat concentration of fuel is more serious and the pressure of the initial inlet H 2 is higher than those of constant average power distribution applied. This means the fuel assembly geometry of 1.5 mm fuel wafers and 25.3% voided SLHC needs to be changed in order to reduce thermal and mechanical shocks. (author)

  11. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  12. Thermal destruction of organic waste hydrophobicity for agricultural soils application.

    Science.gov (United States)

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José

    2017-11-01

    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  14. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  15. Thermal enhanced oil recovery in Indonesia. Prospect of HTGR application

    International Nuclear Information System (INIS)

    Rahman, M.; Sumardiono; Lasman, A.N.; Sudarto; Prihardany, D.

    1997-01-01

    In the next future, Indonesia will face oil scarcity. The present reserves are estimated to be depleted in 20 years. However, after primary and secondary recovery processes, there are still more than 50% of original oil in place remaining in the reservoir, and this could be recovered by using tertiary recovery method or which is known as enhanced oil recovery (EOR) processes. Among the three major methods of EOR, steam flooding is a thermal recovery method into which High Temperature Reactor (HTR) module can be integrated for producing steam. However, the feasibility of application of HTR as an alternative to conventional oil-fired steam generator will depend strongly on the price of oil. This paper discusses EOR screening for Indonesian oil fields to identify the appropriate oil reservoirs for steam flooding application as well as the possibility of steam supply by HTR module. Also reviewed is the previous study on HTR application for Duri Steam Flood Project. (author). 8 refs, 6 figs, 5 tabs

  16. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    Science.gov (United States)

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Standard Practice for Evaluating Solar Absorptive Materials for Thermal Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers a testing methodology for evaluating absorptive materials used in flat plate or concentrating collectors, with concentrating ratios not to exceed five, for solar thermal applications. This practice is not intended to be used for the evaluation of absorptive surfaces that are (1) used in direct contact with, or suspended in, a heat-transfer liquid, (that is, trickle collectors, direct absorption fluids, etc.); (2) used in evacuated collectors; or (3) used in collectors without cover plate(s). 1.2 Test methods included in this practice are property measurement tests and aging tests. Property measurement tests provide for the determination of various properties of absorptive materials, for example, absorptance, emittance, and appearance. Aging tests provide for exposure of absorptive materials to environments that may induce changes in the properties of test specimens. Measuring properties before and after an aging test provides a means of determining the effect of the exposure. 1.3 Th...

  18. Workshop on the applications of new computer tools to thermal engineering; Applications a la thermique des nouveaux outils informatiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on the applications of new computer tools to thermal engineering has been organized by the French society of thermal engineers. Seven papers have been presented, from which two papers dealing with thermal diffusivity measurements in materials and with the optimization of dryers have been selected for ETDE. (J.S.)

  19. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  20. Ultrasound-guided radiofrequency thermal ablation of normal kidney in a rabbit model: correlation with CT and histopathology

    International Nuclear Information System (INIS)

    Kim, Sang Won; Lee, Jeong Min; Kin, Chong Soo; Lee, Sang Hun

    2002-01-01

    To assess the feasibility and safety of using a cooled-tip electrode to perform percutaneous radiofrequency ablation of kidney tissue in rabbits, and to evaluate the ability of CT to reveal the appearance and extent of tissue necrosis during follow-up after ablation. Using ultrasound guidance, a 17-G cooled-tip electrode was inserted into the right lower portion of the kidney in 26 New Zealand White rabbits. Radiofrequency was applied for 2 mins, and biphasic helical CT scanning was used to assess tissue destruction and the presence or absence of complications immediately after the procedure and at 24 hrs, 2 and 3 days, and 1,2,3,4,5,6 and 7 weeks. The study had three phases: acute (immediately killed : N=10); subacute (killed at 24 hrs (n=3), 2 days (n=3), 3 days (n=1) : N=7); chronic (killed at 1 week (n=4), 2 weeks (n=2), 4 weeks (n=1), 7 weeks (n=1): N=8). After the animals were killed, their kidneys were histopathologically examined and the radiologic and pathologic findings of lesion size and configuration were correlated. In each instance, ultrasound-guided radiofrequency ablations of the lower pole of the kidney were technically successful. Contrast-enhanced biphasic helical CT revealed regions of hypoattenuation devoid of parenchymal enhancement, and these correlated closely with true pathologic lesion size (r=0.884; p>0.05). In subacute and chronic models, CT scanning revealed gradual spontaneous resorption of the ablated lesion and the presence of perilesional calcification. Histopathologically, in the acute phase the ablated lesion showed coagulative necrosis and infiltration of inflammatory cells, and in the chronic phase there was clear cut necrosis of glomeruli, tubules and renal interstitium, with diminishing inflammatory response and peripheral fibrotic tissue formation. Ultrasound-guided renal radiofrequency ablation is technically feasible and safe. In addition, the avascular lesion measured at contrast-enhanced helical CT closely correlated with

  1. Evaluation of New Ultrasound Techniques for Clinical Imaging in selected Liver and Vascular Applications

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm

    blinded to information about the technique, which B-mode images they preferred, as well as detection of pathology. Evaluation showed that the techniques were preferred equally and tumor could be detected equally well. Study II deals with the ability of vector flow imaging (VFI) to monitor patients......This Ph.D. project is based on a longstanding collaboration between physicists and engineers from the Center of Fast Ultrasound Imaging (CFU) at the Technical University of Denmark and medical doctors from the department of Radiology at Rigshospitalet. The intent of this cooperation is to validate...... new ultrasonic methods for future clinical use. Study I compares two B-mode ultrasound methods: the new experimental technique Synthetic Aperture Sequential Beamforming combined with Tissue Harmonic Imaging (SASB-THI), and a conventional technique combined with THI. While SASB reduces the amount...

  2. Design and application of model for training ultrasound-guided vascular cannulation in pediatric patients.

    Science.gov (United States)

    Pérez-Quevedo, O; López-Álvarez, J M; Limiñana-Cañal, J M; Loro-Ferrer, J F

    2016-01-01

    Central vascular cannulation is not a risk-free procedure, especially in pediatric patients. Newborn and infants are small and low-weighted, their vascular structures have high mobility because of tissue laxity and their vessels are superficial and with small diameter. These characteristics, together with the natural anatomical variability and poor collaboration of small children, make this technique more difficult to apply. Therefore, ultrasound imaging is increasingly being used to locate vessels and guide vascular access in this population. (a) To present a model that simulates the vascular system for training ultrasound-guided vascular access in pediatrics patients; (b) to ultrasound-guided vascular cannulation in the model. The model consisted of two components: (a) muscular component: avian muscle, (b) vascular component: elastic tube-like structure filled with fluid. 864 ecoguided punctures was realized in the model at different vessel depth and gauge measures were simulated, for two medical operators with different degree of experience. The average depth and diameter of vessel cannulated were 1.16 (0.42)cm and 0.43 (0.1)cm, respectively. The average number of attempts was of 1.22 (0.62). The percentage of visualization of the needle was 74%. The most frequent maneuver used for the correct location, was the modification of the angle of the needle and the relocation of the guidewire in 24% of the cases. The average time for the correct cannulations was 41 (35.8)s. The more frequent complications were the vascular perforation (11.9%) and the correct vascular puncture without possibility of introducing the guidewire (1.2%). The rate of success was 96%. The model simulates the anatomy (vascular and muscular structures) of a pediatric patient. It is cheap models, easily reproducible and a useful tool for training in ultrasound-guided puncture and cannulation. Copyright © 2015 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  3. Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Karthik Kalyan

    2014-01-01

    Full Text Available The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP, a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM feature shows better results when the network was tested against unknown data.

  4. Dynamic programming in parallel boundary detection with application to ultrasound intima-media segmentation.

    Science.gov (United States)

    Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin

    2013-12-01

    Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images

    Science.gov (United States)

    Lele, Ramachandra Dattatraya; Joshi, Mukund; Chowdhary, Abhay

    2014-01-01

    The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. PMID:25332717

  6. Optimization of ultrasound parameters of myocardial cavitation microlesions for therapeutic application.

    Science.gov (United States)

    Miller, Douglas L; Dou, Chunyan; Owens, Gabe E; Kripfgans, Oliver D

    2014-06-01

    Intermittent high intensity ultrasound scanning with contrast microbubbles can induce scattered cavitation microlesions in the myocardium, which may be of value for tissue reduction therapy. Anesthetized rats were treated in a heated water bath with 1.5 MHz focused ultrasound pulses, guided by an 8 MHz imaging transducer. The relative efficacy with 2 or 4 MPa pulses, 1:4 or 1:8 trigger intervals and 5 or 10 cycle pulses was explored in six groups. Electrocardiogram premature complexes (PCs) induced by the triggered pulse bursts were counted, and Evans blue stained cardiomyocyte scores (SCSs) were obtained. The increase from 2 to 4 MPa produced significant increases in PCs and SCSs and eliminated an anticipated decline in the rate of PC induction with time, which might hinder therapeutic efficacy. Increased intervals and pulse durations did not yield significant increases in the effects. The results suggest that cavitation microlesion production can be refined and potentially lead to a clinically robust therapeutic method. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song; Cottrill, Anton L.; Kunai, Yuichiro; Toland, Aubrey R.; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S.

    2017-01-01

    rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous

  8. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean

    2015-10-19

    The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.

  9. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  10. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    that is macroscopic and easy to mass produce. The walls of the foam are comprised of a few layers of graphene sheets resulting in high sensitivity. We demonstrate parts-per-million (ppm) level detection of NH3 and NO2 in air at room-temperature using this sensor. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam’s surface leading to fully-reversible and low-power operation. In the second part of this dissertation the focus is on graphene platelets and their incorporation into polymer matrices to improve their mechanical and thermal properties. We demonstrate the synthesis and fatigue characterization of fiberglass/epoxy composites with various weight fractions of graphene platelets infiltrated into the epoxy resin as well as directly spray-coated on to the glass micro-fibers. Remarkably, only ~0.2wt.% of graphene additives enhances the fatigue life of the composite in the flexural bending mode by up to 1200-fold. By contrast, under uniaxial tensile fatigue conditions, the graphene fillers resulted in ~3 to 5-fold increase in fatigue life. In-situ ultrasound analysis of the nanocomposite during the cyclic fatigue test suggests that the graphene network toughens the fiberglass/epoxy-matrix interface and prevents the delamination/buckling of the glass micro-fibers under compressive stress. Such fatigue-resistant hierarchical materials show potential to improve the safety, reliability, and cost-effectiveness of fiber-reinforced composites that are increasingly the material of choice in the aerospace, automotive, marine, sports, bio-medical and wind energy industries. We also investigated the effect of graphene platelets on thermal properties of Graphene/1-Octadecanol composite as a nano-structured phase change material (PCM) for energy storage applications. The

  11. Sandia Laboratories in-house activities in support of solar thermal large power applications

    Science.gov (United States)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  12. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  13. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rob; Wang, Zhenwei; Jankovic, Jasna; Yick, Sing; Maric, Radenka; Ghosh, Dave [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Kesler, Olivera [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Rose, Lars [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4 (Canada)

    2007-07-10

    In this article, the applications, potential advantages, and challenges of thermal plasma spray (PS) processing for nanopowder production and cell fabrication of solid oxide fuel cells (SOFCs) are reviewed. PS processing creates sufficiently high temperatures to melt all materials fed into the plasma. The heated material can either be quenched into oxide powders or deposited as coatings. This technique has been applied to directly deposit functional layers as well as nanopowder for SOFCs application. In particularly, low melting point and highly active electrodes can be directly fabricated on zirconia-based electrolytes. This is a simple processing technique that does not require the use of organic solvents, offering the opportunity for flexible adjustment of process parameters, and significant time saving in production of the cell and cost reduction compared with tape casting, screen printing and sintering processing steps. Most importantly, PS processing shows strong potential to enable the deposition of metal-supported SOFCs through the integrated fabrication of membrane-electrode assemblies (MEA) on porous metallic substrates with consecutive deposition steps. On the other hand, the application of PS processing to produce SOFCs faces some challenges, such as insufficient porosity of the electrodes, the difficulty of obtaining a thin (<10 {mu}m) and dense electrolyte layer. Fed with H{sub 2} as the fuel gas and oxygen as the oxidant gas, the plasma sprayed cell reached high power densities of 770 mW cm{sup -2} at 900 C and 430 mW cm{sup -2} at 800 C at a cell voltage of 0.7 V. (author)

  14. Research and development of advanced aluminium/graphite composites for thermal management applications

    OpenAIRE

    Wyszkowska, Edyta; Olejnik, Ewa; Bertarelli, Alessandro

    2015-01-01

    Thermal management materials are continuously gaining importance as a consequence of everlasting evolution in performance of electronic and electric devices. In particular, by improving the heat exchanger’s materials' properties (i.e. thermal conductivity) it is possible to boost further performance and miniaturization of such devices. Due to their high thermal conductivity, Copper and Aluminium are currently the most commonly used materials for thermal management applications. However, the m...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ... pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... pictures of a man’s prostate gland and to help diagnose symptoms such as difficulty urinating or an ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... There are three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams ... are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure? In women, a pelvic ultrasound is most often performed to evaluate the: uterus cervix ovaries ... page How is the procedure performed? Transabdominal: For most ultrasound exams, you will be positioned lying face- ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is used to evaluate the: bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ultrasound transducer into ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... questions or for a referral to a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view the endometrium (the lining of the uterus) and the ovaries. Transvaginal ultrasound also evaluates the myometrium (muscular walls ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends the sound waves into ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is no ... structure and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn ... sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... help to distract the child and make the time pass quickly. The ultrasound exam room may have ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ... bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the prostate gland because ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ... page Additional Information and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Because ultrasound provides real-time images, it also can be used to guide procedures such as needle ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Ultrasound exams in which the transducer ... in the sperm or urine following the procedure. After an ultrasound examination, you should be able to ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound ... from the probe through the gel into the body. The transducer collects the sounds that bounce back ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound ... from the probe through the gel into the body. The transducer collects the sounds that bounce back ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... menstrual problems Ultrasound exams also help identify: palpable masses such as ovarian cysts and uterine fibroids ovarian ... In children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... region of the prostate. A biopsy will add time to the procedure. If a Doppler ultrasound study ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  9. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  10. A magneto-motive ultrasound platform designed for pre-clinical and clinical applications

    Directory of Open Access Journals (Sweden)

    Diego Ronaldo Thomaz Sampaio

    Full Text Available Abstract Introduction Magneto-motive ultrasound (MMUS combines magnetism and ultrasound (US to detect magnetic nanoparticles in soft tissues. One type of MMUS called shear-wave dispersion magneto-motive ultrasound (SDMMUS analyzes magnetically induced shear waves (SW to quantify the elasticity and viscosity of the medium. The lack of an established presets or protocols for pre-clinical and clinical studies currently limits the use of MMUS techniques in the clinical setting. Methods This paper proposes a platform to acquire, process, and analyze MMUS and SDMMUS data integrated with a clinical ultrasound equipment. For this purpose, we developed an easy-to-use graphical user interface, written in C++/Qt4, to create an MMUS pulse sequence and collect the ultrasonic data. We designed a graphic interface written in MATLAB to process, display, and analyze the MMUS images. To exemplify how useful the platform is, we conducted two experiments, namely (i MMUS imaging to detect magnetic particles in the stomach of a rat, and (ii SDMMUS to estimate the viscoelasticity of a tissue-mimicking phantom containing a spherical target of ferrite. Results The developed software proved to be an easy-to-use platform to automate the acquisition of MMUS/SDMMUS data and image processing. In an in vivo experiment, the MMUS technique detected an area of 6.32 ± 1.32 mm2 where magnetic particles were heterogeneously distributed in the stomach of the rat. The SDMMUS method gave elasticity and viscosity values of 5.05 ± 0.18 kPa and 2.01 ± 0.09 Pa.s, respectively, for a tissue-mimicking phantom. Conclusion Implementation of an MMUS platform with addressed presets and protocols provides a step toward the clinical implementation of MMUS imaging equipment. This platform may help to localize magnetic particles and quantify the elasticity and viscosity of soft tissues, paving a way for its use in pre-clinical and clinical studies.

  11. Applicability of contrast-enhanced ultrasound in the diagnosis of plantar fasciitis

    DEFF Research Database (Denmark)

    Broholm, Rikke; Pingel, Jessica; Simonsen, Lene

    2017-01-01

    -mode ultrasound (US) in patients with plantar fasciitis (PF). 20 patients with unilateral PF were included and were divided by US in insertional thickening (10), midsubstance thickening (5) and no US changes (5). The MV was measured simultaneously in both heels. Four areas in the plantar fascia and plantar fat...... pad were measured independently by two observers. Inter- and intra-observer correlation analyses were performed. The asymptomatic heels showed a constantly low MV, and for the whole group of patients a significantly higher MV was found in the symptomatic plantar fascia and plantar fat pad. Inter...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are ...

  13. An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging.

    Science.gov (United States)

    Matrone, Giulia; Ramalli, Alessandro; Savoia, Alessandro Stuart; Quaglia, Fabio; Castellazzi, Gloria; Morbini, Patrizia; Piastra, Marco

    2017-09-24

    The possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging. The protocol combines the use of a bovine brain fixed in formalin as the imaging target, which ensures both realism and repeatability of the described procedures, and of neuronavigation techniques borrowed from neurosurgery. The US probe is in fact connected to a motion tracking system which acquires position data and enables the superposition of US images to reference Magnetic Resonance (MR) images of the brain. This provides a means for human experts to perform a visual qualitative assessment of the US probe imaging performance and to compare acquisitions made with different probes. Moreover, the protocol relies on the use of a complete and open research and development system for US image acquisition, i.e. the Ultrasound Advanced Open Platform (ULA-OP) scanner. The manuscript describes in detail the instruments and procedures involved in the protocol, in particular for the calibration, image acquisition and registration of US and MR images. The obtained results prove the effectiveness of the overall protocol presented, which is entirely open (within the limits of the instrumentation involved), repeatable, and covers the entire set of acquisition and processing activities for US images.

  14. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    International Nuclear Information System (INIS)

    Praher, B.; Straka, K.; Usanovic, J.; Steinbichler, G.

    2014-01-01

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements

  15. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    International Nuclear Information System (INIS)

    Secondes, Mona Freda N.; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-01

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs

  16. Applicability of contrast-enhanced ultrasound in the diagnosis of plantar fasciitis.

    Science.gov (United States)

    Broholm, R; Pingel, J; Simonsen, L; Bülow, J; Johannsen, F

    2017-12-01

    Contrast-enhanced ultrasound (CEUS) is used to visualize the microvascularization in various tissues. The purpose of this study was to investigate whether CEUS could be used to visualize the microvascular volume (MV) in the plantar fascia, and to compare the method to clinical symptoms and B-mode ultrasound (US) in patients with plantar fasciitis (PF). Twenty patients with unilateral PF were included and were divided by US in insertional thickening (10), midsubstance thickening (5), and no US changes (5). The MV was measured simultaneously in both heels. Four areas in the plantar fascia and plantar fat pad were measured independently by two observers. Inter- and intra-observer correlation analyses were performed. The asymptomatic heels showed a constantly low MV, and for the whole group of patients, a significantly higher MV was found in the symptomatic plantar fascia and plantar fat pad. Inter-observer correlation as well as intra-observer agreement was excellent. The MV in the plantar fascia and plantar fat pad can be measured reliably using CEUS, suggesting that it is a reproducible method to examine patients with plantar fasciitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Secondes, Mona Freda N. [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines); Naddeo, Vincenzo, E-mail: vnaddeo@unisa.it [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Belgiorno, Vincenzo [Sanitary and Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano 84084 (Saudi Arabia) (Italy); Ballesteros, Florencio [Environmental Engineering Graduate Program, Department of Chemical Engineering, University of the Philippines – Diliman, Quezon City (Philippines)

    2014-01-15

    Highlights: • Above 99% of the emerging contaminants were removed in the USAMe process. • Influence of PAC dose and US frequency on removal is studied. • Improved performance is due to PAC adsorption enhancement and sonolytic degradation. • US irradiation improved efficiency and delayed declines in the removal of contaminants. • Performance of the hybrid process is better under lower frequency ultrasound irradiation. -- Abstract: Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  18. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Steinbichler, G., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at [Institute of Polymer Injection Moulding and Process Automation, Johannes Kepler University Linz (Austria)

    2014-05-15

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.

  19. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  20. Thermal properties of lithium ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Baker, D.E.

    1982-03-01

    Specific heat, thermal diffusivity and thermal conductivity were measured on Li 2 O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 . Data on these properties were needed for design of an irradiation experiment to be performed on these materials. In general, the specific heat of a ceramic is primarily enrichment-dependent, but the thermal diffusivity and thermal expansion coefficient may be influenced by microstructure. Hence, it will be necessary to duplicate these measurements on the engineering materials finally selected for a particular design

  1. Reproducibility and interoperator reliability of obtaining images and measurements of the cervix and uterus with brachytherapy treatment applicators in situ using transabdominal ultrasound.

    Science.gov (United States)

    van Dyk, Sylvia; Garth, Margaret; Oates, Amanda; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2016-01-01

    To validate interoperator reliability of brachytherapy radiation therapists (RTs) in obtaining an ultrasound image and measuring the cervix and uterine dimensions using transabdominal ultrasound. Patients who underwent MRI with applicators in situ after the first insertion were included in the study. Imaging was performed by three RTs (RT1, RT2, and RT3) with varying degrees of ultrasound experience. All RTs were required to obtain a longitudinal planning image depicting the applicator in the uterine canal and measure the cervix and uterus. The MRI scan, taken 1 hour after the ultrasound, was used as the reference standard against which all measurements were compared. Measurements were analyzed with intraclass correlation coefficient and Bland-Altman plots. All RTs were able to obtain a suitable longitudinal image for each patient in the study. Mean differences (SD) between MRI and ultrasound measurements obtained by RTs ranged from 3.5 (3.6) to 4.4 (4.23) mm and 0 (3.0) to 0.9 (2.5) mm on the anterior and posterior surface of the cervix, respectively. Intraclass correlation coefficient for absolute agreement between MRI and RTs was >0.9 for all posterior measurement points in the cervix and ranged from 0.41 to 0.92 on the anterior surface. Measurements were not statistically different between RTs at any measurement point. RTs with variable training attained high levels of interoperator reliability when using transabdominal ultrasound to obtain images and measurements of the uterus and cervix with brachytherapy applicators in situ. Access to training and use of a well-defined protocol assist in achieving these high levels of reliability. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Benchmark tests for fast and thermal reactor applications

    International Nuclear Information System (INIS)

    Seki, Yuji

    1984-01-01

    Integral tests of JENDL-2 library for fast and thermal reactor applications are reviewed including relevant analyses of JUPITER experiments. Criticality and core center characteristics were tested with one-dimensional models for a total of 27 fast critical assemblies. More sofisticated problems such as reaction rate distributions, control rod worths and sodium void reactivities were tested using two-dimensional models for MOZART and ZPPR-3 assemblies. Main observations from the fast core benchmark tests are as follows. 1) The criticality is well predicted; the average C/E value is 0.999+-0.008 for uranium cores and 0.997+-0.005 for plutonium cores. 2) The calculation underpredicts the reaction rate ratio 239 Pusub(fis)/ 235 Usub(fis) by 3% and overpredicts 238 Usub(cap)/ 239 Pusub(fis) by 6%. The results are consistent with those of JUPITER analyses. 3) The reaction rate distributions in the cores of prototype size are well predicted within +-3%. In larger JUPITER cores, however, the C/E value increases with the radial distance from the core center up to 6% at the outer core edge. 4) The prediction of control rod worths is satisfactory; C/E values are within the range from 0.92 to 0.97 with no apparent dependence on 10 B enrichment and the number of control rods inserted. Spatial dependence of C/E is also observed in the JUPITER cores. 5) The sodium void reactivity is overpredicted by 30% to 50% to the positive side. 1) The criticality is well predicted, as is the same in the fast core tests; the average C/E is 0.997+-0.003. 2) The calculation overpredicts 238 Usub(fis)/ 235 Usub(fis) by 3% to 6%, which shows the same tendency as in the small and medium size fast assemblies. The 238 Usub(cap)/ 235 Usub(fis) ratio is well predicted in the thermal cores. The calculated reaction rate ratios of 232 Th deviate from the measurements by 10% to 15%. (author)

  3. Research and development of advanced aluminium/graphite composites for thermal management applications

    CERN Document Server

    Wyszkowska, Edyta; Bertarelli, Alessandro

    Thermal management materials are continuously gaining importance as a consequence of everlasting evolution in performance of electronic and electric devices. In particular, by improving the heat exchanger’s materials' properties (i.e. thermal conductivity) it is possible to boost further performance and miniaturization of such devices. Due to their high thermal conductivity, Copper and Aluminium are currently the most commonly used materials for thermal management applications. However, the mismatch in thermal expansion between Cooper/Aluminium and Silicon is limiting the heat transfer at the interface between the electronic chip and the heat exchanger. Furthermore, Copper is indeed characterized by a high thermal conductivity but at the same time its high density (8.9 g/cm3) increases weight of the final product, which in most of the cases does not meet specific application requirements. High cost of these materials is another constraint which limits their application. Due to aforementioned facts, monolith...

  4. A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (BioChemical Processes

    Directory of Open Access Journals (Sweden)

    Shruti Vyas

    2017-12-01

    Full Text Available Chemical and biological leaching is practiced on a commercial scale for the mining of metals from ores. Although bioleaching is an environmentally-friendly alternative to chemical leaching, one of the principal shortcomings is the slow rate of leaching which needs to be addressed. The application of ultrasound in bioleaching, termed sonobioleaching, is a technique which has been reported to increase the rate and extent of metal extraction. This article reviews efforts made in the field of sonobioleaching. Since bioleaching is effectively a biological and chemical process, the effects of sonication on chemical leaching/reactions and biological processes are also reviewed. Although sonication increases metal extraction by increasing the metabolite production and enhanced mixing at a micro scale, research is limited in terms of the microorganisms explored. This paper highlights some shortcomings and limitations of existing techniques, and proposes directions for future research.

  5. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    Science.gov (United States)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  6. Comparison of the effects of hamstring stretching using proprioceptive neuromuscular facilitation with prior application of cryotherapy or ultrasound therapy

    Science.gov (United States)

    Magalhães, Francisco Elezier Xavier; Junior, Arlindo Rodrigues de Mesquita; Meneses, Harnold’s Tyson de Sousa; Moreira dos Santos, Rayele Pricila; Rodrigues, Ezaine Costa; Gouveia, Samara Sousa Vasconcelos; Gouveia, Guilherme Pertinni de Morais; Orsini, Marco; Bastos, Victor Hugo do Vale; Machado, Dionis de Castro Dutra

    2015-01-01

    [Purpose] Stretching using proprioceptive neuromuscular facilitation involve physiological reflex mechanisms through submaximal contraction of agonists which activate Golgi organ, promoting the relaxation reflex. The aim of this study was to evaluate the effects of proprioceptive neuromuscular facilitation alone and with prior application of cryotherapy and thermotherapy on hamstring stretching. [Subjects and Methods] The sample comprised of 32 young subjects with hamstring retraction of the right limb. The subjects were randomly allocated to four groups: the control, flexibility PNF, flexibility PNF associated with cryotherapy, flexibility PNF in association with ultrasound therapy. [Results] After 12 stretching sessions, experimental groups showed significant improvements compared to the control group. Moreover, we did not find any significant differences among the experimental groups indicating PNF stretching alone elicits similar results to PNF stretching with prior administration of cryotherapy or thermotherapy. [Conclusion] PNF without other therapy may be a more practical and less expensive choice for clinical care. PMID:26157261

  7. Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator

    Directory of Open Access Journals (Sweden)

    Somayeh gharloghi

    2017-03-01

    Full Text Available Introduction High intensity focused ultrasound (HIFU is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperature and thermal dose distribution in the course of a numerical assessment. Materials and Methods To model the sound propagation, the Khokhlov-Zabolotskava-Kuznetsov (KZK nonlinear wave equation was used and simulation was carried out using MATLAB HIFU toolbox. Bioheat equation was applied to calculate the transient temperature in the liver tissue. Frequency ranges of 2, 3, 4, and 5 MHz and power levels of 50 and 100 W were applied using an extracorporeal transducer. Results Using a frequency of 2 MHz, the maximum temperatures reached 53°C and 90°C in the focal point for power levels of 50 W and 100 W, respectively. With the same powers and using a frequency of 3 MHz, the temperature reached to 71°C and 170°C, respectively. In addition, for these power levels at the frequency of 4 MHz, the temperature reached to 72°C and 145°C, respectively. However, at the 5 MHz frequency, the temperature in the focal spot was either 57°C or 79°C. Conclusion Use of frequency of 2 MHz and power of 100 W led to higher thermal dose distribution, and subsequently, reduction of the treatment duration and complications at the same exposure time in ablation of large tumors.

  8. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    Science.gov (United States)

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. [Clinical application of ultrasound guided Fogarty balloon catheter in arterial crisis].

    Science.gov (United States)

    Li, Xiaodong; Wang, Pei; Yu, Changyu; Yan, Xiaowei; Yin, Jing

    2017-10-01

    To explore the effectiveness of arterial crisis after replantation of limb treated by ultrasound guided Fogarty balloon catheter. Between January 2012 and July 2016, 27 patients suffered from arterial crisis after replantation of limb were treated with ultrasound guided Fogarty balloon catheter combined with thrombolytic anticoagulant. There were 18 males and 9 females with the age of 19-51 years (mean, 32 years). The limb mutilation position was at knee joint in 3 cases, lower limb in 9 cases, ankle joint in 6 cases, elbow joint in 2 cases, forearm in 4 cases, and wrist joint in 3 cases. The arterial crisis happened at 2.5-18 hours (mean, 7.5 hours) after limb replantation surgery. Color doppler ultrasonography was used to diagnose the arterial thrombosis, finally the anastomotic thrombosis were found in 16 cases, non-anastomotic thrombosis in 7 cases, and combined thrombosis in 4 cases. All the thrombosis were deteced in the arteries with the length of 0.8-3.9 cm. No complication such as vascular perforation, rupture, air embolism, thromboembolism, wound infection, or sepsis happened after operation. Arterial crisis occurred again in 3 cases at 1.5-13.5 hours after limb replantation and treated by arterial exploration, 1 case was treated successfully; 2 cases had arterial occlusion and partial necrosis of limb, and got amputation treatment at last. The rest 24 cases survived with the incision healing by first stage. In the 24 cases, 1 case suffered from acute myonephropathic metabolic syndrome and corrected after hemodialysis; 1 case suffered from acute liver functional damage and corrected by comprehensive treatment of internal medicine. The 24 patients were followed up 7-38 months (mean, 11 months). At last follow-up, blood supply of the limb was good with normal skin temperature and improved sense of feeling, activity, and swelling. According to Chinese Medical Association of hand surgery to the upper extremity function assessment standard, the results were

  10. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 1. [thermal analyzer manual

    Science.gov (United States)

    Lee, H. P.

    1977-01-01

    The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.

  12. Clinical Applications of Contrast-Enhanced Ultrasound in the Pediatric Work-Up of Focal Liver Lesions and Blunt Abdominal Trauma

    DEFF Research Database (Denmark)

    Laugesen, Nicolaj Grønbæk; Nolsoe, Christian Pallson; Rosenberg, Jacob

    2017-01-01

    of CEUS is indeed promising. However, no ultrasound contrast agent manufactured today is registered for pediatric use in Europe. The contrast agent SonoVue(®) has recently been approved by the FDA under the name of Lumason(®) to be used in hepatic investigations in adults and children. This article...... help reduce radiation exposure and use of iodinated contrast agents in pediatrics, thereby potentially reducing complications in routine imaging.......In pediatrics ultrasound has long been viewed more favorably than imaging that exposes patients to radiation and iodinated contrast or requires sedation. It is child-friendly and diagnostic capabilities have been improved with the advent of contrast-enhanced ultrasound (CEUS). The application...

  13. Combined application of ultrasound and of radiodiagnostic methods in diagnosis of posterior dislocation of the lens

    International Nuclear Information System (INIS)

    Preisova, J.; Vlkova, E.; Svacinova, J.; Papouskova, D.

    1990-01-01

    A case study is presented of a patient with opaque media of the left eye for seclusion and occlusion of the pupil. The cause of the unilateral chronic uveitis was visualized using ultrasound in A mode. It was found that the calcified lens was dislocated into the vitreous body and fixed to the posterior wall of the eye. The finding was confirmed by a negative X-ray picture and positive CT finding of a small foreign body with high density. The dislocation of the lens occurred after a blow on the left eye during boxing 15 years before the patient sought medical assistance for pain in the practically blind eyeball. (author). 4 figs., 9 refs

  14. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  15. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  16. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull

    Science.gov (United States)

    Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo

    2017-09-01

    A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of

  17. Ultrasound in environmental engineering. Papers

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, A; Neis, U [eds.

    1999-07-01

    This book presents recent research and state-of-the-art information on the scientific basis, modes of use, and engineering developments of ultrasound application in the field of environmental protection. The information is loosely grouped into the following themes: ultrasound and sonochemistry, design of sonoreactors, applications in water, waste water and sludge treatment: aggregation of suspended particles, degradation of hazardous pollutants, disinfection, disintegration of biosolids. Ultrasound is generated and applied at frequencies from 20 kHz to several MHz. Reactor design, applied intensity, duration of sonication, and physico-chemical parameters of the sonicated media influence ultrasound effects. Thus, ultrasound, at a first glance, is a complex and probably confusing matter. This book has been compiled from presentations held at the first workshop 'Ultrasound in Environmental Engineering' on March 22nd and 23rd, 1999, at the Technical University of Hamburg-Harburg in cooperation with the German Association for the Water Environment (ATV) and the DECHEMA e.V. (orig.)

  18. The simulation of transients in thermal plant. Part II: Applications

    International Nuclear Information System (INIS)

    Morini, G.L.; Piva, S.

    2008-01-01

    This paper deals with the simulation of the transients of thermal plant with control systems. In the companion paper forming part I of this article [G.L. Morini, S. Piva, The simulation of transients in thermal plant. Part I: Mathematical model, Applied Thermal Engineering 27 (2007) 2138-2144] it has been described how a 'thermal-library' of customised blocks can be built and used, in an intuitive way, to study the transients of any kind of thermal plant. Each component of plant such as valves, boilers, and pumps, is represented by a single block. In this paper, the 'thermal-library' approach is demonstrated by the analysis of the dynamic behaviour of a central heating plant of a typical apartment house during a sinusoidal variation of the external temperature. A comparison of the behaviour of such a plant with three way valve working either in flow rate or in temperature control, is presented and discussed. Finally, the results show the delaying effect of the thermal capacity of the building on the performance of the control system

  19. Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation.

    Science.gov (United States)

    Lai, Ting-Yu; Chen, Hsiao-I; Shih, Cho-Chiang; Kuo, Li-Chieh; Hsu, Hsiu-Yun; Huang, Chih-Chung

    2016-01-01

    Information about tendon displacement is important for allowing clinicians to not only quantify preoperative tendon injuries but also to identify any adhesive scaring between tendon and adjacent tissue. The Fisher-Tippett (FT) similarity measure has recently been shown to be more accurate than the Laplacian sum of absolute differences (SAD) and Gaussian sum of squared differences (SSD) similarity measures for tracking tendon displacement in ultrasound B-mode images. However, all of these similarity measures can easily be influenced by the quality of the ultrasound image, particularly its signal-to-noise ratio. Ultrasound images of injured hands are unfortunately often of poor quality due to the presence of adhesive scars. The present study investigated a novel Kalman-filter scheme for overcoming this problem. Three state-of-the-art tracking methods (FT, SAD, and SSD) were used to track the displacements of phantom and cadaver tendons, while FT was used to track human tendons. These three tracking methods were combined individually with the proposed Kalman-filter (K1) scheme and another Kalman-filter scheme used in a previous study to optimize the displacement trajectories of the phantom and cadaver tendons. The motion of the human extensor digitorum communis tendon was measured in the present study using the FT-K1 scheme. The experimental results indicated that SSD exhibited better accuracy in the phantom experiments, whereas FT exhibited better performance for tracking real tendon motion in the cadaver experiments. All three tracking methods were influenced by the signal-to-noise ratio of the images. On the other hand, the K1 scheme was able to optimize the tracking trajectory of displacement in all experiments, even from a location with a poor image quality. The human experimental data indicated that the normal tendons were displaced more than the injured tendons, and that the motion ability of the injured tendon was restored after appropriate rehabilitation

  20. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    International Nuclear Information System (INIS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-01-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  1. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Science.gov (United States)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  2. Advanced Thermal Interface Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M increase thermal cycles before degradation and efforts to ensure ease of...

  3. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  4. Applications of artificial neural networks for thermal analysis of heat exchangers - A review

    International Nuclear Information System (INIS)

    Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.

    2015-01-01

    Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)

  5. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    Science.gov (United States)

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  6. Heat pipes with variable thermal conductance property for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, V.; Alekseik, Ye.; Alekseik, O.; Khairnasov, S. [National Technical University of Ukraine, Kyiv (Ukraine); Baturkin, V.; Ho, T. [Explorationssysteme RY-ES, Bremen (Germany); Celotti, L. [Active Space Technologies GmbH, Berlin (Germany)

    2017-06-15

    The activities presented in this paper demonstrate a new approach to provide passive thermal control using heat pipes, as demonstrated on the electronic unit of DLR’s MASCOT lander, which embarked on the NEA sample return mission Hayabusa 2 (JAXA). The focus is on the development and testing of heat pipes with variable thermal conductance in a predetermined temperature range. These heat pipes act as thermal switches. Unlike standard gasloaded heat pipes and thermal-diode heat pipes construction of presented heat pipes does not include any additional elements. Copper heat pipes with metal fibrous wicks were chosen as baseline design. We obtained positive results by choosing the heat carrier and structural parameters of the wick (i.e., pore diameter, porosity, and permeability). The increase in the thermal conductivity of the heat pipes from 0.04 W/K to 2.1 W/K was observed in the temperature range between −20 °C and +55 °C. Moreover, the heat pipes transferred the predetermined power of not less than 10 W within the same temperature range. The heat pipes have been in flight since December 2014, and the supporting telemetry data were obtained in September 2015. The data showed the nominal operation of the thermal control system.

  7. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  8. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  9. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter.

    Science.gov (United States)

    Spiezia, Stefano; Vitale, Giovanni; Di Somma, Carolina; Pio Assanti, Angelo; Ciccarelli, Antonio; Lombardi, Gaetano; Colao, Annamaria

    2003-10-01

    Percutaneous laser thermal ablation (LTA) has been applied in several tumors. In this study we evaluated the safety and long-term efficacy of LTA in the treatment of benign thyroid nodules. Seven patients with autonomous hyperfunctioning thyroid nodule (group A) and five patients with compressive nodular goiter (group B) were treated with LTA. Up to three needles were positioned centrally in the thyroid nodule and laser fiber was placed in the lumen of the needle. Laser illumination was performed reaching a maximal energy deposition of 1800 J per fiber. Thyroid nodule volume, endocrinologic, and clinical evaluation were performed at baseline, 3, and 12 months after the treatment. Scintigraphy was performed at diagnosis and 12 months after the first session in group A. In group A, mean thyroid volume decreased from 3.15 +/- 1.26 mL to 0.83 +/- 0.49 mL (p thyroid volume decreased from 11.14 +/- 4.99 mL to 3.73 +/- 1.47 mL (p thyroid nodules.

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  11. Application of nonlinear phenomena induced by focused ultrasound to bone imaging.

    Science.gov (United States)

    Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic

    2003-03-01

    A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.

  12. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  13. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application.

    Science.gov (United States)

    Wu, Zhilin; Ondruschka, Bernd

    2010-08-01

    Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile "Sonocracking" unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Principles and clinical application of ultrasound elastography for diffuse liver disease

    International Nuclear Information System (INIS)

    Jeong, Woo Kyoung; Lim, Hyo K.; Lee, Hyoung Ki; Jo, Jae Moon; Kim, Yong Soo

    2014-01-01

    Accurate assessment of the degree of liver fibrosis is important for estimating prognosis and deciding on an appropriate course of treatment for cases of chronic liver disease (CLD) with various etiologies. Because of the inherent limitations of liver biopsy, there is a great need for non-invasive and reliable tests that accurately estimate the degree of liver fibrosis. Ultrasound (US) elastography is considered a non-invasive, convenient, and precise technique to grade the degree of liver fibrosis by measuring liver stiffness. There are several commercial types of US elastography currently in use, namely, transient elastography, acoustic radiation force impulse imaging, supersonic shear-wave imaging, and real-time tissue elastography. Although the low reproducibility of measurements derived from operator-dependent performance remains a significant limitation of US elastography, this technique is nevertheless useful for diagnosing hepatic fibrosis in patients with CLD. Likewise, US elastography may also be used as a convenient surveillance method that can be performed by physicians at the patients' bedside to enable the estimation of the prognosis of patients with fatal complications related to CLD in a non-invasive manner.

  15. Principles and clinical application of ultrasound elastography for diffuse liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Kyoung; Lim, Hyo K. [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Ki; Jo, Jae Moon [Health Medical Equipment Business, Samsung Electronics, Seoul (Korea, Republic of); Kim, Yong Soo [Dept. of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of)

    2014-10-15

    Accurate assessment of the degree of liver fibrosis is important for estimating prognosis and deciding on an appropriate course of treatment for cases of chronic liver disease (CLD) with various etiologies. Because of the inherent limitations of liver biopsy, there is a great need for non-invasive and reliable tests that accurately estimate the degree of liver fibrosis. Ultrasound (US) elastography is considered a non-invasive, convenient, and precise technique to grade the degree of liver fibrosis by measuring liver stiffness. There are several commercial types of US elastography currently in use, namely, transient elastography, acoustic radiation force impulse imaging, supersonic shear-wave imaging, and real-time tissue elastography. Although the low reproducibility of measurements derived from operator-dependent performance remains a significant limitation of US elastography, this technique is nevertheless useful for diagnosing hepatic fibrosis in patients with CLD. Likewise, US elastography may also be used as a convenient surveillance method that can be performed by physicians at the patients' bedside to enable the estimation of the prognosis of patients with fatal complications related to CLD in a non-invasive manner.

  16. [Ultrasound and color Doppler applications in nephrology. The normal kidney: anatomy, vessels and congenital anomalies].

    Science.gov (United States)

    Meola, Mario; Petrucci, Ilaria; Giovannini, Lisa; Samoni, Sara; Dellafiore, Carolina

    2012-01-01

    Gray-scale ultrasound is the diagnostic technique of choice in patients with suspected or known renal disease. Knowledge of the normal and abnormal sonographic morphology of the kidney and urinary tract is essential for a successful diagnosis. Conventional sonography must always be complemented by Doppler sampling of the principal arterial and venous vessels. B-mode scanning is performed with the patient in supine, prone or side position. The kidney can be imaged by the anterior, lateral or posterior approach using coronal, transverse and oblique scanning planes. Morphological parameters that must be evaluated are the coronal diameter, the parenchymal thickness and echogenicity, the structure and state of the urinary tract, and the presence of congenital anomalies that may mimic a pseudomass. The main renal artery and the hilar-intraparenchymal branches of the arterial and venous vessels should be accurately evaluated using color Doppler. Measurement of intraparenchymal resistance indices (IP, IR) provides an indirect and quantitative parameter of the stiffness and eutrophic or dystrophic remodeling of the intrarenal microvasculature. These parameters differ depending on age, diabetic and hypertensive disease, chronic renal glomerular disease, and interstitial, vascular and obstructive nephropathy.

  17. [Clinical applications of ultrasound biomicroscopy in diagnosis and treatment of lens subluxation].

    Science.gov (United States)

    Liu, Yi-Zhi; Liu, Yu-Hua; Wu, Ming-Xing; Luo, Li-Xia; Zhang, Xin-Yu; Cai, Xiao-Yu; Chen, Xiu-Qi

    2004-03-01

    To evaluate the clinical value in diagnosis and treatment of lens subluxation using ultrasound biomicroscopy (UBM). This study comprised 29 patients (32 eyes) that had cataract with subluxated lenses due to different causes admitted into our hospital between November 2000 and January 2002. All eyes received UBM examination preoperatively and postoperatively. Capsular tension ring (CTR) implantations were performed using different technique according to UBM examination. Then all patients received phacoemulsification and intraocular lens (IOL) implantation. The location of IOL and CTR and complications were evaluated postoperatively. Different kinds of subluxated lens shown different manifestations in UBM. The degree of zonular defect can be evaluated with UBM preoperatively. With UBM examination preoperatively, extent of lens subluxation less than 1/2 quadrant in 19 eyes while more than 1/2 quadrant in other 13 eyes were observed. Postoperative UBM examination in this series shown that CTRs were holding in place except one attached to the iris root. IOLs in 29 eyes were in proper position while IOLs in 3 patients were slightly tilted. The degree and extent of lens subluxation can be evaluated using UBM examinations preoperatively, which is necessary in the selection of surgical protocol. With postoperative UBM examinations, a precise observation on the actual location of CTR and IOL can be achieved to produce an objective evaluation of the surgical outcomes.

  18. The effects of simultaneous application of ultrasound and ionizing radiation on cultured mammalian cells and normal tissues

    International Nuclear Information System (INIS)

    Fujita, Shozo

    1976-01-01

    The influence of therapeutic ultrasound on ionizing radiation effects was studied. Cultured mammalian cells, FM3A, and normal tissues, auricle and kidney of rabbits, were irradiated with ionizing radiation alone, ultrasound alone and both simultaneously. The biological experiments were conducted on the basis of the investigations about the physical and the chemical aspects of ultrasound. The results obtained from such a systematic study were as follows. It was considered that so called ''cavitation'' with bubble formation played an important role on the chemical effects of ultrasound. The chemical effect showed an intensity threshold in the range from 0.5 to 1 W/cm 2 . In the biological studies of ultrasound, the following must be considered; (1) the inhomogeneity of ultrasound intensity on the same plane (2) the distance between ultrasound transducer and sample. At a distance of 3 cm, the radiosensitizing effect due to simultaneous irradiation of x-rays and ultrasound on cells in suspension was detected at intensities above 2 W/cm 2 . The KI starch system in solution also showed a similar tendency. The irreversible tissue destruction was observed in the auricle irradiated with 690 R of 60 Co gamma-rays with simultaneous ultrasound at an intensity of 3 W/cm 2 for 15 minutes. However, no irreversible damage was recognized in the separate treatments with a dose four times of the combined irradiation. The interstitial nephritis was found in the kidney irradiated with 200 R of gamma-rays with simultaneous ultrasound for 5 minutes. No histological change was detectable in the separate treatments with a dose three times of the combined irradiation. The results seem to indicate that the ionizing radiation effects are enhanced by therapeutic ultrasound. (auth.)

  19. Some application of the thermal analysis technique to nuclear material process

    International Nuclear Information System (INIS)

    Xi Chongpu.

    1987-01-01

    This paper briefly described the thermal stability and phase transformation of Uranium Compounds as UF 4 , UO 2 F 2 , UO 2 -(NO 3 ) 2 , ADU, AUC, UO 3 and UO 2 . It proved that the thermal analysis finds extensive application in nuclear materials prodcution

  20. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  1. IEA SHC Task 42 / ECES Annex 29 - Working Group B: Applications of Compact Thermal Energy Storage

    NARCIS (Netherlands)

    Helden, W. van; Yamaha, M.; Rathgeber, C.; Hauer, A.; Huaylla, F.; Le Pierrès, N.; Stutz, B.; Mette, B.; Dolado, P.; Lazaro, A.; Mazo, J.; Dannemand, M.; Furbo, S.; Campos-Celador, A.; Diarce, G.; Cuypers, R.; König-Haagen, A.; Höhlein, S.; Brüggemann, D.; Fumey, B.; Weber, R.; Köll, R.; Wagner, W.; Daguenet-Frick, X.; Gantenbein, P.; Kuznik, F.

    2016-01-01

    The IEA joint Task 42 / Annex 29 is aimed at developing compact thermal energy storage materials and systems. In Working Group B, experts are working on the development of compact thermal energy storage applications, in the areas cooling, domestic heating and hot water and industry. The majority of

  2. MEMS monocrystalline-silicon based thermal devices for chemical and microfluidic applications

    NARCIS (Netherlands)

    Mihailovic, M.

    2011-01-01

    This thesis explores the employment of monocrystalline silicon in microsystems as an active material for different thermal functions, such as heat generation and heat transfer by conduction. In chapter 1 applications that need thermal micro devices, micro heaters and micro heat exchangers, are

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a ... Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview Images related to General Ultrasound Videos ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  5. Application of optical character recognition in thermal image processing

    Science.gov (United States)

    Chan, W. T.; Sim, K. S.; Tso, C. P.

    2011-07-01

    This paper presents the results of a study on the reliability of the thermal imager compared to other devices that are used in preventive maintenance. Several case studies are used to facilitate the comparisons. When any device is found to perform unsatisfactorily where there is a suspected fault, its short-fall is determined so that the other devices may compensate, if possible. This study discovered that the thermal imager is not suitable or efficient enough for systems that happen to have little contrast in temperature between its parts or small but important parts that have their heat signatures obscured by those from other parts. The thermal imager is also found to be useful for preliminary examinations of certain systems, after which other more economical devices are suitable substitutes for further examinations. The findings of this research will be useful to the design and planning of preventive maintenance routines for industrial benefits.

  6. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  7. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  8. Utilization of Self-Healing Materials in Thermal Protection System Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the Utilization of Self-Healing Materials for Thermal Protection System (TPS) Applications. Currently, the technology for repairing TPS from...

  9. Assessing the application and downstream effects of pulsed mode ultrasound as a pre-treatment for alum coagulation.

    Science.gov (United States)

    Al-Juboori, Raed A; Aravinthan, Vasantha; Yusaf, Talal; Bowtell, Leslie

    2016-07-01

    The application of pulsed mode ultrasound (PMU) as a pre-treatment for alum coagulation was investigated at various alum dosages and pH levels. The effects of the treatments on turbidity and dissolved organic carbon (DOC) removal and residual Al were evaluated. Response surface methodology (RSM) was utilized to optimize the operating conditions of the applied treatments. The results showed that PMU pre-treatment increased turbidity and DOC removal percentages from maximum of 96.6% and 43% to 98.8% and 52%, respectively. It also helped decrease the minimum residual Al from 0.100 to 0.094 ppm. The multiple response optimization was carried out using the desirability function. A desirability value of >0.97 estimated respective turbidity removal, DOC removal and Al residual of 89.24%, 45.66% and ∼ 0.1 ppm for coagulation (control) and 90.61%, >55% and ∼ 0 for coagulation preceded by PMU. These figures were validated via confirmatory experiments. PMU pre-treatment increased total coliform removal from 80% to >98% and decreased trihalomethane formation potential (THMFP) from 250 to 200 ppb CH3Cl. Additionally, PMU application prior to coagulation improved the settleability of sludge due to the degassing effects. The results of this study confirms that PMU pre-treatment can significantly improve coagulation performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  12. Management applications for thermal IR imagery of lake processes

    Science.gov (United States)

    Whipple, J. M.; Haynes, R. B.

    1971-01-01

    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  13. Material recognition based on thermal cues: Mechanisms and applications.

    Science.gov (United States)

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  14. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  15. Development and applications of retro-reflective surfaces for ultrasound in LBE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The Belgian Nuclear Research Centre SCK-CEN is in the process of developing MYRRHA - a fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled by lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback to submerged operations when needed. Conceptually, MYRRHA is a pool type reactor divided in a cold lower plenum and hot upper plenum separated by a diaphragm that forces the main flow through the core. The main flow is cooled by four heat exchangers and driven by two liquid metal pumps. One of the tasks tackled using ultrasound is locating a potentially lost fuel assembly to assist a recovery operation. As all fuel manipulations in MYRRHA are performed in the lower plenum, a potentially lost fuel assembly is located in the lower plenum. Buoyancy will force the lost fuel assembly to float against the diaphragm unless it is still partially inserted in the core. Because of the latter situation, an ultrasonic scan localizing the fuel assembly should be performed from a large distance to avoid a collision with such a partially inserted fuel assembly. Unfortunately, standard machined stainless steel objects, such as a fuel assembly, reflect an ultrasonic pulse in a specular way which induces stringent requirements on the alignment of the ultrasonic sensor with respect to the fuel assembly as we cannot rely on diffuse reflections and/or scattering of the ultrasonic pulse. Moreover, increasing the distance also increases geometric spreading and absorption of the pulse weakening the signal amplitude even faster to noise levels when deviating from perfect alignment. An alternative approach consists in relying on reflections from the known surroundings: a lost fuel assembly will block the line-of-sight to the diaphragm resulting in an anomaly in the reflection - either a shorter than expected time-of-flight of the

  16. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  17. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  18. Ultrasound Contrast Agent Microbubble Dynamics

    NARCIS (Netherlands)

    Overvelde, M.L.J.; Vos, Henk; de Jong, N.; Versluis, Michel; Paradossi, Gaio; Pellegretti, Paolo; Trucco, Andrea

    2010-01-01

    Ultrasound contrast agents are traditionally used in ultrasound-assisted organ perfusion imaging. Recently the use of coated microbubbles has been proposed for molecular imaging applications where the bubbles are covered with a layer of targeting ligands to bind specifically to their target cells.

  19. Droplets, Bubbles and Ultrasound Interactions

    NARCIS (Netherlands)

    Shpak, O.; Verweij, M.; de Jong, N.; Versluis, Michel; Escoffre, J.M.; Bouakaz, A.

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  20. Physics of Ultrasound. Chapter 12

    Energy Technology Data Exchange (ETDEWEB)

    Lacefield, J. C. [University of Western Ontario, London (Canada)

    2014-09-15

    Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide at the beginning of the 21st century. The success of ultrasound may be attributed to a number of attractive characteristics, including the relatively low cost and portability of an ultrasound scanner, the non-ionizing nature of ultrasound waves, the ability to produce real time images of blood flow and moving structures such as the beating heart, and the intrinsic contrast among soft tissue structures that is achieved without the need for an injected contrast agent. The latter characteristic enables ultrasound to be used for a wide range of medical applications, which historically have primarily included cardiac and vascular imaging, imaging of the abdominal organs and, most famously, in utero imaging of the developing fetus. Ongoing technological improvements continue to expand the use of ultrasound for many applications, including cancer imaging, musculoskeletal imaging, ophthalmology and others. The term ultrasound refers specifically to acoustic waves at frequencies greater than the maximum frequency audible to humans, which is nominally 20 kHz. Diagnostic imaging is generally performed using ultrasound in the frequency range of 2–15 MHz. The choice of frequency is dictated by a trade off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue. The information contained in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue.

  1. Assessing the sustainable application of Aquifer Thermal Energy Storage

    NARCIS (Netherlands)

    Jaxa-Rozen, M.; Bloemendal, J.M.; Rostampour Samarin, Vahab; Kwakkel, J.H.

    2016-01-01

    Aquifer Thermal Energy Storage (ATES) can yield significant reductions in the energy use and greenhouse gas (GHG) emissions of larger buildings, and the use of these systems has been rapidly growing in Europe – especially in the Netherlands, where over 3000 systems are currently active in urban

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  3. Prostate Ultrasound

    Science.gov (United States)

    ... be able to give a clearer picture of soft tissues that do not show up well on x-ray images. Ultrasound causes no health problems and may be repeated as often as is necessary if medically indicated. Ultrasound provides real-time imaging, making it a good tool for guiding ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to ...

  5. Interventional ultrasound

    International Nuclear Information System (INIS)

    VanSonnenberg, E.

    1987-01-01

    This book contains 12 chapters and several case studies. Some of the chapter titles are: The Interplay of Ultrasound and Computed Tomography in the Planning and Execution of Interventional Procedures: Ulltrasound Guided Biopsy; Interventioal Genitourinary Sonography; Diagnosis and Treatment of Pericardial Effusion Using Ultrasonic Guidance; and New Ultrasound-Guided Interventional Procedures--Cholecystostomy, Pancreatography, Gastrostomy

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of ...

  8. Ultrasound stethoscopy

    NARCIS (Netherlands)

    E.C. Vourvouri (Eleni)

    2002-01-01

    textabstractIn this thesis we repmi the many evaluation studies with the hand-held ultrasound device in the assessment of different cardiac pathologies and in different clinical settings. The reason for using the tetm "ultrasound stethoscopy" is that these devices are augmenting our

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not use any ionizing radiation. Ultrasound scanning gives a clear picture of soft tissues that do not show up well on ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the best way to see if treatment is working or if a finding is stable or changed over time. top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use and less expensive than other imaging methods. Ultrasound imaging uses ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  12. The effectiveness of a mobile application for the development of palpation and ultrasound imaging skills to supplement the traditional learning of physiotherapy students.

    Science.gov (United States)

    Fernández-Lao, Carolina; Cantarero-Villanueva, Irene; Galiano-Castillo, Noelia; Caro-Morán, Elena; Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel

    2016-10-19

    Mobile learning (m-learning) has becoming very popular in education due to the rapidly advancing technology in our society. The potentials of the mobile applications should be used to enhance the education process. Few mobile applications have been designed to complement the study of physical therapy skills for physiotherapy students. The aim of this study was to investigate whether a mobile application, as a supplement to traditional learning, is useful for physiotherapy students in the acquisition of palpation and ultrasound skills in the shoulder area. Forty-nine students participated in this single-blinded, randomized controlled study. They were randomly distributed into two groups: experimental, with free access to the mobile application; and control, with access to traditional learning materials on the topic. Objective structured clinical evaluation (OSCE) and multiple-choice questionnaire (MCQ) were used to assess the educational intervention. Then, we also assessed the time taken to get a reliable ultrasound image and to localize a specific shoulder structure by palpation. There was no significant intergroup difference in the acquisition of theoretical knowledge (p = .089). Scores were significantly higher in the experimental group than in the control group for the majority items in the ultrasound assessment; positioning of patient (p physiotherapy students.

  13. Comparison of selective transmitters for solar thermal applications.

    Science.gov (United States)

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar

  14. Improvement of energy performances of existing buildings by application of solar thermal systems

    Directory of Open Access Journals (Sweden)

    Krstić-Furundžić Aleksandra

    2009-01-01

    Full Text Available Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.

  15. Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions—A comparison of conventional ultrasound and contrast-enhanced CT

    International Nuclear Information System (INIS)

    Fan, Zhihui; Li, Ying; Yan, Kun; Wu, Wei; Yin, Shanshan; Yang, Wei; Xing, Baocai

    2013-01-01

    Objective: To explore the diagnostic value of contrast-enhanced ultrasound (CEUS) by comparison with conventional ultrasound (US) and contrast-enhanced CT (CECT) in solid pancreatic lesions. Method: Ninety patients with solid pancreatic focal lesions were enrolled, including 36 cases of pancreatic carcinoma, 28 cases of pancreatitis, 6 cases of pancreatic neuroendocrine tumor, 12 cases of solid pseudopapillary tumor of the pancreas, 6 cases of pancreatic metastases, 1 case of cavernous hemolymphangioma and 1 case of lymphoma. US and CEUS were applied respectively for the diagnosis of a total of 90 cases of solid pancreatic lesions. The diagnostic results were scored on a 5-point scale. Results of CEUS were compared with CECT. Results: (1) 3-score cases (undetermined) diagnosed by CEUS were obviously fewer than that of US, while the number of 1-score (definitely benign) and 5-score (definitely malignant) cases diagnosed by CEUS was significantly more than that of US. There was a significant difference in the distribution of final scores using the two methods (p < 0.001). The overall diagnostic accuracies of the 90 cases for CEUS and US were 83.33% and 44.44%, respectively, which indicated an obvious advantage for CEUS (p < 0.001). (2) The diagnostic consistency among three ultrasound doctors: the kappa values calculated for US were 0.537, 0.444 and 0.525, compared with 0.748, 0.645 and 0.795 for CEUS. The interobserver agreement for CEUS was higher than that for US. (3) The sensitivity, specificity and accuracy of the diagnosis of pancreatic carcinoma with CEUS and CECT were 91.7% and 97.2%, 87.0% and 88.9%, and 88.9% and 92.2%, respectively, while for the diagnosis of pancreatitis, the corresponding indices were 82.1% and 67.9%, 91.9% and 100%, and 88.9% and 90%, respectively, showing no significant differences (p > 0.05). Conclusion: CEUS has obvious superiority over conventional US in the general diagnostic accuracy of solid pancreatic lesions and in the

  16. Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions—A comparison of conventional ultrasound and contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhihui, E-mail: fanzhihui_1026@163.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Li, Ying, E-mail: 18901033676@126.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yan, Kun, E-mail: ydbz@sina.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Wu, Wei, E-mail: wuwei@163.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yin, Shanshan, E-mail: yshshmd@yahoo.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yang, Wei, E-mail: weiwei02032001@gmail.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Xing, Baocai, E-mail: xinbaocai88@sina.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepatic Biliary and Pancreatic Surgery, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); and others

    2013-09-15

    Objective: To explore the diagnostic value of contrast-enhanced ultrasound (CEUS) by comparison with conventional ultrasound (US) and contrast-enhanced CT (CECT) in solid pancreatic lesions. Method: Ninety patients with solid pancreatic focal lesions were enrolled, including 36 cases of pancreatic carcinoma, 28 cases of pancreatitis, 6 cases of pancreatic neuroendocrine tumor, 12 cases of solid pseudopapillary tumor of the pancreas, 6 cases of pancreatic metastases, 1 case of cavernous hemolymphangioma and 1 case of lymphoma. US and CEUS were applied respectively for the diagnosis of a total of 90 cases of solid pancreatic lesions. The diagnostic results were scored on a 5-point scale. Results of CEUS were compared with CECT. Results: (1) 3-score cases (undetermined) diagnosed by CEUS were obviously fewer than that of US, while the number of 1-score (definitely benign) and 5-score (definitely malignant) cases diagnosed by CEUS was significantly more than that of US. There was a significant difference in the distribution of final scores using the two methods (p < 0.001). The overall diagnostic accuracies of the 90 cases for CEUS and US were 83.33% and 44.44%, respectively, which indicated an obvious advantage for CEUS (p < 0.001). (2) The diagnostic consistency among three ultrasound doctors: the kappa values calculated for US were 0.537, 0.444 and 0.525, compared with 0.748, 0.645 and 0.795 for CEUS. The interobserver agreement for CEUS was higher than that for US. (3) The sensitivity, specificity and accuracy of the diagnosis of pancreatic carcinoma with CEUS and CECT were 91.7% and 97.2%, 87.0% and 88.9%, and 88.9% and 92.2%, respectively, while for the diagnosis of pancreatitis, the corresponding indices were 82.1% and 67.9%, 91.9% and 100%, and 88.9% and 90%, respectively, showing no significant differences (p > 0.05). Conclusion: CEUS has obvious superiority over conventional US in the general diagnostic accuracy of solid pancreatic lesions and in the

  17. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  18. Diagnostic significance of ultrasound in dermatology

    OpenAIRE

    Stojanović Slobodan; Poljački Mirjana N.; Roš Tatjana

    2002-01-01

    Introduction Utilization of 20 MHz ultrasound probes provided application of ultrasound in dermatology - dermatosonography. As a diagnostic tool, ultrasound was first registered in the early fifties of the past century. Great progress of dermatosonography occurred in the mid-nineties with introduction of the first 20 MHz scanner. Methods of ultrasonography in dermatology Several methods of ultrasonography have been developed: method A, method B, scanning C method and Doppler ultrasound. They ...

  19. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  20. Solar thermal application for the livestock industry in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Mei Liu

    2015-09-01

    Full Text Available Solar water heating systems have proven reliable and economical. In Taiwan, the cumulative area of installed solar collectors at the end of 2014 was approximately 2.39 million m2 and approximately 98% of those systems were installed in the domestic sector. Preheating water for livestock processing plants is cost-effective since heated water can be used for evisceration, sanitation during processing and for daily cleanup of plant. In this case study, detailed measurements are reported for parallel combined solar thermal and heat pump systems that are installed in a livestock processing plant. These results confirm that the hot water consumption, the mass flow rate and the operation of circulation and heat pumps affect the system's thermal efficiency. The combined operational effect is a factor in system design. The estimated payback period is less than the expected service period of the system, which validates the financial viability.

  1. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  2. Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings

    Science.gov (United States)

    Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas

    2017-11-01

    Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.

  3. Application of thermal analysis in nuclear waste management

    International Nuclear Information System (INIS)

    Raje, Naina; Kalekar, Bhupesh; Acharekar, Darshana; Reddy, A.V.R.

    2009-01-01

    Thermal decomposition of zirconium raffinate and ammonium nitrate has been studied using simultaneous TG - DTA - MS/FTIR measurements. Based on non-isothermal analysis, isothermal measurements have been carried out at different temperatures to fix the calcination temperature/s. Decomposition of ammonium nitrate was studied in inert, oxidizing and reducing environments and the results suggest that the decomposition mechanism is same in inert/oxidizing atmosphere but is different in reducing environment. (author)

  4. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    Science.gov (United States)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  5. Numerical analysis and nuclear standard code application to thermal fatigue

    International Nuclear Information System (INIS)

    Merola, M.

    1992-01-01

    The present work describes the Joint Research Centre Ispra contribution to the IAEA benchmark exercise 'Lifetime Behaviour of the First Wall of Fusion Machines'. The results of the numerical analysis of the reference thermal fatigue experiment are presented. Then a discussion on the numerical analysis of thermal stress is tackled, pointing out its particular aspects in view of their influence on the stress field evaluation. As far as the design-allowable number of cycles are concerned the American nuclear code ASME and the French code RCC-MR are applied and the reasons for the different results obtained are investigated. As regards a realistic fatigue lifetime evaluation, the main problems to be solved are brought out. This work, is intended as a preliminary basis for a discussion focusing on the main characteristics of the thermal fatigue problem from both a numerical and a lifetime assessment point of view. In fact the present margin of discretion left to the analyst may cause undue discrepancies in the results obtained. A sensitivity analysis of the main parameters involved is desirable and more precise design procedures should be stated

  6. Thermal characterization of commercially pure titanium for dental applications

    Directory of Open Access Journals (Sweden)

    Enori Gemelli

    2007-09-01

    Full Text Available Thermal characterization of commercially pure titanium was carried out in dry air to investigate the oxidation kinetics, the oxide structures and their properties. Oxidation kinetics were performed by thermogravimetry in isothermal conditions between 300 and 750 °C for 48 hours and the oxide structures were studied by differential thermal analyses and X ray diffraction between room temperature and 1000 °C. The oxidation kinetic increases with temperature and is very fast in the initial period of oxidation, decreasing rapidly with time, especially up to 600 °C. Kinetic laws varied between the inverse logarithmic for the lower temperatures (300 and 400 °C and the parabolic for the higher temperatures (650, 700 and 750 °C. Evidences from X ray diffraction and differential thermal analyses showed that crystallization of the passive oxide film, formed at room temperature, into anatase occurs at about 276 °C. The crystallized oxide structure is composed of anatase between 276 and 457 °C, anatase and rutile sublayers between 457 and 718 °C, and a pure layer of rutile after 718 °C. Rockwell-C adhesion tests reveled that the oxide films formed up to 600 °C have a good adhesion. Vickers indentations on the oxidized surfaces showed that the hardness of the oxide film, measured at 600 and 650 °C, is approximately 9500 MPa. At these temperatures the surface roughness varied between 0.90 and 1.30 mm.

  7. A review on battery thermal management in electric vehicle application

    Science.gov (United States)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  8. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  9. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Green light emitting nanostructures of Tb3+ doped LaOF prepared via ultrasound route applicable in display devices

    Science.gov (United States)

    Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka

    2017-05-01

    For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.

  11. 8051 microcontroller to FPGA and ADC interface design for high speed parallel processing systems – Application in ultrasound scanners

    Directory of Open Access Journals (Sweden)

    J. Jean Rossario Raj

    2016-09-01

    Full Text Available Microcontrollers perform the hardware control in many instruments. Instruments requiring huge data throughput and parallel computing use FPGA’s for data processing. The microcontroller in turn configures the application hardware devices such as FPGA’s, ADC’s and Ethernet chips etc. The interfacing of these devices uses address/data bus interface, serial interface or serial peripheral interface. The choice of the interface depends upon the input/output pins available with different devices, programming ease and proprietary interfaces supported by devices such as ADC’s. The novelty of this paper is to describe the programming logic used for various types of interface scenarios from microcontroller to different programmable devices. The study presented describes the methods and logic flowcharts for different interfaces. The implementation of the interface logics were in prototype hardware for ultrasound scanner. The internal devices were controlled from the graphical user interface in a laptop and the scan results are taken. It is seen that the optimum solution of the hardware design can be achieved by using a common serial interface towards all the devices.

  12. Moisture dependent thermal properties of hydrophilic mineral wool: application of the effective media theory

    Directory of Open Access Journals (Sweden)

    Iñigo Antepara

    2015-09-01

    Full Text Available Thermal properties of mineral wool based materials appear to be of particular importance for their practical applications because the majority of them is used in the form of thermal insulation boards. Every catalogue list of any material producer of mineral wool contains thermal conductivity, sometimes also specific heat capacity, but they give only single characteristic values for dry state of material mostly. Exposure to outside climate or any other environment containing moisture can negatively affect the thermal insulation properties of mineral wool. Nevertheless, the mineral wool materials due to their climatic loading and their environmental exposure contain moisture that can negatively affect their thermal insulation properties. Because the presence of water in mineral wool material is undesirable for the majority of applications, many products are provided with hydrophobic substances. Hydrophilic additives are seldom used in mineral wool products. However, this kind of materials has a good potential for application for instance in interior thermal insulation systems, masonry desalination, green roofs, etc. For these materials, certain moisture content must be estimated and thus their thermal properties will be different than for the dry state. On this account, moisture dependent thermal properties of hydrophilic mineral wool (HMW are studied in a wide range of moisture content using a pulse technique. The experimentally determined thermal conductivity data is analysed using several homogenization formulas based on the effective media theory. In terms of homogenization, a porous material is considered as a mixture of two or three phases. In case of dry state, material consists from solid and gaseous phase. When moistened, liquid phase is also present. Mineral wool consists of the solid phase represented by basalt fibers, the liquid phase by water and the gaseous phase by air. At first, the homogenization techniques are applied for the

  13. Methodology on quantification of sonication duration for safe application of MR guided focused ultrasound for liver tumour ablation.

    Science.gov (United States)

    Mihcin, Senay; Karakitsios, Ioannis; Le, Nhan; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Haase, Sabrina; Preusser, Tobias; Melzer, Andreas

    2017-12-01

    Magnetic Resonance Guided Focused Ultrasound (MRgFUS) for liver tumour ablation is a challenging task due to motion caused by breathing and occlusion due the ribcage between the transducer and the tumour. To overcome these challenges, a novel system for liver tumour ablation during free breathing has been designed. The novel TRANS-FUSIMO Treatment System (TTS, EUFP7) interacts with a Magnetic Resonance (MR) scanner and a focused ultrasound transducer to sonicate to a moving target in liver. To meet the requirements of ISO 13485; a quality management system for medical device design, the system needs to be tested for certain process parameters. The duration of sonication and, the delay after the sonication button is activated, are among the parameters that need to be quantified for efficient and safe ablation of tumour tissue. A novel methodology is developed to quantify these process parameters. A computerised scope is programmed in LabVIEW to collect data via hydrophone; where the coordinates of fiber-optic sensor assembly was fed into the TRANS-FUSIMO treatment software via Magnetic Resonance Imaging (MRI) to sonicate to the tip of the sensor, which is synchronised with the clock of the scope, embedded in a degassed water tank via sensor assembly holder. The sonications were executed for 50 W, 100 W, 150 W for 10 s to quantify the actual sonication duration and the delay after the emergency stop by two independent operators for thirty times. The deviation of the system from the predefined specs was calculated. Student's-T test was used to investigate the user dependency. The duration of sonication and the delay after the sonication were quantified successfully with the developed method. TTS can sonicate with a maximum deviation of 0.16 s (Std 0.32) from the planned duration and with a delay of 14 ms (Std 0.14) for the emergency stop. Student's T tests indicate that the results do not depend on operators (p > .05). The evidence obtained via this

  14. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  15. Security surveillance challenges and proven thermal imaging capabilities in real-world applications

    Science.gov (United States)

    Francisco, Glen L.; Roberts, Sharon

    2004-09-01

    Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.

  16. Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach.

    Science.gov (United States)

    Alvarenga, André V; Wilkens, Volker; Georg, Olga; Costa-Félix, Rodrigo P B

    2017-09-01

    Healing therapies that make use of ultrasound are based on raising the temperature in biological tissue. However, it is not possible to heal impaired tissue by applying a high dose of ultrasound. The temperature of the tissue is ultimately the physical quantity that has to be assessed to minimize the risk of undesired injury. Invasive temperature measurement techniques are easy to use, despite the fact that they are detrimental to human well being. Another approach to assessing a rise in tissue temperature is to derive the material's general response to temperature variations from ultrasonic parameters. In this article, a method for evaluating temperature variations is described. The method is based on the analytical study of an ultrasonic image, in which gray-level variations are correlated to the temperature variations in a tissue-mimicking material. The physical assumption is that temperature variations induce wave propagation changes modifying the backscattered ultrasound signal, which are expressed in the ultrasonographic images. For a temperature variation of about 15°C, the expanded uncertainty for a coverage probability of 0.95 was found to be 2.5°C in the heating regime and 1.9°C in the cooling regime. It is possible to use the model proposed in this article in a straightforward manner to monitor temperature variation during a physiotherapeutic ultrasound application, provided the tissue-mimicking material approach is transferred to actual biological tissue. The novelty of such approach resides in the metrology-based investigation outlined here, as well as in its ease of reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Applications for coupled core neutronics and thermal-hydraulic models

    International Nuclear Information System (INIS)

    Eller, J.

    1996-01-01

    The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process

  18. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  19. Thermal IR satellite data application for earthquake research in Pakistan

    Science.gov (United States)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat

    2018-05-01

    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  20. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  1. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  2. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  3. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  4. Cationic surfactant assisted ultrasound synthesis of Dy3+ doped CdSiO3 nanostructures for white LED application

    Science.gov (United States)

    Basavaraj, R. B.; Nagabhushana, H.; Lingaraju, K.; Prasad, B. Daruka

    2017-05-01

    In this paper we report for the first time Dy3+ (1-7 mol %) doped CdSiO3 nanophosphors prepared via facile ultrasound supported sonochemical route using EGCG (epigallocatechin gallate). The final product was well characterized by PXRD, FTIR, SEM, TEM and PL. The powder X-ray diffraction (PXRD) profiles showed monoclinic phase with highly crystalline nature. The sonication time, concentration of the surfactant play vital role in tuning the morphology. The crystallite size was calculated from PXRD patterns as well as by TEM image and it was found to 20-30 nm. The Fourier transform infrared spectroscopy (FTIR) results confirmed the presence of Si-O-Si and Si-O stretching vibrations in CdSiO3. Photoluminescence properties of Dy3+ (1-7 mol %) doped CdSiO3 excited under near ultra violet wavelength (350 nm) was studied in order to investigate the possibility of its use in white light emitting diode applications. The emission spectra consists of intra 4f transitions of Dy3+, namely 4F9/2 → 6H15/2 (480 nm), and 4F9/2 → 6H13/2 (574 nm) respectively. The 3 mol% Dy3+ doped phosphor showed maximum intensity. The Commission Internationale de I'Eclairage (CIE) and correlated color temperature (CCT) was evaluated. Further, the quantum efficiency and color purity results of the product showed high efficiency and it was highly useful in white light emitting diodes (wLEDs) applications.

  5. Research interface on a programmable ultrasound scanner.

    Science.gov (United States)

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  6. In situ sonochemical reduction and direct functionalization of graphene oxide: A robust approach with thermal and biomedical applications.

    Science.gov (United States)

    Maktedar, Shrikant S; Mehetre, Shantilal S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13 C solid state NMR, XPS, XRD, Raman' HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128mgmL -1 . It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80μgmL -1 . The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  8. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  9. A Micro-Thermal Sensor for Focal Therapy Applications

    Science.gov (United States)

    Natesan, Harishankar; Hodges, Wyatt; Choi, Jeunghwan; Lubner, Sean; Dames, Chris; Bischof, John

    2016-02-01

    There is an urgent need for sensors deployed during focal therapies to inform treatment planning and in vivo monitoring in thin tissues. Specifically, the measurement of thermal properties, cooling surface contact, tissue thickness, blood flow and phase change with mm to sub mm accuracy are needed. As a proof of principle, we demonstrate that a micro-thermal sensor based on the supported “3ω” technique can achieve this in vitro under idealized conditions in 0.5 to 2 mm thick tissues relevant to cryoablation of the pulmonary vein (PV). To begin with “3ω” sensors were microfabricated onto flat glass as an idealization of a focal probe surface. The sensor was then used to make new measurements of ‘k’ (W/m.K) of porcine PV, esophagus, and phrenic nerve, all needed for PV cryoabalation treatment planning. Further, by modifying the sensor use from traditional to dynamic mode new measurements related to tissue vs. fluid (i.e. water) contact, fluid flow conditions, tissue thickness, and phase change were made. In summary, the in vitro idealized system data presented is promising and warrants future work to integrate and test supported “3ω” sensors on in vivo deployed focal therapy probe surfaces (i.e. balloons or catheters).

  10. Fetal Ultrasound

    Science.gov (United States)

    ... isn't recommended simply to determine a baby's sex. Similarly, fetal ultrasound isn't recommended solely for the purpose of producing keepsake videos or pictures. If your health care provider doesn' ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... nodule felt by a physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ... well on x-ray images. Ultrasound causes no health problems and may be repeated as often as ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... no ionizing radiation. Ultrasound scanning may be able to give a clearer picture of soft tissues that do ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is located directly in front of the rectum, so the ultrasound exam is performed transrectally in order ... A follow-up examination may also be necessary so that any change in a known abnormality can ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the rectal wall is relatively insensitive to the pain in the region of the prostate. A biopsy ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... diagnose symptoms such as difficulty urinating or an elevated blood test result. It’s also used to investigate ... physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible ... principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... a follow-up exam is done because a potential abnormality needs further evaluation with additional views or ... of soft tissues that do not show up well on x-ray images. Ultrasound causes no health ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a follow-up exam is done because a potential abnormality needs further evaluation with additional views or ... of soft tissues that do not show up well on x-ray images. Ultrasound is the preferred ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is smaller than the standard speculum used when performing a Pap test . A protective cover is placed ... of soft tissues that do not show up well on x-ray images. Ultrasound is the preferred ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on ... to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on ... the child prior to the exam. Bringing books, small toys, music or games can help to distract ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... less than 20 minutes. top of page What will I experience during and after the procedure? Ultrasound ... in the region of the prostate. A biopsy will add time to the procedure. Rarely, a small ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are reviewed. top of page What will I experience during and after the procedure? For ... in the region of the prostate. A biopsy will add time to the procedure. If a Doppler ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the best way to see if treatment is working or if a finding is stable or changed ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . ... move through vessels. The movement of blood cells causes a change in pitch of the reflected sound ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such ... and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time imaging, making it a ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... move through vessels. The movement of blood cells causes a change in pitch of the reflected sound ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, noninvasive and does not use ... and evaluate a variety of urinary and reproductive system disorders in both sexes without x-ray exposure. ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... be asked to drink water prior to the examination to fill your bladder. Leave jewelry at home ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page ... to Ultrasound - Prostate Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. help ... end of their bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... tip of the transducer is smaller than the standard speculum used when performing a Pap test . A ... both sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... prostate gland and to help diagnose symptoms such as difficulty urinating or an elevated blood test result. ... image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is no ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs ... or uterine cancers A transvaginal ultrasound is usually performed to view ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any treatment ... caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the exam. Bringing books, small toys, music or games can help to distract the child and make ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ... and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects on ... and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... rectum. top of page What are some common uses of the procedure? A transrectal ultrasound of the ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... legs, neck and/or brain (in infants and children) or within various body organs such as the ... tumors other disorders of the urinary bladder In children, pelvic ultrasound can help evaluate: pelvic masses pelvic ...