WorldWideScience

Sample records for ultrasonic wave-energy imaging

  1. Nonlinear ultrasonic imaging with X wave

    Science.gov (United States)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  2. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  4. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  5. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  6. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  7. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  8. Absorption and dispersion of ultrasonic waves

    CERN Document Server

    Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A

    1959-01-01

    Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe

  9. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  10. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  11. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  12. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  13. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  14. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  15. An Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process

    Directory of Open Access Journals (Sweden)

    Behnam Keshavarzi

    2014-01-01

    Full Text Available It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy delivered to the porous medium. In this study, free fall gravity drainage process is investigated in a glass bead porous medium. Kerosene and Dorud crude oil are used as the wetting phases and air is used as the non-wetting phase. A piston-like displacement model with considering constant capillary pressure and applying Corey type approximation for relative permeabilities of both wetting and nonwetting phases is applied. A pressure term is considered to describe the presence of ultrasonic waves and the attenuation factor of ultrasonic waves is calculated by evaluating the value of external pressure applied to enhance the flow using the history matching of the data in the presence and absence of ultrasonic waves. The results introduce the attenuation factor as an important parameter in the process of ultrasonic assisted gravity drainage. The results show that only a low percentage of the ultrasonic energy (5.8% for Dorud crude oil and 3.3% for kerosene is delivered to the flow of the fluid; however, a high increase in oil recovery enhancement (15% for Dorud crude oil and 12% for Kerosene is observed in the experiments. This proves that the ultrasonic waves, even when the contribution is not substantial, can be a significantly efficient method for flow enhancement.

  16. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  17. Repartition of ultrasonic energies at the interfaces

    International Nuclear Information System (INIS)

    Deleuze, M.; Bourdarios, M.; Lepoutre, M.

    1983-06-01

    Energy repartition of ultrasonic waves at the interfaces is studied as a function of incidence angle of the acoustic beam in immersion testing. For each interface type mathematical relations give the ratio of incident energy and energy of the wave reemitted by the interface. As an example curves for the interfaces water-uranium are given [fr

  18. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  19. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  20. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  1. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  2. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  3. Fundamentals and Applications of Ultrasonic Waves

    CERN Document Server

    Cheeke, J David N

    2012-01-01

    Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati

  4. Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

    International Nuclear Information System (INIS)

    Rose, Joseph L.

    2009-01-01

    Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

  5. Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack

    Directory of Open Access Journals (Sweden)

    Jung-Ryul Lee

    2014-01-01

    Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.

  6. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  7. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  8. Direct-current nanogenerator driven by ultrasonic waves.

    Science.gov (United States)

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  9. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  10. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  11. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  12. Structural damage identification based on laser ultrasonic propagation imaging technology

    Science.gov (United States)

    Chia, Chen-Ciang; Jang, Si-Gwang; Lee, Jung-Ryul; Yoon, Dong-Jin

    2009-06-01

    An ultrasonic propagation imaging (UPI) system consisted of a Q-switched Nd-YAG pulsed laser and a galvanometer laser mirror scanner was developed. The system which requires neither reference data nor fixed focal length could be used for health monitoring of curved structures. If combined with a fiber acoustic wave PZT (FAWPZT) sensor, it could be used to inspect hot target structures that present formidable challenges to the usage of contact piezoelectric transducers mainly due to the operating temperature limitation of transducers and debonding problem due to the mismatch of coefficient of thermal expansion between the target, transducer and bonding material. The inspection of a stainless steel plate with a curvature radius of about 4 m, having 2mm×1mm open-crack was demonstrated at 150°C using a FAWPZT sensor welded on the plate. Highly-curved surfaces scanning capability and adaptivity of the system for large laser incident angle up to 70° was demonstrated on a stainless steel cylinder with 2mm×1mm open-crack. The imaging results were presented in ultrasonic propagation movie which was a moving wavefield emerged from an installed ultrasonic sensor. Damages were localized by the scattering wavefields. The result images enabled easy detection and interpretation of structural defects as anomalies during ultrasonic wave propagation.

  13. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  14. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  15. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  17. Use of ultrasonic waves in sub-cooled boiling

    International Nuclear Information System (INIS)

    Bartoli, Carlo; Baffigi, Federica

    2012-01-01

    This work focuses on the use of ultrasounds in heat transfer fields. Under particular conditions, ultrasonic waves induce a convection coefficient increase. This initial research work, indicates that there are some practical applications in the cooling of the latest generation electronic components. In the first part of this paper, some background on this subject is reported. The ultrasound's influence on heat transfer rate has been observed since the 60's: different authors studied the cooling effect due to ultrasonic waves from different heat transfer regimes. The most investigated configuration was a thin platinum wire immersed in water. Later, a bibliographic research on possible practical applications of ultrasounds was carried out. This research focused in particular on the issue for 3D highly integrated electronic components. For these systems the thermal problem is a major challenge, because they cannot exceed critical temperatures, after which they could be damaged irreversibly. On the basis of our experimental results, ultrasounds could represent a valid means to overcome these thermal problems. Finally, the paper presents a series of experiments performed in the Thermal-Fluid- Dynamic Lab at the Energy and Engineering Systems Department of University of Pisa. The experiments provide systematic evidence of ultrasonic waves effects, on free convection heat transfer, from a heated circular cylinder to sub-cooled water, at atmospheric pressure. Many variables involved in the heat transfer rise were tested, for example: the ultrasonic generator's power, the position of the heater inside the ultrasonic tank, the variation of the water sub-cooling degree, as function of the heat flux needed dissipating. The aim of the experiment was to find out the set of optimal conditions, in order to successively apply all the results to real packaging systems, as mentioned before. The maximum increase in the heat transfer coefficient, due to ultrasonic waves, was 57

  18. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    Science.gov (United States)

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Image processing applied to automatic detection of defects during ultrasonic examination

    International Nuclear Information System (INIS)

    Moysan, J.

    1992-10-01

    This work is a study about image processing applied to ultrasonic BSCAN images which are obtained in the field of non destructive testing of weld. The goal is to define what image processing techniques can bring to ameliorate the exploitation of the data collected and, more precisely, what image processing can do to extract the meaningful echoes which enable to characterize and to size the defects. The report presents non destructive testing by ultrasounds in the nuclear field and it indicates specificities of the propagation of ultrasonic waves in austenitic weld. It gives a state of the art of the data processing applied to ultrasonic images in nondestructive evaluation. A new image analysis is then developed. It is based on a powerful tool, the co-occurrence matrix. This matrix enables to represent, in a whole representation, relations between amplitudes of couples of pixels. From the matrix analysis, a new complete and automatic method has been set down in order to define a threshold which separates echoes from noise. An automatic interpretation of the ultrasonic echoes is then possible. Complete validation has been done with standard pieces

  20. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  1. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  2. Practical approach to ultrasonic imaging using diffraction tomography

    International Nuclear Information System (INIS)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-01-01

    A technique for ultrasonic imaging based on the theory of diffraction tomography is presented. The method utilizes a fixed, circular configuration of transmitters and detectors. This configuration was selected because it avoids many practical limitations associated with the design of a medical imaging device. Practical considerations also motivated the inclusion of effects associated with the transmitter beam pattern rather than pursuing the more conventional approach in which plane-wave illumination is required. In addition, the problem of separately imaging both density and compressibility variations is considered

  3. Practical approach to ultrasonic imaging using diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-04-01

    A technique for ultrasonic imaging based on the theory of diffraction tomography is presented. The method utilizes a fixed, circular configuration of transmitters and detectors. This configuration was selected because it avoids many practical limitations associated with the design of a medical imaging device. Practical considerations also motivated the inclusion of effects associated with the transmitter beam pattern rather than pursuing the more conventional approach in which plane-wave illumination is required. In addition, the problem of separately imaging both density and compressibility variations is considered.

  4. Effects of Driving Frequency on Propagation Characteristics of Methane - Air Premixed Flame Influenced by Ultrasonic Standing Wave

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Seo, Hang Seok [Hanwha Corporation, DaeJeon (Korea, Republic of)

    2015-02-15

    An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

  5. Non-contact feature detection using ultrasonic Lamb waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  6. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    Science.gov (United States)

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  7. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  8. Ultrasonic imaging with a fixed instrument configuration

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.; Tuggle, J.; Waag, R.C.

    1988-07-04

    Diffraction tomography is a technique based on an inversion of the wave equation which has been proposed for high-resolution ultrasonic imaging. While this approach has been considered for diagnostic medical applications, it has, until recently, been limited by practical limitations on the speed of data acquisition associated with instrument motions. This letter presents the results of an experimental study directed towards demonstrating tomography utilizing a fixed instrument configuration.

  9. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  10. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Science.gov (United States)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  12. Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer

    International Nuclear Information System (INIS)

    Kim, Young H.; Song, Sung J.; Park, Joon S.; Kim, Jae H.; Eom, Heung S.

    2005-01-01

    Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer

  13. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  14. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  15. Long-Range Piping Inspection by Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee

    2005-01-01

    The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system

  16. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  17. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  18. Small scale imaging using ultrasonic tomography

    International Nuclear Information System (INIS)

    Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.

    2009-01-01

    Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)

  19. Ultrasonic sectional imaging for crack identification. Part 1. Confirmation test of essential factors for ultrasonic imaging

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    2008-01-01

    Since the first reports of inter-granular stress corrosion crack (IGSCC) in boiling water reactor (BWR) pipe in the 1970s, nuclear power industry has focused considerable attention on service induced crack detection and sizing using ultrasonic examination. In recent years, phased array systems, those reconstruct high quality flaw images at real time are getting to apply for crack detection and sizing. But because the price of phased array systems are expensive for inspection vendors, field application of phased array systems are limited and reliable ultrasonic imaging systems with reasonable price are expected. This paper will discuss cost effective ultrasonic equipment with sectional image (B-scan) presentation as the simplified imaging system for assisting ultrasonic examination personnel. To develop the simplified B-scan imaging system, the frequency characteristics of IGSCC echoes and neighboring geometry echoes such as base-metal to weld interface and inner surface of a pipe are studied. The experimental study confirmed the reflectors have different frequency characteristics and 2MHz is suitable to visualize IGSCC and 5MHz and higher frequency are suitable to reconstruct geometry images. The other study is the amplifier selection for the imaging system. To reconstruct images of IGSCC and geometry echoes, the ultrasonic imaging instrument with linear amplifier has to adjust gain setting to the target. On the other hand, the ultrasonic imaging instrument with logarithmic amplifier can collect and display wider dynamic range on a screen and this wider dynamic range are effective to visualize IGSCC and geometry echoes on a B-scan presentation at a time. (author)

  20. Longitudinal ultrasonic waves dispersion in bars

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs

  1. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    International Nuclear Information System (INIS)

    Li Ming-Liang; Deng Ming-Xi; Gao Guang-Jian

    2016-01-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. (special topic)

  2. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  3. Application of Ultrasonic Waves on Maintaining Freshness of Tilapia Fillet

    Directory of Open Access Journals (Sweden)

    Ruddy Suwandi

    2015-06-01

    Full Text Available ish fillet is one of fisheries products that easily deteriorated; hence handling techniques are needed to maintain the freshness. Ultrasonic wave have been widely applied to some of food products for maintaining freshness through microbial inactivation, however the ultrasonic application to fisheries products has not been reported. The purpose of this study was to analyze the effect of ultrasonic wave on fish freshness. The stages of the study were sample preparation, sonication, freshness parameters examination and histology observation. Ultrasonic wave did not affectthe organoleptic value and the TVB, but affected the pH value and the TPC. The sample in which the TPC value was found significantly different, were further observed after 48 and 96 hours storage. The result showed that the TPC value of sonicated sample for 9 minutes was lower to that of without sonication. Histology analysis showed, however, sonication made the structure of muscle fiber less compact and deformation of myomer was found.

  4. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  5. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  6. Structural damage detection using deep learning of ultrasonic guided waves

    Science.gov (United States)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  7. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    Science.gov (United States)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  8. OPTIMATION OF 48 KHZ ULTRASONIC WAVE DOSE FOR THE INACTIVATION OF SALMONELLA TYPHI

    Directory of Open Access Journals (Sweden)

    Dwi May Lestari

    2015-01-01

    Full Text Available This study was aimed to determine the effect of ultrasonic dose exposure which could decrease the viability of Salmonella typhi by using the variation of exposure time (15, 20, 25, and 30 minutes and volume of bacterial suspension (2, 4, 6, and 8 ml at constant power. The sample used was Salmonella typhi. Ultrasonic wave transmitter was a piezoelectric tweeter with 0,191 watts of power and 48 kHz frequency generated by the signal generator. Piezoelectric tweeter was a kind of transducer which converted electrical energy into ultrasonic energy. This research was an experimental laboratory with a completely randomized design. The decrease of bacterial percentage was calculated by using TPC (Total Plate Count. Data were analyzed by using One Way Anova. The results showed that the variation of exposure time and volume of bacterial suspension gave significant effect on the percentage of Salmonella typhi kill. The most optimal of ultrasonic dose exposure to kill Salmonella typhi was 281.87 J/ml with 100% bacterial kill.

  9. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  10. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  11. Evaluation of Ultrasonic Waves System in Repellency of Red Beetle of Flour (Tribolium castaneum Herbs

    Directory of Open Access Journals (Sweden)

    P. Ahmadi Moghaddam

    2016-06-01

    , Perry amplifier, amplifier, keyboard, and step motor. In this system, all parts are connected with each other. After doing pretests at different frequencies and times, frequencies of 30, 35, 40, 45, and 50 kHz and radiation times of 3, 6, 12, and 24 h were selected as the most appropriate levels of variables. So these levels were used for doing the main tests on red beetle samples of flour. to study the effect of ultrasonic waves on red beetles, a factorial experiment was done based on completely randomized block design with three replications. To study the repellent and absorbent effects of ultrasonic waves, 20 red beetles were placed in 150 g flour into plastic tubes. The tubes have 10 cm diameter and 50 cm length. The odorless and flavourless oil was rubbed to the beginning and end of tubes in order to count the number of beetles. Because they trap into oil while exiting the tubes. The insects, which go toward the radiation source of waves, were as absorbent effect of waves. On the contrary, the insects that go against the radiation source and try to get out of flour were considered as repellent effect of waves. Results and Discussion: The results of this research showed that ultrasonic waves can give red beetles away from the flour. It showed that insects tend very much to escape from the environment So they use all directions to get out of the environment. Analysis of variance showed that the frequency variable with the level of 95% probability independently had a significant effect on the pests escape. The results showed that in frequency of 35 kHz during 6 hours radiation intervals have highest repellency and escaping of pest from the nutrient medium with less energy consumption. The study showed that the application of ultrasonic waves in pests control can reduce the fumigant pesticides which are an important factor in environmental, food storage and consumers pollution. Conclusions: The present study indicates that physically control method with ultrasonic wave

  12. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  13. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    International Nuclear Information System (INIS)

    Kostson, E; Fromme, P

    2009-01-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  14. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment

    International Nuclear Information System (INIS)

    Wrigley, D.M.; Llorca, N.G.

    1992-01-01

    Ultrasonic waves induce cavitation which is lethal for many bacteria. When Salmonella typhimurium was suspended in skim milk or brain heart infusion broth and placed in an ultrasonicating water bath, the number of bacteria decreased by 2 to 3 log CFU in a time dependent manner. The killing by ultrasonic waves was enhanced if the menstruum was simultaneously maintained at 50 degrees C. Ultrasonic reduction in S. typhimurium numbers in liquid whole egg ranged from 1-3 log CFU at 50 degrees C. The results indicate that indirect ultrasonic wave treatment is effective in killing Salmonella in some foods

  15. Defect detection and sizing in ultrasonic imaging

    International Nuclear Information System (INIS)

    Moysan, J.; Benoist, P.; Chapuis, N.; Magnin, I.

    1991-01-01

    This paper introduces imaging processing developed with the SPARTACUS system in the field of ultrasonic testing. The aim of the imaging processing is to detect and to separate defects echoes from background noise. Image segmentation and particularities of ultrasonic images are the base of studied methods. 4 figs.; 6 refs [fr

  16. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    Science.gov (United States)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  17. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  18. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    Science.gov (United States)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  19. A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jung, Seung Ho; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly

  20. A study on ultrasonic inspection of long steel pipes using lamb waves

    International Nuclear Information System (INIS)

    Park, Moon Ho

    1996-02-01

    An ultrasonic inspection technique with use of Lamb waves was evaluated to detect and determine the exact location of flaws present in long steel pipes. Since multiple modes of Lamb waves are generated in the inspected pipes due to their dispersive characteristics, selection of a specific Lamb wave mode is very important for inspection of flaws. Experimental studies of flaw detectability with use of each Lamb wave mode, namely, A 0 , S 0 , A 1 , and S 1 mode and their ultrasonic attenuation characteristics were conducted. Experimental results showed that A 0 mode is the most effective for detection and exact determination of the location of flaws. A lucite wedge containing water column that generates the A 0 Lamb wave mode was developed and used in the present inspection study. It was found that the ultrasonic beam divergence after its wrapping around once the inspected pipe interferes with exact determination of the location of flaws and that maximum reflection signals are obtained when the transducer is located axially offset from the straight line with the position of the flaw. The present study showed feasibility of ultrasonic inspection with use of Lamb waves for detection of flaws in several meters long insulated or inaccessible steel pipes

  1. audio-ultrasonic waves by argon gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.

    2010-01-01

    in the present work, wave emission formed by audio-ultrasonic plasma is investigated. the evidence of the magnetic and electric fields presence is performed by experimental technique. comparison between experimental field measurements and several plasma wave methods reveals the plasma audio-ultrasonic radiations mode. this plasma is a symmetrically driven capacitive discharge, consisting of three interactive regions: the electrodes, the sheaths, and the positive column regions . the discharge voltage is up to 900 volts, the discharge current flowing through the plasma attains a value of 360 mA .the frequency of the discharge voltage covers the audio and the ultrasonic range up to 100 khz. the effective plasma working distance has increased to attain the total length of the tube of 40 cm. a non-disturbing method using an external coil is used to measure the electric discharge field in a plane perpendicular to that of the plasma axe tube. this method proves the existence of a current flowing in a direction perpendicular to the plasma axe tube. a system of minute coils sensors proved the existence of two fields in two perpendicular directions . comparison between different observed fields reveals the existence of propagating electromagnetic waves due to the alternating current flowing through the skin plasma tube. the field intensity distribution along the tube draws the discharge current behavior between the two plasma electrodes that can be used to predict the range of the plasma discharge current.

  2. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  3. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  4. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  5. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    International Nuclear Information System (INIS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-01-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver

  6. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    Science.gov (United States)

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  8. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    Science.gov (United States)

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  10. Ultrasonic imaging of metastatic carcinoma in thyroid gland

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Wei

    2008-01-01

    Objectives: To explore the ultrasonic findings of metastatic thyroid carcinoma and to evaluate the diagnostic value of the ultrasonic imaging for patients with metastatic thyroid neoplasm. Methods: The ultrasonic imaging characteristics of ten patients who were diagnosed with metastatic thyroid carcinoma were retrospectively analyzed. In all the cases, fine-needle aspiration cytology (FNAC) of the thyroid was performed during the clinical diagnosis. Results: The ultrasonic images of the ten patients fell into four types: multiple nodules in the thyroid, single nodule in the thyroid, diffuse calcification and heterogeneous echo. Seven cases showed speckled calcific foci. Abnormal blood flow signal was found in 9 cases. Conclusion: The ultrasonic findings of metastatic carcinoma in the thyroid gland are various and non-specific. Color Doppler ultrasound may provide ample evidence. The diagnosis depends on FNAC. (authors)

  11. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    Science.gov (United States)

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of material acoustic anisotropy on the shape of ultrasonic wave beam

    International Nuclear Information System (INIS)

    Iotchev, B.; Pawlowski, Z.

    1976-01-01

    When ultrasonic waves propagate in some types of materials having a structural anisotropy, a distortion of the ultrasonic beam takes place. This phenomenon is the cause of errors in the determination of flaw location and size

  13. Resolution Enhancement of Scanning Laser Acoustic Microscope Using Transverse Wave

    International Nuclear Information System (INIS)

    Ko, D. S.; Park, J. S.; Kim, Y. H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Science the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM image in the transverse wave mode than that in the longitudinal wave mode

  14. Medicago Scutellata Seed Dormancy Breaking by Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Nazari Meisam

    2014-12-01

    Full Text Available In this study dormancy breaking of a hard-coated plant seed, Medicago scutellata, was investigated. The ultrasonic waves effect on the seed germination percentage, germination rate, radicle length and stalk length growth was assessed. Six treatments of waves exposure periods including 0, 1, 3, 5, 7, and 9 minutes were tested under laboratorial conditions. Statistical analyses were done at probability level of 0.01. Results revealed that the ultrasonic waves have a significantly positive effect on the seed dormancy breaking, but there was no linear correlation between the increasing times of exposure with any of the growth features. The best treatment for germination percentage and germination rate was the 7-minute one and the 3-minute one was the best for radicle length growth. Treatments of 3, 5 and 7 minutes had the same effect on stalk length growth and were better than all other treatments. The 9-minute treatment had a negative effect, even lessening the growth of all of the assessed features in comparison with the control treatment.

  15. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  16. Guided waves and ultrasonic characterization of three-dimensional composites

    Science.gov (United States)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  17. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  18. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  19. Ultrasonic imaging of materials under unconventional circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei; Shaw, Anurupa [Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, Laboratory for Ultrasonic Nondestructive Evaluation, 2 rue Marconi, 5070 Met-technopole (France); Slah, Yaacoubi [Institut de Soudure, 4 Bvd Henri Becquerel, Espace Cormontaigne, 57937 Yutz (France)

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  20. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  1. In silico simulation and in vitro evaluation of an elastomeric scaffold using ultrasonic shear wave imaging

    Science.gov (United States)

    Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi

    2018-03-01

    Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.

  2. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  3. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  4. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  5. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  6. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  7. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  8. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  10. Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.

  11. Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures

    Science.gov (United States)

    Marshall, T.; Challis, R. E.; Tebbutt, J. S.

    2002-05-01

    The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2011-07-01

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Algorithms for ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences (Sweden))

    2011-07-15

    This report contains research results concerning the use of advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala Univ. in 2009 and 2010. The first part of the report deals with ultrasonic imaging of damage in planar structures using Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum variance distortion less response (MVDR) approach to dispersive, multimodal Lamb waves. We present simulation and experimental results illustrating the performance of the MVDR applied to imaging artificial damage in an aluminum plate. In the second part of the report we present two extensions of the previously proposed 2D phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects. The first extension enables processing 3D data in order to fully utilize the resolution enhancement potential of the technique. The second extension, consists in generalizing the technique to allow for the processing of data acquired using an array instead of a previously concerned single transducer. Robustness issue related to objects having front surfaces that are slightly tilted relative to the scanning axis is also considered

  14. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  15. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Science.gov (United States)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  16. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  17. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  18. Numerical and Experimental Identification of Seven-Wire Strand Tensions Using Scale Energy Entropy Spectra of Ultrasonic Guided Waves

    Directory of Open Access Journals (Sweden)

    Ji Qian

    2018-01-01

    Full Text Available Accurate identification of tension in multiwire strands is a key issue to ensure structural safety and durability of prestressed concrete structures, cable-stayed bridges, and hoist elevators. This paper proposes a method to identify strand tensions based on scale energy entropy spectra of ultrasonic guided waves (UGWs. A numerical method was first developed to simulate UGW propagation in a seven-wire strand, employing the wavelet transform to extract UGW time-frequency energy distributions for different loadings. Mode separation and frequency band loss of L(0,1 were then found for increasing tension, and UGW scale energy entropy spectra were extracted to establish a tension identification index. A good linear relationship was found between the proposed identification index and tensile force, and effects of propagation distance and propagation path were analyzed. Finally, UGWs propagation was examined experimentally for a long seven-wire strand to investigate attenuation and long distance propagation. Numerical and experimental results verified that the proposed method not only can effectively identify strand tensions but can also adapt to long distance tests for practical engineering.

  19. Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe

    Directory of Open Access Journals (Sweden)

    Wan Hamat Wan Sofian

    2016-01-01

    Full Text Available Plastic pipe are widely used in many fields for the fluid or gaseous product conveyance but basic components of a plastic material made it very sensitive to damage, which requires techniques for detecting damage reliable and efficient. Ultrasonic guided wave is a sensitive method based on propagation of low-frequency excitation in solid structures for damage detection. Ultrasonic guided wave method are performed to investigate the effect of crack to the frequency signal using Fast Fourier Transform (FFT analysis. This paper researched to determine performance of ultrasonic guided wave method in order to detect crack in buried pipeline. It was found that for an uncrack pipe, FFT analysis shows one peak which is the operating frequency by the piezoelectric actuator itself while the FFT analysis for single cracked pipe shows two peak which is the operating frequency by the piezoelectric actuator itself and the resultant frequency from the crack. For multi cracked pipe, the frequency signal shows more than two peak depend the number of crack. The results presented here may facilitate improvements in the accuracy and precision of pipeline crack detection.

  20. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  1. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  2. Ultrasonic guided wave interpretation for structural health inspections

    Science.gov (United States)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  3. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  4. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    International Nuclear Information System (INIS)

    Stepinski, T.; Lingvall, F.; Ping Wu

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  5. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging of EB weld, theory of harmonic imaging of welds, NDE of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, T.; Lingvall, F.; Ping Wu [Uppsala Univ. (Sweden). Dept. of Materials Science

    2001-07-01

    The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based on ideas from ultrasonic tomography were examined as the first step. After a concise review of literature in the field of tomography the attention is focused on synthetic focusing and particularly on using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is performed by software after gathering the ultrasonic data. General principles of synthetic aperture focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large apertures are identified and the solution is proposed. It appears that when the probe becomes larger (i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking into account the spatially varying probe's SIR. The SIR has to be calculated (measured) in the interesting points of space and than deconvoluted. A technique for deconvoluting the SIR based on Wiener filter is proposed and illustrated by experimental results. Some preliminary results from immersion testing of copper blocks using the ALLIN system in our lab facility are presented. Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the second chapter. The presented method is basically adopted from the existing literature although some modification has been made to adapt to our situation. The solution has been re-derived and two alternative forms feasible for computer calculation are given and some numerical results are

  6. Perfecting ultrasonic detection of defects by the mastering and use of focused acoustic waves

    International Nuclear Information System (INIS)

    Flambard, C.; Lambert, A.

    1976-01-01

    It is possible to define and to focus an ultrasonic beam, taking into account the shape of test pieces and the kind of ultrasonic waves, when conforming to simple rules of physical and optical geometry [fr

  7. The effect of austenitizing conditions in the ductile iron hardening process on longitudinal ultrasonic wave velocity

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2014-04-01

    Full Text Available The paper presents results of a research on the effect of austenitizing temperature and time adopted in the hardening operation on the ultrasonic wave velocity in ductile iron. It has been found that with increasing austenitizing temperature and with the passage of the austenitizing time, a monotonic decrease of the ultrasonic longitudinal wave velocity value occurred. Implementation of ultrasonic testing of results obtained in the course of the cast iron hardening process both in production and as-cast conditions, requires development of a test methodology that must take into account the influence of base material structure (degree of nodularization, graphite precipitation count on the ultrasound wave velocity.

  8. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  9. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    Directory of Open Access Journals (Sweden)

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  10. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  11. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    Science.gov (United States)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  12. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  13. A circular aperture array for ultrasonic tomography and quantitative NDE

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S A

    1998-08-01

    The main topics of this thesis are ultrasonic tomography and ultrasonic determination of elastic stiffness constants. Both issues are based on a synthetic array with transducer elements distributed uniformly along a circular aperture, i.e., a circular aperture array. The issues are treated both theoretically and experimentally by broadband pulse techniques. Ultrasonic tomography, UCT, from a circular aperture is a relatively new imaging technique in Non-destructive Evaluation (NDE) to acquire cross sectional images in bulk materials. A filtered back-projection algorithm is used to reconstruct images in four different experiments and results of attenuation, velocity and reflection tomograms in Plexiglas of AlSi-alloy cylinders are presented. Two kinds of ultrasonic tomography are introduced: bistatic and monostatic imaging. Both techniques are verified experimentally by Plexiglas cylinders. Different reconstruction artifacts are discussed and theoretical resolution constraints are discussed for various configurations of the circular aperture array. The monostatic technique is used in volumetric imaging. In the experimental verification artificial and real discontinuities in a cylindrical AlSi-alloy are compared with similar discontinuities in a Plexiglas specimen. Finally, some limitations to UCT are discussed. The circular aperture array is used to determine five independent elastic stiffness constants of a unidirectional glass/PET (Poly Ethylene Teraphtalate) laminate. Energy flux propagation and attenuation of ultrasonic waves are considered and velocity surfaces are calculated for different planes of interest. Relations between elastic stiffness constants and engineering constants (i.e., Young`s moduli, shear moduli and Poisson`s ratios) are discussed for an orthotropic composite. Six micromechanical theories are reviewed, and expressions predicting the elastic engineering constants are evaluated. The micromechanical predicted elastic stiffness constants for the

  14. An inverse method for crack characterization from ultrasonic B-Scan images

    International Nuclear Information System (INIS)

    Faur, M.; Roy, O.; Benoist, PH.; Morisseau, PH.

    1996-01-01

    Concern has been expressed about the capabilities of performing non destructive evaluation (NDE) of flaws located near to the outer surface in nuclear pressurized water reactor (PWR) vessels. The ultrasonic examination of PWR is accomplished from the inside with ultrasonic focused transducers working in the pulse echo mode. By recording the echoes as a function of time, the Ascan representation may be obtained. Many ultrasonic flaw detectors used for NDE are based on the simple Ascan concept involving measuring a time interval called 'time of flight'. By combining the Ascan concept synchronized transducer scanning, one can produce Bscan images that are two dimensional descriptions of the flaw interaction with the ultrasonic field. In the following, the flaw is assumed to be an axially oriented crack (the most serious flaw to be found in a pressurized component). In the case of the outer surface cracks (OSC's), analyzing and interpreting ultrasonic Ascan images become difficult because of the various reflections of the ultrasonic beam on the crack and on the outer surface (the so-called corner effect). Methods for automatic interpretation of ultrasonic experimental data are currently under investigation. In this paper, we present an inverse method for determining the geometrical characteristics of OSC's from ultrasonic Bscan images. The direct model used for the inversion procedure predicts synthetic Bscan images of ultrasonic examination of blocks containing planar defects interrogated by focused probes. (authors)

  15. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  16. Design and characterization of an ultrasonic lamb-wave power delivery system.

    Science.gov (United States)

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

  17. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  18. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  19. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  20. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  1. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  2. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  3. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  4. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  5. Energy-Based Analysis of Ultrasonically Assisted Turning

    Directory of Open Access Journals (Sweden)

    G.A. Volkov

    2011-01-01

    Full Text Available The process of ultrasonically-assisted turning (UAT is a superposition of vibration of a cutting tool on its standard movement in conventional turning (CT. The former technique has several advantages compared with the latter, one of the main being a significant decrease in the level of cutting forces. In this paper the effects observed in UAT are analysed employing ideas of dynamic fracture mechanics. The active stage of loading duration depends heavily on ultrasonic frequency and the cutting speed; he application of the fracture criterion based on the notion of incubation time makes it possible to calculate a dependence of this duration on its threshold amplitude. An estimation of energy, necessary to create a threshold pulse in the material, is made by solving the contact Hertz problem. The obtained time dependence of energy has a marked minimum. Thus, the existence of energy-efficient loading duration is demonstrated. This explains the decrease in the cutting force resulting from superimposed ultrasonic vibration. The obtained results are in agreement with experiments on ultrasonic assisted machining of aluminium and Inconel 718 alloy.

  6. Warped frequency transform analysis of ultrasonic guided waves in long bones

    Science.gov (United States)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  7. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  8. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2014-02-01

    Full Text Available This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT for the ultrasonic Lamb wave (ULW tomography imaging (TI of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR. Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs.

  9. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    Science.gov (United States)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  10. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  11. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  12. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  13. New developments in ultrasonic imaging of the chest and other body organs

    International Nuclear Information System (INIS)

    Campbell, G.W.; Anderson, A.L.

    1978-01-01

    The ultrasonic imaging system described herein was developed to measure chest-wall thickness and the percentage of fat in the chest and around other body organs. The system uses pulse-echo techniques to transmit and detect sound waves reflected from the interfaces of body organs and adjacent tissue. A computer draws these interfaces on color scans, and a code is used to exponentially average data from several points on each scan to find the average thicknesses of the chest wall and fat layers. These average thicknesses are then used to adjust x-ray calibration factors for plutonium lung counters. The correction factor for three subjects measured for fat content ranging from 12.6 to 22.2% was 18 to 41%. The ultrasonic system also defines the shape and position of the kidneys and liver so we are able to more accurately place detectors on the body during in-vivo radiation measurements. We have also developed a technique for displaying the interfaces from a series of ultrasonic chest scans to produce a topographical map that enables us to better understand the shape and contour of the lung and chest-wall interface

  14. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  15. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    Science.gov (United States)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  16. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  17. Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)

    2015-11-16

    We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.

  18. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  19. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro

    International Nuclear Information System (INIS)

    Ma Qingyu; Zhang Dong; Gong Xiufen; Ma Yong

    2007-01-01

    Second or higher order harmonic imaging shows significant improvement in image clarity but is degraded by low signal-noise ratio (SNR) compared with fundamental imaging. This paper presents a phase-coded multi-pulse technique to provide the enhancement of SNR for the desired high-order harmonic ultrasonic imaging. In this technique, with N phase-coded pulses excitation, the received Nth harmonic signal is enhanced by 20 log 10 N dB compared with that in the single-pulse mode, whereas the fundamental and other order harmonic components are efficiently suppressed to reduce image confusion. The principle of this technique is theoretically discussed based on the theory of the finite amplitude sound waves, and examined by measurements of the axial and lateral beam profiles as well as the phase shift of the harmonics. In the experimental imaging for two biological tissue specimens, a plane piston source at 2 MHz is used to transmit a sequence of multiple pulses with equidistant phase shift. The second to fifth harmonic images are obtained using this technique with N = 2 to 5, and compared with the images obtained at the fundamental frequency. Results demonstrate that this technique of relying on higher order harmonics seems to provide a better resolution and contrast of ultrasonic images

  20. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    International Nuclear Information System (INIS)

    Hu, Hong Wei; Jeong, Hyun Jo

    2017-01-01

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law

  1. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  2. Change of the spectral sensitivity range of thin-film AlGaAs/GaAs -photoreceivers under influence of ultrasonic waves

    International Nuclear Information System (INIS)

    Zaveryukhina, N. N.; Zaveryukhin, B. N.; Zaveryukhina, E. B.

    2007-01-01

    Full text: The task of controlled variation of the physical properties of semiconductor materials under the action of external factors is an important problem in the physics of semiconductors. As is well known, one such factor is ultrasonic radiation: propagating in a semiconductor crystal, acoustic (ultrasonic) waves change its properties, in particular, the optical characteristics. In the context of solving the above task, it is expedient to continue investigations of the effect of ultrasonic waves on the characteristics of semiconductor devices. This report presents the results of experimental investigations of the influence of ultrasonic waves on the spectral characteristics of photoreceivers based on AlGaAs/GaAs- heterostructures. The study showed that an exposure to ultrasonic radiation leads to a change, depending on the ultrasonic treatment (UST) parameters, in the spectral characteristics of gallium arsenide crystals, the base materials of modern semiconductor photoelectronics. Some results showed evidence of the positive character of changes in the characteristics of A 3 B 5 -based photoreceivers under the action of ultrasonic waves. The effect of ultrasonic waves on the spectral sensitivity of photoreceivers based on AlGaAs/GaAs- heterostructures has been studied. Ultrasonic treatment of a zinc-doped graded-gap Al x Ga 1-x As- film leads to the formation of a surface layer sensitive to electromagnetic radiation in the wavelength range < 0,55m. It is established that this layer is formed as a result of the acoustostimulated inward diffusion of zinc from the surface to the bulk of the graded-gap layer. The observed expansion of the short-wavelength sensitivity range and an increase in the efficiency of nonequilibrium charge carrier collection in AlGaAs/GaAs- photoreceivers are due to improvement of the crystal defect structure and the dopant redistribution under the action of ultrasound. (authors)

  3. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  4. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    Directory of Open Access Journals (Sweden)

    Elaheh Taghaddos

    2015-06-01

    Full Text Available Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  5. Fracture detection in crystalline rock using ultrasonic shear waves

    International Nuclear Information System (INIS)

    Waters, K.H.; Palmer, S.P.; Farrell, W.E.

    1978-12-01

    An ultrasonic shear wave reflection profiling system for use in the detection of water-filled cracks occurring within a crystalline rock mass is being tested in a laboratory environment. Experiments were performed on an irregular tensile crack induced approximately 0.5 m below one circular face of a 1.0-m-dia, 1.8-m-long granite cylinder. Good reflection data were obtained from this irregular crack with the crack either air filled or water filled. Data were collected that suggest a frequency-dependent S/sub H/ wave reflection coefficient for a granite-water interface. Waves that propagate along the free surface of a rock mass (surface waves) can severely hinder the detection of reflected events. Two methods of reducing this surface wave noise were investigated. The first technique uses physical obstructions (such as a slit trench) to scatter the surface waves. The second technique uses a linear array of receivers located on the free surface to cancel waves that are propagating parallel to the array (e.g., surface waves), thus enhancing waves with propagation vectors orthogonal to the linear array (e.g., reflected events). Deconvolution processing was found to be another method useful in surface wave cancellation

  6. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  7. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  8. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  9. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  10. Remote diagnosis via a telecommunication satellite--ultrasonic tomographic image transmission experiments.

    Science.gov (United States)

    Nakajima, I; Inokuchi, S; Tajima, T; Takahashi, T

    1985-04-01

    An experiment to transmit ultrasonic tomographic section images required for remote medical diagnosis and care was conducted using the mobile telecommunication satellite OSCAR-10. The images received showed the intestinal condition of a patient incapable of verbal communication, however the image screen had a fairly coarse particle structure. On the basis of these experiments, were considered as the transmission of ultrasonic tomographic images extremely effective in remote diagnosis.

  11. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    Science.gov (United States)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete

  12. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  13. Time reversal for ultrasonic transcranial surgery and echographic imaging

    Science.gov (United States)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  14. Detection of leak-defective fuel rods using the circumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses

    International Nuclear Information System (INIS)

    Choi, M.S.; Yang, M.S.; Kim, H.C.

    1992-01-01

    A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)

  15. Ultrasonic image analysis and image-guided interventions.

    Science.gov (United States)

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  16. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed

  17. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  18. Ultrasonic two-dimensional imaging of the heart with multiscan

    International Nuclear Information System (INIS)

    Roelandt, J.R.T.C.

    1980-01-01

    The aim of the author was to present the implementation into cardiology of the ultrasonic linear array scanner. The first clinical results, the progress in examination technique and potential applications are described. One method which complements the ultrasonic imaging capabilities is the use of the echo contrast. (Auth.)

  19. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-01-01

    Full Text Available A monitoring system for water and oil flow using ultrasonic Tomography is implemented. Information such as the type of flow, the composition of the water and oil can be obtained from the system. The composition of the flow is determined based on the propagation time of the ultrasonic waves. The ultrasonic Tomography system includes the sensors fixture design, signal conditioning circuits and image reconstruction software. The image reconstruction algorithm that used is the Linear Back Projection (LBP algorithm.

  20. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.

    Science.gov (United States)

    Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  1. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  2. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  3. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  4. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  5. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  6. Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Jack Tan Jin

    2016-01-01

    Full Text Available The propagation behaviour of guided ultrasonic waves in a steel pipe with welded bend is studied by finite element simulation. The effectiveness of the longitudinal L(0,2 and torsional T(0,1 guided waves in detecting circumferential cut near the weld is investigated. In order to identify the presence of the defect, the reflection strength due to the cut is studied. The geometry of the weld is constructed based on common V-bevel butt joints and the anisotropy of the 316L stainless steel weld is included to correctly predict the scattering of ultrasonic waves. The finite element model is built to allow high accuracy. Detection of small circumferential cut (up to 60° circumferential extent can be achieved with longitudinal L(0,2 mode. Detection of moderate to large circumferential cut can be achieved by torsional T(0,1 or longitudinal L(0,2 modes, with T(0,1 mode preferred due to its less mode conversion to higher order modes.

  7. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  8. Effect of ultrasonic intensity and frequency on oil/heavy-oil recovery from different wettability rocks

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, K.; Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study identified the mechanisms that are responsible for additional oil recovery that is often observed following an earthquake. It focused on the theory that harmonics of low frequency waves create high frequency waves as they penetrate into rock formations. A series of experiments were conducted on oil-wet rocks with high oil viscosities. The objective was to better understand how ultrasonic energy affects oil recovery at core and pore scale. Cylindrical sandstone cores were placed in imbibition cells to examine how the presence of initial water saturation can affect recovery, and how the recovery changes for different oil viscosities. An increase in oil recovery was observed with ultrasonic energy in all cases. The additional recovery with ultrasonic energy lessened as the oil viscosity increased. Ultrasonic intensity and frequency were shown to be critical to the performance, which is important since ultrasonic waves have limited penetration into porous medium. This is a key disadvantage for commercializing this promising process for well stimulation. Therefore, the authors designed a set-up to measure the ultrasonic energy penetration capacity in different media, notably air, water and slurry. The set-up could identify which types of reservoirs are most suitable for ultrasonic application. Imbibition experiments revealed that ultrasonic radiation increases recovery, and is much more significant in oil wet cases, where initial water saturation facilitate oil recovery. Higher frequency showed a higher rate of recovery compared to lower frequency, but the ultimate recovery was not changed substantially. 46 refs., 1 tab., 16 figs.

  9. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2011-03-01

    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  10. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  11. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  12. 2-D FEM Simulation of Propagation and Radiation of Leaky Lamb Wave in a Plate-Type Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.

  13. Flow velocity anemometer using ultrasonic waves in underground airways. Choonpa wo mochiita chika fudo fusokukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Imai, T.; Miyakoshi, H. (Akita Univ., Akita (Japan). Mining College); Onozuka, T.; Yasunaga, K. (Hanaoka Mining Co. Ltd., Akita (Japan))

    1993-10-25

    In a facility utilizing the subterranean space at the great depth of about 50m or less from the surface in particular, the airflow velocity monitor utilizing ultrasonic waves is considered as an airflow anemometer suitable for the environment of an underground airway network. In this paper, the results of the application test and the long term demonstration test both conducted at Matsumine Mine and Fukazawa Mine of Hanaoka Mining Industry are mentioned which concern the newly developed airflow velocity monitor utilizing ultrasonic waves. The features and performance of this ultrasonic wave monitor are roughly as follows; since a small ultrasonic wave transceiver can be installed on the surface of the airway wall, the transceiver does not become an obstacle for traffic in the airway and the average airflow velocity in the airflow path can be estimated with accuracy better than that of the anemometer for point measurement. The airflow direction at the underground airway can be detected. The responsiveness to airflow velocity fluctuations is relatively good. The abrupt ups and downs of output due to passing transportation machines can be detected. The measuring circuit has been simplified by the analogue treatment of time measurement. The average airflow velocity at the airflow velocity profile can be estimated through multiplication by 0.93 of the airflow velocity value measured with the monitor. 11 refs., 16 figs., 1 tab.

  14. The influence of ultrasonic waves on molecular structure of high impact polystyrene solutions in different solvents

    International Nuclear Information System (INIS)

    Al-Asaly, S.I.

    1991-01-01

    The aim of the this research is to study some physical properties of polymer solutions of high-impact polystyrene (HIPS) solutions in two different solvents (carbon tetrachloride, xylene) by using ultrasonic technique. Absorption coefficient and velocity of ultrasonic waves through different concentrations of these solutions were measured using ultrasonic pulsed generator at constant frequency (800) KHz. The result implies that there is no chemical interaction between (HIPS) molecules and the solvents. 5 tabs.; 18 figs.; 59 refs

  15. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  16. Preliminary study of flow velocity measurement by means of ultrasonic waves; Estudo preliminar de medicao de vazao atraves de ondas ultra-sonicas

    Energy Technology Data Exchange (ETDEWEB)

    Pio, Ronald Ribeiro; Faccini, Jose Luiz Horacio; Lamy, Carlos Alfredo; Bittencourt, Marcelo S.Q.

    1995-10-01

    Different flow velocities of a water loop were associated with different ultrasonic wave velocities that traveled in the water. It was also observed that water temperature influenced the ultrasonic wave velocity but in an inverse manner to that of the water flow velocity. This experiment showed the possibility of using the ultrasonic system to measure a liquid flow velocity with precision. (author). 6 refs., 8 figs.

  17. The Detection of Burn-Through Weld Defects Using Noncontact Ultrasonics

    Directory of Open Access Journals (Sweden)

    Zeynab Abbasi

    2018-01-01

    Full Text Available Nearly all manufactured products in the metal industry involve welding. The detection and correction of defects during welding improve the product reliability and quality, and prevent unexpected failures. Nonintrusive process control is critical for avoiding these defects. This paper investigates the detection of burn-through damage using noncontact, air-coupled ultrasonics, which can be adapted to the immediate and in-situ inspection of welded samples. The burn-through leads to a larger volume of degraded weld zone, providing a resistance path for the wave to travel which results in lower velocity, energy ratio, and amplitude. Wave energy dispersion occurs due to the increase of weld burn-through resulting in higher wave attenuation. Weld sample micrographs are used to validate the ultrasonic results.

  18. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network

    International Nuclear Information System (INIS)

    Zhou, Chao; Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li

    2013-01-01

    There has been increasing interest in using the nonlinear features of acousto-ultrasonic (AU) waves to detect damage onset (e.g., micro-fatigue cracks) due to their high sensitivity to damage with small dimensions. However, most existing approaches are able to infer the existence of fatigue damage qualitatively, but fail to further ascertain its location and severity. A damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, was established, capable of evaluating fatigue cracks in a quantitative manner (including the co-presence of multiple fatigue cracks, and their individual locations and severities). Fundamental investigations, using both experiment and enhanced finite element analysis dedicated to the simulation of nonlinear AU waves, were carried out to link the accumulation of nonlinearities extracted from high-order AU waves to the characteristic parameters of a fatigue crack. A probability-based diagnostic imaging algorithm was developed, facilitating an intuitive presentation of identification results in images. The approach was verified experimentally by evaluating multi-fatigue cracks near rivet holes of a fatigued aluminum plate, showing satisfactory precision in characterizing real, barely visible fatigue cracks. Compared with existing methods, this approach innovatively (i) uses permanently integrated active sensor networks, conducive to automatic and online health monitoring; (ii) characterizes fatigue cracks at a quantitative level; (iii) allows detection of multiple fatigue cracks; and (iv) visualizes identification results in intuitive images. (paper)

  19. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  20. Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves

    International Nuclear Information System (INIS)

    Xiang Yan-Xun; Xuan Fu-Zhen; Deng Ming-Xi; Chen Hu; Chen Ding-Yue

    2012-01-01

    The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the 'increase-decrease' tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals

  1. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  2. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  3. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  4. Longitudinal wave ultrasonic inspection of austenitic weldments

    International Nuclear Information System (INIS)

    Gray, B.S.; Hudgell, R.J.; Seed, H.

    1980-01-01

    Successful volumetric inspection of LMFBR primary circuits, and also much of the secondary circuit, is dependent on the availability of satisfactory examination procedures for austenitic welds. Application of conventional ultrasonic techniques is hampered by the anisotropic, textured structure of the weld metal and this paper describes development work on the use of longitudinal wave techniques. In addition to confirming the dominant effects of the weld structure on ultrasound propagation some results are given of studies utilising deliberately induced defects in Manual Metal Arc Welds in 50 mm plate together with preliminary work on the inspection of narrow austenitic welds fabricated by automatic processes. (author)

  5. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting

    International Nuclear Information System (INIS)

    Tan, Haihui; Xu, Guanghua; Tao, Tangfei; Zhang, Sicong; Luo, Ailing

    2016-01-01

    Highlights: • Optimal defrosting mode for finned-tube evaporator is S0 mode. • Stress excited by ultrasonic vibration is larger than ice adhesion stress 0.4 MPa. • Frequency matching can enhance the defrosting efficiency effectively. • Ultrasonic vibration can effectively suppressing the frost deposition. • Thermal comfort and heat transfer efficiency enhanced with ultrasonic vibration. - Abstract: Frosting deposited on the outdoor coil of air-source heat pump (ASHP) units deteriorates the operational performance and energy efficiency. Therefore, periodic defrosting is necessary. First, the dispersion curves for the propagation mechanism of an ultrasonic guided wave in the evaporator are determined through numerical calculation. In addition, the shear stress and vibration characteristics under ultrasonic excitation are analysed using finite element method (FEM). Finally, the vibration amplitude and defrosting performance of ultrasonic vibration is analysed. The numerical calculation results indicate that three guided wave modes exist in the evaporator, including both A0 and S0 modes of the Lamb wave and SH0 mode of the SH wave, with the optimal defrosting mode being S0 of the Lamb wave. The FEM results show that the vibrational shapes of S0 mode and longitudinal mode clearly exists in the fin and tube, the torsional and flexural modes also exist in the tube, and the FEM results are consistent with the numerical calculation results. The impedance analysis and laser vibrometer results indicate that the resonance frequency shifting, electro-acoustic converting efficiency and vibration energy decrease is due to increasing external load. The ultrasonic defrosting experimental results indicate that ultrasonic vibration can suppress frost deposit on the fin surface.

  6. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  7. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  8. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    Science.gov (United States)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  9. A New Detecting Technology for External Anticorrosive Coating Defects of Pipelines Based on Ultrasonic Guided Wave

    Science.gov (United States)

    Liu, Shujun; Zuo, Yonggang; Zhang, Zhen

    2018-01-01

    The external anticorrosive coating is the shelter for preventing steel pipelines from Corrosive damage. A number of pipelines face severe corrosive problems for the performance decrease of the coating, especially during long-term services, which usually led to safety accidents. To solve the detection problem about the defect of anticorrosive layer for pipeline, a new detection method for anticorrosive layer of pipelines based on Ultrasonic Guided Wave was proposed in the paper. The results from the investigation show a possibility of using the Ultrasonic Guided Wave method for detecting the damage of pipeline’s External Anticorrosive Coating.

  10. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  11. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  12. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  13. Pitch catch ultrasonic study on unidirectional CFRP composite laminates using rayleigh wave transducers

    International Nuclear Information System (INIS)

    Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An

    2012-01-01

    The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites

  14. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  15. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  16. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  17. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    Science.gov (United States)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  18. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    International Nuclear Information System (INIS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-01-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types

  19. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2018-01-01

    Full Text Available Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM of plate-like structures and nondestructive evaluation (NDE of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  20. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT.

    Science.gov (United States)

    Patra, Subir; Ahmed, Hossain; Banerjee, Sourav

    2018-01-18

    Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  1. Ultrasonic wave transmission through healthy and diseased tissues

    International Nuclear Information System (INIS)

    Edee, M.K.A.

    1985-12-01

    We calculated the distribution of the spectral density of the ultrasonic energy transmitted by the reference specimen which was water. Let σsub(i0) 2 be this parameter for the frequency fsub(i). In the same manner, we evaluated σsub(i) 2 for the ultrasonic energy transmitted by the biological tissue. We superposed on the curve Log σsub(i0) 2 =F(fsub(i)), each of the curves Log σsub(i) 2 =F(fsub(i)), corresponding to the different kinds of tissues studied. By doing so, we brought into light a ''zone'' between those curves. The judicious exploitation of that ''zone'' by calculating the spectral density coefficients β, made it possible to differentiate one tissue from another. We compared the results so obtained using a probe vibrating at 1.5 MHz with those we obtained by another probe and another method. Both sets of results are in agreement within an approximation of 10%. (author)

  2. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  3. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  4. Utilization of ultrasonic waves (Acheta domesticus) as a biocontrol of mosquito in Malang Agricultural Institute

    Science.gov (United States)

    Tito, Sama'Iradat

    2017-11-01

    Malang Agricultural Institute is a college located in the residential area Griyasanta Malang. The environment around the Institute of Agriculture Malang has moist soil conditions so that mosquito species insects easily reproduce. It is feared that this problem can potentially cause many diseases caused by mosquitoes such as dengue fever, malaria, chikungunya, elephant legs and much more. Nowadays there has been considerable research on ultrasound waves against mosquitoes. Many studies have been done to determine the effect of ultrasonic waves on mosquitoes. Crickets have frequencies between 0.2 kHz-50 kHz so it has the potential to control mosquito pests. Existing studies indicate that mosquito pests can be expelled with the frequency of 18-48 kHz. But this still cannot eliminate mosquito larvae that require a wave of 85 kHz. The effects of ultrasound waves on mosquitoes are (1) erection of the antenna which shows the stress on the nervous system to physical injury and fatigue so as to increase the percentage of fall and the death of mosquitoes. (2) ultrasonic waves can make the antenna function in the mosquito as the receiver of excitatory disturbed. The ultrasonic wave can be defined as a threat so that the mosquito will be expelled. Based on this, a simple study was conducted at the campus of the Institute of Agriculture of Malang by taking 10 different locations with randomly assigned respondents with a maximum of 5 people per location. The results show that the effectiveness of the use of crickets in the morning reached 60% and in the afternoon reached 80% starting on the first day since the installation of crickets. So the use of these crickets in the campus environment of the Institute of Agriculture Malang is quite effective.

  5. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  6. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  7. A New Scheme for Experimental-Based Modeling of a Traveling Wave Ultrasonic Motor

    DEFF Research Database (Denmark)

    Mojallali, Hamed; Amini, R.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    In this paper, a new method for equivalent circuit modeling of a traveling wave ultrasonic motor is presented. The free stator of the motor is modeled by an equivalent circuit containing complex circuit elements. A systematic approach for identifying the elements of the equivalent circuit...

  8. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young

    2010-01-01

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  9. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  10. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography

    International Nuclear Information System (INIS)

    Lasaygues, Philippe; Ouedraogo, Edgard; Lefebvre, Jean-Pierre; Gindre, Marcel; Talmant, Marilyne; Laugier, Pascal

    2005-01-01

    The objective of this study is to make cross-sectional ultrasonic quantitative tomography of the diaphysis of long bones. Ultrasonic propagation in bones is affected by the severe mismatch between the acoustic properties of this biological solid and those of the surrounding soft medium, namely, the soft tissues in vivo or water in vitro. Bone imaging is then a nonlinear inverse-scattering problem. In this paper, we showed that in vitro quantitative images of sound velocities in a human femur cross section could be reconstructed by combining ultrasonic reflection tomography (URT), which provides images of the macroscopic structure of the bone, and ultrasonic transmission tomography (UTT), which provides quantitative images of the sound velocity. For the shape, we developed an image-processing tool to extract the external and internal boundaries and cortical thickness measurements. For velocity mapping, we used a wavelet analysis tool adapted to ultrasound, which allowed us to detect precisely the time of flight from the transmitted signals. A brief review of the ultrasonic tomography that we developed using correction algorithms of the wavepaths and compensation procedures are presented. Also shown are the first results of our analyses on models and specimens of long bone using our new iterative quantitative protocol

  11. Non-Contact Ultrasonic Imaging

    Science.gov (United States)

    2016-10-31

    focus of this ARO STIR was to identify wave modes or nonlinear behaviors unique to an acoustic boundary which offer means to increase acoustic energy ...which takes the form: mix ∝ ∗ ( − ′) 1 0 3ρ0 (1 + ) P12 ( 9 ) 5 Note that the amount of energy converted to the mixed...of the product of the kinetic energy (E) and oscillation period of a sound wave in a slowly varying cavity is zero. Following Beyer [9

  12. Ultrasonic process for destruction of chlorinated organic compounds in aqueous solution

    International Nuclear Information System (INIS)

    Wu, Jiann M.; Huang, Hann S.

    1993-01-01

    Laboratory investigations of the ultrasonic process for destruction of low concentrations of carbon tetrachloride (CCl 4 ) into nonhazardous end products were carried out in a bench-scale batch reactor, equipped with a 600-W ultrasonic power supply. Process parameters studied included irradiation time, concentration, steady-state operating temperature, pH, and the intensity of applied ultrasonic-wave energy. High destruction efficiencies of greater than 99% were achieved through this process, and the irradiation time and the intensity of applied energy were identified to be the most important process parameters. The irradiation time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. In addition, a detailed chemical reaction mechanism for the destruction of CCl 4 in water was formulated. The agreement between the model and experimental results is generally good

  13. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  14. Reconstruction from gamma radiography and ultrasonic images

    International Nuclear Information System (INIS)

    Gautier, S.; Lavayssiere, B.; Idier, J.; Mohammad-Djafari, A.

    1998-02-01

    This work deals with the three-dimensional reconstruction from gamma radiographic and ultrasonic images. Such an issue belongs to the field of data fusion since the data provide complementary information. The two sets of data are independently related to two sets of parameters: gamma ray attenuation and ultrasonic reflectivity. The fusion problem is addressed in a Bayesian framework; the kingpin of the task is then to define a joint a priori model for both attenuation and reflectivity. Thus, the developing of this model and the entailed joint estimation constitute the principal contribution of this work. The results of real data treatments demonstrate the validity of this method as compared to a sequential approach of the two sets of data

  15. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  16. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  17. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    Science.gov (United States)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  18. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  19. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  20. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    Science.gov (United States)

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  1. Specimen ferromagnetism and the behaviour of electromagnetic ultrasonic shear-wave transducers below and above the Curie point

    International Nuclear Information System (INIS)

    Robinson, T.S.

    1981-04-01

    Interest in the potentialities of electromagnetic ultrasonic transducers for non-destructive testing was re-awakened about 1968 and since then a goodly number of articles have appeared concerning transducers design, performance and use. The aim of this report is to fill a gap by describing the relations between theoretical and actual performance of shear-wave transducers, used on magnetic and on non-magnetic specimens: in particular to trace the phenomena occuring as the temperature of a magnetic specimen (mild steel) is raised through the Curie point. At the transmitting transducer generation of ultrasonic wave is almost exclusively by Lorentz forces applied to the skin of the specimen; at the receiver transduction is via Faraday induction. Wave attenuation in mild steel above the curie point hampers the use of shear waves, but does not render unusable there. An anomaly in performance with mild steel specimens just above the Curie temperature is discussed, which necessitates a brief consideration of electromagnetic longitudinal wave transducers, where the need to invoke magnetostriction as a dominant phenomenon is expressed. (Auhtor)

  2. Data collection instrumentation for ultrasonic imaging under sodium

    International Nuclear Information System (INIS)

    McKnight, J.A.; Parker, J.A.

    1981-05-01

    A team at the Risley Nuclear Power Development Establishment has been developing apparatus for the production of ultrasonic images under opaque liquids. The technique is intended for examining objects under liquid sodium at 300 0 C, and the range of possible methods is restricted as a consequence. The method chosen uses pulse-echo ultrasonics combined with mechanical scanning to assemble the final image. The data is collected using a CAMAC system under the control of an Intel 8080 microprocessor. The data is analysed separately and presented on a colour display using a DEC LSl 11 microprocessor controlled system. To achieve the required performance a number of special electronic assemblies were made. A single image requires 2.5 M byte of data. The cost of using the apparatus on a Fast Reactor is such that it is prudent to provide back-up data collection through a data link, and to maximise the data collection rate. This causes problems with the interrupt cycle time of the CAMAC controller, which can be resolved using synchronous programs specifically tailored to each application. (author)

  3. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    Science.gov (United States)

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  4. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    Science.gov (United States)

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  5. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  6. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.

  7. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz; Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated

  8. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Dancre, M.

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  9. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  10. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  11. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  12. Considerations for ultrasonic testing application for on-orbit NDE

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  13. Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation

    International Nuclear Information System (INIS)

    Niu Lili; Qian Ming; Yu Wentao; Jin Qiaofeng; Ling Tao; Zheng Hairong; Wan Kun; Gao Shen

    2010-01-01

    This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.

  14. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  15. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.

  16. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  17. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  18. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    International Nuclear Information System (INIS)

    Wang, L.

    2016-01-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  20. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Washington University (United States)

    2016-06-15

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  1. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  2. Study on a particle separator using ultrasonic wave

    International Nuclear Information System (INIS)

    Lee, Young Seop; Kwon, Jae Hwa; Seo, Dae Chul; Yun, Dong Jin

    2005-01-01

    This paper presents the theory, design and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at the first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation and separation force against 50m diameter particles mixed with water at the separation channel in the device. Experimental results also showed that the device can work at both heavy and light sand particles mixed with water due to the generated standing wave field in the separation channel.

  3. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  4. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    Science.gov (United States)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  5. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  6. A new approach to ultrasonic elasticity imaging

    Science.gov (United States)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  7. Investigation of Ultrasonics as a tool for energy efficient recycling of Lactic acid from postconsumer PLA products

    Science.gov (United States)

    Srinivasan, Gowrishankar

    The growing use of "ecofriendly," biodegradable polymers have created a need for a suitable recycling technique because, unlike petroleum derived plastics, their properties deteriorate during conventional recycling. These new techniques must be cost efficient and yield material properties same as virgin polymer. This research investigates the effectiveness of high-power ultrasonics as an efficient technique to recover lactic acid from postconsumer polylactic acid (PLA) products. Polylactic acid is a commercially available bioplastic derived from corn starch and/or sugar cane that is biorenewable and compostable (biodegradable). The various ongoing researches to recover lactic acid from PLA employ a common platform of high temperature, high pressure (HTHP) to effect polymer hydrolysis. The energy intensiveness of these HTHP processes prompted this work to investigate ultrasonics as an low energy alternative process to cause PLA depolymerization. The energy consumption and the time required for depolymerization were utilized as the metrics to quantify and compare depolymerization enhanced by ultrasonics with hot-bath technique. The coupled effect of catalysts concentration and different solvents, along with ultrasonic were studied based on preliminary trial results. In addition, the correlation between the rates of de-polymerization was analyzed for ultrasonic amplitude, treatment time, and catalyst concentration and types. The results indicate that depolymerization of PLA was largely effected by heating caused by ultrasonic-induced cavitations. Other effects of ultrasonics, namely cavitations and acoustic streaming, were shown to have minimal effects in enhancing depolymerization. In fact, thermal energy predominately affected the reaction kinetics; the heat introduced by conventional method (i.e., electrical heaters) was more efficient than ultrasonic heating in terms of energy (for depolymerization) per unit mass of PLA and depolymerizing time. The degree of

  8. Inverse method for effects characterization from ultrasonic b-scan images

    International Nuclear Information System (INIS)

    Faur, M.

    1999-02-01

    In service inspections of French nuclear pressure water reactor vessels are carried out automatically in complete immersion from the inside by means of ultrasonic focused probes working in the pulse echo mode. Concern has been expressed about the capabilities of performing non destructive evaluation of the Outer Surface Defects (OSD), i.e. defects located in the vicinity of the outer surface of the inspected components. OSD are insonified by both a direct field that passes through the inner surface (water/steel) of the component containing the defect and a secondary field reflected from the outer surface. Consequently, the Bscan images, containing the signatures of such defects, are complicated and their interpretation is a difficult task. This work deals with extraction of the maximum available information for characterizing OSD from ultrasonic Bscan images. Our main objectives are to obtain the type of OSD and their geometric parameters by means of two specific inverse methods. The first method is used for the identification of the geometrical parameters of the equivalent planar OSD from segmented Bscan images. Ultrasonic equivalent defect sizing model-based methods may be used to size a defect in a material by obtaining a best-fit simple equivalent shape that matches the ultrasonic observed data. We illustrate the application of such an equivalent sizing OSD method that is based on a simplified direct model. The major drawback of this identification method, as used to date, is that only a part of the useful information contained into original Bscan image, i.e. segmented Bscan image, is used for defect characterization. Moreover, it requires the availability of defect classification information (i.e. if the defect is volumetric or planer, e. g. a crack or a lack of fusion), which, generally, may be as difficult to obtain as the defect parameters themselves. Therefore, we propose a parameter estimation method for extracting complementary information on the defect

  9. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  10. Modeling and Characteristic Analysis of Wireless Ultrasonic Vibration Energy Transmission Channels through Planar and Curved Metal Barriers

    Directory of Open Access Journals (Sweden)

    DingXin Yang

    2018-01-01

    Full Text Available Wireless ultrasonic vibration energy transmission systems through metal barriers based on piezoelectric transducers have drawn a lot of focus due to the advantage of nonpenetration of the barriers, thus maintaining the integrity of sealed structures. It is meaningful to investigate appropriate modeling methods and to characterize such wireless ultrasonic energy transmission channels with different geometric shapes. In this paper, equivalent circuit modeling and finite element modeling methods are applied to the planar metal barrier channel, and a 3-dimensional finite element modeling method is applied to the cylindrical metallic barrier channel. Meanwhile, the experimental setup is established and measurements are carried out to validate the effectiveness of the corresponding modeling methods. The results show that Leach’s equivalent circuit modeling method and finite element modeling method are nearly similarly effective in characterizing the planar metal barrier channel. But for a cylindrical metal barrier, only the three-dimensional finite element modeling method is effective. Furthermore, we found that, for the planar barrier, the effect of standing waves on the efficiency of wireless energy transmission is dominated. But for the curved barrier, only the resonant phenomenon of the piezoelectric transducer exists.

  11. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  12. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  13. Ultrasonic inspectability of austenitic stainless steel and dissimilar metal weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Pudovikov, S.; Bulavinov, A.; Kroening, M. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren IZFP, Saarbruecken (Germany)

    2008-07-01

    Since their invention in 1912, austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, austenitic stainless steel material is qualified to meet the design criteria of high quality, safety related applications, for example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The ''Sampling Phased Array'' technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with image reconstruction techniques using ''SynFoc'' algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priory, we implement a new phase adjustment called ''Reverse Phase Matching'' technique. This algorithm permits the acquisition of phase-corrected A-scans that represent the actual sound propagation in the anisotropic structure; this technique can be utilized for image reconstruction. (orig.)

  14. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  15. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  16. Photoacoustic imaging and spectroscopy

    CERN Document Server

    Wang, Lihong

    2009-01-01

    Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applic

  17. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  18. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  19. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  20. Ultrasonic off-normal imaging techniques for under sodium viewing

    International Nuclear Information System (INIS)

    Michaels, T.E.; Horn, J.E.

    1979-01-01

    Advanced imaging methods have been evaluated for the purpose of constructing images of objects from ultrasonic data. Feasibility of imaging surfaces which are off-normal to the sound beam has been established. Laboratory results are presented which show a complete image of a typical core component. Using the previous system developed for under sodium viewing (USV), only normal surfaces of this object could be imaged. Using advanced methods, surfaces up to 60 degrees off-normal have been imaged. Details of equipment and procedures used for this image construction are described. Additional work on high temperature transducers, electronics, and signal analysis is required in order to adapt the off-normal viewing process described here to an eventual USV application

  1. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the avai......Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions......, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  2. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  3. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid

    International Nuclear Information System (INIS)

    Vashishth, Anil K; Gupta, Vishakha

    2012-01-01

    The interest in porous piezoelectric materials is due to the demand for low-frequency hydrophone/actuator devices for use in underwater acoustic systems and other oceanographic applications. Porosity decreases the acoustic impedance, thus improving the transfer of acoustic energy to water or biological tissues. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by inclusion of porosity in dense piezoceramics. The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications, such as non-destructive evaluation and acoustic design, and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The present paper elaborates a theoretical model, based on the transfer matrix method, for describing reflection and transmission of plane elastic waves through a porous piezoelectric laminated plate, immersed in a fluid. The analytical expressions for the reflection coefficient, transmission coefficient and acoustic impedance are derived. The effects of frequency, angle of incidence, number of layers, layer thickness and porosity are observed numerically for different configurations. The results obtained are deduced for the piezoelectric laminated structure, piezoelectric layer and poro-elastic layer immersed in a fluid, which are in agreement with earlier established results and experimental studies. (paper)

  4. Investigation of energy dissipation in meat with an experimental ultrasonic device

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.

    2000-01-01

    The phenomena concomitant with acoustic energy dissipation in meat were studied. An experimental ultrasonic device (25-37 kHz, 2 W/square cm) was applied. Measurements of meat temperature in ultrasonic field showed the temperature rise significant for technological reasons. In this respect the changes in water absorption ability and acidity of meat were also examined

  5. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  6. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    Science.gov (United States)

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  7. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  8. Effect of the application of ultrasonic waves on the leaching of nickel ore

    International Nuclear Information System (INIS)

    Reyes Padilla, Osniel; Castellanos Suarez, Jose; Hernandez Martinez, A. Naida; Cortes Miranda, Maritza; Abraham Islas, Osvel; Cardenas Merella, Rodnie; Trujillo, Maria Elena; Nicot, Yarisleydis; Calzada, Lidia; Sanabria de la Torre, Antonio; Echaide Hernandez, Marcos Julio

    2016-01-01

    The use of the ultrasonic waves (OU) he/she has been successful in some fields like: the medicine, in catalysts, treatments of foods and in the chemical procedures of laboratory. The applications of OU in the mining are not very well-known and it is not reported in detail in the literature. In the CIPIMM they have been carried out some test in the laboratory with positive results, for what the studies of this technique are continued. The objective of this work was to evaluate in a preliminary phase the application of ultrasonic waves in the process of lixiviation of nickel minerals. The prepared pulps with the mineral were treated in an ultrasonic bathroom at laboratory level. In the process of atmospheric lixiviation with H 2 SO 4 , the application of OU produced an increment in the nickel breakup between a 2 and 5%. The kinetics of breakup of Co was quicker than that of the nickel. The use of OU doesn't increase in a significant way the breakup of the iron, making that the process is selective. It was observed that the treatment with OU of 60 minutes during the lixiviation of the pulp of mineral lateritic (Serpentine of Nicaro) it was enough. The reported maximum recovery of Neither and Co was: 69% neither and 33% Co. The acid consumption (which represents 70% of the costs of industrial process) was between 11 to 20 t of acid per ton of nickel leached, being lower than the average reported consumption (26 ton acid / ton nickel) in the industrial plant acid pressure leaching in Moa. (Author)

  9. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  10. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    Science.gov (United States)

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  12. Separated reconstruction of images from ultrasonic holograms with tridimensional object by digital processing

    International Nuclear Information System (INIS)

    Son, J.H.

    1979-01-01

    Because of much attractiveness, digital reconstruction of image from ultrasonic hologram by computer has been widely studied in recent years. But the method of digital reconstruction of image is displayed in the plain only, so study is done mainly of the hologram obtained from bidimensional objects. Many applications of the ultrasonic holography such as the non-distructive testing and the ultrasonic diagnosis are mostly of the tridimensional object. In the ordinary digital reconstruction of the image from the hologram obtained from tridimensional object, a question of hidden-image problem arises, and the separated reconstruction of the image for the considered part of the object is required. In this paper, multi-diffraction by tridimensional object is assumed to have linearity, ie. superposition property by each diffraction of bidimensional objects. And a new algorithm is proposed here, namely reconstructed image for considered one of bidimensional objects in tridimensional object obtained by means of operation from the two holograms tilted in unequal angles. Such tilted holograms are obtained from the tilted linear array receivers by scanning method. That images can be reconstructed by the operation from two holograms means that the new algorithm is verified. And another new method of the transformation of hologram, that is, transformation of a hologram to arbitrarily tilted hologram, has been proved valid. The reconstructed images obtained with the method of transformation and the method of operation, are the images reconstructed from one hologram by the tridimensional object and more distinctly separated that any images mentioned above. (author)

  13. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  14. Sampling phased array a new technique for signal processing and ultrasonic imaging

    OpenAIRE

    Bulavinov, A.; Joneit, D.; Kröning, M.; Bernus, L.; Dalichow, M.H.; Reddy, K.M.

    2006-01-01

    Different signal processing and image reconstruction techniques are applied in ultrasonic non-destructive material evaluation. In recent years, rapid development in the fields of microelectronics and computer engineering lead to wide application of phased array systems. A new phased array technique, called "Sampling Phased Array" has been developed in Fraunhofer Institute for non-destructive testing. It realizes unique approach of measurement and processing of ultrasonic signals. The sampling...

  15. Wave propagation visualization in an experimental model for a control rod drive mechanism assembly

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Jeong, Hyomi; Kong, Churl-Won

    2011-01-01

    Highlights: → We fabricate a full-scale mock-up of the control rod drive mechanism (CRDM) assembly in the upper reactor head of the nuclear power plant. → An ultrasonic propagation imaging method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the CRDM assembly. → The ultrasonic source location and frequency are simulated by changing the sensor location and the band pass-filtering zone. → The ultrasonic propagation patterns before and after cracks in the weld and nozzle of the CRDM assembly are analyzed. - Abstract: Nondestructive inspection techniques such as ultrasonic testing, eddy current testing, and visual testing are being developed to detect primary water stress corrosion cracks in control rod drive mechanism (CRDM) assemblies of nuclear power plants. A unit CRDM assembly consists of a reactor upper head including cladding, a penetration nozzle, and J-groove dissimilar metal welds with buttering. In this study, we fabricated a full-scale CRDM assembly mock-up. An ultrasonic propagation imaging (UPI) method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the thick and complex CRDM assembly. First, the proposed laser UPI system was validated for a simple aluminium plate by comparing the ultrasonic wave propagation movie (UWPM) obtained using the system with numerical simulation results reported in the literature. Lamb wave mode identification and damage detectability, depending on the ultrasonic frequency, were also included in the UWPM analysis. A CRDM assembly mock-up was fabricated in full-size and its vertical cross section was scanned using the laser UPI system to investigate the propagation characteristics of the longitudinal and Rayleigh waves in the complex structure. The ultrasonic source location and frequency were easily simulated by changing the sensor location and the band pass filtering zone

  16. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  17. Study of the ultrasonic waves action on the preparation of calcium aluminates cements

    International Nuclear Information System (INIS)

    Lourenco, R.R.; Exposito, C.C.D.; Rodrigues, J.A.

    2009-01-01

    Calcium aluminates cements were prepared through a route that uses the sonochemical process. In this process, calcia and alumina in an aqueous suspension are put under an ultrasonic bath during some time. After that, the water is evaporated and the material is heat treated. In this work, the action of ultrasonic waves were studied on initials molar compositions calcia:alumina of 1:1. It was also verified the influence of the water on the reactivity of initial solids. SEM and X-ray diffraction were used to characterize the obtained materials. In addition, mechanical strength of the products was evaluated through splitting tensile tests. The X-ray diffractograms showed that the presence of the water was enough to form hydrated compounds. However the material subjected to the sonochemical process presented the highest mechanical strength, indicating the potential of this route of synthesis. (author)

  18. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  19. Ultrasonic transducer design for uniform insonation

    International Nuclear Information System (INIS)

    Harrison, G.H.; Balcer-Kubiczek, E.K.; McCulloch, D.

    1984-01-01

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  20. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  1. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    Science.gov (United States)

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.

  3. Background Noise Removal in Ultrasonic B-scan Images Using Iterative Statistical Techniques

    NARCIS (Netherlands)

    Wells, I.; Charlton, P. C.; Mosey, S.; Donne, K. E.

    2008-01-01

    The interpretation of ultrasonic B-scan images can be a time-consuming process and its success depends on operator skills and experience. Removal of the image background will potentially improve its quality and hence improve operator diagnosis. An automatic background noise removal algorithm is

  4. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  5. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  6. Sampling phased array - a new technique for ultrasonic signal processing and imaging

    OpenAIRE

    Verkooijen, J.; Boulavinov, A.

    2008-01-01

    Over the past 10 years, the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called 'Sampling Phased Array', has been developed in the Fraunhofer Institute for Non-Destructive Testing([1]). It realises a unique approach of measurement and processing of ultrasonic signals. Th...

  7. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  8. Proceedings of the specialists' meeting on reliability of the ultrasonic inspection of austenitic materials

    International Nuclear Information System (INIS)

    1980-01-01

    The contributions of this meeting addressed several topics: the fundamentals of ultrasonic examination of austenitic materials (effect of anisotropy on propagation, improvement of ultrasonic testing to thick bimetallic welds, aspects of the ultrasonic testing of austenitic steel structures, utilization of a Fisher linear discriminant function in intergranular stress corrosion cracking or IGSCC detection, case of coarse grain austenitic welds, efforts of the Argonne National Laboratory), instruments and methods (longitudinal wave ultrasonic inspection, Grass echo suppression technique during the ultrasonic inspection of fuel cladding tubes, inspections of fillet and butt welds, improvement by signal averaging techniques, multiple bearing angle crack detector for cladded pipes examinations, flow-to-grain echo enhancement by split-spectrum processing, ultrasonic imaging techniques, ultrasonic inspection of pipe weldments for IGSCC), industrial practice (ultrasonic testing techniques for fabrication and in-service inspection, experiences in ultrasonic examination of austenitic steel components, experience and practice on nuclear piping in Spain, detection of underclad defects, sizing of cracks perpendicular to stainless overlay), and reliability (survey of ultrasonic testing in austenitic weld material, examination of electron beam welds, factors affecting the reliability of ultrasonic examination, detectability of IGSCC, ultrasonic inspection reliability for primary piping systems)

  9. Sonoplasma generated by a combination of ultrasonic waves and microwave irradiation

    International Nuclear Information System (INIS)

    Nomura, Shinfuku; Toyota, Hiromichi

    2003-01-01

    Plasma chemical vapor deposition (plasma CVD) is a generic term for methods in which a precursor containing a material to be deposited is dissociated in a plasma where it is subject to chemical reactions, and is then deposited as a film on the surface of a heated substrate. A drawback of plasma CVD is that this process cannot be used to synthesize large amounts of adsorbate, or to deposit onto substrates that are vulnerable to high temperatures. As liquids are much denser than gases, synthesis rates are thought to be much higher in the former. The authors have observed the ignition and maintenance of a stable plasma in a liquid hydrocarbon exposed to a combination of ultrasonic waves and microwave radiation. Microwave energy is effectively injected into the interior of acoustic cavitation bubbles, which act as nuclei for the ignition and maintenance of the plasma. Because the plasma is formed in a liquid environment, it is possible to obtain much higher film deposition rates at much lower plasma temperatures than ever before. In addition, this process can be carried out at normal temperatures and pressures

  10. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  11. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  12. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    Science.gov (United States)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  13. Effect of impurity inhomogeneity of CdS and CdSe monocrystalline semiconductors on electron absorption of piezoactive ultrasonic waves

    International Nuclear Information System (INIS)

    Ketis, B.P.; Krivka, I.

    1986-01-01

    Relation of observed anomalies (deviations from predictions of theory for homogeneous piezosemiconductor) of electronic absorption coefficient (EAC) of volume, piezoactive acoustic waves (with 15 MHz frequency) in CdS and CdSe hexagonal crystals with electrical heterogeneity is shown experimentally. Results of electron microanalysis of CdS and CdSe piezosemiconductors confirmed their impurity heterogeneity are presented as well as data of investigations into high-frequency conduction and electronic absorption of ultrasonic waves pointing out to volume nature of impurity and electric heterogeneities of monocrystals investigated. Correlation between EAC anomalies and surface density of impurity aggregates (IA) is noted as well as coincidence of impurity and electrical heterogeneities in CdS and CdSe crystals. In CdS crystals the observed anisotropy of high-frequency conduction and volume radioactive ultrasonic waves EAC is attributed to high density and anisotropy of IA space distribution and shape. To explain EAC anomalies, a crystal is simulated with heterogeneous grid of resistances and condensators

  14. A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave

    International Nuclear Information System (INIS)

    Han, Eung Kyo; Lee, Jae Joon; Kim, Jae Yeol

    1988-01-01

    Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible

  15. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  16. 3D simulation of an audible ultrasonic electrolarynx using difference waves.

    Science.gov (United States)

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper.

  17. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  18. Development of computer-controlled ultrasonic image processing system for severe accidents research

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems

  19. Development of computer-controlled ultrasonic image processing system for severe accidents research

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Jong Tai; Kim, Jong Whan; Cho, Young Ro; Ha, Kwang Soon; Park, Rae Jun; Kim, Sang Baik; Kim, Hee Dong; Sim, Chul Moo

    2000-07-01

    In order to verify in-vessel corium cooling mechanism, LAVA(Lower-plenum Arrested Vessel Attack) experiment is being performed as a first stage proof of principle test. The aims of this study are to find a gap formation between corium melt and reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at developing a computer controlled image signal processing system which is able to improve visualization and to measure the gap distribution with 3-dimensional planar image using a time domain signal analysis method as a part of the ultrasonic pulse echo methods and a computerized position control system. An image signal processing system is developed by independently developing an ultrasonic image signal processing technique and a PC controlled position control system and then combining both systems.

  20. Ultrasonic imaging in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lubeigt, E. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France); Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Mensah, S.; Chaix, J.F.; Rakotonarivo, S. [Laboratoire de Mecanique et d' Acoustique, CNRS UPR 7051, 13402 Marseille Cedex 20 (France); Gobillot, G. [CEA Cadarache, DEN/DTN/STCP/LIET, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  1. Ultrasonic imaging in liquid sodium

    International Nuclear Information System (INIS)

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-01-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  2. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  3. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  4. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  5. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  6. Design and development of an ultrasonic pulser-receiver unit for non-destructive testing of materials

    International Nuclear Information System (INIS)

    Patankar, V.H.; Joshi, V.M.

    2002-11-01

    The pulser/receiver constitutes the most vital part of an ultrasonic flaw detector or an ultrasonic imaging system used for inspection of materials. The ultrasonic properties of the material and resolution requirements govern the choice of the frequency of ultrasound that can be optimally used. The pulser/receiver in turn decides the efficiency of excitation of the transducer and the overall signal to noise ratio of the system for best sensitivity and resolution. A variety of pulsers are used in the ultrasonic instruments employed for materials inspection. This report describes a square wave type of an ultrasonic pulser-receiver unit developed at Ultrasonic Instrumentation Section, Electronics Division, BARC. It has been primarily designed for excitation of the transducer that is used with a multi-channel ultrasonic imaging system ULTIMA 100M targeted for inspection of SS403 billets, which are in turn used as the base material for fabrication of end fittings for coolant channels of pressurized heavy water nuclear reactors (PHWRs). The design of the pulser is based upon very fast MOSFETs, configured as electronic switches. The pulser is operated with a linear bipolar H.V. supply (+/- 500V max.). The receiver provides a 60 dB gain with a -3 dB BW of 40 MHz. This pulser/receiver unit has been successfully interfaced with a 4 channel ULTIMA 100 M4 multichannel ultrasonic C-scan imaging system, also designed and developed by the authors at Ultrasonic Instrumentation Section (Electronics Division, BARC) and supplied to Centre for Design and Manufacturer - CDM, BARC. This system is being regularly used in C-scan imaging mode for volumetric inspection of SS403 billets for end fittings of 500 MWe PHWRs. (author)

  7. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  8. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  9. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  10. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  11. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  12. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    Science.gov (United States)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  13. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  15. Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-02-01

    In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.

  16. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  17. A new traveling wave ultrasonic motor using thick ring stator with nested PZT excitation.

    Science.gov (United States)

    Chen, Weishan; Shi, Shengjun; Liu, Yingxiang; Li, Pei

    2010-05-01

    To avoid the disadvantages of conventional traveling wave ultrasonic motors--lower efficiency PZT working mode of d(31), fragility of the PZT element under strong excitation, fatigue of the adhesive layer under harsh environmental conditions, and low volume of the PZT material in the stator--a new type of traveling wave ultrasonic motor is presented in this paper. Here we implement the stator by nesting 64 PZT stacks in 64 slots specifically cut in a thick metal ring and 64 block springs nested within another 64 slots to produce preloading on the PZT stacks. In this new design, the d33 mode of the PZT is used to excite the flexural vibrations of the stator, and fragility of the PZT ceramics and fatigue of the adhesive layer are no longer an issue. The working principle, FEM simulation, fabrication, and performance measurements of a prototype motor were demonstrated to validate the proposed ideas. Typical output of the prototype motor is no-load speed of 15 rpm and maximum torque of 7.96 N x m. Further improvement will potentially enhance its features by increasing the accuracy in fabrication and adopting appropriate frictional material into the interface between the stator and the rotor.

  18. Radiation-induced thermoacoustic imaging

    International Nuclear Information System (INIS)

    Bowen, T.

    1984-01-01

    This invention provides a new technique for obtaining information non-invasively on the composition and structures of a material or body by detecting radiation-induced thermoacoustic image features. This is accomplished by utilizing the acoustic wave generated by sudden thermal stress. The sudden thermal stress is induced by a pulse of radiation which deposits energy causing a rapid, but very small, rise of temperature (typically, ΔT approximately 10sup(-6) - 10sup(-5) deg C). The radiation may be ionizing radiation, such as high energy electrons, photons (x-rays), neutrons, or other charged particles or it may be non-ionizing radiation, such as R.F. and microwave electromagnetic radiation and ultrasonic radiation. The choice of radiation depends on the nature of the body to be imaged and the type of information desired

  19. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  20. Under sodium ultrasonic viewing for Fast Breeder Reactors: a review

    International Nuclear Information System (INIS)

    Tarpara, Eaglekumar G.; Patankar, V.H.; Vijayan Varier, N.

    2016-09-01

    ultrasonic behavior in liquid metal environment, but data are insufficient to make a conclusion, based on the simulation model. The report is divided into four sections explaining design aspects of high temperature transducer assemblies utilized in liquid sodium, Ultrasonic imaging techniques and instrumentation for viewing of core of FBRs, various possible beam forming methods for high temperature imaging and simulation modeling for behavior of ultrasonic wave propagation in thermo-hydraulic condition. (author)

  1. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  2. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    Science.gov (United States)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  3. Ultrasonic inspection technology development and search units design examples of practical applications

    CERN Document Server

    Brook, Mark V

    2012-01-01

    "Ultrasonic testing is a relatively new branch of science and industry. The development of ultrasonic testing started in the late 1920s. At the beginning, the fundamentals of this method were borrowed from basic physics, geometrical and wave optics, acoustics and seismology. Later it became clear that some of these theories and calculation methods could not always explain the phenomena observed in many specific cases of ultrasonic testing. Without knowing the nuances of the ultrasonic wave propagation in the test object it is impossible to design effective inspection technique and search units for it realization. This book clarifies the theoretical differences of ultrasonics from the other wave propagation theories presenting both basics of physics in the wave propagation, elementary mathematic and advanced practical applications. Almost every specific technique presented in this book is proofed by actual experimental data and examples of calculations"--

  4. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    Science.gov (United States)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  5. Ultrasonic Generation and Optimization for EMAT

    International Nuclear Information System (INIS)

    Jian, X.; Dixon, Steve; Edwards, Rachel S.

    2005-01-01

    A model for transient ultrasonic wave generation by EMATs in non-magnetic metals is presented. It combines analytical solutions currently available and FEM to calculate ultrasonic bulk and Rayleigh waves generated by the EMAT. Analytical solutions are used as they can be calculated quickly on a standard mathematical computer package. Calculations agree well with the experimental measurement. The model can be used to optimize EMAT design, and has explained some of the results from our previous published measurements

  6. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum; Estudo de uma nova tecnica de medida do tempo de percurso da onda ultra-sonica usando o espectro de frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allan Xavier dos

    2010-07-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  7. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  8. Non-contact transportation system of small objects using Ultrasonic Waveguides

    International Nuclear Information System (INIS)

    Nakamura, K; Koyama, D

    2012-01-01

    A transportation system for small object or fluid without contact is investigated being based on ultrasonic levitation. Small objects are suspended against gravity at the nodal points in ultrasonic pressure field due to the sound radiation force generated as the gradient of the energy density of the field. In this study, the trapped object is transported in the horizontal plane by introducing the spatial shift of the standing waves by the switching the lateral modes or travelling waves. The goal of the study is to establish a technology which can provide a total system with the flexibility in composing various transportation paths. Methods for linear/rotary stepping motions and continuous linear transportation are explained in this report. All the transportation tracks are composed of a bending vibrator and a reflector. The design for these acoustic cavity/waveguide is discussed.

  9. Analysis of the ultrasonic image of adrenal metastasis in primary lung cancer

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Yong; Zhang Yan

    2009-01-01

    Objective: To investigate the ultrasonic image of adrenal metastasis in primary lung cancer. Methods: The ultrasonic imaging characteristics of fourteen patients with adrenal metastasis in primary lung cancer were retrospectively reviewed. In all the cases, US-guided percutaneous biopsy was performed for pathological evaluation during the clinical diagnosis. Results and Conclusion: In ultrasonography the adrenal metastatic tumors were manifested as solitary in all the cases, well-defined in 10 cases, irregularly shaped in 10 cases, hypoechoic in 13 cases, and 1 case showed cystoid structure in the tumor. The maximum diameter of the tumor was 3.0-15.3 cm. 9 cases were metastatic adenocarcinoma. The sonographic appearance of adrenal metastasis in primary lung cancer has its characteristics. Ultrasonography can find adrenal metastalic tumors easily and contribute to diagnosis. (authors)

  10. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    Science.gov (United States)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface

  11. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  12. Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control.

    Science.gov (United States)

    Rezaei Dehshibi, Reza; Mohebbi, Ali; Riazi, Masoud; Niakousari, Mehrdad

    2018-07-01

    A well-known complication in the oil reservoir during oil production is asphaltene deposition in and around the production wellbore. Deposition of asphaltene around the production wellbore may cause a significant pressure drop and in turn loss of efficiency in the production process. Various mechanical and chemical methods have been employed in order to reduce asphaltene formation or to eliminate the precipitate. A novel technique which presented a great potential for prevention or elimination of asphaltene is spreading out the high energy ultrasound wave within the oil reservoir. In this study, in a glass micro-model, asphaltene precipitation was first simulated in a transparent porous medium and its removal by application of high energy ultrasound wave was then investigated. To simulate asphaltene precipitation, the micro-model was first saturated with oil and then a normal-pentane was injected. This was followed by flooding the porous media with brine while propagating ultrasound waves (30 kHz and 100 W) to eliminate asphaltene precipitation. The experiment setup was equipped with a temperature controller. The results indicate a significant reduction in asphaltene precipitation in the oil reservoir may be achieved by application of ultrasound energy. Asphaltene particle deposition has been solved reversibly in the oil layer of porous medium and with the oil layering mechanism, the rate of oil production has been increased. In some spots, water/oil emulsion has been formed because of the ultrasonic vibration on the wall. Both the crude and synthetic oils were examined. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Science.gov (United States)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  14. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  15. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Howard M. [Univ. of California, San Diego, CA (United States)

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  16. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  17. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  18. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  19. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  20. Investigation of ultrasonic wave influence on magnetic alignment in layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Proglyado, V.V.; Khajdukov, Yu.N.; Gavrilov, V.N.; Raitman, E.; Bottyan, L.; Nagy, D.L.

    2007-01-01

    The layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO, excited by ultrasonic wave, was investigated using polarized neutron reflectometry. Magnetic domains vibrations and reduction of their effective size in magnetic field of small strength were observed. In the magnetic field close to saturation the magnetic lattice is formed in the layered structure. Interplane distance of the lattice changes with increase of the magnetic field strength as well as with ultrasonic excitation of the structure

  1. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  2. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  3. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  4. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  5. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  6. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    Science.gov (United States)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  7. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  8. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  9. Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data

    Science.gov (United States)

    Mora, P.; Spies, M.

    2018-05-01

    We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.

  10. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  11. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-04-02

    Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  12. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  13. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  14. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  15. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  16. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  17. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    OpenAIRE

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer...

  18. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  19. Detection and classification of defects in ultrasonic NDE signals using time-frequency representations

    Science.gov (United States)

    Qidwai, Uvais; Costa, Antonio H.; Chen, C. H.

    2000-05-01

    The ultrasonic wave, generated by a piezoelectric transducer coupled to the test specimen, propagates through the material and part of its energy is reflected when it encounters an non-homogeneity or discontinuity in its path, while the remainder is reflected by the back surface of the test specimen. Defect echo signals are masked by the characteristics of the measuring instruments, the propagation paths taken by the ultrasonic wave, and are corrupted by additive noise. This leads to difficulties in comparing and analyzing signals, particularly in automated defect identification systems employing different transducers. Further, the multi-component nature of material defects can add to the complexity of the defect identification criteria. With many one-dimensional (1-D) approaches, the multi-component defects can not be detected. Another drawback is that these techniques are not very robust for sharp ultrasonic peaks especially in a very hazardous environment. This paper proposes a technique based on the time-frequency representations (TFRs) of the real defect signals corresponding to artificially produced defects of various geometries in metals. Cohen's class (quadratic) TFRs with Gaussian kernels are then used to represent the signals in the time-frequency (TF) plane. Once the TFR is obtained, various image processing morphological techniques are applied to the TFR (e.g. region of interest masking, edge detection, and profile separation). Based on the results of these operations, a binary image is produced which, in turn, leads to a novel set of features. Using these new features, defects have not only been detected but also classified as flat-cut, angular-cut, and circular-drills. Moreover, with some modifications of the threshold levels of the TFR kernel design, our technique can be used in relatively hostile environments with SNRs as low as 0 dB. Another important characteristic of our approach is the detection of multiple defects. This consists of detection of

  20. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    International Nuclear Information System (INIS)

    Shahab, S; Erturk, A

    2014-01-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and

  1. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium

    International Nuclear Information System (INIS)

    Kohara, Richard Yuzo Ramida

    2015-01-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  2. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  3. Advanced Ultrasonic Tomograph of Children's Bones

    Science.gov (United States)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  4. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  5. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-15

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A{sub 0} Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm.

  6. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-01

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A 0 Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm

  7. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  8. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  9. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    Science.gov (United States)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  10. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  11. A study of the effectiveness and energy efficiency of ultrasonic emulsification.

    Science.gov (United States)

    Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O

    2017-12-20

    Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.

  12. Graphene-based ultrasonic detector for photoacoustic imaging

    Science.gov (United States)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  13. Energy-positive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input.

    Science.gov (United States)

    Lippert, Thomas; Bandelin, Jochen; Musch, Alexandra; Drewes, Jörg E; Koch, Konrad

    2018-05-20

    The performance of a novel ultrasonic flatbed reactor for sewage sludge pre-treatment was assessed for three different waste activated sludges. The study systematically investigated the impact of specific energy input (200 - 3,000 kJ/kg TS ) on the degree of disintegration (DD COD , i.e. ratio between ultrasonically and maximum chemically solubilized COD) and methane production enhancement. Relationship between DD COD and energy input was linear, for all sludges tested. Methane yields were significantly increased for both low (200 kJ/kg TS ) and high (2,000 - 3,000 kJ/kg TS ) energy inputs, while intermediate inputs (400 - 1,000 kJ/kg TS ) showed no significant improvement. High inputs additionally accelerated reaction kinetics, but were limited to similar gains as low inputs (max. 12%), despite the considerably higher DD COD values. Energy balance was only positive for 200 kJ/kg TS -treatments, with a maximum energy recovery of 122%. Results suggest that floc deagglomeration rather than cell lysis (DD COD =1% - 5% at 200 kJ/kg TS ) is the key principle of energy-positive sludge sonication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  15. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  16. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  17. Ultrasonic modelling and imaging in dissimilar welds

    International Nuclear Information System (INIS)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R.

    2004-01-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  18. Ultrasonic modelling and imaging in dissimilar welds

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A.; Langenberg, K.J.; Marklein, R. [Dept. of Electrical Engineering, Univ. of Kassel, Kassel (Germany)

    2004-07-01

    Non-destructive testing of defects in nuclear power plant dissimilar pipe weldings play an important part in safety inspections. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm, however since parts of the dissimilar welded structure are made of an anisotropic material, this algorithm may fail to produce correct results. Here we present a modified algorithm that enables a correct imaging of cracks in anisotropic and inhomogeneous complex structures by accounting for the true nature of the wave propagation in such structures, this algorithm is called inhomogeneous anisotropic SAFT (InASAFT). In InASAFT algorithm is shown to yield better results over the SAFT algorithm for complex environments. The InASAFT suffers, though, from the same difficulties of the SAFT algorithm, i.e. ''ghost'' images and lack of clear focused images. However these artefacts can be identified through numerical modelling of the wave propagation in the structure. (orig.)

  19. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-01-01

    estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized

  20. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  1. Combined application of ultrasonic waves, magnetic fields and optical flow in the rehabilitation of patients and disabled people

    OpenAIRE

    Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W.; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.

    2016-01-01

    SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES» Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L. COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF PATIENTS AND DISABLED PEOPLE Edited by Chukh...

  2. Merging of gamma radiographic and ultrasonic inspection data: bibliographical survey

    International Nuclear Information System (INIS)

    Gautier, S.

    1995-01-01

    This paper presents a number of experimental data processing notions with the aim of developing an NDT method based on merging ultrasonic and gamma radiographic data. We first review the industrial context concerned and, before moving on to specific data merging problems, we discuss the difficulties of reconstruction using only one type of data (radiographic or ultrasonic). The main part of the report begins with a brief reminder of gamma radiation and ultrasonic wave propagation principles. Certain imaging and reconstruction methods conventionally used for each type of measurement are also presented. Reconstruction problems are then directly approached in algebraic form. For the type of problem studied, the inspection data alone cannot lead to satisfactory reconstructions and we evidence the need to regulate the problem by introducing deductive information on the object to be reconstructed. The Bayes' approach provides a self-consistent means of integrating both the data information and the deductive information. It is based on probabilistic models of the variables involved, notably those of the object sought. We discuss at some length certain models of images used in gamma radiography (independent variable fields, variables having a Markov-type structure) and the Bernoulli-Gauss-type models used for ultrasonic trace deconvolution. Finally, we outline data merging paths. A formal Bayes' framework is used to present two merging approaches, after which we briefly describe our projects for the processing of already available experimental data. (author)

  3. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  4. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  5. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)

    Science.gov (United States)

    Patra, Subir; Banerjee, Sourav

    2017-01-01

    Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz) scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy. PMID:29258256

  6. Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2017-12-01

    Full Text Available Material state awareness of composites using conventional Nondestructive Evaluation (NDE method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally measured Ultrasonic wave parameters. This unique combination resulted in a parameter called Nonlocal Damage Entropy for the precursor awareness. High frequency (more than 25 MHz scanning acoustic microscopy is employed for the proposed QUIC. Eight woven carbon-fiber-reinforced-plastic composite specimens were tested under fatigue up to 70% of their remaining useful life. During the first 30% of the life, the proposed nonlocal damage entropy is plotted to demonstrate the degradation of the material properties via awareness of the precursor damage state. Visual proofs for the precursor damage states are provided with the digital images obtained from the micro-optical microscopy, the scanning acoustic microscopy and the scanning electron microscopy.

  7. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Lee, Sang Soon [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2003-12-15

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  8. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    International Nuclear Information System (INIS)

    Kim, No Hyu; Lee, Sang Soon

    2003-01-01

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  9. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  10. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  11. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  12. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  13. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  14. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    Science.gov (United States)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  15. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  16. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  17. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  18. Application of acoustical holography for construction shadow images in ultrasonic testing

    International Nuclear Information System (INIS)

    Kutzner, J.; Zimpfer, J.

    1977-01-01

    The full-scale, three-dimensional presentation of material defects by means of acoustical holography is limited on the one hand by an insufficient resolving power in depth of the procedure and, on the other hand, by the fact that the defects of the material to be examined often reflect mirror-like. Examined is the possible range of reducing these limitations by means of constructing shadow images of defects in ultrasonic testing without - as it is usually done - reconstructing the sonic field reflected by the flow but reconstructing the sonic field diffracted at the flow by means of acoustical holography. It has been shown that acoustical holography, during which the amplitude information is always analyzed as well as - on principle - the phase information, improves the efficiency of ultrasonic testing to a large extent. (orig.) [de

  19. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  20. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    Lucas, Carla S.; Baroni, Douglas B.; Costa, Antonio M.L.M.; Bittencourt, Marcelo S.Q.

    2009-01-01

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  1. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  2. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  3. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    International Nuclear Information System (INIS)

    Stepinski, Tadeusz

    2009-08-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  4. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  5. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  6. Ultrasonic-testing method

    International Nuclear Information System (INIS)

    Thome, Paul.

    1973-01-01

    Description is given of a device adapted to the detection, by means of ultrasonic waves, of all the flaws and defects included in workpieces when only one face of the latter is accessible. A beam is directed towards the rear-face of the workpiece (e.g. a plate) on which it is reflected. The image thus reflected is fed into a receiver. The latter is under the control of the displacement of that image; simultaneously a transducer checks the condition of the mirror at the places where the beam is reflected. Whenever a flow or defect comes between, a silent zone is formed. By recording the silent zones with respect to the positions of several emitters, it is possible to locates a flaw and to define the outline thereof. The apparatus comprises several ''emitter-receiver'' groups intersecting over the emitter used in order to check the good conditions of the mirror. The invention can be used for searching and identifying flaws and defects in buildings which have to be of top quality (e.g., cofferdams, nuclear devices, shipbuilding yards, aeronautics) [fr

  7. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  8. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  9. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  10. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  11. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    Science.gov (United States)

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  12. Sampling phased array, a new technique for ultrasonic signal processing and imaging now available to industry

    OpenAIRE

    Verkooijen, J.; Bulavinov, A.

    2008-01-01

    Over the past 10 years the improvement in the field of microelectronics and computer engineering has led to significant advances in ultrasonic signal processing and image construction techniques that are currently being applied to non-destructive material evaluation. A new phased array technique, called "Sampling Phased Array" has been developed in the Fraunhofer Institute for non-destructive testing [1]. It realizes a unique approach of measurement and processing of ultrasonic signals. The s...

  13. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    Science.gov (United States)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  14. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  15. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  16. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  17. Impact induced damage assessment by means of Lamb wave image processing

    Science.gov (United States)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-03-01

    The aim of this research is an analysis of full wavefield Lamb wave interaction with impact-induced damage at various impact energies in order to find out the limitation of the wavenumber adaptive image filtering method. In other words, the relation between impact energy and damage detectability will be shown. A numerical model based on the time domain spectral element method is used for modeling of Lamb wave propagation and interaction with barely visible impact damage in a carbon-epoxy laminate. Numerical studies are followed by experimental research on the same material with an impact damage induced by various energy and also a Teflon insert simulating delamination. Wavenumber adaptive image filtering and signal processing are used for damage visualization and assessment for both numerical and experimental full wavefield data. It is shown that it is possible to visualize and assess the impact damage location, size and to some extent severity by using the proposed technique.

  18. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser...

  19. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  20. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  1. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Kobayashi, Takeshi; Lee, Chengkuo

    2016-05-01

    Acoustic energy transfer (AET) has been widely used for contactless energy delivery to implantable devices. However, most of the energy harvesters (ultrasonic receivers) for AET are macro-scale transducers with large volume and limited operation bandwidth. Here, we propose and investigate two microelectromechanical systems diaphragm based piezoelectric ultrasonic energy harvesters (PUEHs) as an alternative for AET. The proposed PUEHs consist of micro-scale diaphragm array with different geometric parameter design. Diaphragms in PUEH-1 have large length to width ratio to achieve broadband property, while its energy harvesting performance is compromised. Diaphragms in PUEH-2 have smaller length to width ratio and thinner thickness to achieve both broadband property and good energy harvesting performance. Both PUEHs have miniaturized size and wide operation bandwidth that are ideally suitable to be integrated as power source for implantable biomedical devices. PUEH-1 has a merged -6 dB bandwidth of 74.5% with a central frequency of 350 kHz. PUEH-2 has two separate -6 dB bandwidth of 73.7%/30.8% with central frequencies of 285 kHz/650 kHz. They can adapt to various ultrasonic sources with different working frequency spectrum. Maximum output power is 34.3 nW and 84.3 nW for PUEH-1 and PUEH-2 at 1 mW/cm2 ultrasound intensity input, respectively. The associated power density is 0.734 μW/cm2 and 4.1 μW/cm2, respectively. Better energy harvesting performance is achieved for PUEH-2 because of the optimized length to width ratio and thickness design. Both PUEHs offer more alignment flexibility with more than 40% power when they are in the range of the ultrasound transmitter.

  2. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  3. Non Destructive Thermal Analysis and In Situ Investigation of Creep Mechanism of Graphite and Ceramic Composites using Phase-sensitive THz Imaging & Nonlinear Resonant Ultrasonic Spectroscopy

    International Nuclear Information System (INIS)

    Zhang, XI-Cheng; Redo-Scanchez, Albert

    2012-01-01

    In this project, we conducted a comprehensive study on nuclear graphite properties with terahertz (THz) imaging. Graphite samples from Idaho National Laboratory were carefully imaged by continuous wave (CW) THz. The CW THz imaging of graphite shows that the samples from different billet with different fabricating conditions have different pore size and structure. Based on this result, we then used a phase sensitive THz system to study the graphite properties. In this exploration, various graphite were studied. By imaging nuclear graphite samples in reflection mode at nine different incident polarization angles using THz time-domain spectroscopy, we find that different domain distributions and levels of porosity will introduce polarization dependence in THz reflectivity. Sample with higher density is less porous and has a smaller average domain distribution. As a consequence, it is less polarization-dependent and the polarization-dependent frequency is higher. The results also show that samples oxidized at higher temperatures tend to be more polarization dependent. The graphite from the external billet is more polarization dependent compared to that from the center billet. In addition, we performed laser-based ultrasonic measurements on these graphite samples. The denser, unoxidized samples allow surface acoustic waves to propagate more rapidly than in the samples that had already undergone oxidation. Therefore, for the oxidized samples, the denser samples show less polarization-dependence, higher polarization-dependent frequency, and allow the surface acoustic waves propagate faster.

  4. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  5. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  6. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  7. STADUS - Ultrasonic data acquisition and processing system

    International Nuclear Information System (INIS)

    Saglio, Robert; Birac, A.M.; Frappier, J.C.

    1982-05-01

    The CEA (Commissariat a l'Energie Atomique) has developed a system for the acquisition and analysis of data recorded during ultrasonic testing. Initially this system was designed and built for the needs of in-service inspection of PWR type power reactors. It is in far wider use today for miscellaneous automatic ultrasonic inspection procedures. This system records, in digital form, the ultrasonic data supplied by the transducers (maximum 16 simultaneous channels), and the geometric coordinates defining the position of the inspection tool. Based on these data, which are recorded on floppy disk, this system helps to display data in the form of A SCAN, B SCAN and C SCAN images. In addition, processing programs of data transfer from the STADUS floppy disks have been developed and inserted on computers more powerful than the one used in the STADUS system. These programs serve to obtain different fault charts on an adjustable scale, as well as listings concerning the defect positions and dimensions [fr

  8. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  9. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  10. Development of a finite element model for ultrasonic NDT phenomena

    International Nuclear Information System (INIS)

    Lord, W.

    1988-01-01

    Ultrasonic NDT techniques are used extensively in the nuclear industry for the detection and characterization of defects in critical structural components such as pressure vessels and piping. The feasibility of applying finite element analysis methods to the problem of modeling ultrasound/defect interactions has been shown. Considerable work remains to be done before a full three-dimensional model is available for the prediction of realistic ultrasonic transducer signals from sound wave interaction with arbitrarily shaped defects in highly attenuative and anisotropic materials. However, a two-dimensional code has been developed that is capable of predicting finite aperture ultrasonic transducer signals associated with wave propagations in isotropic materials and that shows good qualitative agreement with corresponding experimental observations. This 2-D code has now been extended to include anisotropic materials such as centrifugally cast stainless steel (CCSS), a necessary step in the development of the full 3-D code. Results are given showing the capability of the 2-D code to predict the anomalous wave behavior normally associated with ultrasonic wave propagation in anisotropic materials. In addition, a new signal processing technique is discussed, based on the Wigner transformation, that shows promise for application to centrifugally cast stainless steel NDT problems

  11. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  12. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  13. Ultrasonic energy vs monopolar electrosurgery in laparoscopic cholecystectomy: a comparison of tissue damage

    Directory of Open Access Journals (Sweden)

    Mehdi Asgari

    2016-04-01

    Full Text Available Background: Laparoscopic cholecystectomy is a minimally invasive procedure whereby the gallbladder is removed using laparoscopic techniques. Monopolar electerosurgical energy is the method of dissection of gallbladder from liver bed. Ultrasonic energy causes less thermal damage and suggests an alternative to monopolar elevterocautery. Leptin is a tissue factor and C-reactive protein (CRP is an acute phase protein that builds up in surgical damages. In laparoscopy, pneumoperitoneum and thermal damage cause this increase. In this study, after completion of surgery with both methods, plasma leptin and CPR were measured. Next, the complications and benefits of the two methods were compared. Methods: This single blind randomized clinical trial was conducted on 78 patients who were candidate for laparoscopic cholecystectomy in surgery clinic of Razi Teaching Hospital in Ahvaz Jundishapur University of Medical Sciences from March 2013 to March 2015. Patients were divided randomly into two groups of ultrasonic and electerocautery. Then, leptin’s level and CRP’s level were measured at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in the two groups. Results: This study shows that the average rate of leptin at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. The average rate of CRP at completion of surgery, 30 minutes after completion, 6 and 24 hours after completion of surgery in ultrasonic group had less increase than electerocautery group and the difference was statistically significant (P= 0.0001. Conclusion: The level of leptin and CRP shows that surgery with ultrasonic method will provoke the immune system less than electerocautery method.

  14. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

    Science.gov (United States)

    Bolborici, V; Dawson, F P; Pugh, M C

    2014-03-01

    Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  16. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  17. Effect of zooming on texture features of ultrasonic images

    Directory of Open Access Journals (Sweden)

    Kyriacou Efthyvoulos

    2006-01-01

    Full Text Available Abstract Background Unstable carotid plaques on subjective, visual, assessment using B-mode ultrasound scanning appear as echolucent and heterogeneous. Although previous studies on computer assisted plaque characterisation have standardised B-mode images for brightness, improving the objective assessment of echolucency, little progress has been made towards standardisation of texture analysis methods, which assess plaque heterogeneity. The aim of the present study was to investigate the influence of image zooming during ultrasound scanning on textural features and to test whether or not resolution standardisation decreases the variability introduced. Methods Eighteen still B-mode images of carotid plaques were zoomed during carotid scanning (zoom factor 1.3 and both images were transferred to a PC and normalised. Using bilinear and bicubic interpolation, the original images were interpolated in a process of simulating off-line zoom using the same interpolation factor. With the aid of the colour-coded image, carotid plaques of the original, zoomed and two resampled images for each case were outlined and histogram, first order and second order statistics were subsequently calculated. Results Most second order statistics (21/25, 84% were significantly (p Conclusion Texture analysis of ultrasonic plaques should be performed under standardised resolution settings; otherwise a resolution normalisation algorithm should be applied.

  18. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  19. Ewe: a computer model for ultrasonic inspection

    International Nuclear Information System (INIS)

    Douglas, S.R.; Chaplin, K.R.

    1991-11-01

    The computer program EWE simulates the propagation of elastic waves in solids and liquids. It has been applied to ultrasonic testing to study the echoes generated by cracks and other types of defects. A discussion of the elastic wave equations is given, including the first-order formulation, shear and compression waves, surface waves and boundaries, numerical method of solution, models for cracks and slot defects, input wave generation, returning echo construction, and general computer issues

  20. Proposal for Ultrasonic Technique for evaluation elastic constants in UO2 pellets

    International Nuclear Information System (INIS)

    Lopes, Alessandra Susanne Viana Ragone; Baroni, Douglas Brandao; Bittencourt, Marcelo de Siqueira Queiroz; Souza, Mauro Carlos Lopes

    2015-01-01

    Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO 2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application. (author)

  1. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    International Nuclear Information System (INIS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-01-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge. (paper)

  2. Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2018-02-01

    Full Text Available In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the array transducer. In this paper, a method based on digital holographic interferometry is proposed to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the system. The interferograms are calculated from the recorded holograms at different time sequence. The amplitudes and phases of the transient ultrasonic wavefields are recovered from the interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried out to verify the proposed technique, and preliminary results are presented.

  3. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  4. On-line ultrasonic gas entrainment monitor

    International Nuclear Information System (INIS)

    Day, C.K.; Pedersen, H.N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose

  5. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  6. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    Science.gov (United States)

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  8. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  9. Utilizing ultrasonic energy for reduction of free fatty acids in crude ...

    African Journals Online (AJOL)

    Ultrasonic energy was used for the reduction of FFA in CPO. FFA content was measured at different sonication intervals, and the optimum time was determined. Hydrochloric acid showed the highest catalytic activity in the reduction of FFA content in CPO, as well as in converting FFA to fatty acid methyl ester (FAME).

  10. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  11. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  12. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    Directory of Open Access Journals (Sweden)

    Sharay Astariz

    2015-07-01

    Full Text Available Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be realised through these co-located energy farms and, thus, some challenges of offshore wind energy can be met. Among them, this paper focuses on the longer non-operational periods of offshore wind turbines—relative to their onshore counterparts—typically caused by delays in maintenance due to the harsh marine conditions. Co-located wave energy converters would act as a barrier extracting energy from the waves and resulting in a shielding effect over the wind farm. On this basis, the aim of this paper is to analyse wave energy economics in a holistic way, as well as the synergies between wave and offshore wind energy, focusing on the shadow effect and the associated increase in the accessibility to the wind turbines.

  13. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  14. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  15. Interpretation of ultrasonic images; Interpretation von Ultraschall-Abbildungen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W; Schmitz, V; Kroening, M [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1998-11-01

    During the evaluation of ultrasonic images, e.g. SAFT-reconstructed B-scan images (SAFT=Synthetic Aperture Focusing Technique) it is often difficult to decide, what is the origin of reconstructed image points: were they caused by defects, specimens geometry or mode-conversions. To facilitate this evaluation a tool based on the comparison of data was developed. Different kinds of data comparison are possible: identification of that RF-signals, which caused the reconstructed image point. This is the comparison of a reconstructed image with the corresponding RF-data. Comparison of two reconstructed images performing a superposition using logical operators. In this case e.g. the reconstruction of an unknown reflector is compared with that of a known one. Comparison of raw-RF-data by simultaneous scanning through two data sets. Here the echoes of an unknown reflector are compared with the echoes of a known one. The necessary datasets of known reflectors may be generated experimentally on reference reflectors or modelled. The aim is the identification of the reflector type, e.g. cracklike or not, the determination of position, size and orientation as well as the identification of accompanying satellite echoes. The interpretation of the SAFT-reconstructed B-scan image is carried out by a complete description of the reflector. In addition to the aim of interpretation the tool described is well suited to educate and train ultrasonic testers. (orig./MM) [Deutsch] Bei der Auswertung von Ultraschall-Abbildungen, z.B. SAFT-rekonstruierten B-Bildern (SAFT=Synthetische Apertur Fokus Technik), ist es oft schwierig zu entscheiden, wo rekonstruierte Bildpunkte herruehren: wurden sie durch Materialfehler, Bauteilgeometrie oder durch Wellenumwandlungen versursacht. Um diese Auswertung zu erleichtern, wurde ein Werkzeug entwickelt, welches auf dem Vergleich von Datensaetzen basiert. Es koennen verschiedene Arten des Datenvergleichs durchgefuehrt werden: Identifikation der HF

  16. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.

    Science.gov (United States)

    Bui, Nhat Quang; Hlaing, Kyu Kyu; Nguyen, Van Phuc; Nguyen, Trung Hau; Oh, Yun-Ok; Fan, Xiao Feng; Lee, Yong Wook; Nam, Seung Yun; Kang, Hyun Wook; Oh, Junghwan

    2015-10-01

    Intravascular ultrasound (IVUS) imaging is extremely important for detection and characterization of high-risk atherosclerotic plaques as well as gastrointestinal diseases. Recently, intravascular photoacoustic (IVPA) imaging has been used to differentiate the composition of biological tissues with high optical contrast and ultrasonic resolution. The combination of these imaging techniques could provide morphological information and molecular screening to characterize abnormal tissues, which would help physicians to ensure vital therapeutic value and prognostic significance for patients before commencing therapy. In this study, integration of a high-frequency IVUS imaging catheter (45MHz, single-element, unfocused, 0.7mm in diameter) with a multi-mode optical fiber (0.6mm in core diameter, 0.22 NA), an integrated intravascular ultrasonic-photoacoustic (IVUP) imaging catheter, was developed to provide spatial and functional information on light distribution in a turbid sample. Simultaneously, IVUS imaging was co-registered to IVPA imaging to construct 3D volumetric sample images. In a phantom study, a polyvinyl alcohol (PVA) tissue-mimicking arterial vessel phantom with indocyanine green (ICG) and methylene blue (MB) inclusion was used to demonstrate the feasibility of mapping the biological dyes, which are used in cardiovascular and cancer diagnostics. For the ex vivo study, an excised sample of pig intestine with ICG was utilized to target the biomarkers present in the gastrointestinal tumors or the atherosclerotic plaques with the proposed hybrid technique. The results indicated that IVUP endoscope with the 2.2-mm diameter catheter could be a useful tool for medical imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  18. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  19. Direct Determination of Molecular Weight Distribution of Calf-Thymus DNAs and Study of Their Fragmentation under Ultrasonic and Low-Energy IR Irradiations. A Charge Detection Mass Spectrometry Investigation.

    Science.gov (United States)

    Halim, Mohammad A; Bertorelle, Franck; Doussineau, Tristan; Antoine, Rodolphe

    2018-06-09

    Calf-thymus (CT-DNA) is widely used as binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products might have dramatic consequence on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes of molecular weight distributions in the course of sonication by irradiating ultrasonic wave to CT-DNA. We report for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing to extract their activation energy for unimolecular dissociation. We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs. This article is protected by copyright. All rights reserved.

  20. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  1. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  2. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  3. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    Science.gov (United States)

    Montalbo-Lomboy, Melissa T.

    The 21st Century human lifestyle has become heavily dependent on hydrocarbon inputs. Energy demand and the global warming effects due to the burning of fossil fuels have continued to increase. Rising awareness of the negative environmental and economic impacts of hydrocarbon dependence has led to a resurgence of interest in renewable energy sources such as ethanol. Fuel ethanol is known to be a cleaner and renewable source of energy relative to gasoline. Many studies have agreed that fuel ethanol has reduced greenhouse gas (GHG) emissions and has larger overall energy benefits compared to gasoline. Currently, the majority of the fuel ethanol in the United States is produced from corn using dry-grind milling process. The typical dry-grind ethanol plant incorporates jet cooking using steam to cook the corn slurry as pretreatment for saccharification; an energy intensive step. In aiming to reduce energy usage, this study evaluated the use of ultrasonics as an alternative to jet cooking. Ultrasonic batch experiments were conducted using a Branson 2000 Series bench-scale ultrasonic unit operating at a frequency of 20 kHz and a maximum output of 2.2 kW. Corn slurry was sonicated at varying amplitudes from 192 to 320 mumpeak-to-peak(p-p) for 0-40 seconds. Enzyme stability was investigated by adding enzyme (STARGEN(TM)001) before and after sonication. Scanning electron micrograph (SEM) images and particle size distribution analysis showed a nearly 20-fold size reduction by disintegration of corn particles due to ultrasonication. The results also showed a 30% improvement in sugar release of sonicated samples relative to the control group (untreated). The efficiency exceeded 100% in terms of relative energy gain from the additional sugar released due to ultrasonication compared to the ultrasonic energy applied. Interestingly, enzymatic activity was enhanced when sonicated at low and medium power. This result suggested that ultrasonic energy did not denature the enzymes

  4. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  5. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  6. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  7. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  8. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  9. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    Science.gov (United States)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  10. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  11. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis

    Science.gov (United States)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2018-02-01

    Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.

  12. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    International Nuclear Information System (INIS)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics, and

  13. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Electron beam evaluation, harmonic imaging, materials characterization, and ultrasonic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Lingvall, Fredrik; Stepinski, Tadeusz [Uppsala Univ. (Sweden). Dept. of Materials Science

    2000-12-01

    This report presents the research in the sixth phase that is concerned with ultrasonic techniques for assessing electron beam (EB) welds in copper canisters. The research has been carried out in three main aspects: (1) comparative inspections of EB welds, (2) EB weld evaluation, and (3) quantitative evaluation of attenuation in copper. Comparative inspections of EB welds in two copper canister blocks have been made by means of ultrasound and radiography. Comparison of the inspected results demonstrate that both techniques complement each other very well. The radiographic technique on the whole gives relatively better spatial resolution but low contrast in radiographs. It can reliably detect voids in EB, but cannot provide information about material structure in the EB weld. Ultrasonic technique provides information about flaw locations and shapes similar to the radiographs. Moreover, it can easily distinguish welded and non-welded zones and be used to study weld's macro- and microstructure. The defects in ultrasonic images often show higher contrast, and some flaw indications may be seen in ultrasonic inspection but not in radiographs. But small flaws are hard to distinguish from grain noise. For EB weld evaluation, first, scattering from EB weld has been investigated using three broadband transducers with different center frequencies. The investigation has shown that more information on scattering and attenuation can be exploited in this case so that the EB welds can be better characterized, and that the best frequency range for characterizing welds is 2 - 5 MHz. Secondly, harmonic imaging (HI) of EB welds have been studied using two different sources of harmonics: (i) transducer harmonics, originating from the high-order resonant modes of transmitters excited by a broadband pulse, and (ii) material harmonics, stemming from the nonlinear distortion of waves propagating in materials. The transducer HI exploits additional information due to transducer harmonics

  14. A new ultrasonic transducer for improved contrast nonlinear imaging

    International Nuclear Information System (INIS)

    Bouakaz, Ayache; Cate, Folkert ten; Jong, Nico de

    2004-01-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  15. Extending RTM Imaging With a Focus on Head Waves

    Science.gov (United States)

    Holicki, Max; Drijkoningen, Guy

    2016-04-01

    Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface

  16. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  17. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    Science.gov (United States)

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  18. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  19. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  20. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.