WorldWideScience

Sample records for ultrasonic wideband sensor

  1. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  2. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  3. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  4. Calculation of wideband ultrasonic fields radiated by immersed transducers into solids

    International Nuclear Information System (INIS)

    Lhemery, A.; Calmon, P.; Mephane, M.

    1996-01-01

    In ultrasonic nondestructive testing (NDT), configurations of immersion techniques where transducers radiate through non-planar interfaces are often encountered, e.g., pipe inspection where the probe can be scanned either inside or outside the pipe. When local radii of curvature are far larger that typical wave paths in the coupling fluid and into the piece, field predictions can often be made assuming a plane interface. For smaller radii, such an approximation is not valid. The model developed at the French Atomic ENergy Commission (CEA) to predict ultrasonic fields radiated by wideband transducers through liquid-interfaces (called Champ-Sons) is based on a modification of the Rayleigh integral to take account of refraction. It is derived under the geometrical optics approximation (GO) which introduces two factors: the transmission coefficient between the two media of elementary contributions from source-points to field-points and the so-called 'divergence factor' of the transmitted rays (denoted by DF), accounting for the principal radii of curvature of the retransmitted rays (denoted by DF), accounting for the principal radii of curvature of the refracted wave fronts (initially spherical in the coupling medium). (authors)

  5. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  6. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  7. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  8. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  9. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  10. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Daw; J. Rempe; J. Palmer; P. Ramuhalli; R. Montgomery; H.T. Chien; B. Tittmann; B. Reinhardt; P. Keller

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature of in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.

  11. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    Science.gov (United States)

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  13. Underwater detection by using ultrasonic sensor

    Science.gov (United States)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  14. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  15. Ultrasonic level, temperature, and density sensor

    International Nuclear Information System (INIS)

    Rogers, S.C.; Miller, G.N.

    1982-01-01

    A sensor has been developed to measure simultaneously the level, temperature, and density of the fluid in which it is immersed. The sensor is a thin, rectangular stainless steel ribbon which acts as a waveguide and is housed in a perforated tube. The waveguide is coupled to a section of magnetostrictive magnetic-coil transducers. These tranducers are excited in an alternating sequence to interrogate the sensor with both torsional ultrasonic waves, utilizing the Wiedemann effect, and extensional ultrasonic waves, using the Joule effect. The measured torsional wave transit time is a function of the density, level, and temperature of the fluid surrounding the waveguide. The measured extensional wave transit time is a function of the temperature of the waveguide only. The sensor is divided into zones by the introduction of reflecting surfaces at measured intervals along its length. Consequently, the transit times from each reflecting surface can be analyzed to yield a temperature profile and a density profile along the length of the sensor. Improvements in acoustic wave dampener and pressure seal designs enhance the compatibility of the probe with high-temperature, high-radiation, water-steam environments and increase the likelihood of survival in such environments. Utilization of a microcomputer to automate data sampling and processing has resulted in improved resolution of the sensor

  16. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  17. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    JE Daw; JL Rempe; BR Tittmann; B Reinhardt; P Ramuhalli; R Montgomery; HT Chien

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are less intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.

  18. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    Science.gov (United States)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  19. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  20. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor.

    Science.gov (United States)

    Zhang, Hongjuan; Wang, Yu; Zhang, Xu; Wang, Dong; Jin, Baoquan

    2016-06-13

    In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

  1. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  2. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  3. Ultrasonic level sensors for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  4. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Odat, Enas M.

    2017-09-18

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used for real-time vehicle detection, classification, and speed estimation in the context of wireless sensor networks. This framework relies on dynamic Bayesian Networks to fuse heterogeneous data both spatially and temporally for vehicle detection. To estimate the speed of the incoming vehicles, we first use cross correlation and wavelet transform-based methods to estimate the time delay between the signals of different sensors. We then propose a calibration and self-correction model based on Bayesian Networks to make a joint inference by all sensors about the speed and the length of the detected vehicle. Furthermore, we use the measurements of the ultrasonic and the PIR sensors to perform vehicle classification. Validation data (using an experimental dual infrared and ultrasonic traffic sensor) show a 99% accuracy in vehicle detection, a mean error of 5 kph in vehicle speed estimation, a mean error of 0.7m in vehicle length estimation, and a high accuracy in vehicle classification. Finally, we discuss the computational performance of the algorithm, and show that this framework can be implemented on low-power computational devices within a wireless sensor network setting. Such decentralized processing greatly improves the energy consumption of the system and minimizes bandwidth usage.

  5. Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction

    Directory of Open Access Journals (Sweden)

    Tianzhou Chen

    2013-09-01

    Full Text Available Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation.

  6. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  7. Maximum Likelihood DOA Estimation of Multiple Wideband Sources in the Presence of Nonuniform Sensor Noise

    Directory of Open Access Journals (Sweden)

    K. Yao

    2007-12-01

    Full Text Available We investigate the maximum likelihood (ML direction-of-arrival (DOA estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation Cramér-Rao-Bound (CRB has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML attain a solution close to the derived CRB at high signal-to-noise ratio.

  8. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-15

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A{sub 0} Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm.

  9. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-01

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A 0 Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm

  10. Recognition of work space using multiple ultrasonic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hao, J.; Pan, W.; Li, X. [China University of Mining and Technology, Xuzhou (China). College of Information & Electrical Engineering

    2000-07-01

    For applying ultrasonic sensor to the recognition of robot work space in the environment of a coal mine, a method of ultrasonic data fusion was developed with DS (Dempster-Shafer) evidence theory, which includes probability assignment of measurement system, evidence extraction and arithmetic of dynamic fusion. Finally, a computer simulation was performed and a satisfactory result was achieved in an assumed three-dimensional space with an ideal manipulator of straight rod combination. It is proved that the incomplete and unspecialized data can be processed reasonably with DS evidence theory and the method can be implemented conveniently. 6 refs., 4 figs.

  11. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-01

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A 0 plate wave was selected as the application mode of the sensor. The A 0 plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A 0 mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote inspection

  12. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  13. Under-Sodium Inspection Techniques for Reactor Internals of KALIMER-600 using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hoon; Lee, Jae Han

    2005-01-01

    KALIMER-600 is a pool type liquid metal reactor (LMR) which is operated with a sodium coolant. The reactor internals of KALIMER-600 are submerged in a liquid sodium pool. As the liquid sodium is opaque to the light, a conventional visual inspection can not be used for observing the internal structures under a sodium condition. An under-sodium viewing (USV) technique using an ultrasonic wave should be applied for the observation of the refueling maneuver and the in-service inspection of the reactor internals. Under-sodium inspection technology utilizing ultrasonic waves has been widely developed for a visualization of the reactor core and internal components of LMR. Immersion sensors and waveguide sensors have been applied to the USV inspection. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor has the advantages of simplicity and reliability, but limited in its movement. The new plate-type waveguide sensor has been developed as a useful alternative to immersion sensors for USV applications. In the viewing and monitoring applications, a beam steering function of a waveguide sensor might be required. A new waveguide sensor and technique are being developed to overcome the limitations of a waveguide ultrasonic sensor. In this study, the under-sodium inspection techniques using the newly developed waveguide sensor for the reactor internal structures of KALIMER-600 is proposed

  14. Compressed air leak detection based on time delay estimation using a portable multi-sensor ultrasonic detector

    International Nuclear Information System (INIS)

    Liao, Pingping; Cai, Maolin; Shi, Yan; Fan, Zichuan

    2013-01-01

    The conventional ultrasonic method for compressed air leak detection utilizes a directivity-based ultrasonic leak detector (DULD) to locate the leak. The location accuracy of this method is low due to the limit of the nominal frequency and the size of the ultrasonic sensor. In order to overcome this deficiency, a method based on time delay estimation (TDE) is proposed. The method utilizes three ultrasonic sensors arranged in an equilateral triangle to simultaneously receive the ultrasound generated by the leak. The leak can be located according to time delays between every two sensor signals. The theoretical accuracy of the method is analyzed, and it is found that the location error increases linearly with delay estimation error and the distance from the leak to the sensor plane, and the location error decreases with the distance between sensors. The average square difference function delay estimator with parabolic fitting is used and two practical techniques are devised to remove the anomalous delay estimates. Experimental results indicate that the location accuracy using the TDE-based ultrasonic leak detector is 6.5–8.3 times as high as that using the DULD. By adopting the proposed method, the leak can be located more accurately and easily, and then the detection efficiency is improved. (paper)

  15. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  16. Vehicle tracking for an evasive manoeuvres assistant using low-cost ultrasonic sensors.

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José E; Gómez, Oscar; Anaya, José J

    2014-11-28

    Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range.

  17. Vehicle Tracking for an Evasive Manoeuvres Assistant Using Low-Cost Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2014-11-01

    Full Text Available Many driver assistance systems require knowledge of the vehicle environment. As these systems are increasing in complexity and performance, this knowledge of the environment needs to be more complete and reliable, so sensor fusion combining long, medium and short range sensors is now being used. This paper analyzes the feasibility of using ultrasonic sensors for low cost vehicle-positioning and tracking in the lane adjacent to the host vehicle in order to identify free areas around the vehicle and provide information to an automatic avoidance collision system that can perform autonomous braking and lane change manoeuvres. A laser scanner is used for the early detection of obstacles in the direction of travel while two ultrasonic sensors monitor the blind spot of the host vehicle. The results of tests on a test track demonstrate the ability of these sensors to accurately determine the kinematic variables of the obstacles encountered, despite a clear limitation in range.

  18. Design and measurement of a piezoresistive ultrasonic sensor based on MEMS

    International Nuclear Information System (INIS)

    Yu Jiaqi; He Changde; Yuan Kejing; Xue Chenyang; Zhang Wendong; Lian Deqin

    2013-01-01

    A kind of piezoresistive ultrasonic sensor based on MEMS is proposed, which is composed of a membrane and two side beams. A simplified mathematical model has been established to analyze the mechanical properties of the sensor. On the basis of the theoretical analysis, the structural size and layout location of the piezoresistors are determined by simulation analysis. The boron-implanted piezoresistors located on membrane and side beams form a Wheatstone bridge to detect acoustic signal. The membrane-beam microstructure is fabricated integrally by MEMS manufacturing technology. Finally, this paper presents the experimental characterization of the ultrasonic sensor, validating the theoretical model used and the simulated model. The sensitivity reaches −116.2 dB (0 dB reference = 1 V/μbar, 31 kHz), resonant frequency is 39.6 kHz, direction angle is 55°. (semiconductor devices)

  19. A Novel 3D Multilateration Sensor Using Distributed Ultrasonic Beacons for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Rohan Kapoor

    2016-10-01

    Full Text Available Navigation and guidance systems are a critical part of any autonomous vehicle. In this paper, a novel sensor grid using 40 KHz ultrasonic transmitters is presented for adoption in indoor 3D positioning applications. In the proposed technique, a vehicle measures the arrival time of incoming ultrasonic signals and calculates the position without broadcasting to the grid. This system allows for conducting silent or covert operations and can also be used for the simultaneous navigation of a large number of vehicles. The transmitters and receivers employed are first described. Transmission lobe patterns and receiver directionality determine the geometry of transmitter clusters. Range and accuracy of measurements dictate the number of sensors required to navigate in a given volume. Laboratory experiments were performed in which a small array of transmitters was set up and the sensor system was tested for position accuracy. The prototype system is shown to have a 1-sigma position error of about 16 cm, with errors between 7 and 11 cm in the local horizontal coordinates. This research work provides foundations for the future development of ultrasonic navigation sensors for a variety of autonomous vehicle applications.

  20. Field and Laboratory Investigation of USS3 Ultrasonic Sensors Capability for Non-contact Measurement of Pistachio Canopy Structure

    Directory of Open Access Journals (Sweden)

    H Maghsoudi

    2015-03-01

    Full Text Available Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

  1. Effects of the Environment Temperature on the Characteristic of Parallax Ping Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    Tony Stănescu

    2014-12-01

    Full Text Available This paper presents some characteristics of the Parallax PING ultrasonic sensor and the way the environmental temperature affects them. The used sensor functions at 40 KHz. There is also presented the experimental test setup and the authors’ conclusions on the functioning of the sensor at various temperatures.

  2. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li

    2015-06-01

    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  3. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa

    2014-04-01

    This article describes a machine learning approach to water level estimation in a dual ultrasonic/passive infrared urban flood sensor system. We first show that an ultrasonic rangefinder alone is unable to accurately measure the level of water on a road due to thermal effects. Using additional passive infrared sensors, we show that ground temperature and local sensor temperature measurements are sufficient to correct the rangefinder readings and improve the flood detection performance. Since floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm. © 2014 IEEE.

  4. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    Science.gov (United States)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  5. Ultrasonic intrusion sensor using the Doppler effect; Choonpa Doppler hoshiki shinnyu sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kani, H; Iwasaki, N; Goto, M [Nippon Soken, Inc., Tokyo (Japan); Tsuzuki, T; Nakamura, T [Denso Corp., Aichi (Japan)

    1997-10-01

    For vehicle anti-theft alarm systems which cope with vehicle and car component theft, EU initiated vehicle security regulations from Jan 1997. Also, the insurance industry has instituted the insurance certification of vehicle anti-theft alarm systems. We have developed an ultrasonic intrusion sensor using the doppler effect for vehicle anti-theft alarm systems specifically for these EU regulations and insurance certification. 2 refs., 7 figs., 1 tab.

  6. Application of ultrasonic sensor for measuring distances in robotics

    Science.gov (United States)

    Zhmud, V. A.; Kondratiev, N. O.; Kuznetsov, K. A.; Trubin, V. G.; Dimitrov, L. V.

    2018-05-01

    Ultrasonic sensors allow us to equip robots with a means of perceiving surrounding objects, an alternative to technical vision. Humanoid robots, like robots of other types, are, first, equipped with sensory systems similar to the senses of a human. However, this approach is not enough. All possible types and kinds of sensors should be used, including those that are similar to those of other animals and creations (in particular, echolocation in dolphins and bats), as well as sensors that have no analogues in the wild. This paper discusses the main issues that arise when working with the HC-SR04 ultrasound rangefinder based on the STM32VLDISCOVERY evaluation board. The characteristics of similar modules for comparison are given. A subroutine for working with the sensor is given.

  7. Ultrasonic level and temperature sensor for power reactor applications

    International Nuclear Information System (INIS)

    Dress, W.B.; Miller, G.N.

    1983-01-01

    An ultrasonic waveguide employing torsional and extensional acoustic waves has been developed for use as a level and temperature sensor in pressurized and boiling water nuclear power reactors. Features of the device include continuous measurement of level, density, and temperature producing a real-time profile of these parameters along a chosen path through the reactor vessel

  8. Algorithms exploiting ultrasonic sensors for subject classification

    Science.gov (United States)

    Desai, Sachi; Quoraishee, Shafik

    2009-09-01

    Proposed here is a series of techniques exploiting micro-Doppler ultrasonic sensors capable of characterizing various detected mammalian targets based on their physiological movements captured a series of robust features. Employed is a combination of unique and conventional digital signal processing techniques arranged in such a manner they become capable of classifying a series of walkers. These processes for feature extraction develops a robust feature space capable of providing discrimination of various movements generated from bipeds and quadrupeds and further subdivided into large or small. These movements can be exploited to provide specific information of a given signature dividing it in a series of subset signatures exploiting wavelets to generate start/stop times. After viewing a series spectrograms of the signature we are able to see distinct differences and utilizing kurtosis, we generate an envelope detector capable of isolating each of the corresponding step cycles generated during a walk. The walk cycle is defined as one complete sequence of walking/running from the foot pushing off the ground and concluding when returning to the ground. This time information segments the events that are readily seen in the spectrogram but obstructed in the temporal domain into individual walk sequences. This walking sequence is then subsequently translated into a three dimensional waterfall plot defining the expected energy value associated with the motion at particular instance of time and frequency. The value is capable of being repeatable for each particular class and employable to discriminate the events. Highly reliable classification is realized exploiting a classifier trained on a candidate sample space derived from the associated gyrations created by motion from actors of interest. The classifier developed herein provides a capability to classify events as an adult humans, children humans, horses, and dogs at potentially high rates based on the tested sample

  9. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Odat, Enas M.; Shamma, Jeff S.; Claudel, Christian

    2017-01-01

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used

  10. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    Science.gov (United States)

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  11. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  12. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  13. Comparison of four tungsten alloys for use as ultrasonic thermometer sensors

    International Nuclear Information System (INIS)

    Arave, A.E.

    1975-06-01

    Four tungsten alloy materials were evaluated for use as ultrasonic sensors: (a) tungsten, (b) tungsten-1 percent thoria, (c) tungsten-2 percent thoria, and (d) tungsten-26 percent rhenium. Four parameters were checked: (1) temperature sensitivity, (2) signal attenuation as a function of temperature, (3) temperature sensitivity as a function of frequency, and (4) relative signal attenuation as a function of frequency. The temperature sensors were designed for the Loss-of-Fluid Test (LOFT) and Power Burst Facility (PBF) reactors. (U.S.)

  14. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  15. Estimating Angle of Arrival (AOA for Wideband Signal by Sensor Delay Line (SDL and Tapped Delay Line (TDL Processors

    Directory of Open Access Journals (Sweden)

    Bassim Sayed Mohammed

    2018-04-01

    Full Text Available Angle of arrival (AOA estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM, satellite, military applications and spread spectrum (frequency hopping and direct sequence. Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line (TDL. Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M array elements is used. A transversal filter (TDL in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The proposed system uses a phase adaptive array antenna in conjunction with LMS algorithm to work an angle of arrival (AOA estimator for wideband signals rather than interference canceller. An alternative solution to compensate for the effect of signal bandwidth is proposed by using sensor delay line (SDL instead of fixed delay unit since it has variable time sampling in the time domain and not fixed time delay, depending on the angle of arrival of received signals. The proposed system has the ability to estimate two parameters for received signals simultaneously (the output Signal to Noise Ratio (SNR and AOA, unlike others systems which estimate AOA only. The comparison of the simulation results with Multiple Signal Classification (MUSIC technique showed that the proposed system gives good results for estimating AOA and the output SNR for wideband signals. (SDL processor shows better performance result than (TDL processor. MUSIC technique with both (SDL and (TDL processors shows unacceptable results for estimating (AOA for the wideband signal.

  16. Real-time measurement of relative sensor position changes using ultrasonic signal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yastrebova, O.; Bulavinov, A.; Kroening, M. [Fraunhofer Institute Nondestructive Testing IZFP, Saarbruecken (Germany)

    2008-07-01

    Ultrasonic testing is considered to be one of the most commonly applied nondestructive testing techniques for flaw detection and material characterization. Traditional Nondestructive Testing (NDT) provides detection of material discontinuities that may cause failure within the designed lifetime of a part or component. In addition, Quantitative Nondestructive Testing (QNDT) provides means to obtain required information about type, size and location of deficiencies to the integrity of the inspected structure and further use under specific, given load conditions. The ''Acoustic Mouse'' technique has been developed as a tool for manual ultrasonic inspection to provide test results that can be evaluated quantitatively. The ultrasonic data are processed by real-time variation methods to extract position information from backscattered acoustic noise and geometric scatter signals in the inspection volume. The position and positional changes of the ''Acoustic Mouse'' sensor (transducer) are determined by the sequential analysis of ultrasonic data (highresolution sector-scans), which are acquired and reconstructed using the Sampling Phased Array technique. The results of first experiments conducted with linear scanning and intentional lift-offs demonstrate sufficient accuracy in position measurements. (orig.)

  17. A Channelization-Based DOA Estimation Method for Wideband Signals

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-07-01

    Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.

  18. Characterization and optimization of an ultrasonic piezo-optical ring sensor

    International Nuclear Information System (INIS)

    Frankforter, Erik; Lin, Bin; Giurgiutiu, Victor

    2016-01-01

    A resonant piezo-optical ring sensor with both piezoelectric and fiber Bragg grating (FBG) sensing elements was assessed for ultrasonic wave detection. The ring sensor is an existing device that has been shown experimentally to exhibit a number of sensing features: omnidirectionality, mode selectivity, and frequency tunability. The present study uses finite element modeling to understand these features as a means to characterize and optimize the sensor. A combined vibration-wave propagation modeling approach was used, where the vibrational modeling provided a basis for understanding sensing features, and the wave propagation modeling provided predictive power for sensor performance. The sensor features corresponded to the fundamental vibrational mode of the sensor, particularly to the base motion of this mode. The vibrational modeling was also used to guide sensor optimization, with an emphasis on the FBG and piezoelectric sensing elements. It was found that sensor symmetry and nodes of extraneous resonance modes could be exploited to provide a single-resonance response. A series of pitch-catch guided wave experiments were performed on a thin aluminum plate to assess the optimized sensor configuration. Tuning curves showed a single-frequency response to a Lamb wave and mechanical filtering away from the dominant frequency; the sensor capability for mechanical amplification of a Lamb wave and mechanical amplification of a pencil-lead-break acoustic emission event were also demonstrated. (paper)

  19. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  20. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    Science.gov (United States)

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  1. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  2. Nozzle-less Ultrasonic Spray Deposition for Flexible Ammonia and Ozone Gas Sensors

    Directory of Open Access Journals (Sweden)

    Mónica ACUAUTLA

    2016-06-01

    Full Text Available In the last years printing and flexible electronic is transforming the way we used electronic devices. Among these, special interest is given to the development of gas sensors for industrial and environmental applications. Nozzle-less ultrasonic spray deposition is a simple and precise technique, which offers good homogeneity and high quality of the sensitive thin film. In addition, it represents a potential fabrication process for flexible electronic with low cost production and low waste of material. In this paper, nanoparticles of zinc oxide were deposited by nozzle-less ultrasonic spray deposition on flexible substrate. The sensing properties towards reducing and oxidizing gases in function of the operational temperature are reported. The flexible platform consists in titanium/platinum interdigitated electrodes and a micro-heater device, both fabricated by lift-off and photolithography. The operating temperature of the sensor is also challenging in term of power consumption. It is allowing the reaction with the exposure gases. Most of the semiconducting metal oxide materials used for gas sensing applications require high temperatures above 250 °C. Flexible gas sensors fabricated in this work present good responses towards ammonia and ozone at 300 °C and 200 °C respectively, with fast response and recovery time in a wide range of gas concentration.

  3. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    Directory of Open Access Journals (Sweden)

    Zirui Xu

    Full Text Available This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  4. Vehicle autonomous localization in local area of coal mine tunnel based on vision sensors and ultrasonic sensors.

    Science.gov (United States)

    Xu, Zirui; Yang, Wei; You, Kaiming; Li, Wei; Kim, Young-Il

    2017-01-01

    This paper presents a vehicle autonomous localization method in local area of coal mine tunnel based on vision sensors and ultrasonic sensors. Barcode tags are deployed in pairs on both sides of the tunnel walls at certain intervals as artificial landmarks. The barcode coding is designed based on UPC-A code. The global coordinates of the upper left inner corner point of the feature frame of each barcode tag deployed in the tunnel are uniquely represented by the barcode. Two on-board vision sensors are used to recognize each pair of barcode tags on both sides of the tunnel walls. The distance between the upper left inner corner point of the feature frame of each barcode tag and the vehicle center point can be determined by using a visual distance projection model. The on-board ultrasonic sensors are used to measure the distance from the vehicle center point to the left side of the tunnel walls. Once the spatial geometric relationship between the barcode tags and the vehicle center point is established, the 3D coordinates of the vehicle center point in the tunnel's global coordinate system can be calculated. Experiments on a straight corridor and an underground tunnel have shown that the proposed vehicle autonomous localization method is not only able to quickly recognize the barcode tags affixed to the tunnel walls, but also has relatively small average localization errors in the vehicle center point's plane and vertical coordinates to meet autonomous unmanned vehicle positioning requirements in local area of coal mine tunnel.

  5. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  6. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Jorzik, E.; Anselmi, M.

    1998-01-01

    Development and application of special instrumentation for FARO and KROTOS fuel-coolant interaction experiments at JRC-Ispra are described. A temperature sensor based on ultrasonic techniques is described with the discussion on the improvements in sensor fabrication technique and design. The sensor can be used to measure temperatures in the range from 1800 deg C to 3100 deg C with an accuracy of ± 50 deg C. The design allows local temperature measurements in multiple zones along the sensor element. This sensor has been used successfully in a number of FARO experiments where temperature distributions in molten corium pools have been measured. It will be also used in the future Phebus FP tests. Furthermore, a water level meter sensor based on the time domain reflectometry technique is described. This high speed sensor allows monitoring of liquid level under very demanding ambient conditions, as e.g. 5MPa, 550 K in FARO. This sensor has been successfully applied in a number of FARO and KROTOS tests where the water level rise caused by a molten corium and Al 2 O 3 pours have been measured. (author)

  7. Design of automatic mobile trolley using ultrasonic sensors

    Science.gov (United States)

    Dodi Suryanto, Eka; Siagian, Hendrik; Perangin-Angin, Despaleri; Sashanti, Rahayu; Yogen, Suthes

    2018-04-01

    An automatic mobile trolley was a prototype of wheel robot that serves as a trolley or shopping cart. This paper proposed an automatic mobile trolley using ultrasonic sensors. It can follow human movement automatically. It did not need to be encouraged or withdrawn. It would make an easier shopping for people as customers. The trolley controlled by a microcontroller module unit. It can stop, turn right, turn left, forward and backward. It can follow wherever they go, during they were in range. Based on the test results, the trolley succeeded to move forward by 80%, move backward 80%, turn left, 70%, turn right 70%, and stop 80%.

  8. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    KAUST Repository

    Warriach, Ehsan Ullah; Claudel, Christian G.

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN

  9. A novel sidestream ultrasonic flow sensor for multiple breath washout in children.

    Science.gov (United States)

    Fuchs, Susanne I; Sturz, J; Junge, S; Ballmann, M; Gappa, M

    2008-08-01

    Inert gas multiple breath washout (MBW) for measuring Lung Clearance Index using mass spectrometry and 4% sulfur hexafluoride (SF(6)) as the tracer gas has been shown to be sensitive for detecting early Cystic Fibrosis (CF) lung disease. However, mass spectrometry requires bulky equipment and is expensive to buy and maintain. A novel sidestream ultrasonic device may overcome this problem. The aims of this study were to assess the feasibility and clinical validity of measuring lung volume (functional residual capacity, FRC) and the LCI using the sidestream ultrasonic flow sensor in children and adolescents with CF in relation to spirometry and plain chest radiographs. MBW using the sidestream ultrasonic device and conventional spirometry were performed in 26 patients with CF and 22 healthy controls. In the controls (4.7-17.7 years) LCI was similar to that reported using mass spectrometry (mean (SD) 6.7 (0.5)). LCI was elevated in 77% of the CF children (6.8-18.9 years), whereas spirometry was abnormal in only 38.5%, 61.5%, and 26.9% for FEV(1), MEF(25), and FEV(1)/FVC, respectively. This was more marked in children ultrasonic MBW is a valid and simple alternative to mass spectrometry for assessing ventilation homogeneity in children. (c) 2008 Wiley-Liss, Inc.

  10. Flood Monitoring and Early Warning System Using Ultrasonic Sensor

    Science.gov (United States)

    Natividad, J. G.; Mendez, J. M.

    2018-03-01

    The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.

  11. A localized cooperative wideband spectrum sensing for dynamic access of TV bands using RF sensor networks

    KAUST Repository

    Mirza, Mohammed

    2011-07-01

    In this paper we address and simulate a Radio Frequency (RF) sensor network for a cooperative spectrum sensing and localization scheme. The proposed method integrates a Wavelet based Multi-Resolution Spectrum Sensing (MRSS), an N-bit hard combination technique for cooperative decision making and a Received Signal Strength (RSS) based localization algorithm to detect the availability of frequency bands and the location of the usable base station. We develop an N-bit hard combination technique and compare its performance to a traditionally used 2-bit hard combination for cooperative sensing. The key idea is to design a novel RF sensor network based cooperative wideband spectrum sensing and localization scheme by using a wavelet based Multi-Resolution Spectrum Sensing (MRSS) and Received Signal Strength (RSS) Localization techniques which were originally proposed for cognitive radio applications. The performance evaluations are also done to show the different detection accuracies for varying parameters such as number of sensor nodes, Signal to Noise Ratios (SNR) and number of averaged Power Spectral Densities (PSD). The proposed scheme improves the problems of shadowing, fading and noise. In addition, the RSS based localization technique was shown to be an acceptable means of estimating the position of the available transmitter. © 2011 IEEE.

  12. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    Science.gov (United States)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  13. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    Science.gov (United States)

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  14. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement

    Science.gov (United States)

    Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping

    2018-04-01

    In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

  15. Very high temperature ultrasonic thermometer

    International Nuclear Information System (INIS)

    Jorzik, E.

    1983-01-01

    An ultrasonic thermometer comprises an electric pulse transducer head, a pulse transmission line, a notched sensor wire attached to and extending along the axis of said transmission line and a sheath enclosing the transmission line and the sensor wire, a portion of the interior face of the sheath being covered by a stuffing material along at least the length of the notched part of the sensor wire, such that contact between the sensor wire and the stuffing material does not substantially give rise to reflection of an ultrasonic pulse at the point of contact. (author)

  16. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  17. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  18. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study

    Science.gov (United States)

    2014-01-01

    Background The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user. Methods The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements. Results The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation. Conclusion The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics. PMID:24755242

  19. Accurate Fluid Level Measurement in Dynamic Environment Using Ultrasonic Sensor and ν-SVM

    Directory of Open Access Journals (Sweden)

    Jenny TERZIC

    2009-10-01

    Full Text Available A fluid level measurement system based on a single Ultrasonic Sensor and Support Vector Machines (SVM based signal processing and classification system has been developed to determine the fluid level in automotive fuel tanks. The novel approach based on the ν-SVM classification method uses the Radial Basis Function (RBF to compensate for the measurement error induced by the sloshing effects in the tank caused by vehicle motion. A broad investigation on selected pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet filter, has also been presented. Field drive trials were performed under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire sample data from the ultrasonic sensor for the training of SVM model. Further drive trials were conducted to obtain data to verify the SVM results. A comparison of the accuracy of the predicted fluid level obtained using SVM and the pre-processing filters is provided. It is demonstrated that the ν-SVM model using the RBF kernel function and the Moving Median filter has produced the most accurate outcome compared with the other signal filtration methods in terms of fluid level measurement.

  20. Gas-leak localization using distributed ultrasonic sensors

    Science.gov (United States)

    Huseynov, Javid; Baliga, Shankar; Dillencourt, Michael; Bic, Lubomir; Bagherzadeh, Nader

    2009-03-01

    We propose an ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas leak. Statistical tools such as the maximum likelihood (ML) and the least squares (LS) estimators are used for approximating the source location when closed-form solutions fail in the presence of ambient background nuisance and inherent electronic noise. The proposed localization algorithms were implemented and tested using a Java-based simulation platform connected to four or more distributed MEMS microphones observing a broadband nitrogen leak from an orifice. The performance of centralized and decentralized algorithms under ED and TDOA schemes is analyzed and compared in terms of communication overhead and accuracy in presence of additive white Gaussian noise (AWGN).

  1. Irradiation Testing of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    Daw, J.; Rempe, J.; Palmer, J.; Tittmann, B.; Reinhardt, B.; Kohse, G.; Ramuhalli, P.; Montgomery, R.; Chien, H.T.; Villard, J.F.

    2013-06-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  2. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    Science.gov (United States)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  3. Inline-process and quality control of spotwelds of car bodies - ultrasonic sensors integrated in resistance welding electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.; Rieger, D.; Koehler, C. [Vogt Werkstoffpruefsysteme, Burgwedel (Germany)

    2006-07-01

    The self-developed inline ultrasonic testing system SPOTline is used for inspection and process control of resistant spot weldings. SPOTline provides with directly into the welding tong integrated ultrasonic sensors a 100% inspection during the welding process. The through transmission and pulse echo signals will be collected, stored and evaluated by means of fuzzy-logic and neuronal network technic. The results will be transmitted online from the spotline-client in the sql-data-base of the server for processing. World-wide SPOTline is the only ultrasonic inspection system, which is working under real production conditions in a network of welding robots. Test with 2 and 3 plates, high strength steels and all coatings demonstrate the accurately identification of discrepant welds. (orig.)

  4. Detecting Blind Spot By Using Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    T. S. Ajay

    2015-08-01

    Full Text Available Safety remains a top concern for automobile industries and new-car shoppers. Detection of Blind Spots is a major concern for safety issues. So automobiles have been constantly updating their products with new technologies to detect blind spots so that they can add more safety to the vehicle and also reduce the road accidents. Almost 1.5 million people die in road accidents each year. Blind spot of an automobile is the region of the vehicle which cannot be observed properly while looking either through side or rear mirror view. To meet the above requirements this paper describes detecting blind spot by using ultrasonic sensor and controlling the direction of car by automatic steering. The technology embedded in the system is capable of automatically steer the vehicle away from an obstacle if the system determines that a collision is impending or if the vehicle is in the vicinity of our car.

  5. 2-D FEM Simulation of Propagation and Radiation of Leaky Lamb Wave in a Plate-Type Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.

  6. Recent progress in online ultrasonic process monitoring

    Science.gov (United States)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  7. Self-Configuring Indoor Localization Based on Low-Cost Ultrasonic Range Sensors

    Directory of Open Access Journals (Sweden)

    Can Basaran

    2014-10-01

    Full Text Available In smart environments, target tracking is an essential service used by numerous applications from activity recognition to personalized infotaintment. The target tracking relies on sensors with known locations to estimate and keep track of the path taken by the target, and hence, it is crucial to have an accurate map of such sensors. However, the need for manually entering their locations after deployment and expecting them to remain fixed, significantly limits the usability of target tracking. To remedy this drawback, we present a self-configuring and device-free localization protocol based on genetic algorithms that autonomously identifies the geographic topology of a network of ultrasonic range sensors as well as automatically detects any change in the established network structure in less than a minute and generates a new map within seconds. The proposed protocol significantly reduces hardware and deployment costs thanks to the use of low-cost off-the-shelf sensors with no manual configuration. Experiments on two real testbeds of different sizes show that the proposed protocol achieves an error of 7.16~17.53 cm in topology mapping, while also tracking a mobile target with an average error of 11.71~18.43 cm and detecting displacements of 1.41~3.16 m in approximately 30 s.

  8. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  9. Liquid volume monitoring based on ultrasonic sensor and Arduino microcontroller

    Science.gov (United States)

    Husni, M.; Siahaan, D. O.; Ciptaningtyas, H. T.; Studiawan, H.; Aliarham, Y. P.

    2016-04-01

    Incident of oil leakage and theft in oil tank often happens. To prevent it, the liquid volume insides the tank needs to be monitored continuously. Aim of the study is to calculate the liquid volume inside oil tank on any road condition and send the volume data and location data to the user. This research use some ultrasonic sensors (to monitor the fluid height), Bluetooth modules (to sent data from the sensors to the Arduino microcontroller), Arduino Microcontroller (to calculate the liquid volume), and also GPS/GPRS/GSM Shield module (to get location of vehicle and sent the data to the Server). The experimental results show that the accuracy rate of monitoring liquid volume inside tanker while the vehicle is in the flat road is 99.33% and the one while the vehicle is in the road with elevation angle is 84%. Thus, this system can be used to monitor the tanker position and the liquid volume in any road position continuously via web application to prevent illegal theft.

  10. Assessment of an ultrasonic sensor and a capacitance probe for measurement of two-phase mixture level

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Lee, Dong Won; No, Hee Cheon

    2004-01-01

    We perform a comparison of two-phase mixture levels measured by an ultrasonic sensor and a two-wire type capacitance probe with visual data under the same experimental conditions. A series of experiments are performed with various combinations of airflow and initial water level using a test vessel with a height of 2m and an inner diameter of 0.3 m under atmospheric pressure and room temperature. The ultrasonic sensor measures the two-phase mixture level with a maximum error of 1.77% with respect to the visual data. The capacitance probe severely under-predicts the level data in the high void fraction region. The cause of the error is identified as the change of the dielectric constant as the void fraction changes when the probe is applied to the measurement of the two-phase mixture levels. A correction method for the capacitance probe is proposed by correcting the change of dielectric constant of the two-phase mixture. The correction method for the capacitance probe produces a r.m.s. error of 5.4%. (author)

  11. Calculation for simulation of archery goal value using a web camera and ultrasonic sensor

    Science.gov (United States)

    Rusjdi, Darma; Abdurrasyid, Wulandari, Dewi Arianti

    2017-08-01

    Development of the device simulator digital indoor archery-based embedded systems as a solution to the limitations of the field or open space is adequate, especially in big cities. Development of the device requires simulations to calculate the value of achieving the target based on the approach defined by the parabolic motion variable initial velocity and direction of motion of the arrow reaches the target. The simulator device should be complemented with an initial velocity measuring device using ultrasonic sensors and measuring direction of the target using a digital camera. The methodology uses research and development of application software from modeling and simulation approach. The research objective to create simulation applications calculating the value of the achievement of the target arrows. Benefits as a preliminary stage for the development of the simulator device of archery. Implementation of calculating the value of the target arrows into the application program generates a simulation game of archery that can be used as a reference development of the digital archery simulator in a room with embedded systems using ultrasonic sensors and web cameras. Applications developed with the simulation calculation comparing the outer radius of the circle produced a camera from a distance of three meters.

  12. Early Warning System of Flood Disaster Based on Ultrasonic Sensors and Wireless Technology

    Science.gov (United States)

    Indrasari, W.; Iswanto, B. H.; Andayani, M.

    2018-04-01

    A flood disaster provides considerable losses to the people who live around the river. To mitigate losses of material due to flood disaster required an early warning system of flood disaster. For that reason, it necessary to design a system that provide alert to the people prior the flood disaster. And this paper describes development of a device for early detection system of flood disasters. This device consists of two ultrasonic sensors as a water level detector, and a water flow sensor as a water flow velocity sensor. The wireless technology and GSM is used as an information medium. The system is designed based on water level conditions in the Katulampa Dam, Bogor. Characterization of water level detector showed that the device effectively works in a range of water level of 14-250 cm, with a maximum relative error of 4.3%. Meanwhile the wireless works properly as far as 75 m, and the SMS transmission time is 8.20 second.

  13. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    OpenAIRE

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase ...

  14. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  15. Ultrasonic Thermometry for In-Pile Temperature Detection

    International Nuclear Information System (INIS)

    Daw, J.E.; Rempe, J.L.; Wilkins, S.C.

    2002-01-01

    The Idaho National Laboratory has recently initiated a new effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing. Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependant on the temperature of the material. By introducing an acoustic pulse to the sensor and measuring the time delay of echoes, temperature may be derived. UTs have several advantages over other sensor types. UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made near the melting point of the sensor material, as no electrical insulation is required; and shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length (allowing temperature profiling with a single sensor). A typical multi-sensor UT system, with key components identified, is shown in Figure 1. As indicated in this figure, a narrow ultrasonic pulse is generated in a magnetostrictive rod by an excitation coil. The ultrasonic pulse propagates to the sensor wire, where a fraction of the pulse energy is reflected at each discontinuity (notches or diameter change). Each reflected pulse is received by the excitation coil, transformed into an electrical signal, amplified and evaluated in a start/stop counter system. The time interval between two adjacent echoes is evaluated and compared to a calibration curve to give the average temperature in the corresponding sensor segment. When a number of notches are available on the wire sensor, the various measurements give access to a temperature profile along the probe. UTs have been used successfully for several applications; however, several problems have limited the success of these sensors. For

  16. Analysis of the transfer function for layered piezoelectric ultrasonic sensors

    Directory of Open Access Journals (Sweden)

    E. Gutiérrrez-Reyes

    2017-06-01

    Full Text Available We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.

  17. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    KAUST Repository

    Warriach, Ehsan Ullah

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN-SVM significantly outperforms other algorithms in terms of classification accuracy. We also show that some of these algorithms could run in real time on the prototype system. Copyright © 2013 ACM.

  18. Hardware Developments of an Ultrasonic Tomography Measurement System

    Directory of Open Access Journals (Sweden)

    Hudabiyah ARSHAD AMARI

    2010-01-01

    Full Text Available This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ultrasonic transceiver. A prototype design of sensor’s jig that will hold 16 transceivers of 14.1mm has been design. Transmission-mode approach with fan beam technique has been used for sensing the flow of gas, liquid and solid. This paper also explains the circuitry designs for the Ultrasonic Tomography System.

  19. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  20. Ultra wideband wireless body area networks

    CERN Document Server

    Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit

    2014-01-01

    This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN).  The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability.  The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority.  Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals.   • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...

  1. Smart ultrasonic flowmeter used for the operation support of water resource management in the agricultural areas

    Science.gov (United States)

    Elmostafa, Ziani; Mustapha, Bennouna; Boissier, Raymond

    2008-10-01

    Ultrasonic sensors transmit acoustic waves and receive them later. This is done by ultrasonic transducers, which transform an ultrasonic wave into an electrical signal and vice versa. Often, it is possible to use the same transducer for both transmitting and receiving. The most important parts of any ultrasonic sensor are the transducers. The spectral and spatial radiation characteristics of these components are the prime determinants of sensor performance. Such transducers must have a robust design, stable radiation pattern (high directivity) and good receiving sensitivity. Intelligent ultrasonic sensors have the possibility to extract the information about the variables to be measured, carried by the ultrasonic signals efficiently and with accuracy. To achieve this performance, the signals are processed by dedicated hardware (accurate electronic measuring devices). Ultrasound has the property, that its velocity is strongly affected by the flow velocity of the fluids in which it propagates. The ultrasonic flowmeters have gained a lot of attention over the past few years; they have several advantages over the differential pressure flowmeter, turbine meters, coriolis meters and vortex meters. They are widely used to measure the flow of liquids, first, they are either less intrusive (wetted flowmeter) or non-intrusive (clamp-on flowmeter), depending on the model. Also, they don't have moving parts that are subject to wear over time, and with minimum obstruction of the flow. Ultrasonic flowmeter are not limited to clean liquids (Transit time flowmeter), a special type of ultrasonic flowmeter can also accurately measure the flow of slurries and liquids with many impurities (Doppler flowmeter). This part of paper describes the intelligent ultrasonic sensor. The conception or the realization of intelligent ultrasonic sensor requires the synthesis of several technologies, a knowledge in the fields of sensor, digital ultrasonic signal processing, distributed system and

  2. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  3. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  4. Hardware Developments of an Ultrasonic Tomography Measurement System

    OpenAIRE

    Hudabiyah ARSHAD AMARI; Ruzairi ABDUL RAHIM; Mohd Hafiz FAZALUL RAHIMAN; Herlina ABDUL RAHIM; Muhammad Jaysuman PUSPPANATHAN

    2010-01-01

    This research provides new technique in ultrasonic tomography by using ultrasonic transceivers instead of using separate transmitter-receiver pair. The numbers of sensors or transducers used to acquire data plays an important role to generate high resolution tomography images. The configuration of these sensors is a crucial factor in the efficiency of data acquisition. Instead of using common separated transmitter – receiver, an alternative approach has been taken to use dual functionality ul...

  5. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Directory of Open Access Journals (Sweden)

    A. Haidar

    2005-05-01

    Full Text Available We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a 90° angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  6. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Science.gov (United States)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  7. Assessment of an ultrasonic sensor and a capacitance probe for measurement of two-phase mixture level

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Lee, Dong Won; No, Hee Cheon

    2004-01-01

    We performed a comparison of two-phase mixture levels measured by an ultrasonic sensor and a two-wire type capacitance probe with visual data under the same experimental conditions. A series of experiments are performed with various combinations of airflow and initial water level using a test vessel with a height of 2m and an inner diameter of 0.3m. The ultrasonic sensor measured the two-phase mixture level with a maximum error of 1.77% with respect to the visual data. The capacitance probe severely under-predicted the level data in the high void fraction region. The cause of the error was identified as the change of the dielectric constant as the void fraction changes when the probe is applied to the measurement of the two-phase mixture levels. A correction method for the capacitance probe is proposed by correcting the change of the dielectric constant of the two-phase mixture. The correction method for the capacitance probe produces a r.m.s. error of 5.4%. The present experimental data are compared with the existing pool void fraction correlations based on drift-flux model. The Kataoka-Ishii correlation has the best agreement with the present experimental data with an r.m.s error of 2.5%

  8. Statistical tools for ultrasonic analysis of dispersive fluids

    OpenAIRE

    Martinsson, Jesper

    2006-01-01

    This thesis focuses on the possibility of using ultrasonic measurement techniques for energy gas characterization. The idea is to combine both on-line flow measurements with non-invasive fluid characterization in the same measurement setup using the same sensor(s). The long-term goal of the project is to develop measurement methods based on ultrasonic techniques that can measure; the flow rate, the energy content, detect impurities, and estimate the composition. In this thesis different probl...

  9. Multiple breath washout with a sidestream ultrasonic flow sensor and mass spectrometry: a comparative study.

    Science.gov (United States)

    Fuchs, Susanne I; Buess, Christian; Lum, Sooky; Kozlowska, Wanda; Stocks, Janet; Gappa, Monika

    2006-12-01

    Over recent years, there has been renewed interest in the multiple breath wash-out (MBW) technique for assessing ventilation inhomogeneity (VI) as a measure of early lung disease in children. While currently considered the gold standard, use of mass spectrometry (MS) to measure MBW is not commercially available, thereby limiting widespread application of this technique. A mainstream ultrasonic flow sensor was marketed for MBW a few years ago, but its use was limited to infants. We have recently undertaken intensive modifications of both hardware and software for the ultrasonic system to extend its use for older children. The aim of the current in vivo study was to compare simultaneous measurements of end-tidal tracer gas concentrations and lung clearance index (LCI) from this modified ultrasonic device with those from a mass spectrometer. Paired measurements of three MBW, using 4% sulfur hexafluoride (SF(6)) as the tracer gas and the two systems in series, were obtained in nine healthy adult volunteers. End-tidal tracer gas concentrations (n = 675 paired values) demonstrated close agreement (95% CI of difference -0.23; -0.17%, r(2) = 1). FRC was slightly higher from the MS (95%CI 0.08;0.17 L), but there was no difference in LCI (95%CI -0.10; 0.3). We conclude, that this ultrasonic prototype system measures end-tidal tracer gas concentration accurately and may therefore be a valid tool for MBW beyond early childhood. This prototype system could be the basis for a commercial device allowing more widespread application of MBW in the near future.

  10. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  11. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB beacon and lidar to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV visual localization and robotics control.

  12. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  13. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  14. A Wideband and Compact Circularly-Polarized Rectenna for Low Power Application

    OpenAIRE

    Okba , Abderrahim; Takacs , Alexandru; Aubert , Hervé; Bellion , Anthony; Grenana , D

    2017-01-01

    International audience; This paper presents a wideband and compact circularly polarized rectenna composed by an Archimedean spiral antenna that covers the S and C frequency bands and a silicon Schottky diode. This rectenna (rectifier + antenna) is used for electromagnetic energy harvesting over a wide frequency band, in order to power autonomous wireless sensors used for satellite health monitoring. For low incident power densities (around 14 µW/cm²) the measured efficiency of at least 19% be...

  15. Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors

    KAUST Repository

    Mousa, Mustafa; Zhang, Xiangliang; Claudel, Christian

    2016-01-01

    Floods are the most common type of natural disaster. Often leading to loss of lives and properties in the thousands yearly. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the population density of cities. Since most flood casualties are caused by a lack of information on the impending flood (type, location, severity), sensing these events is critical to generate accurate and detailed warnings and short term forecasts. However, no dedicated flash flood sensing systems, that could monitor the propagation of flash floods, in real time, currently exist in cities. In the present paper, firstly a new sensing device that can simultaneously monitor urban flash floods and traffic congestion has been presented. This sensing device is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy, using a combination of L1-regularized reconstruction and artificial neural networks to process measurement data. Secondly, corresponding algorithms have been implemented on a low-power wireless sensor platform, and their performance in water level estimation in a 6 months test involving four different sensors is illustrated. The results demonstrate that urban water levels can be reliably estimated with error less than 2 cm, and that the preprocessing and machine learning schemes can run in real-time on currently available wireless sensor platforms.

  16. Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors

    KAUST Repository

    Mousa, Mustafa

    2016-07-19

    Floods are the most common type of natural disaster. Often leading to loss of lives and properties in the thousands yearly. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the population density of cities. Since most flood casualties are caused by a lack of information on the impending flood (type, location, severity), sensing these events is critical to generate accurate and detailed warnings and short term forecasts. However, no dedicated flash flood sensing systems, that could monitor the propagation of flash floods, in real time, currently exist in cities. In the present paper, firstly a new sensing device that can simultaneously monitor urban flash floods and traffic congestion has been presented. This sensing device is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy, using a combination of L1-regularized reconstruction and artificial neural networks to process measurement data. Secondly, corresponding algorithms have been implemented on a low-power wireless sensor platform, and their performance in water level estimation in a 6 months test involving four different sensors is illustrated. The results demonstrate that urban water levels can be reliably estimated with error less than 2 cm, and that the preprocessing and machine learning schemes can run in real-time on currently available wireless sensor platforms.

  17. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  18. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  19. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.; Kerley, T.M.

    1979-06-01

    Ultrasonic thermometry has many potential applications in reactor safety experiments, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. This report details ultrasonic thermometry requirements for one such experiment, the molten fuel pool experiment. Sensors, transducers, and signal processing electronics are described in detail. Axial heat transfer in the sensors is modelled and found acceptably small. Measurement errors, calculations of their effect, and ways to minimize them are given. A rotating sensor concept is discussed which holds promise of alleviating sticking problems at high temperature. Applications of ultrasonic thermometry to three in-core experiments are described. In them, five 10-mm-length sensor elements were used to measure axial temperatures in a UO 2 or UO 2 -steel system fission-heated to about 2860 0 C

  20. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    Directory of Open Access Journals (Sweden)

    Victor Hugo C. de Albuquerque

    2015-05-01

    Full Text Available Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 \\(^\\circ\\C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms and accurate (accuracy of 88.75% and harmonic mean of 89.52 for the application proposed.

  1. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    Science.gov (United States)

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  2. First experiments on visualisation of two-phase high pressure and temperature flows using an ultrasonic mesh sensor

    International Nuclear Information System (INIS)

    Melnikov, V.I.; Khokhlov, V.N.; Ivanov, V.V.; Kontelev, V.V.; Zoi, V.R.; Zavinov, A.A.

    2003-01-01

    A novel device for fast visualisation of gas-liquid two-phase flows was developed and tested during loss-off-coolant accident simulations at the thermal hydraulic test facility PSB-VVER, a 1:300 integral model of the VVER-1000. The device is an ultrasonic mesh sensor. It consists of a metallic frame where transmitter and receiver wave-guides are fixed, that form two grids inside the measurement cross section. Ultrasonic pulses are transmitted into the fluid by the 8 wave-guides of the first plane. A second plane of another 8 wave-guides, that cross the ones of the first plane under an angle of 90 deg, serves as receives. The measurement is based on the acoustic conductivity of the two-phase mixture at the locations where the wave-guides cross. The sampling frequency is 250 frames per second. This allows both void fraction measurements and a fast flow visualisation. The sensor is applicable to high pressures and temperatures. All parts and surfaces that are in contact with the fluid are manufactured from stainless steel. During the tests at PSB-VVER the flow pattern in the hot leg of the primary circuit model was visualised for the first time. (orig.)

  3. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  4. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Mousa, Mustafa

    2015-10-19

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  5. A Novel Dual Traffic/Flash Flood Monitoring System Using Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Mousa, Mustafa; Odat, Enas M.; Claudel, Christian

    2015-01-01

    Floods are the most common type of natural disaster, causing thousands of casualties every year. Among these events, urban flash floods are particularly deadly because of the short timescales on which they occur, and because of the high concentration of population in cities. Since most flash flood casualties are caused by a lack of information, it is critical to generate accurate and detailed warnings of flash floods. However, deploying an infrastructure that solely monitor flash floods makes little economic sense, since the average periodicity of catastrophic flash floods exceeds the lifetime of a typical sensor network. To address this issue, we propose a new sensing device that can simultaneously monitor urban flash floods and another phenomenon of interest (traffic congestion on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow and flash flood sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm. Two of the sensors have been deployed in a flood prone area, where they captured the only (minor) flash flood that occurred over the one-year test period, with no false detection, and an agreement in the estimated water level estimate (during the flash flood event) of about 2 cm.

  6. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  7. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  8. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    Science.gov (United States)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  9. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and

  10. Integrated wide-band low-background amplifiers

    International Nuclear Information System (INIS)

    Il'yushchenko, I.I.

    1980-01-01

    Ways of increasing stability and reproduction of characteristics of wide-band integral amplifiers that would to the least extent increase their background noises, are discussed. Considered are some certain flowsheets of integral wide-band amplifiers with low background noise of foreign production which differ from one another by construction of inlet cascades as well as by the applied feedback type. The principal flowsheets of the amplifiers and their main performances are presented. The analysis of the data obtained has revealed that microcircuits made of cascades with a common emitter and local combined feedback are most wide-band among all the considered microcircuits [ru

  11. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  12. Reproducibility of the results in ultrasonic testing

    International Nuclear Information System (INIS)

    Chalaye, M.; Launay, J.P.; Thomas, A.

    1980-12-01

    This memorandum reports on the conclusions of the tests carried out in order to evaluate the reproducibility of ultrasonic tests made on welded joints. FRAMATOME have started a study to assess the dispersion of results afforded by the test line and to characterize its behaviour. The tests covered sensors and ultrasonic generators said to be identical to each other (same commercial batch) [fr

  13. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  14. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  15. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    Science.gov (United States)

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  16. Maritime wideband communication networks video transmission scheduling

    CERN Document Server

    Yang, Tingting

    2014-01-01

    This Springer Brief covers emerging maritime wideband communication networks and how they facilitate applications such as maritime distress, urgency, safety and general communications. It provides valuable insight on the data transmission scheduling and protocol design for the maritime wideband network. This brief begins with an introduction to maritime wideband communication networks including the architecture, framework, operations and a comprehensive survey on current developments. The second part of the brief presents the resource allocation and scheduling for video packet transmission wit

  17. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  18. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I.

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (author)

  19. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  20. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  1. Ultrasonic sensor system to detect solids in a milk pasteurization process

    Science.gov (United States)

    Barroeta Z., Carlos; Sanchez M., Fernando L.; Fernando R., G. Moreno; Montes P., Laura

    2002-11-01

    In the food industry, many products require a specific process. In the milk industry, the raw milk passes through several process stages before reaching the end user in a very qualitative and healthy way. One of the problems of the milk is that it can contain solids in suspension, result of contamination of the milk, or inherent to the pasteurization process itself. In order to control these solids, a solid detection system is being developed, which will detect the solids by the reflection and refraction of ultrasonic waves. The sensor must be set in the upper part of the milk containers, and with a grid array to allow the control system to prevent these solids from entering into the pipes of the processing plant. The sensing system may activate an acoustic alarm to indicate that a solid has been detected, and a visual one to indicate the affected part of the process. (To be presented in Spanish.)

  2. Self-Calibrating Ultrasonic Methods for In-Situ Monitoring of Fatigue Crack Progression

    International Nuclear Information System (INIS)

    Michaels, J.E.; Mi, B.; Cobb, A.C.; Michaels, T.E.; Stobbe, D.M.

    2005-01-01

    Ultrasonic sensors permanently affixed to aluminum coupons are used to monitor progression of damage during fatigue testing with the long term goal of structural health monitoring for diagnostics and prognostics. Necessary for success are proper design of the ultrasonic testing methods, robust transducer mounting techniques, and real-time signal processing for determining the state of the structure. It is also highly desirable for the overall system to be self-calibrating with built-in diagnostics in order to detect and compensate for sensor degradation or failure. Self-calibrating ultrasonic techniques are applied for monitoring of cracks initiating and propagating from the inaccessible inner diameters of rivet holes where the transducers are mounted on the accessible specimen surface. Angle beam ultrasonic methods are utilized that are suitable for detecting small defects in critical local regions of high stress. Results are presented for aluminum coupons subjected to low cycle fatigue and demonstrate ultrasonic tracking of crack growth

  3. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  4. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  5. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    International Nuclear Information System (INIS)

    Liu, Q; Wu, K-T; Kobayashi, M; Jen, C-K; Mrad, N

    2008-01-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol–gel spray technique for aircraft environments and for temperatures ranging from −80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented

  6. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  7. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Directory of Open Access Journals (Sweden)

    Francisco J. Cañete

    2016-02-01

    Full Text Available Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  8. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  9. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  10. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    Science.gov (United States)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1

  11. Application results of a prototype ultrasonic liquid film sensor to a 7 MPa steam-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Aoyama, Goro; Fujimoto, Kiyoshi; Katono, Kenichi; Nagayoshi, Takuji; Baba, Atsushi; Yasuda, Kenichi

    2016-01-01

    A prototype ultrasonic liquid film sensor was applied to a high-temperature steam-water two-phase flow experiment. The liquid film sensor was vertically installed in a loop which was connected to HUSTLE, a multi-purpose steam source test facility. The hydraulic diameter of the measurement section was 9.4 mm. The output waveforms of the sensor were acquired with a digital oscilloscope. The fluid temperature and system pressure were kept at 288°C and 7.2 MPa, respectively, during the experiment. The pulse-echo method was used to calculate the liquid film thickness. The cross-correlation calculation was utilized to determine the time difference between the pulse reflected at the sensor surface and the pulse reflected at the liquid film surface. The time-averaged liquid film thicknesses were less than 0.055 mm in the annular flow condition. The increase of the time-averaged thickness was small with the change of the gas momentum flux. The film thicknesses measured with the sensor were compared with the past experimental results; the former were smaller than one-fourth of the thickness estimated as the mean film thickness. The comparison results suggested that the continuous liquid sublayer thickness was measured with the liquid film sensor. (author)

  12. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  13. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  14. Reactor vessel and core two-phase flow ultrasonic densitometer

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia. Separate effects tests and two-phase flow tests have been conducted to characterize the detector. Tests show the detector can perform in a 343 0 C pressurized water reactor environment and measure the average density of the media surrounding the sensor

  15. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...... is achieved by placing the cantilever in a magnetic field induced by either one or two magnets located oppositely of the cantilever. The attraction force created by the magnetic field and iron foils introduces a mechanical force in opposite direction of the cantilevers restoring force causing a spring...

  16. Experimental investigations of two-phase flow measurement using ultrasonic sensors

    OpenAIRE

    Abbagoni, Baba Musa

    2016-01-01

    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measur...

  17. Contact and non-contact ultrasonic measurement in the food industry: a review

    International Nuclear Information System (INIS)

    Mohd Khairi, Mohd Taufiq; Ibrahim, Sallehuddin; Md Yunus, Mohd Amri; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated. (topical review)

  18. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  19. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  20. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  1. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    Science.gov (United States)

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ultrasonic density detector for vessel and reactor core two-phase flow measurements

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia

  3. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  4. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  5. Zadoff-Chu coded ultrasonic signal for accurate range estimation

    KAUST Repository

    AlSharif, Mohammed H.

    2017-11-02

    This paper presents a new adaptation of Zadoff-Chu sequences for the purpose of range estimation and movement tracking. The proposed method uses Zadoff-Chu sequences utilizing a wideband ultrasonic signal to estimate the range between two devices with very high accuracy and high update rate. This range estimation method is based on time of flight (TOF) estimation using cyclic cross correlation. The system was experimentally evaluated under different noise levels and multi-user interference scenarios. For a single user, the results show less than 7 mm error for 90% of range estimates in a typical indoor environment. Under the interference from three other users, the 90% error was less than 25 mm. The system provides high estimation update rate allowing accurate tracking of objects moving with high speed.

  6. Zadoff-Chu coded ultrasonic signal for accurate range estimation

    KAUST Repository

    AlSharif, Mohammed H.; Saad, Mohamed; Siala, Mohamed; Ballal, Tarig; Boujemaa, Hatem; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper presents a new adaptation of Zadoff-Chu sequences for the purpose of range estimation and movement tracking. The proposed method uses Zadoff-Chu sequences utilizing a wideband ultrasonic signal to estimate the range between two devices with very high accuracy and high update rate. This range estimation method is based on time of flight (TOF) estimation using cyclic cross correlation. The system was experimentally evaluated under different noise levels and multi-user interference scenarios. For a single user, the results show less than 7 mm error for 90% of range estimates in a typical indoor environment. Under the interference from three other users, the 90% error was less than 25 mm. The system provides high estimation update rate allowing accurate tracking of objects moving with high speed.

  7. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  8. Multiple temperature sensors embedded in an ultrasonic “spiral-like” waveguide

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2017-03-01

    Full Text Available This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1 and T(0,1 were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF differences between the pre-defined reflectors (notches located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.

  9. RSA/Legacy Wind Sensor Comparison. Part 2; Eastern Range

    Science.gov (United States)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and propeller-and-vane anemometers on 5 wind towers at Kennedy Space Center and Cape Canaveral Air Force Station. The ultrasonic sensors are scheduled to replace the Legacy propeller-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005, A total of 357,626 readings of 1-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 15 out of 19 RSA sensors having the most consistent performance, with respect to the Legacy sensors. RSA average wind speed data from these 15 showed a small positive bias of 0.38 kts. A slightly larger positive bias of 0.94 kts was found in the RSA peak wind speed.

  10. FUSION OF VENTURI AND ULTRASONIC FLOW METER FOR ENHANCED FLOW METER CHARACTERISTICS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    K.V. Santhosh

    2015-04-01

    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  11. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  12. Automatic ultrasonic testing and the LOFT in-service inspection program

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    An automatic ultrasonic testing system has been developed which significantly improves the flaw indication detection and characterization capability over the capability of conventional volumetric examination techniques. The system utilizes an accurately located ultrasonic sensor to generate the examination data. A small computer performs and integrates control and data input/output functions. Computer software has been developed to provide a rigorous method for data analysis and ultrasonic image interpretation. The system has been used as part of an in-service inspection program to examine welds in thich austenitic stainless steel pipes in a small experimental nuclear reactor

  13. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  14. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  15. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    Science.gov (United States)

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  16. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    Science.gov (United States)

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  17. Ultrasonic detection of cracks in uniaxial glass fibre rods

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...

  18. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2011-03-01

    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  19. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  20. Application of ultrasonic thermometry in LMFBR safety research

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.

    1977-01-01

    Ultrasonic thermometry has many potential applications in reactor safety research, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. An application (the in-core molten fuel pool experiment) will be described in which thoriated tungsten ultrasonic thermometers were used to measure temperatures in UO 2 to incipient melt (2860 0 ). Each thermometer included five sensor elements 10 mm long, providing five temperatures within the UO 2 at various axial locations. The 10 mm spatial resolution is about five times better than previous applications of the technique. Temperature resolution of +-10 0 C was indicated by calibration data. Besides providing temperature data approximately 1000 0 C higher than were obtained with thermocouples, the thermometer yielded valuable axial temperature profile data. Details of the sensors, exciting coils, and signal conditioning electronics will be given

  1. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  2. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants.

    Science.gov (United States)

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-10-23

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  3. Review of piezoelectric micromachined ultrasonic transducers and their applications

    International Nuclear Information System (INIS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Choi, Hongsoo; Ryu, Jungho

    2017-01-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient ( e 31 ) can be increased by controlling the crystal texture (seed layer of γ -Al 2 O 3 ), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO 2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size. (topical review)

  4. Review of piezoelectric micromachined ultrasonic transducers and their applications

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo

    2017-11-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.

  5. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Science.gov (United States)

    Gatsa, O.; Combette, P.; Rozenkrantz, E.; Fourmentel, D.; Destouches, C.; Ferrandis, J. Y. AD(; )

    2018-01-01

    In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d'Électronique et des Systèmes) on collaboration with CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor

  6. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  7. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-01-01

    Full Text Available A monitoring system for water and oil flow using ultrasonic Tomography is implemented. Information such as the type of flow, the composition of the water and oil can be obtained from the system. The composition of the flow is determined based on the propagation time of the ultrasonic waves. The ultrasonic Tomography system includes the sensors fixture design, signal conditioning circuits and image reconstruction software. The image reconstruction algorithm that used is the Linear Back Projection (LBP algorithm.

  8. Wideband QAMC reflector's antenna for low profile applications

    Science.gov (United States)

    Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.

    2011-06-01

    A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.

  9. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  10. A study on the ultrasonic measurement for damage evaluation of power plant bearing

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2004-01-01

    For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. Ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program

  11. Extension of the ITU Channel Models for Wideband (OFDM) Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Frederiksen, Frank

    2005-01-01

    for the evaluation of wideband system concepts with frequency dependent characteristics, e.g. frequency domain link adaptation and packet scheduling, both of which are likely to be part of future wideband systems such as based on OFDM. With the suggested procedure the frequency correlation can be kept approximately...

  12. RSA/Legacy Wind Sensor Comparison. Part 1; Western Range

    Science.gov (United States)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and cup-and-vane anemometers on 5 wind towers at Vandenberg AFB. The ultrasonic sensors are scheduled to replace the Legacy cup-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005. A total of 153,961 readings of I-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 18 out of 34 RSA sensors having the most consistent performance, with respect to the Legacy sensors. Data from these 18 were used to form a composite comparison. A small positive bias in the composite RSA average wind speed increased from +0.5 kts at 15 kts, to +1 kt at 25 kts. A slightly larger positive bias in the RSA peak wind speed increased from +1 kt at 15 kts, to +2 kts at 30 kts.

  13. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  14. Reducing the capacitance of piezoelectric film sensors

    International Nuclear Information System (INIS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-01-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N"2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  15. PERANCANGAN DAN IMPLEMENTASI SENSOR PARKIR PADA MOBIL MENGGUNAKAN SENSOR ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Rudy Susanto

    2007-05-01

    Full Text Available A car driver often had trouble to park his car a narrow location, caused by a narrow parking area on the wane.Also, cars had often crashed the electric pillar or scratched the car on the wall while retreat. The problem was the driverdidn’t know condition behind vehicle because of limited of view. The research aimed to make a system that can easily helpdriver in parking his car, by using of ultrasonic parking sensor. The method used in sensor scheme parks is ultrasonicisensor to detect and measure car and balk distance by utilising of 851 family microcontroller as the main system. Theresult indicates that ultrasonic censor effective deep measurement was on distance of 2 cm – 30 m. It is that enoughultrasonic censor is effective to be implemented on censor parks.

  16. Operational measurements of stack flow rates in a nuclear power plant with ultrasonic anemometer

    International Nuclear Information System (INIS)

    Voelz, E.; Kirtzel, H.-J.; Ebenhoech, E.

    2003-01-01

    The calculation of the impact of radio nuclides within the surroundings of nuclear power stations requires quantitative measurements of the stack emission. As a standard method, propeller anemometers have been installed inside the stack, but due to the wear and tear of the moving parts in such conventional sensors the servicing and maintenance are costly and may cause restrictions in the operation of the stack. As an alternative to propeller anemometers ultrasonic sensors have been applied which employ no moving parts and are almost free of maintenance. Furthermore, any shifts in internal calibration parameters can be identified by the sensor electronics with on-line plausibility checks. The tests have proven that ultrasonic systems are able to measure adequately and reliably the flow inside the stack. (orig.)

  17. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    Science.gov (United States)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  18. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    Science.gov (United States)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  19. Proposal of ultrasonic-assisted mid-infrared spectroscopy for incorporating into daily life like smart-toilet and non-invasive blood glucose sensor

    Science.gov (United States)

    Kitazaki, Tomoya; Mori, Keita; Yamamoto, Naoyuki; Wang, Congtao; Kawashima, Natsumi; Ishimaru, Ichiro

    2017-07-01

    We proposed the extremely compact beans-size snap-shot mid-infrared spectroscopy that will be able to be built in smartphones. And also the easy preparation method of thin-film samples generated by ultrasonic standing wave is proposed. Mid-infrared spectroscopy is able to identify material components and estimate component concentrations quantitatively from absorption spectra. But conventional spectral instruments were very large-size and too expensive to incorporate into daily life. And preparations of thin-film sample were very troublesome task. Because water absorption in mid-infrared lights is very strong, moisture-containing-sample thickness should be less than 100[μm]. Thus, midinfrared spectroscopy has been utilized only by analytical experts in their laboratories. Because ultrasonic standing wave is compressional wave, we can generate periodical refractive-index distributions inside of samples. A high refractiveindex plane is correspond to a reflection boundary. When we use a several MHz ultrasonic transducer, the distance between sample surface and generated first node become to be several ten μm. Thus, the double path of this distance is correspond to sample thickness. By combining these two proposed methods, as for liquid samples, urinary albumin and glucose concentrations will be able to be measured inside of toilet. And as for solid samples, by attaching these apparatus to earlobes, the enhancement of reflection lights from near skin surface will create a new path to realize the non-invasive blood glucose sensor. Using the small ultrasonic-transducer whose diameter was 10[mm] and applied voltage 8[V], we detected the internal reflection lights from colored water as liquid sample and acrylic board as solid sample.

  20. A Mathematical Model of a Novel 3D Fractal-Inspired Piezoelectric Ultrasonic Transducer.

    Science.gov (United States)

    Canning, Sara; Walker, Alan J; Roach, Paul A

    2016-12-17

    Piezoelectric ultrasonic transducers have the potential to operate as both a sensor and as an actuator of ultrasonic waves. Currently, manufactured transducers operate effectively over narrow bandwidths as a result of their regular structures which incorporate a single length scale. To increase the operational bandwidth of these devices, consideration has been given in the literature to the implementation of designs which contain a range of length scales. In this paper, a mathematical model of a novel Sierpinski tetrix fractal-inspired transducer for sensor applications is presented. To accompany the growing body of research based on fractal-inspired transducers, this paper offers the first sensor design based on a three-dimensional fractal. The three-dimensional model reduces to an effective one-dimensional model by allowing for a number of assumptions of the propagating wave in the fractal lattice. The reception sensitivity of the sensor is investigated. Comparisons of reception force response (RFR) are performed between this novel design along with a previously investigated Sierpinski gasket-inspired device and standard Euclidean design. The results indicate that the proposed device surpasses traditional design sensors.

  1. Experimental determination of wellbore diameter and shape (4D imaging of wellbore) by using ultrasonic caliper within different fluids for real-time drilling application

    Energy Technology Data Exchange (ETDEWEB)

    Elahifar, Behzad; Esmaeili, Abdolali; Thonhauser, Gerhard [Montanuniversitaet Leoben (Austria); Fruhwirth, Rudolf K. [TDE Thonhauser Data Engineering GmbH, Leoben (Austria)

    2013-03-15

    Drilling programs continue to push into new and more complicated environments. As a result, accurate measurement, interpretation and analysis of drilling data in real time are becoming more critical. One of the key measurement devices for drilling, cementing and formation evaluation is the borehole caliper. An ultrasonic sensor caliper tool is thereby a key measurement device for determining the borehole diameter in MWD or LWD tools. Another use of ultrasonic caliper tools is to offer a method for calculating borehole volumes. Real-time application of ultrasonic caliper tools can also support the early detection of borehole instability. This paper describes the experiments related to the accuracy of the ultrasonic sensor for measuring wellbore diameter by performing the tests in different fluids, comparing the results and determining the weak points of the sensor for detecting echoes. In addition the wellbore profiles were simulated and the simulated results were compared with the recorded data. Different tests related to the position of the caliper tool inside the wellbore were performed as well as the evaluation of the accuracy of the ultrasonic sensor by simulating dog-legs and latches. (orig.)

  2. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  3. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  4. The design of high-efficiency and wide-band ultrasonic transducers for immersion application

    International Nuclear Information System (INIS)

    Choi, Myung Sun; Kim, Jin Ho; Kang, Eun Kyung

    2001-01-01

    The optimum design of low-loss and broad-band piezoelectric ultrasonic transducers has been performed for immersion application. In order to obtain the highest efficiency, the piezo plates are backed by air. After determining the matching layers by using the formulas proposed by Desilet et al., inserting both a series inductor and a series or parallel resistor was considerated such that the transducers are electrically matched to the voltage source at the free resonance frequency. By analysing the transfer functions and the time responses of the transducers numerically, it has been shown that the frequency bandwidth becomes broad with increasing the electro-mechanical coupling factor and the number of matching layers, and that the sensitivity becomes best as the motional resistance at the resonance frequency is equal to the voltage source resistance.

  5. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  6. The design of wideband metamaterial absorber at E band based on defect

    Science.gov (United States)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  7. Measurements of the gap/displacement and development of the ultrasonic temperature measuring system applied to severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Cho, Young Ro; Park, Rae Jun; Kim, Sang Baik; Sim, Chul Moo

    2001-02-01

    This report, in order to measure quantitative LAVA experimental results, focuses on measuring the gap formed on the lower head vessel using a ultrasonic pulse echo method and neutron radiography, measuring displacement of the lower head vessel using capacitance method, building a measuring system and developing high temperature measurement system using ultrasonic method. The scope of gap measurement and system development using the ultrasonic method is 2-dimensional image processing using tomographical B scan method and 2- and 3-dimensional image processing using C scan methods based on the one dimensional time domain A scan signal. For some test specimen, the gap size is quantitative represented apply C scan methods. The important ultrasonic image processing technique is on the development of accurate position control system. The requirements of the position control system are a contact technique on the test specimen and a fine moving technique. Since the specimen is hemispherical, the contact technique is very difficult. Therefore, the gap measurement using the ultrasonic pulse echo method was applied developing the position controlling scanner system. Along with the ultrasonic method, neutron radiography method using KAERI's neutron source was attempted 4 times and the results are compared. The fine displacement of the hemispherical specimen was measured using a capacitive displacement sensor. The requirements for this measuring technique are fixing of the capacitance sensor to the experimental facilities and a remote control position varying system. This remote control position varying system was manufactured with a electrical motor. The development of a high temperature measuring system using a ultrasonic method the second year plan, is performed with developing a sensor which can measure up to 2300 deg C

  8. DESAIN TONGKAT ELEKTRONIK BAGI TUNANETRA BERBASIS SENSOR ULTRASONIK DAN MIKROKONTROLLER ATMEGA8535

    Directory of Open Access Journals (Sweden)

    Sutarsi Suhaeb

    2016-12-01

    Full Text Available Abstract. Stick Design Electronics For Blind And Microcontroller-Based Sensor Ultrasonic Atmega8535. The purpose of this research is to create hardware and software detection of objects with the ultrasonic sensor using a microcontroller ATMEL ATMega 8535, do the testing tool that can detect objects in the blind about people with disabilities in order to function properly. This study uses its engineering product design or direct observations, ie observations on how the microcontroller as the application process with multiple input and output devices. Performance of this electronic stick, which the system uses a microcontroller ATMega8535 this tool as a main controller and ultrasonic sensors SRF04 as measuring the distance to the obstacle or object. As a Buzzer output is used as an indicator of the voice of the beeb and DC motor as vibrator stick. Source of data derived from the results of stress measurement and observation. From the test results it can be concluded that the design of the stick electronics designed from some parts of the circuit microcontroller, a series of minimum system, module ultrasonic sensors SRF04, Buzzer, DC motors, LCD modules, series regulator and battery lipo 3 cell to detect obstacles or objects that can reached by the ultrasonic sensor, which is an electronic wand indicators such as voice sounds beeb and shakes that will be active when the ultrasonic sensors detect obstacles or objects in a certain range. From the test results it can be concluded that the electronic blind cane is quite satisfactory, since the results of comparative testing the response of electronic wand to wand blind judged from the aspect of effectiveness, convenience, safety, and excellence.Abstrak. Desain Tongkat Elektronik Bagi Tunanetra Berbasis Sensor Ultrasonik dan Mikrokontroller Atmega8535. Tujuan dari penelitian ini adalah membuat perangkat keras dan lunak pendeteksi benda dengan sensor ultrasonic menggunakan mikrokontroler ATMEL ATMega

  9. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  10. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  11. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  12. Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range

    Directory of Open Access Journals (Sweden)

    Abdul kareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6

  13. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  14. A new metamaterial-based wideband rectangular invisibility cloak

    Science.gov (United States)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  15. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    International Nuclear Information System (INIS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-01-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until –10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method. (paper)

  16. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    Science.gov (United States)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  17. [Auditory training with wide-band white noise: effects on the recruitment (III)].

    Science.gov (United States)

    Domínguez Ugidos, L J; Rodríguez Morejón, C; Vallés Varela, H; Iparraguirre Bolinaga, V; Knaster del Olmo, J

    2001-05-01

    The auditory training with wide-band white noise is a methodology for the qualitative recovery of the hearing loss in people suffering from sensorineural hearing loss. It is based on the application of a wide-band white modified noise. In a prospective study, we have assessed the modifications of the recruitment coefficient in a sample of 48 patients who have followed a program of 15 auditory training with wide-band white noise sessions. The average improvement of the recruitment coefficient expressed in percentage is a 7.7498%, which comes up to 23.5249% in the case of a binaural recruitment coefficient. From our results, it can be deduced that the auditory training with wide-band white noise reduces the recruitment. That is to say, the decrease of the recruitment in high intensities both binaurally and in all ears.

  18. Self organization of wireless sensor networks using ultra-wideband radios

    Science.gov (United States)

    Dowla, Farid U [Castro Valley, CA; Nekoogar, Franak [San Ramon, CA; Spiridon, Alex [Palo Alto, CA

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  19. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  20. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  1. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    Science.gov (United States)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by

  2. Echosonography with proximity sensors

    International Nuclear Information System (INIS)

    Thaisiam, W; Laithong, T; Meekhun, S; Chaiwathyothin, N; Thanlarp, P; Danworaphong, S

    2013-01-01

    We propose the use of a commercial ultrasonic proximity sensor kit for profiling an altitude-varying surface by employing echosonography. The proximity sensor kit, two identical transducers together with its dedicated operating circuit, is used as a profiler for the construction of an image. Ultrasonic pulses are emitted from one of the transducers and received by the other. The time duration between the pulses allows us to determine the traveling distance of each pulse. In the experiment, the circuit is used with the addition of two copper wires for directing the outgoing and incoming signals to an oscilloscope. The time of flight of ultrasonic pulses can thus be determined. Square grids of 5 × 5 cm 2 are made from fishing lines, forming pixels in the image. The grids are designed to hold the detection unit in place, about 30 cm above a flat surface. The surface to be imaged is constructed to be height varying and placed on the flat surface underneath the grids. Our result shows that an image of the profiled surface can be created by varying the location of the detection unit along the grid. We also investigate the deviation in relation to the time of flight of the ultrasonic pulse. Such an experiment should be valuable for conveying the concept of ultrasonic imaging to physical and medical science undergraduate students. Due to its simplicity, the setup could be made in any undergraduate laboratory relatively inexpensively and it requires no complex parts. The results illustrate the concept of echosonography. (paper)

  3. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  4. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    Science.gov (United States)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  5. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  6. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  7. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  8. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network

    International Nuclear Information System (INIS)

    Zhou, Chao; Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li

    2013-01-01

    There has been increasing interest in using the nonlinear features of acousto-ultrasonic (AU) waves to detect damage onset (e.g., micro-fatigue cracks) due to their high sensitivity to damage with small dimensions. However, most existing approaches are able to infer the existence of fatigue damage qualitatively, but fail to further ascertain its location and severity. A damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, was established, capable of evaluating fatigue cracks in a quantitative manner (including the co-presence of multiple fatigue cracks, and their individual locations and severities). Fundamental investigations, using both experiment and enhanced finite element analysis dedicated to the simulation of nonlinear AU waves, were carried out to link the accumulation of nonlinearities extracted from high-order AU waves to the characteristic parameters of a fatigue crack. A probability-based diagnostic imaging algorithm was developed, facilitating an intuitive presentation of identification results in images. The approach was verified experimentally by evaluating multi-fatigue cracks near rivet holes of a fatigued aluminum plate, showing satisfactory precision in characterizing real, barely visible fatigue cracks. Compared with existing methods, this approach innovatively (i) uses permanently integrated active sensor networks, conducive to automatic and online health monitoring; (ii) characterizes fatigue cracks at a quantitative level; (iii) allows detection of multiple fatigue cracks; and (iv) visualizes identification results in intuitive images. (paper)

  9. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  10. A novel ultrasonic clutch using near-field acoustic levitation.

    Science.gov (United States)

    Chang, Kuo-Tsi

    2004-10-01

    This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance.

  11. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors

    Directory of Open Access Journals (Sweden)

    Jeremy Joshua Pittman

    2015-01-01

    Full Text Available Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L., bermudagrass [Cynodon dactylon (L. Pers.], and wheat (Triticum aestivum L. were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral as compared to physical measurements (plate meter and meter stick and the traditional harvest method (clipping. Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively, except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1 and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1. These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation.

  12. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  13. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  14. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  15. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2016-01-01

    A wideband neutralization line is proposed to reduce the mutual coupling of a compact ultrawideband (UWB) MIMO antenna. With the introduced decoupling method, the designed UWB MIMO antenna covers the band of 3.1-5 GHz with an isolation of higher than 22 dB. The proposed wideband neutralization line...

  16. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    International Nuclear Information System (INIS)

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the

  17. Non-invasive classification of gas-liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Science.gov (United States)

    Musa Abbagoni, Baba; Yeung, Hoi

    2016-08-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the

  18. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  19. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  20. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  1. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  2. Wideband two-port beam splitter of a binary fused-silica phase grating.

    Science.gov (United States)

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  3. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    Science.gov (United States)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  4. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  5. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  6. Ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin [Sungkwunkwan Univ., Seoul (Korea, Republic of); Jeong, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of)

    2004-02-15

    For the proper performance of ultrasonic testing of steel welded joints, and anisotropic material it is necessary to have sound understanding on the underlying physics. To provide such an understanding, it is beneficial to have simulation tools for ultrasonic testing. In order to address such a need, we develop effective approaches to simulate angle beam ultrasonic testing with a personal computer. The simulation is performed using ultrasonic measurement models based on the computationally efficient multi-Gaussian beams. This reach will describe the developed ultrasonic testing models together with the experimental verification of their accuracy.

  7. A Laser-based Ultrasonic Inspection System to Detect Micro Fatigue Cracks

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Park, Moon Cheol; Lim, Chang Hwan; Cha, Hyung Ki

    2005-01-01

    Laser-based ultrasonic techniques have been established as a viable non-contact alternative to piezoelectric transducers for generating and receiving ultrasound. Laser-based ultrasonic inspection system provides a number of advantages over the conventional generation by piezoelectric transducers, especially a non-contact generation and detection of ultrasonic waves, high spatial scanning resolution, controllable narrow-band and wide-band spectrum, absolute measurements of the moving distance, use of fiber optics, and an ability to operate on curved and rough surfaces and at hard-to-access locations like a nuclear power plant. Ochiai and Miura used the laser-based ultrasound to detect micro fatigue cracks for the inspection of a material degradation in nuclear power plants. This widely applicable laser-based ultrasonic inspection system is comparatively expensive and provides low signal-to-noise ratio to measure ultrasound by using the laser interferometer. Many studies have been carried out to improve the measuring efficiency of the laser interferometer. One of the widely used laser interferometer types to measure the ultrasound is the Confocal Fabry-Perot Interferometer(CFPI). The measurement gain of the CFPI is slightly and continually varied according to the small change of the cavity length and the fluctuations of the measuring laser beam frequency with time. If we continually adjust the voltage of a PZT which is fixed to one of the interferometer mirrors, the optimum working point of the CFPI can be fixed. Though a static stabilizer can fix the gain of the CFPI where the CW laser beam is targeted at one position, it can not be used when the CW laser beam is scanned like a scanning laser source(SLS) technique. A dynamic stabilizer can be used for the scanning ultrasonic inspection system. A robust dynamic stabilizer is needed for an application to the industrial inspection fields. Kromine showed that the SLS technique is effective to detect small fatigue cracks

  8. Effect of direction on loudness for wideband and reverberant sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    The effect of incidence angle on loudness was investigated for wideband and reverberant sounds. In an adaptive procedure, five listeners matched the loudness of a sound coming from five incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were...... presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation....

  9. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  10. Differential Sensor for PH Monitoring of Environmental Objects

    Directory of Open Access Journals (Sweden)

    Romanenko Sergey

    2016-01-01

    Full Text Available Differential pH sensor is proposed. Reference electrode and measuring electrode are the same type. Reference electrode is immersed in standard buffer solution with known pH value. The differential pH sensor has longer service life as compared with the traditionally used sensors with silver chloride reference electrode. Ultrasonic cleaning system is proposed to clean the primary measuring transducer from pollution that form as result of silting during long-term operation with the sensor.

  11. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  12. Ultra-wideband MMICs for remote sensing applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2003-01-01

    This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...

  13. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  14. The automotive anti-collision system based on Ultrasonic

    Directory of Open Access Journals (Sweden)

    Qi Qinqin

    2017-08-01

    Full Text Available In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range.

  15. Ultrasonic and advanced methods for nondestructive testing and material characterization

    National Research Council Canada - National Science Library

    Chen, C. H

    2007-01-01

    ... and physics among others. There are at least two dozen NDT methods in use. In fact any sensor that can examine the inside of material nondestructively is useful for NDT. However the ultrasonic methods are still most popular because of its capability, flexibility, and relative cost effectiveness. For this reason this book places a heavy emphasis...

  16. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  17. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    Science.gov (United States)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  18. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  19. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  20. Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods

    Science.gov (United States)

    Kołakowski, Przemysław; Szelążek, Jacek; Sekuła, Krzysztof; Świercz, Andrzej; Mizerski, Krzysztof; Gutkiewicz, Piotr

    2011-03-01

    This paper presents results of in situ investigation of a railway truss bridge in the context of structural health monitoring (SHM). Three experimental methods are examined. Dynamic responses of the bridge recorded by strain gauges are confronted with alternative ways of acquisition using piezoelectric patch sensors and ultrasonic probeheads. All types of sensors produce similar output. Also the corresponding responses of the numerical model of the bridge match experimental data.

  1. Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods

    International Nuclear Information System (INIS)

    Kołakowski, Przemysław; Sekuła, Krzysztof; Szelążek, Jacek; Świercz, Andrzej; Mizerski, Krzysztof; Gutkiewicz, Piotr

    2011-01-01

    This paper presents results of in situ investigation of a railway truss bridge in the context of structural health monitoring (SHM). Three experimental methods are examined. Dynamic responses of the bridge recorded by strain gauges are confronted with alternative ways of acquisition using piezoelectric patch sensors and ultrasonic probeheads. All types of sensors produce similar output. Also the corresponding responses of the numerical model of the bridge match experimental data

  2. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    Science.gov (United States)

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  3. Wideband propagation measurements at 30.3 GHz through a pecan orchard in Texas

    Science.gov (United States)

    Papazian, Peter B.; Jones, David L.; Espeland, Richard H.

    1992-09-01

    Wideband propagation measurements were made in a pecan orchard in Texas during April and August of 1990 to examine the propagation characteristics of millimeter-wave signals through vegetation. Measurements were made on tree obstructed paths with and without leaves. The study presents narrowband attenuation data at 9.6 and 28.8 GHz as well as wideband impulse response measurements at 30.3 GHz. The wideband probe (Violette et al., 1983), provides amplitude and delay of reflected and scattered signals and bit-error rate. This is accomplished using a 500 MBit/sec pseudo-random code to BPSK modulate a 28.8 GHz carrier. The channel impulse response is then extracted by cross correlating the received pseudo-random sequence with a locally generated replica.

  4. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Science.gov (United States)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  5. Ubiquitous Sensor Networks: Efisiensi Sistem Kontrol Cairan Infus Pasien Rawat Inap

    Directory of Open Access Journals (Sweden)

    BUDI RAHMADYA

    2018-02-01

    This research discusses about intravenous fluids Control System on Patients, utilizing sensor network technology and Arduino Uno microcontroller. We used  HC-SR04 Ultrasonic sensors to detect the review time intravenous fluids. The sensors data is readable by transmitted using wireless network/wireless from Transmitter (Tx in Patients Into Space Receiver (Rx at nurse room with using XBee wireless device S2. The efficiency of the control system were made, namely when the sensor detects the approaching limits of intravenous fluids discharged liquid that has been determined then the motor that was on the infus line will serve to close the infusion fluid flow in the line. In our simulations we found, the findings obtained Presentation intravenous fluids altitude error is 1.96% and presentations volume Liquid error is 2.16%. The performance of network devices XBee S2 have been tried, wireless data from the XBee end devices coordinator in this research. Keywords: Infusion, Sensor Networks, HC-SR04 Ultrasonic Sensor, XBee S2 And Microcontroller Arduino Uno.

  6. Flexible quality of service model for wireless body area sensor networks

    OpenAIRE

    Liao, Yangzhe; Leeson, Mark S.; Higgins, Matthew D.

    2016-01-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the pro...

  7. Ultrasonic signature

    International Nuclear Information System (INIS)

    Borloo, E.; Crutzen, S.

    1974-12-01

    The unique and tamperproof identification technique developed at Ispra is based on ultrasonic Non-Destructive-Techniques. Reading fingerprints with ultrasonic requires high reproducibility of standard apparatus and transducers. The present report gives an exhaustive description of the ultrasonic technique developed for identification purposes. Different applications of the method are described

  8. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  9. UV-sensitive optical sensors based on ITO-gallium phosphide heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Oleksandr; Hidalga-Wade, F. Javier de la; Zuniga-Islas, Carlos; Abundis Patino, Jesus H. [National Institute for Astrophysics, Optics, and Electronics (INAOE), Puebla (Mexico)

    2010-04-15

    Design and characteristics of wide-band UV sensors based on ITO/GaP heterostructures are discussed. Such sensors have perfect electrical parameters and high UV-visible sensitivity in comparison with surface-barrier structures using a semi-transparent thin metal film as an electrode. Many applications require UV sensors with an effective rejection of visible radiation and a wide temperature operating interval. For this aim, the theoretical modelling of extreme selective optical sensors with a double Ag/ITO thin film on the GaP surface, in which the thin silver film serves as a narrow bandpass filter at 320 nm, has been conducted. With this modelling the optimal thickness combination for the silver and ITO films was found for the maximum rejection of the sensitivity to visible radiation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Detection of Lock on Radar System Based on Ultrasonic US 100 Sensor And Arduino Uno R3 With Image Processing GUI

    Science.gov (United States)

    Baskoro, F.; Reynaldo, B. R.

    2018-04-01

    The development of electronics technology especially in the field of microcontroller occurs very rapidly. There have been many applications and useful use of microcontroller in everyday life as well as in laboratory research. In this study used Arduino Uno R3 as microcontroller-based platform ATMega328 as a sensor distance meter to know the distance of an object with high accuracy. The method used is to utilize the function Timer / Counter in Arduino UNO R3. On the Arduino Uno R3 platform, there is ATMEL ATmega328 microcontroller which has a frequency generating speed up to 20 MHz, 16-bit enumeration capability and using C language as its programming. With the Arduino Uno R3 platform, the ATmega328 microcontroller can be programmed with Arduino IDE software that is simpler and easier because it has been supported by libraries and many support programs. The result of this research is distance measurement to know the location of an object using US ultrasonic wave sensor US 100 with Arduino Uno R3 based on ATMega328 microcontroller which then the result will be displayed using Image Processing.

  11. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  12. Age effects in the human middle ear: Wideband acoustical measures

    Science.gov (United States)

    Feeney, M. Patrick; Sanford, Chris A.

    2004-12-01

    Studies that have examined age effects in the human middle ear using either admittance measures at 220 or 660 Hz or multifrequency tympanometry from 200 to 2000 Hz have had conflicting results. Several studies have suggested an increase in admittance with age, while several others have suggested a decrease in admittance with age. A third group of studies found no significant age effect. This study examined 226 Hz tympanometry and wideband energy reflectance and impedance at ambient pressure in a group of 40 young adults and a group of 30 adults with age >=60 years. The groups did not differ in admittance measures of the middle ear at 226 Hz. However, significant age effects were found in wideband energy reflectance and impedance. In particular, in older adults there was a comparative decrease in reflectance from 800 to 2000 Hz but an increase near 4000 Hz. The results suggest a decrease in middle-ear stiffness with age. The findings of this study hold relevance for understanding the aging process in the auditory system, for the establishment of normative data for wideband energy reflectance, for the possibility of a conductive component to presbycusis, and for the interpretation of otoacoustic emission measurements. .

  13. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Science.gov (United States)

    2010-10-01

    ... of wideband systems within the band 5925-7250 MHz. (a) The −10 dB bandwidth of a device operating... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband systems within the band... variations in temperature and supply voltage. (b) The −10 dB bandwidth of the fundamental emission shall be...

  14. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.

    Science.gov (United States)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong

    2013-03-01

    An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

  15. Aliasing-free wideband beamforming using sparse signal representation

    NARCIS (Netherlands)

    Tang, Z.; Blacquière, G.; Leus, G.

    2011-01-01

    Sparse signal representation (SSR) is considered to be an appealing alternative to classical beamforming for direction-of-arrival (DOA) estimation. For wideband signals, the SSR-based approach constructs steering matrices, referred to as dictionaries in this paper, corresponding to different

  16. Development of Ultrasonic Visual Inspection Program for In-Vessel Structures of SFR

    International Nuclear Information System (INIS)

    Joo, Y. S.; Park, C. G.; Lee, J. H.

    2009-02-01

    As the liquid sodium of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection is unavailable for the evaluation of the in-vessel structures under a sodium level. ASME Section XI Division 3 provides rules and guidelines for an in-service inspection (ISI) and testing of the components of SFR. For the ISI of in-vessel structures, the ASME code specifies visual examinations. An ultrasonic wave should be applied for an under-sodium visual inspection of the in-vessel structures. The plate-type waveguide sensor has been developed and the feasibility of the waveguide sensor technique has been successfully demonstrated for an ultrasonic visual inspection of the in-vessel structures of SFR. In this study, the C-scan image mapping program (Under-Sodium MultiView) is developed to apply this waveguide sensor technology to an under-sodium visual inspection of in-vessel structures in SFR by using a LabVIEW graphical programming language. The Under-Sodium MultiVIEW program has the functions of a double rotating scanner motion control, a high power pulser receiver control, a image mapping and a signal processing. The performance of Under-Sodium MultiVIEW program was verified by a C-scanning test

  17. Ultrasonic horn design for ultrasonic machining technologies

    Directory of Open Access Journals (Sweden)

    Naď M.

    2010-07-01

    Full Text Available Many of industrial applications and production technologies are based on the application of ultrasound. In many cases, the phenomenon of ultrasound is also applied in technological processes of the machining of materials. The main element of equipments that use the effects of ultrasound for machining technology is the ultrasonic horn – so called sonotrode. The performance of ultrasonic equipment, respectively ultrasonic machining technologies depends on properly designed of sonotrode shape. The dynamical properties of different geometrical shapes of ultrasonic horns are presented in this paper. Dependence of fundamental modal properties (natural frequencies, mode shapes of various sonotrode shapes for various geometrical parameters is analyzed. Modal analyses of the models are determined by the numerical simulation using finite element method (FEM design procedures. The mutual comparisons of the comparable parameters of the various sonotrode shapes are presented.

  18. Flexible quality of service model for wireless body area sensor networks\\ud

    OpenAIRE

    Liao, Yangzhe; Leeson, Mark S.; Higgins, Matthew D.

    2016-01-01

    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency (RF) ultra-wideband (UWB) technology has developed substantially for physiological signal monitoring due to its advantages such as low power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems of...

  19. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  20. Development and application of the ultrasonic technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Lebedev, Nikolay; Krasilnikov, Dmitry; Vasiliev, Albert; Dubinin, Gennady; Yurmanov, Viktor

    2012-09-01

    Efficiency of some traditional chemical technologies in different areas could be significantly increased by adding ultrasonic treatment. For example, ultrasonic treatment was found to improve make-up water systems, decontamination procedures, etc. Improvement of traditional chemical technologies with implementation of ultrasonic treatment has allowed to significantly reducing water waste, including harmful species and radioactive products. The report shows the examples of the recent ultrasonic technology development and application in Russian nuclear engineering. They are as follows: - Preliminary cleaning of surfaces of in-pile parts (e.g. control sensors) prior to their assemblage and welding - Decontamination of grounds and metal surfaces of components with a complex structure -Decrease in sliding friction between fuel rods and grids during VVER reactor fuel assembly manufacturing -Removal of deposits from reactor fuel surfaces in VVER-440s -Increasing the density and strength of pressed sintered items while making fuel pellets and fuel elements, especially mixed-oxide fuel Surface cleanness is very important for the fuel assembly manufacturing, especially prior to welding. An ultrasonic technology for surface cleaning (from graphite and other lubricants, oxides etc.) was developed and implemented. The ultrasonic cleaning is applicable to the parts having both simple shape and different holes. Ultrasonic technology has allowed to improve the surface quality and environmental safety. Ultrasonic treatment appears to be expedient to intensify the chemical decontamination of solid radioactive waste from grounds of different fractions to metallic components. Ultrasonic treatment reduces the decontamination process duration up to 100 times as much. Excellent decontamination factor was received even for the ground fractions below 1 mm. It should be noted that alternative decontamination techniques (e.g. hydraulic separation) are poorly applicable for such ground

  1. DOD Use of Commercial Wideband Satellite Communications Systems: How Much is Needed, and How Do We Get It?

    National Research Council Canada - National Science Library

    Hutchens, Robert

    2001-01-01

    ..., A key enabler to this end is sufficient wideband satellite communications connectivity DoD's organic wideband satellite communications capabilities are inadequate, so commercial services must be used...

  2. Strength and fatigue life evaluation of composite laminate with embedded sensors

    Science.gov (United States)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  3. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  4. 35 Gb/s Ultra-wideband Technology for Advanced Communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    be applied, evolving from classic spectral inefficient pulsebased systems to more advanced and flexible modulation schemes. Ultra-wideband technology is suitable for low-power high-speed wireless communication systems over short distances, and is an appealing alternative for next generation networks ranging......The fast development of electronics and portable devices, intended mainly for multimedia applications, is increasing exponentially the data traffic demands per user. To cope with these new data demands in limited bandwidth systems, new technologies must be explored and new transmission schemes must...... from high-speed wireless personal area networks, to the internet of things applications. Its popularity stems from the fact that they can be used as an overlay to existing systems, without interference, operating in parallel to existing wireless systems, which perceive ultra-wideband emissions...

  5. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  6. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  7. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  8. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  9. A wideband optical monitor for a planetary-rotation coating-system

    International Nuclear Information System (INIS)

    Campanelli, M.B.; Smith, D.J.

    1998-01-01

    A substrate-specific, through-planet, wideband optical coating monitor is being developed to increase production yield and the understanding of physical vapor deposition (PVD) coatings fabricated in the Optical Manufacturing Laboratory at the University of Rochester's Laboratory for Laser Energetics. In-situ wideband optical monitoring of planetary rotation systems allows direct monitoring of large, expensive substrates with complex layering schemes. The optical monitor discussed here is under development for coating several large (e.g., 80.7 x 41.7 x 9.0 cm) polarizers for the National Ignition Facility. Wideband optical monitoring of the production substrates is used in concert with an array of crystal monitors for process control, film parameter evaluation, and error detection with associated design reoptimization. The geometry of a planetary rotation system, which produces good uniformity across large substrates, makes optical monitoring more difficult. Triggering and timing techniques for data acquisition become key to the process because the optical coating is available only intermittently for monitoring. Failure to properly consider the effects of the system dynamics during data retrieval and processing may result in significant decreases in the spectral data's reliability. Improved data accuracy allows better determination of film thicknesses, indices, and inhomogeneities and enables in-situ error detection for design reoptimization

  10. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  11. Development of ultrasonic high temperature system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others

    2000-07-01

    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C

  12. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  13. Wideband Dual-Polarization Patch Antenna Array With Parallel Strip Line Balun Feeding

    DEFF Research Database (Denmark)

    Zhang, Jin; Lin, Xianqi; Nie, Liying

    2016-01-01

    A wideband dual-polarization patch antenna array is proposed in this letter. The array is fed by a parallel strip line balun, which is adopted to generate 180° phase shift in a wide frequency range. In addition, this balun has simple structure, very small phase shift error, and good ports isolati...... is higher than 30 dB. The simulation and measurement turns out to be similar. This antenna array can be used in TD-LTE base stations, and the design methods are also useful to other wideband microstrip antennas....

  14. Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler

    Directory of Open Access Journals (Sweden)

    Munkhbat Batsaikhan

    2017-11-01

    Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.

  15. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  16. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  17. A micromachined inline type microwave power sensor with working state transfer switches

    International Nuclear Information System (INIS)

    Han Lei

    2011-01-01

    A wideband 8-12 GHz inline type microwave power sensor, which has both working and non-working states, is presented. The power sensor measures the microwave power coupled from a CPW line by a MEMS membrane. In order to reduce microwave losses during the non-working state, a new structure of working state transfer switches is proposed to realize the two working states. The fabrication of the power sensor with two working states is compatible with the GaAs MMIC (monolithic microwave integrated circuit) process. The experimental results show that the power sensor has an insertion loss of 0.18 dB during the non-working state and 0.24 dB during the working state at a frequency of 10 GHz. This means that no microwave power has been coupled from the CPW line during the non-working state. (semiconductor integrated circuits)

  18. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  19. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  20. Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ., Incheon (Korea, Republic of)

    2016-09-15

    An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50 %. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt % on mechanical compliance and electrical conductance of the conductive composite.

  1. Coding/modulation trade-offs for Shuttle wideband data links

    Science.gov (United States)

    Batson, B. H.; Huth, G. K.; Trumpis, B. D.

    1974-01-01

    This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.

  2. A Resistive Wideband Space Beam Splitter

    OpenAIRE

    Mahesh, Nivedita; Subrahmanyan, Ravi; Shankar, N. Udaya; Raghunathan, Agaram

    2014-01-01

    We present the design, construction and measurements of the electromagnetic performance of a wideband space beam splitter. The beam splitter is designed to power divide the incident radiation into reflected and transmitted components for interferometer measurement of spectral features in the mean cosmic radio background. Analysis of a 2-element interferometer configuration with a vertical beam splitter between a pair of antennas leads to the requirement that the beam splitter be a resistive s...

  3. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  4. Recognizing Bedside Events Using Thermal and Ultrasonic Readings

    Directory of Open Access Journals (Sweden)

    Danielsen Asbjørn

    2017-06-01

    Full Text Available Falls in homes of the elderly, in residential care facilities and in hospitals commonly occur in close proximity to the bed. Most approaches for recognizing falls use cameras, which challenge privacy, or sensor devices attached to the bed or the body to recognize bedside events and bedside falls. We use data collected from a ceiling mounted 80 × 60 thermal array combined with an ultrasonic sensor device. This approach makes it possible to monitor activity while preserving privacy in a non-intrusive manner. We evaluate three different approaches towards recognizing location and posture of an individual. Bedside events are recognized using a 10-second floating image rule/filter-based approach, recognizing bedside falls with 98.62% accuracy. Bed-entry and exit events are recognized with 98.66% and 96.73% accuracy, respectively.

  5. Design of a fiber optical sensor for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Baghdasaryan, H.V.; Knyazyan, T.M.; Daryan, A.V.

    2016-01-01

    All-optical sensor for atmospheric electric field detection and measurement is suggested and numerically modelled. Thin electro- optical crystal sandwiched between two distributed Bragg reflectors (DBRs) forming multilayer Gires-Tournois (G-T) microresonator is used as a sensitive part of the electric field sensor. In the sensor device, an optical fiber delivers the wideband light spectrum to the sensing multilayer structure of G-T microresonator. The reflectance spectrum of the sensor contains information on the electric field strength and direction. The relevant reflectance peaks’ shift in the reflected spectrum can be observed by an optical spectrum analyzer (OSA). Numerical modelling has been done by the method of single expression that is a suitable tool for multi-boundary problems solution. The obtained results of modelling will be useful in a new type of non-distorting sensor’s elaboration for atmospheric electric field detection and measurement. (author)

  6. Ultrasonic physics

    CERN Document Server

    Richardson, E G

    1962-01-01

    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  7. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  8. Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system

    CERN Document Server

    Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U

    2017-01-01

    The proposed SPS Wideband Transverse Feedback sys- tem requires a wide-band pick-up system to be able to de- tect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analy- sis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and posi- tion signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off- set signal, needed to optimise the dynamic range and posi- tion resolution of the planned digital intra-bunch feedback system.

  9. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    Science.gov (United States)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  10. Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its...

  11. Handbook of ultra-wideband short-range sensing theory, sensors, applications

    CERN Document Server

    Sachs, Jürgen

    2013-01-01

    Ranging from the theoretical basis of UWB sensors via implementation issues to applications, this much-needed book bridges the gap between designers and appliers working in civil engineering, biotechnology, medical engineering, robotic, mechanical engineering, safety and homeland security. From the contents: * History * Signal and systems in time and frequency domain * Propagation of electromagnetic waves (in frequency and time domain) * UWB-Principles * UWB-antennas and applicators * Data processing * Applications.

  12. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition.

    Science.gov (United States)

    Mocanu, Bogdan; Tapu, Ruxandra; Zaharia, Titus

    2016-10-28

    In the most recent report published by the World Health Organization concerning people with visual disabilities it is highlighted that by the year 2020, worldwide, the number of completely blind people will reach 75 million, while the number of visually impaired (VI) people will rise to 250 million. Within this context, the development of dedicated electronic travel aid (ETA) systems, able to increase the safe displacement of VI people in indoor/outdoor spaces, while providing additional cognition of the environment becomes of outmost importance. This paper introduces a novel wearable assistive device designed to facilitate the autonomous navigation of blind and VI people in highly dynamic urban scenes. The system exploits two independent sources of information: ultrasonic sensors and the video camera embedded in a regular smartphone. The underlying methodology exploits computer vision and machine learning techniques and makes it possible to identify accurately both static and highly dynamic objects existent in a scene, regardless on their location, size or shape. In addition, the proposed system is able to acquire information about the environment, semantically interpret it and alert users about possible dangerous situations through acoustic feedback. To determine the performance of the proposed methodology we have performed an extensive objective and subjective experimental evaluation with the help of 21 VI subjects from two blind associations. The users pointed out that our prototype is highly helpful in increasing the mobility, while being friendly and easy to learn.

  13. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition

    Directory of Open Access Journals (Sweden)

    Bogdan Mocanu

    2016-10-01

    Full Text Available In the most recent report published by the World Health Organization concerning people with visual disabilities it is highlighted that by the year 2020, worldwide, the number of completely blind people will reach 75 million, while the number of visually impaired (VI people will rise to 250 million. Within this context, the development of dedicated electronic travel aid (ETA systems, able to increase the safe displacement of VI people in indoor/outdoor spaces, while providing additional cognition of the environment becomes of outmost importance. This paper introduces a novel wearable assistive device designed to facilitate the autonomous navigation of blind and VI people in highly dynamic urban scenes. The system exploits two independent sources of information: ultrasonic sensors and the video camera embedded in a regular smartphone. The underlying methodology exploits computer vision and machine learning techniques and makes it possible to identify accurately both static and highly dynamic objects existent in a scene, regardless on their location, size or shape. In addition, the proposed system is able to acquire information about the environment, semantically interpret it and alert users about possible dangerous situations through acoustic feedback. To determine the performance of the proposed methodology we have performed an extensive objective and subjective experimental evaluation with the help of 21 VI subjects from two blind associations. The users pointed out that our prototype is highly helpful in increasing the mobility, while being friendly and easy to learn.

  14. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  15. audio-ultrasonic waves by argon gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.

    2010-01-01

    in the present work, wave emission formed by audio-ultrasonic plasma is investigated. the evidence of the magnetic and electric fields presence is performed by experimental technique. comparison between experimental field measurements and several plasma wave methods reveals the plasma audio-ultrasonic radiations mode. this plasma is a symmetrically driven capacitive discharge, consisting of three interactive regions: the electrodes, the sheaths, and the positive column regions . the discharge voltage is up to 900 volts, the discharge current flowing through the plasma attains a value of 360 mA .the frequency of the discharge voltage covers the audio and the ultrasonic range up to 100 khz. the effective plasma working distance has increased to attain the total length of the tube of 40 cm. a non-disturbing method using an external coil is used to measure the electric discharge field in a plane perpendicular to that of the plasma axe tube. this method proves the existence of a current flowing in a direction perpendicular to the plasma axe tube. a system of minute coils sensors proved the existence of two fields in two perpendicular directions . comparison between different observed fields reveals the existence of propagating electromagnetic waves due to the alternating current flowing through the skin plasma tube. the field intensity distribution along the tube draws the discharge current behavior between the two plasma electrodes that can be used to predict the range of the plasma discharge current.

  16. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  17. Ultrasonic sweep arm for sodium cooled reactors

    International Nuclear Information System (INIS)

    Rohrbacher, H.A.; Bartholomay, R.

    1975-05-01

    This report describes experience in the use of a new type of monitoring and testing device to be applied in conjunction with components under sodium. In the method outlined, ultrasonic pulses are used which are emitted into the sodium plenum of fast breeder reactors by newly developed high temperature transducers. The basic work was conducted under out-of-pile conditions in a sodium tank of the sodium tank facility of the Karlsruhe Institute for Reactor Development. The sensor development, which preceded this phase, resulted in the use of soldered lithium niobate crystals whose operating characteristics were improved by the preliminary treatment outlined in the report. Special materials and techniques suitable for sensor fabrication are proposed. An alternative to soldering is suggested for contacting the crystals with their diaphragms, i.e. a contact pressure concept for the range of application up to 2 MHz. (orig.) [de

  18. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  19. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  20. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance of the...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described.......The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  1. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  2. Wideband FM Demodulation and Multirate Frequency Transformations

    Science.gov (United States)

    2016-12-15

    Noble identities to extend the proposed approach to larger wideband to narrowband conversion factors and more practical implementations. We further...framework . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagrams of the alternative MFT system for large conversion factors (a) and the Noble Identity ...of both MFT frameworks with conversion factor R = 128 and normalized radian frequency shift wd = 0.1π under the extreme senario with modulation index

  3. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  4. Robust Nearfield Wideband Beamforming Design Based on Adaptive-Weighted Convex Optimization

    Directory of Open Access Journals (Sweden)

    Guo Ye-Cai

    2017-01-01

    Full Text Available Nearfield wideband beamformers for microphone arrays have wide applications in multichannel speech enhancement. The nearfield wideband beamformer design based on convex optimization is one of the typical representatives of robust approaches. However, in this approach, the coefficient of convex optimization is a constant, which has not used all the freedom provided by the weighting coefficient efficiently. Therefore, it is still necessary to further improve the performance. To solve this problem, we developed a robust nearfield wideband beamformer design approach based on adaptive-weighted convex optimization. The proposed approach defines an adaptive-weighted function by the adaptive array signal processing theory and adjusts its value flexibly, which has improved the beamforming performance. During each process of the adaptive updating of the weighting function, the convex optimization problem can be formulated as a SOCP (Second-Order Cone Program problem, which could be solved efficiently using the well-established interior-point methods. This method is suitable for the case where the sound source is in the nearfield range, can work well in the presence of microphone mismatches, and is applicable to arbitrary array geometries. Several design examples are presented to verify the effectiveness of the proposed approach and the correctness of the theoretical analysis.

  5. Three Different Approaches for Localization in a Corridor Environment by Means of an Ultrasonic Wide Beam

    Directory of Open Access Journals (Sweden)

    Luigi Spedicato

    2013-03-01

    Full Text Available In this paper the authors present three methods to detect the position and orientation of an observer, such as a mobile robot, with respect to a corridor wall. They use an inexpensive sensor to spread a wide ultrasonic beam. The sensor is rotated by means of an accurate servomotor in order to propagate ultrasonic waves towards a regular wall. Whatever the wall material may be the scanning surface appears to be an acoustic reflector as a consequence of low air impedance. The realized device is able to give distance information in each motor position and thus permits the derivation of a set of points as a ray trace-scanner. The dataset contains points lying on a circular arc and relating to strong returns. Three different approaches are herein considered to estimate both the slope of the wall and its minimum distance from the sensor. Slope and perpendicular distance are the parameters of a target plane, which may be calculated in each observer's position to predict its new location. Experimental tests and simulations are shown and discussed by scanning from different stationary locations. They allow the appreciation of the effectiveness of the proposed approaches.

  6. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  7. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  8. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  9. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    Science.gov (United States)

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  10. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    International Nuclear Information System (INIS)

    Lee, Jin Hyuck; Kim, Dae Hyun

    2015-01-01

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  11. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuck; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2015-02-15

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  12. High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound.

    Science.gov (United States)

    Sakamoto, João Marcos Salvi; Kitano, Cláudio; Pacheco, Gefeson Mendes; Tittmann, Bernhard Rainer

    2012-07-10

    In this paper, we report on the development of an intensity-modulated fiber-optic sensor for angular displacement measurement. This sensor was designed to present high sensitivity, linear response, and wide bandwidth and, furthermore, to be simple and low cost. The sensor comprises two optical fibers, a positive lens, a reflective surface, an optical source, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to compare different sensor configurations regarding the core radii of the optical fibers. The simulation results showed that the sensor configurations tested are highly sensitive to small angle variation (in the range of microradians) with nonlinearity less than or equal to 1%. The normalized sensitivity ranges from (0.25×V(max)) to (2.40×V(max)) mV/μrad (where V(max) is the peak voltage of the static characteristic curve), and the linear range is from 194 to 1840 μrad. The unnormalized sensitivity for a reflective surface with reflectivity of 100% was measured as 7.7 mV/μrad. The simulations were compared with experimental results to validate the mathematical model and to define the most suitable configuration for ultrasonic detection. The sensor was tested on the characterization of a piezoelectric transducer and as part of a laser ultrasonics setup. The velocities of the longitudinal, shear, and surface waves were measured on aluminum samples as 6.43, 3.17, and 2.96 mm/μs, respectively, with an error smaller than 1.3%. The sensor, an alternative to piezoelectric or interferometric detectors, proved to be suitable for detection of ultrasonic waves and to perform time-of-flight measurements and nondestructive inspection.

  13. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  14. Wideband feedback system prototype validation

    CERN Document Server

    Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O

    2017-01-01

    A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.

  15. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    NARCIS (Netherlands)

    Wang, Y.; Leus, G.; Van der Veen, A.J.

    2009-01-01

    A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI) and the

  16. Beam Pattern Analysis of the Plate-type Waveguide Sensor for Under-Sodium Viewing

    International Nuclear Information System (INIS)

    Kim, Hoewoong; Joo, Youngsang; Park, Changgyu; Kim, Jongbum

    2013-01-01

    Sensor for under-sodium viewing (USV) in a sodium-cooled fast reactor (SFR) has been developed. In the developed WG sensor approach, the A0 mode Lamb wave is used and a thin beryllium layer is coated on the waveguide surface to improve the ultrasonic radiation ability in a sodium environment. In this work, the beam pattern radiated from the developed plate-type WG sensor is investigated analytically to understand and predict the ultrasonic beam radiation property of the WG sensor in a liquid. Analytic calculations to obtain beam patterns for two kinds of WG sensors with and without beryllium coating layers were carried out and the results were compared with those obtained by experiments. In this work, the beam pattern of the plate-type WG sensor for USV was investigated analytically. Employing the far-field approximation, the acoustic response at a given measurement position was calculated for the plate-type WG sensors with and without beryllium coating layers. The beam patterns of WG sensors were predicted by the analytic calculation and the corresponding experiments were carried out. The results showed that the far-field beam pattern radiated from the plate-type WG sensor could be well predicted by an analytic calculation. The radiation beam angles obtained by the analytical calculation were in good agreement with those obtained by experiments

  17. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  18. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  20. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition

    Directory of Open Access Journals (Sweden)

    Yehai Li

    2018-05-01

    Full Text Available Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures.

  1. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  2. Ultrasonic decontamination robot

    International Nuclear Information System (INIS)

    Patenaude, R.S.

    1984-01-01

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  3. Design and characterization of an ultrasonic lamb-wave power delivery system.

    Science.gov (United States)

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

  4. Ultrasonic testing device

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1978-01-01

    The ultrasonic transmitter made of polarized ferroelectric ceramic material (lead zirconate titanate) is arranged in a strip carrier which allows it to be introduced between the fuel elements of a fuel subassembly in a water cooled nuclear reactor. The ultrasonic transmitter is insulated relative to the carrier. The echo of the ra dal ultrasonic pulse is recorded which changes as faulty water filled fuel elements are detected. (RW) [de

  5. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    Science.gov (United States)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  6. Green synthesis of dimension-controlled silver nanoparticle–graphene oxide with in situ ultrasonication

    International Nuclear Information System (INIS)

    Hui, K.S.; Hui, K.N.; Dinh, D.A.; Tsang, C.H.; Cho, Y.R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-01-01

    Graphical abstract: -- Abstract: A green chemical approach to control the dimensions of Ag nanoparticle-decorated graphene oxide (AgNP–GO) composites was proposed by in situ ultrasonication of a mixture of AgNO 3 and GO solution with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. The AgNP–GO composites were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, Raman spectra and ultraviolet–visible absorption spectra. The results demonstrated that Ag nanoparticles with an average diameter of ∼15 nm were uniformly dispersed on the surface of GO nanosheets by in situ ultrasonication of 1 min with vitamin C. Increasing the ultrasonication times resulted in Ag nanoparticles with tunable dimensions ranging from 15 to 55 nm being formed on the surface of GO nanosheets. The amount of silver nitrate and the ultrasonication time play a key role in the control of the dimension of Ag nanoparticles on GO, and a formation mechanism of the as-prepared AgNP–GO composites is proposed. This study provides a guide to controlling the dimensions of AgNP–GO composites, which may hold promise as advanced materials for various analytical applications such as catalysis, sensors and microchips

  7. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  8. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    OpenAIRE

    Qing-Hui WANG; Fang MU; Li-Feng WEI

    2014-01-01

    This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or conce...

  9. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  10. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop an innovative way of using Time Modulated Ultra Wideband (TM-UWB) transceivers (radios) to provide high performance integrated...

  11. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.; Shamma, Jeff S.; Stuber, Gordon L.

    2015-01-01

    communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel

  12. Development of novel EMAT-ECT multi-sensor and verification of its feasibility

    International Nuclear Information System (INIS)

    Suzuki, Kenichiro; Uchimoto, Tetsuya; Takagi, Toshiyuki; Sato, Takeshi; Guy, Philippe; Casse, Amelie

    2006-01-01

    In this study, we propose a novel EMAT-ECT multi sensor aiming at advanced structural health monitoring. For the purpose, proto-type EMAT-ECT multi-sensor was developed and their functions both as ECT and EMAT prove were evaluated. Experimental results of pulse ECT using the EMAT-ECT multi-sensor showed that the proposed sensor has a capability of detection and sizing of flaws. Experimental results of EMAT evaluation using the EMAT-ECT multi-sensor showed that ultrasonic wave was transmitted by EMAT-ECT multi sensor and flaw echo was observed. These results imply that EMAT-ECT multi sensor is available for pulse ECT and EMAT. (author)

  13. An effective temperature compensation approach for ultrasonic hydrogen sensors

    Science.gov (United States)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  14. Performance considerations of ultrasonic distance measurement with well defined properties

    International Nuclear Information System (INIS)

    Elmer, Hannes; Schweinzer, Herbert

    2005-01-01

    Conventional ultrasonic distance measurement systems based on narrow bandwidth ultrasonic bursts and amplitude detection are often used because of their low costs and easy implementation. However, the achievable results strongly depend on the actual environments where the system is implemented: in case of well defined objects that are always located near the measurement direction of the system, in general good results are obtained. If arbitrary objects are expected that are moreover located in arbitrary positions in front of the sensor, strongly object dependent areas where objects are detected with decreasing accuracy towards their borders must be taken into account. In previous works we developed an ultrasonic measurement system that provides accurate distance measurement values within a well defined detection area that is independent of the reflection properties of the objects. This measurement system is based on the One Bit Correlation method that is described in the following. To minimise its implementation efforts, it is necessary to examine the influence of the system parameters as e.g. the correlation length to the results that are expected in case of different signal to noise ratios of the received signal. In the following, these examinations are shown and the obtained results are discussed that allow getting a well conditioned system that makes best use of given system resources

  15. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    Science.gov (United States)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  16. Distributed detection in UWB sensor networks under non-orthogonal Nakagami-m fading

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    Several attractive features of ultra wideband (UWB) communications make it a good candidate for physical-layer of wireless sensor networks (WSN). These features include low power consumption, low complexity and low cost of implementation. In this paper, we present an opportunistic power assignment strategy for distributed detection in parallel fusion WSNs, considering a Nakagami-m fading model for the communication channel and time-hopping (TH) UWB for the transmitter circuit of the sensor nodes. In a parallel fusion WSN, local decisions are made by local sensors and transmitted through wireless channels to a fusion center. The fusion center processes the information and makes the final decision. Simulation results are provided for the global probability of detection error and relative performance gain to evaluate the efficiency of the proposed power assignment strategy in different fading environments. © 2011 IEEE.

  17. Ultrasonic unit for line-by-line ultrasonic scanning of bodies

    International Nuclear Information System (INIS)

    Soldner, R.

    1978-01-01

    The ultrasonic unit for medical diagnostics operates by the sectorial scanning principle, which avoids direct coupling of the transducer head to the surface of the body. For this purpose, several transmitter/receiver units (approx. 100) are arranged on a partial ring of a circular arc and the ultrasonic beams, which can be triggered sequentially in time, are directed at a common intersection behind the ultrasonic window of the unit, i.e., outside the unit. A mechanical system is employed to set and adjust the partial ring carrying the transmitter/receiver units. (DG) [de

  18. Multiband and wideband monopole antenna for GSM900 and other wireless applications

    KAUST Repository

    Abutarboush, Hattan; Nasif, H.; Nilavalan, Rajagopal; Cheung, Sing Wai

    2012-01-01

    In this letter, the design of a compact monopole antenna for multiband and wideband operations is proposed. The antenna has three distinct frequency bands, centered at 0.94, 2.7, and 4.75 GHz. The antenna has a compact size of only 30×40×1.57 mm$ 3 including the ground plane. The multiband and wideband operations are achieved by using an E-shaped slot on the ground plane. The design procedure is also discussed. The frequency bands can be independently controlled by using the parameters of the E-slot. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna are studied by computer simulation and measurements. © 2011 IEEE.

  19. High Performance Wideband CMOS CCI and its Application in Inductance Simulator Design

    Directory of Open Access Journals (Sweden)

    ARSLAN, E.

    2012-08-01

    Full Text Available In this paper, a new, differential pair based, low-voltage, high performance and wideband CMOS first generation current conveyor (CCI is proposed. The proposed CCI has high voltage swings on ports X and Y and very low equivalent impedance on port X due to super source follower configuration. It also has high voltage swings (close to supply voltages on input and output ports and wideband current and voltage transfer ratios. Furthermore, two novel grounded inductance simulator circuits are proposed as application examples. Using HSpice, it is shown that the simulation results of the proposed CCI and also of the presented inductance simulators are in very good agreement with the expected ones.

  20. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    Science.gov (United States)

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  1. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  2. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  3. A Dual Stage Linear Prediction Approach Towards Wideband FM Demodulation With Multilevel and Partial Response Signaling

    Science.gov (United States)

    2018-01-19

    attributed to the inherent interpolation process in the MFT demodulation approach, which is more error-sensitive to discontinuous waveforms, such as...Multirate Frequency Transformations In the author’s recent work, frequency transformations enacted via multirate signal processing were used for wideband...FM to narrowband FM conversion to enable a wider range of wideband FM signals [9, 11]. The goal of the multirate processing module is to compress the

  4. Wideband 4-diode sampling circuit

    Science.gov (United States)

    Wojtulewicz, Andrzej; Radtke, Maciej

    2016-09-01

    The objective of this work was to develop a wide-band sampling circuit. The device should have the ability to collect samples of a very fast signal applied to its input, strengthen it and prepare for further processing. The study emphasizes the method of sampling pulse shaping. The use of ultrafast pulse generator allows sampling signals with a wide frequency spectrum, reaching several gigahertzes. The device uses a pulse transformer to prepare symmetrical pulses. Their final shape is formed with the help of the step recovery diode, two coplanar strips and Schottky diode. Made device can be used in the sampling oscilloscope, as well as other measurement system.

  5. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  6. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...... for wideband spatio-temporal channel models, with emphasis on the impact of spatial correlation at the transmit (Tx) side, the channel model, and the spatial correlation at the Rx side on the capacity simulation accuracy. Simulation results show that the number of probes is irrelevant to capacity simulation......This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...

  7. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  8. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    Directory of Open Access Journals (Sweden)

    Andreas Lehner

    2014-01-01

    response (CIR time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive antenna position and movement, and the actual azimuths and elevations to the various signal sources. Attenuation and path delays relative to the hypothetical line of sight (LOS ensure usability for ranging purposes. Parameters for car and pedestrian applications in urban and suburban environments are provided. The channel characteristics are determined independently of the transmitted signal. Therefore the usability, for example, for GPS and GALILEO, as well as wideband communication services from hovering platforms, is given.

  9. A STUDY OF CONDITION MONITORING IN WATER PIPE USING VIBRATION SENSOR

    OpenAIRE

    角田, 裕紀

    2013-01-01

    This paper describes a study of condition monitoring in water pipe using vibration sensor. The vibration sensor composed of condenser microphone is placed at water pipe. This sensor picks up vibration by water flow. We estimate of flow rate from the output voltage waveform. It is high cost that any conventional flowmeter which use at outside pipe such as ultrasonic flowmeter. We develop a lower cost system and make measurement of flow rate in water pipe easier. The validity of sensing pipe vi...

  10. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    Science.gov (United States)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  11. Wideband DOA Estimation through Projection Matrix Interpolation

    OpenAIRE

    Selva, J.

    2017-01-01

    This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

  12. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  13. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  14. Wideband or Dual-Band Low-Profile Circular Patch Antenna with High Gain and Sidelobe Suppression

    DEFF Research Database (Denmark)

    Squadrito, Paolo; Zhang, Shuai; Pedersen, Gert F.

    2018-01-01

    This paper presents a wideband or dual-band circular disk antenna with high gain and sidelobe suppression (SLS). The antenna has a single layer and single-fed configuration. The antenna can operate with the radiation field superposition of TM12 and TM14 modes at one frequency, which provides high...... gain and SLS. A circle of 10 shorting vias with non-identical diameters are loaded inside the antenna cavity in order to excite the field superposition of TM11 and TM13 modes at another frequency. By modifying the radius of the vias, the resonant frequency with the TM11 and TM13 superposition can...... be tuned closer to or further away from the one with the TM12 and TM14 superposition. In this way, a wideband or dual-band behavior can be obtained with high gain and SLS. The proposed antenna achieves the impedance bandwidth of 6.46% for the wideband case, which is over 6 times wider than the previous...

  15. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  16. Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetone

    DEFF Research Database (Denmark)

    Mølgaard, Mathias Johannes Grøndahl; Laustsen, Milan; Thygesen, Ida Lysgaard

    2017-01-01

    The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target...... analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass...

  17. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  18. Friction control using ultrasonic oscillation for rolling-element linear-motion guide

    International Nuclear Information System (INIS)

    Oiwa, Takaaki

    2006-01-01

    This article reports a friction-control method for rolling-element linear-motion guides used for precision positioning. In general, static friction greater than dynamic friction generates stick-slip motion and diminishes the positioning accuracy. Two ultrasonic actuators excite both the rail and the carriage of the guide to give relative displacements to bearing surfaces. In order to effectively propagate the vibration over the entire rail without damping, the actuator drives at that frequency with a half wavelength corresponding to the distances between the rail mounting bolts. This also minimizes undesirable vibration of the machine structure. Moreover, the bearing surfaces of the carriage are resonated by a second ultrasonic actuator. The experiments using a force sensor showed that the static and dynamic friction forces were reduced by approximately 25% at any place on the 600-mm-long rail. Moreover, excitation only at very low velocity decreased the static friction peak

  19. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  20. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  1. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  2. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  3. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  4. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  5. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  6. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  7. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  8. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  9. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  10. Detection of a surface breaking crack by using the centroid variations of laser ultrasonic spectrums

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Joo, Young Sang; Jung, Hyun Kyu; Cha, Hyung Ki; Kang, Young June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a wide-band spectrum and a high spatial resolution. It provides absolute measurements of the moving distance and it can be applied to hard-to-access locations including curved or rough surfaces like in a nuclear power plant. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. The filtering function of a surface-breaking crack is a kind of a low-pass filter. The higher frequency components are more highly decreased in proportion to the crack depth. Also, the center frequency value of each ultrasound spectrum is decreased in proportion to the crack depth. We extracted the depth information of a surface-breaking crack by observing the centroid variation of the frequency spectrum. We describe the experimental results to detect the crack depth information by using the peak-to-valley values in the time domain and the center frequency values in the frequency domain.

  11. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  12. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    Science.gov (United States)

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  13. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  14. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    Science.gov (United States)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  15. DESIGN AND DEVELOPMENT OF A MOBILE SENSOR BASED THE BLIND ASSISTANCE WAYFINDING SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Barati

    2015-12-01

    Full Text Available The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  16. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  17. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  18. Elementary wideband timing of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  19. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    Science.gov (United States)

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  20. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  1. Ultrasonic grinding method

    International Nuclear Information System (INIS)

    Miyahara, Shuji.

    1990-01-01

    An ultrasonic generator and a liquid supply nozzle are opposed to an object to be ground and a pump is started in this state to supply an organic solvent. Matters to be decontaminated which adheres to the surface of the object to be ground and are difficult to be removed by a mere mechanical removing method can be eliminated previously by the surface active effect of the organic solvent such as ethanol prior to the oscillation of the ultrasonic generator. Subsequently, when the ultrasonic generator is oscillated, scales in the floated state can be removed simply. Further, since the organic solvent can penetrate to provide the surface active effect even in such a narrow portion that the top end of the ultrasonic generator is difficult to the intruded at the surface of the object to be ground, the decontaminating treatment can be applied also to such a narrow portion. (T.M.)

  2. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  3. Real-time wideband holographic surveillance system

    Science.gov (United States)

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  4. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles

    Science.gov (United States)

    Savage, Nicole J.; Krentz, Christine E.; Könemann, Tobias; Han, Taewon T.; Mainelis, Gediminas; Pöhlker, Christopher; Huffman, J. Alex

    2017-11-01

    Atmospheric particles of biological origin, also referred to as bioaerosols or primary biological aerosol particles (PBAP), are important to various human health and environmental systems. There has been a recent steep increase in the frequency of published studies utilizing commercial instrumentation based on ultraviolet laser/light-induced fluorescence (UV-LIF), such as the WIBS (wideband integrated bioaerosol sensor) or UV-APS (ultraviolet aerodynamic particle sizer), for bioaerosol detection both outdoors and in the built environment. Significant work over several decades supported the development of the general technologies, but efforts to systematically characterize the operation of new commercial sensors have remained lacking. Specifically, there have been gaps in the understanding of how different classes of biological and non-biological particles can influence the detection ability of LIF instrumentation. Here we present a systematic characterization of the WIBS-4A instrument using 69 types of aerosol materials, including a representative list of pollen, fungal spores, and bacteria as well as the most important groups of non-biological materials reported to exhibit interfering fluorescent properties. Broad separation can be seen between the biological and non-biological particles directly using the five WIBS output parameters and by taking advantage of the particle classification analysis introduced by Perring et al. (2015). We highlight the importance that particle size plays on observed fluorescence properties and thus in the Perring-style particle classification. We also discuss several particle analysis strategies, including the commonly used fluorescence threshold defined as the mean instrument background (forced trigger; FT) plus 3 standard deviations (σ) of the measurement. Changing the particle fluorescence threshold was shown to have a significant impact on fluorescence fraction and particle type classification. We conclude that raising the

  5. A wideband high-linearity RF receiver front-end in CMOS

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 μm CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise

  6. Low-Power and Reliable Communications for UWB-Based Wireless Monitoring Sensor Networks in Underground Mine Tunnels

    OpenAIRE

    Abou El-Nasr, Mohamad; Shaban, Heba

    2015-01-01

    This paper investigates the bit-error-rate (BER) and maximum allowable data throughput (MADTh) performance of a novel low-power mismatched Rake receiver structure for ultra wideband (UWB) wireless monitoring sensor networks in underground mine tunnels. This receive node structure provides a promising solution for low-power and reliable communications in underground mine tunnels with more than 90% reduction in power consumption. The BER and MADTh of the proposed receive nodes are investigated ...

  7. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  8. Wideband CMOS receivers exploiting simultaneous output balancing and noise/distortion canceling

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    Abstract— This paper deals with the problem of realizing wideband receiver front-ends in downscaled CMOSTechnologies, which are highly wanted for multi-standard radio receivers and cognitive radio applications. Instead of using many narrowband inductor based receivers, we prefer the use of one

  9. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    Science.gov (United States)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  10. Development of nuclear fuel rod inspection technique using ultrasonic resonance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Sun; Lee, Jong Po; Ju, Young Sang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-11-01

    Acoustic resonance scattering from a nuclear fuel rod in water is analyzed. A new model for the background which is attributed to the interference of reflected wave and diffracted wave is found and here named {sup t}he inherent background{sup .} The resonance spectrum of a fuel rod is obtained by subtracting the inherent background from the scattered pressure. And also analyzed are the effect of material damping of cladding tube and pellet on the resonance spectrum of a fuel rod. The propagation characteristics of circumferential waves which cause the resonances of cladding tube is produced and the appropriate resonance modes for the application to the inspection of assembled fuel rods are selected. The resonance modes are experimentally measured for pre- and post-irradiated fuel rods and the validation of the fuel rod inspection using ultrasonic resonance phenomenon is examined. And thin ultrasonic sensors accessible into the narrow interval (about 2-3mm) between assembled fuel rods are designed and manufactured. 14 refs. (Author).

  11. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  12. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  13. A low-noise, wideband, integrated CMOS transimpedance preamplifier for photodiode applications

    International Nuclear Information System (INIS)

    Binkley, D.M.; Paulus, M.J.; Casey, M.E.; Rochelle, J.M.

    1992-01-01

    In this paper, a low-noise, wideband, integrated CMOS transimpedance preamplifier is presented for silicon avalanche photodiode (APD) applications. The preamplifier, fabricated in a standard 2μ CMOS technology, features a transimpedance gain of 45 kΩ, a risetime of 22 ns, a series noise of 1.6nV/Hz 1/2 , and a wideband equivalent input-noise current of 12 nA for a source capacitance of 12 pF. The measured 22 Na timing resolution of 9.2-ns FWHM and energy resolution of 22.4% FWHM for the RCA C30994 BGO/APD detector module coupled to the preamplifier is comparable to the performance reported using charge-sensitive preamplifiers. This illustrates that transimpedance preamplifiers should be considered for APD applications, especially where APD noise current dominates noise from feedback resistors in the 1--kΩ to 50-kΩ range

  14. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  15. Application of a fiber Fabry-Perot interferometer sensor for receiving SH-EMAT signals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk; Kim, Dae Hyun; Park, Ik Keun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-04-15

    Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-Prot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

  16. Analysis of ultrasonic beam profile due to change of elements' number for phased array transducer (part 2)

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    The phased array offers many advantages and improvements over conventional single-element transducers such as the straight-beam and angle-beam. The advantages of array sensors for large structures are two folds; firstly, array transducers provide a method of rapid beam steering and sequential addressing of a large area of interest without requiring mechanical or manual scanning which is particularly important in real-time application. Secondly, array transducer provide a method of dynamic focusing, in which the focal length of the ultrasonic beam varies as the pulse propagates through the material. There are some parameters such as number, size, center to center space of elements to design phased array transducer. In previous study. the characteristics of beam steering and dynamic focusing had been simulated for ultrasonic SH-wave with varying the number of phased array transducer's element. In this study, the characteristic of beam steering for phased array transducer has been simulated for ultrasonic SH-wave on the basis of Huygen's principle with varying center to center space of elements. Ultrasonic beam directivity and focusing due to change of time delay of each element were discussed with varying center to center space of elements.

  17. Efficient method for location and detection of partial discharge in transformer oil by DOA estimation of circular array of ultrasonic sensors

    Science.gov (United States)

    Saravanakumar, N.; Sathiyasekar, K.

    2018-01-01

    The electrical insulation failures in oil transformers are mainly occurs due to the inappropriate placing of Partial Discharge (PD) sources. In order to eliminate the insulation defects and also to locate the PD sources in an appropriate location, a new approach called circular array of ultrasonic sensors (CAUS) with various analysis is proposed. At first de-noise the PD signal from the CAUS using the fast independent component analysis (Fast ICA) algorithm. Secondly, the wide band signal from CAUS is converted into narrow band signal by using the total least square algorithm (TLS). Third, parse representation of array covariance vector (SRACV) technique is utilized to separate DOA (Direction of Arrival) in three directions from PD to CAUS. Finally, the PD sources are placed in an appropriate location by using the pitch and azimuth angles of those three DOAs and the exact coordination of three planes are calculated by using the particle swarm optimization algorithm. The simulation result demonstrates the effectiveness of proposed approach in terms of PD location in transformer oil.

  18. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    Science.gov (United States)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  19. Ubiquitous Sensor Networks: Efisiensi Sistem Kontrol Cairan Infus Pasien Rawat Inap

    Directory of Open Access Journals (Sweden)

    BUDI RAHMADYA

    2017-07-01

    Full Text Available ABSTRAKPenelitian ini membahas tentang sistem kontrol cairan infus pada pasien dengan memanfaatkan teknologi sensor networks dan mikrokontroler arduino uno.  Sensor yang digunakan adalah sensor Ultrasonik HC-SR04 yang difungsikan untuk mendeteksi sisa cairan infus. Data yang terbaca oleh sensor dikirimkan menggunakan jaringan nirkabel/wireless dari Transmitter (Tx di ruang pasien ke Receiver (Rx di ruang perawat dengan menggunakan modul wireless Xbee S2. Efisiensi dari sistem kontrol yang dibuat yaitu ketika sensor mendeteksi cairan infus mendekati batas habis cairan yang telah ditentukan maka motor yang berada pada selang infus akan berfungsi untuk menutup aliran cairan infus pada selang. Dari simulasi yang dilakukan, didapatkan hasil presentasi error ketinggian cairan infus sebesar 1.96% dan presentasi error volume cairan sebesar 2.16%. Performa dari modul wireless Xbee S2 juga di ujicoba dengan mengirimkan data dari Xbee end device ke Xbee coordinator dalam penelitian ini. Kata kunci: Infus, Sensor Networks, Sensor Ultrasonik HC-SR04, Xbee S2 dan Mikrokontroler Arduino Uno.ABSTRACTThis research discusses about intravenous fluids Control System on Patients, utilizing sensor network technology and Arduino Uno microcontroller. We used  HC-SR04 Ultrasonic sensors to detect the review time intravenous fluids. The sensors data is readable by transmitted using wireless network/wireless from Transmitter (Tx in Patients Into Space Receiver (Rx at nurse room with using XBee wireless device S2. The efficiency of the control system were made, namely when the sensor detects the approaching limits of intravenous fluids discharged liquid that has been determined then the motor that was on the infus line will serve to close the infusion fluid flow in the line. In our simulations we found, the findings obtained Presentation intravenous fluids altitude error is 1.96% and presentations volume Liquid error is 2.16%. The performance of network devices XBee S2

  20. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  1. Noise-based frequency offset modulation in wideband frequency-selective fading channels

    NARCIS (Netherlands)

    Meijerink, Arjan; Cotton, S.L.; Bentum, Marinus Jan; Scanlon, W.G.

    2009-01-01

    A frequency offset modulation scheme using wideband noise carriers is considered. The main advantage of such a scheme is that it enables fast receiver synchronization without channel adaptation, while providing robustness to multipath fading and in-band interference. This is important for low-power

  2. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  3. A wideband software reconfigurable modem

    Science.gov (United States)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  4. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  5. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    Science.gov (United States)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  6. Spectral encoded optical label detection for dynamic routing of impulse radio ultra-wideband signals in metro-access networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Yu, Xianbin; Yin, Xiaoli

    2010-01-01

    In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels.......In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels....

  7. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  8. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2016-06-01

    Full Text Available This paper introduces an ultrasonic torsional mode based technique, configured in the form of a helical “spring-like” waveguide, for multi-level temperature measurement. The multiple sensing levels can be repositioned by stretching or collapsing the spring to provide simultaneous measurements at different desired spacing in a given area/volume. The transduction is performed using piezo-electric crystals that generate and receive T(0,1 mode in a pulse echo mode. The gage lengths and positions of measurements are based on machining multiple reflector notches in the waveguide at required positions. The time of fight (TOF measurements between the reflected signals from the notches provide local temperatures that compare well with co-located thermocouples.

  9. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  10. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  11. Multichannel Baseband Processor for Wideband CDMA

    Science.gov (United States)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  12. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    Science.gov (United States)

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  13. Wideband impedance measurements and modeling of DC motors for EMI predictions

    NARCIS (Netherlands)

    Diouf, F.; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2015-01-01

    In electromagnetic interference prediction, dc motors are usually modeled as a source and a series impedance. Previous researches only include the impedance of the armature, while neglecting the effect of the motor's rotation. This paper aims at measuring and modeling the wideband impedance of a dc

  14. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end-fire...

  15. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  16. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    Science.gov (United States)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  17. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  18. Comparison of fundamental and wideband harmonic contrast imaging of liver tumors.

    Science.gov (United States)

    Forsberg, F; Liu, J B; Chiou, H J; Rawool, N M; Parker, L; Goldberg, B B

    2000-03-01

    Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.

  19. Wideband analysis of railway catenary line radiation and new applications of its unintentional emitted signals

    Science.gov (United States)

    Heddebaut, Marc; Deniau, Virginie; Rioult, Jean

    2018-06-01

    Generally, in railway networks, dissipated energy—and its consequences in terms of noise, ballast attrition, electromagnetic interference, etc—is considered a nuisance generated by this means of transport. Therefore, most studies are carried out with the aim of reducing it. This paper takes the opposite view and considers the particular case of the irreducible electromagnetic interference generated along an electrified line, in order to propose new applications beneficial to railway operations. At a selected representative location, wideband (ranging from 10 kHz to 1 GHz) electromagnetic field measurements are performed successively during, and not during, high speed train passages. We deduce two potential applications of these unintentional signals. At low frequency, the first proposal considers energy harvesting using the received electromagnetic interference as the source. This received energy can be converted and used to DC feed low consumption sensors to be installed along the railway infrastructure. These sensors participate in monitoring infrastructure health and in making it more resilient to internal and external stresses. At higher frequencies, for the second proposal, radiation from the catenary line and train pantograph is specifically examined at a carefully selected sub-band. The results are also studied following a time–frequency analysis, to introduce a new nondestructive inspection method of the sliding contact between the catenary line and the train pantograph. Ultimately, this technique could offer a new means of monitoring the health of both the catenary line and the pantograph.

  20. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Rasmussen, Peter Andreas; Calleja, M.

    2006-01-01

    We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated...

  1. An ultrasonic noncontact method to monitor the doneness of bakery products

    Science.gov (United States)

    Chimenti, D. E.; Faeth, L.

    2000-05-01

    The paper describes a method using ultrasonics and fluid dynamics to assess the state of "doneness" of bakery products, such as bread loaves, online and in situ. The problem in the baking industry is that bread doneness determined by time and temperature can be inaccurate, leaving some product underbaked. We describe a noncontact method using air-pulse excitation and air-coupled ultrasonic motion sensing to infer the state of doneness of the baking loaf while still in the oven and on a moving belt. The ultrasonic sensor operates at 100 kHz using a toneburst excitation and pitch-catch transducer geometry. The problem is one of detecting small (50 micron) movements in the loaf, whose position may vary up to several mm. Further, the loaf movements caused by the air-pulse excitation are rapid (20 to 50 msec). We present a signal-processing system, incorporating a boxcar integrator, that functions as a pulsed, time-domain acoustic interferometer. This instrument is capable of both the high time and spatial resolution essential for the successful operation of the instrument. We estimate a spatial resolution of 30 micron and a temporal resolution of 5 msec, using 100 kHz acoustic waves. The results of numerous in-oven measurements on one-pound bread loaves during the bake cycle will be presented to illustrate the performance of the instrument.

  2. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  3. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  4. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  5. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  6. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  7. Ultrasonic flowmeters

    International Nuclear Information System (INIS)

    Wittekind, W.D.

    1979-01-01

    A prototype ultrasonic flowmeter was assembled and tested. The theoretical basis of this prototype ultrasonic flowmeter is reviewed; the equipment requirements for a portable unit are discussed; the individual electronic modules contained in the prototype are described; the operating procedures and configuration are explained; and the data from preliminary calibrations are presented. The calibration data confirm that the prototype operates according to theoretical predictions and can indeed provide nonintrusive flow measurements to predicted accuracies for pipes larger than two inches, under single phase stable flow conditions

  8. Pembuatan Penghitung Jumlah Mobil Otomatis Berbasis Mikrokontroler ATMega 8535 Menggunakan Sensor Ultrasonik

    Directory of Open Access Journals (Sweden)

    Riko Dede Hardiyanto

    2015-04-01

    Full Text Available Car drivers often experience difficulties to park their cars in the parking lot there is a slot or an empty space with a limited number. For example, some parking places such as shopping centers, apartments and hotels. To determine the state of the parking spaces have been filled or not it is necessary to update the conditions in the room. The purpose of this thesis is to create a functioning device calculates and displays the number of entrances. A number of automatically calculating devices have been made. General description of the device is designed to use the SRF04 ultrasonic sensor, microcontroller ATMega8535, and buzzer. SRF04 ultrasonic sensors as detecting obstructions between the ends of the door with the barrier wall and counting. With the existence of this device in the state of the room can be determined easily and saves time.

  9. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  10. Range extension and channel capacity increase in impulse-radio ultra-wideband communications

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Yu, Xianbin; Caballero Jambrina, Antonio

    2010-01-01

    We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed...

  11. Ultrasonic stir welding process and apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  12. A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles

    Directory of Open Access Journals (Sweden)

    Jae Kyu Suhr

    2018-04-01

    Full Text Available An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision.

  13. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  14. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  15. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  16. Multichannel Baseband Processor for Wideband CDMA

    Directory of Open Access Journals (Sweden)

    Jim Lin

    2005-07-01

    Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  17. Ultra-Wideband Transceivers for Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Reisenzahn Alexander

    2005-01-01

    Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.

  18. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yonggang Jiang

    2016-10-01

    Full Text Available Single-crystal silicon carbide (SiC-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale at room temperature.

  19. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    Science.gov (United States)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  20. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.

    Science.gov (United States)

    Roopa Rani, M; Rudramoorthy, R

    2013-03-01

    Ultrasonic horns are tuned components designed to vibrate in a longitudinal mode at ultrasonic frequencies. Reliable performance of such horns is normally decided by the uniformity of vibration amplitude at the working surface and the stress developed during loading condition. The horn design engineer must pay particular attention to designing a tool that will produce the desired amplitude without fracturing. The present work discusses horn configurations which satisfy these criteria and investigates the design requirements of horns in ultrasonic system. Different horn profiles for ultrasonic welding of thermoplastics have been characterized in terms of displacement amplitude and von-Mises stresses using modal and harmonic analysis. To validate the simulated results, five different horns are fabricated from Aluminum, tested and tuned to the operating frequency. Standard ABS plastic parts are welded using these horns. Temperature developed during the welding of ABS test parts using different horns is recorded using sensors and National Instruments (NIs) data acquisition system. The recorded values are compared with the predicted values. Experimental results show that welding using a Bezier horn has a high interface temperature and the welded joints had higher strength as compared to the other horn profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. 21 CFR 872.4850 - Ultrasonic scaler.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  2. Wideband perfect coherent absorber based on white-light cavity

    Science.gov (United States)

    Kotlicki, Omer; Scheuer, Jacob

    2015-03-01

    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  3. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  4. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  5. A Wideband Autonomous Cognitive Radio Development and Prototyping System

    Science.gov (United States)

    2017-11-14

    three infrastructure modules (a Network Spectrum Analyzer, a Vector Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a...Antennas for Mobile Platforms”, 02/01/17-12/31/17 ($100K), Honeywell FM&T. 3. S. K. Jayaweera (Principal Investigator) and C. G. Christodoulou “Wideband...Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a Software Defined Radio (SDR) testbed made of several USRP SDR

  6. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  7. Angle-of-arrival-based gesture recognition using ultrasonic multi-frequency signals

    KAUST Repository

    Chen, Hui

    2017-11-02

    Hand gestures are tools for conveying information, expressing emotion, interacting with electronic devices or even serving disabled people as a second language. A gesture can be recognized by capturing the movement of the hand, in real time, and classifying the collected data. Several commercial products such as Microsoft Kinect, Leap Motion Sensor, Synertial Gloves and HTC Vive have been released and new solutions have been proposed by researchers to handle this task. These systems are mainly based on optical measurements, inertial measurements, ultrasound signals and radio signals. This paper proposes an ultrasonic-based gesture recognition system using AOA (Angle of Arrival) information of ultrasonic signals emitted from a wearable ultrasound transducer. The 2-D angles of the moving hand are estimated using multi-frequency signals captured by a fixed receiver array. A simple redundant dictionary matching classifier is designed to recognize gestures representing the numbers from `0\\' to `9\\' and compared with a neural network classifier. Average classification accuracies of 95.5% and 94.4% are obtained, respectively, using the two classification methods.

  8. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  9. Advances in High-Resolution Microscale Impedance Sensors

    Directory of Open Access Journals (Sweden)

    Marco Carminati

    2017-01-01

    Full Text Available Sensors based on impedance transduction have been well consolidated in the industry for decades. Today, the downscaling of the size of sensing elements to micrometric and submicrometric dimensions is enabled by the diffusion of lithographic processes and fostered by the convergence of complementary disciplines such as microelectronics, photonics, biology, electrochemistry, and material science, all focusing on energy and information manipulation at the micro- and nanoscale. Although such a miniaturization trend is pivotal in supporting the pervasiveness of sensors (in the context of mass deployment paradigms such as smart city, home and body monitoring networks, and Internet of Things, it also presents new challenges for the detection electronics, reaching the zeptoFarad domain. In this tutorial review, a selection of examples is illustrated with the purpose of distilling key indications and guidelines for the design of high-resolution impedance readout circuits and sensors. The applications span from biological cells to inertial and ultrasonic MEMS sensors, environmental monitoring, and integrated photonics.

  10. The Analysis of the Field Application Methodology of Electromagnetic Ultrasonic Testing for Piping in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chi Seung; Joo, Keum Jong; Choi, Jung Kweun; Um, Byung Kook; Park, Jea Suk [Korea Advanced Ispection Technology Co., Daejeon (Korea, Republic of)

    2008-08-15

    Nuclear plant piping is classified as the safety class and non-safety class piping in usual. Safety class piping has been examined in accordance with ASME Section XI and V during PSI/ISI using RT, UT, PT, ECT, etc and evaluated periodically for integrity. But failures in piping had reported at non-welded parts and non-safety class pipings as well as the safety class pipings. The existing NDT methods are suitable for the specific parts for instance weldments to inspect but difficult to examine all parts (total coverage) of pipe line and very expensive in cost and consume the time. And also inspection using those methods is difficult and limited for the parts which are complex configuration, embedded under ground and installed at high radiation area in nuclear power plants. In order to inspect all parts of long range piping systems and reduce the inspection time and cost, the electromagnetic ultrasonic inspection technology is suitable and effective. The electromagnetic ultrasonic method can cover more than 50 m apart from sensor at one time without moving the sensor and examined the parts which are in difficulties for accessibility, for example, high radiation area, insulated components and embedded under ground.

  11. Ultrasonic Bat Deterrent Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kinzie, Kevin; Rominger, Kathryn M.

    2017-12-14

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonic deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  12. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  13. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  14. Electromagnetic and ultrasonic techniques to evaluate stress states of components; Elektromagnetische und Ultraschallverfahren zur Spannungsanalyse an Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Kern, R.; Theiner, W.A. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, IZFP, Saarbruecken (Germany)

    1999-08-01

    The electromagnetic and ultrasonic techniques are comparably recent NDT methods for determination of stress states of components. They are simple in application, but require pre-measurement preparation: Electromagnetic techniques need calibration, and quantitative stress analysis by ultrasonic techniques needs reference values, i.e. verified materials-specific quantities to be obtained with representative specimens. Electromagnetic and ultrasonic techniques have been developed for specific tests at defined components, and the corresponding instruments and sensors have been used in practice for several years now. The paper summarizes fundamental aspects and explains the state of the art by means of several examples. (orig./CB) [Deutsch] Elektromagnetische und Ultraschallverfahren sind vergleichsweise neue zerstoerungsfreie Verfahren zur Bestimmung von Eigenspannungen in Bauteilen. Ihre Anwendung ist einfach, setzt aber Vorarbeiten voraus: Elektromagnetische Verfahren muessen kalibriert und zur quantitativen Spannungsanalyse mittels Ultraschallverfahren muessen materialspezifische Kenngroessen an repraesentativen Materialproben ermittelt werden. Elektromagnetische und Ultraschallverfahren sind fuer konkrete Anwendungen an Bauteilen entwickelt, angepasste Geraete und Sensoren seit Jahren in der Nutzung. Der Beitrag fasst die Grundlagen zusammen und stellt den Stand der Technik anhand ausgewaehlter Anwendungen dar. (orig.)

  15. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  16. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  17. Environment mapping and localization with an uncontrolled swarm of ultrasound sensor motes

    NARCIS (Netherlands)

    Duisterwinkel, E.; Demi, L.; Dubbelman, G.; Talnishnikh, E.; Wörtche, H.J.; Bergmans, J.W.M.

    2014-01-01

    A method is presented in which a (large) swarm of sensor motes perform simple ultrasonic ranging measurements. The method allows to localize the motes within the swarm, and at the same time, map the environment which the swarm has traversed. The motes float passively uncontrolled through the

  18. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  19. Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms

    International Nuclear Information System (INIS)

    Kim, Dae Won

    2005-01-01

    Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances

  20. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  1. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Ding-Xin Yang

    2015-12-01

    Full Text Available The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1 describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2 present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3 compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4 summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  2. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  3. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  4. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  5. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  6. Full-wave receiver architecture for the homodyne motion sensor

    Energy Technology Data Exchange (ETDEWEB)

    Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.; Romero, Carlos E.

    2015-09-29

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  7. Full-wave receiver architecture for the homodyne motion sensor

    Science.gov (United States)

    Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

    2013-11-19

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  8. Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers.

    Science.gov (United States)

    Sanad, Mohamed; Hassan, Noha

    2014-01-01

    A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  9. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  10. A Compound Detection System Based on Ultrasonic Flow Rate and Concentration

    Directory of Open Access Journals (Sweden)

    Qing-Hui WANG

    2014-02-01

    Full Text Available This paper proposes a new detection system for monitoring gas concentration and flow rate. Velocity difference of ultrasonic wave in bi-directional propagation in measured gas is recorded and utilized for computing the online gas concentration and flow rate. Meanwhile, the temperature compensation, return signal processing and error analysis algorithms are applied to improve the accuracy. The experimental results show that, compared with the single sensor measurement of gas flow rate or concentration, the proposed detection system with lower cost and higher accuracy can be applied in the occasion which needs simultaneous monitoring of gas concentration and flow rate.

  11. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  12. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-01-01

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  13. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  14. Wideband pulse amplifiers for the NECTAr chip

    International Nuclear Information System (INIS)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.

    2012-01-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  15. Wideband pulse amplifiers for the NECTAr chip

    Science.gov (United States)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  16. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    Science.gov (United States)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  17. Towards airflow sensors with energy harvesting and wireless transmitting properties

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Sørensen, John Aasted; Lynggaard, Per

    2018-01-01

    to traditional anemometers, ultrasonic measurement or expensive LIDAR (Light Imaging, Detection and Ranging) systems. This paper presents the initial design considerations for a low-cost combined air speed and wind direction sensor, which harvests energy to drive it and to power the wireless transmission...... of system configurations and measurements. An energy-budget for this transmission is included....

  18. Poster abstract: Water level estimation in urban ultrasonic/passive infrared flash flood sensor networks using supervised learning

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    floods occur very rarely, we use a supervised learning approach to estimate the correction to the ultrasonic rangefinder caused by temperature fluctuations. Preliminary data shows that water level can be estimated with an absolute error of less than 2 cm

  19. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  20. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.