WorldWideScience

Sample records for ultrasonic wave microbubble

  1. Association schemes perspective of microbubble cluster in ultrasonic fields.

    Science.gov (United States)

    Behnia, S; Yahyavi, M; Habibpourbisafar, R

    2018-06-01

    Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  3. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  4. Sonodynamically-induced cytotoxicity by rose bengal derivative and microbubbles in isolated sarcoma 180 cells

    Science.gov (United States)

    Sugita, Nami; Hosokawa, Mami; Sunaga, Naoki; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko; Umemura, Shin-ichiro

    2015-07-01

    It is known that the combination of ultrasound and sonodynamic sensitizer (SDS) is effective in noninvasive tumor treatment, referred to as sonodynamic therapy (SDT). Microbubbles have been used in ultrasound therapy as well. The purpose of this paper is to clarify the effect of microbubbles on SDT. Sarcoma 180 cells were suspended in air-saturated phosphate-buffered saline and exposed to ultrasound with the SDS rose bengal derivative (RBD) in standing wave mode in the presence and absence of microbubbles [sonazoid (SZ)]. The ultrasonically induced cytotoxicity with RBD and SZ was about 20 times higher than without either, and about 80% of the SZ microbubbles were destructed by ultrasonic exposure in as short as five seconds. Since microbubbles induce significant cytotoxicity even with short duration, low intensity ultrasound, the application of microbubbles in SDT shows promise in anti-tumor treatment.

  5. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  6. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  7. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  8. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    Science.gov (United States)

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  9. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  10. Fundamentals and Applications of Ultrasonic Waves

    CERN Document Server

    Cheeke, J David N

    2012-01-01

    Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati

  11. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  12. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    Science.gov (United States)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  13. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  14. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  15. Absorption and dispersion of ultrasonic waves

    CERN Document Server

    Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A

    1959-01-01

    Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe

  16. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  18. Aggregate formation affects ultrasonic disruption of microalgal cells.

    Science.gov (United States)

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  20. Fundamentals and applications of ultrasonic waves

    CERN Document Server

    Cheeke, J David N

    2002-01-01

    Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th

  1. Ultrasonic treatment for microbiological control of water systems

    International Nuclear Information System (INIS)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E.

    2010-01-01

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  2. Ultrasonic treatment for microbiological control of water systems

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, S.; Pohlmann, O.; Beardwooden, E. S.; Cordemans de Meulenaer, E. [Ashland Hercules Water Technologies, Krefeld (Germany)

    2010-08-15

    A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae; Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm. (authors)

  3. Non-contact feature detection using ultrasonic Lamb waves

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  4. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  5. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  6. Ultrasonically induced dynamics of a contrast agent microbubble between two parallel elastic walls

    International Nuclear Information System (INIS)

    Doinikov, Alexander A; Bouakaz, Ayache

    2013-01-01

    This work presents the derivation of a Rayleigh–Plesset-like equation that describes the radial oscillation of a contrast agent microbubble between two elastic walls, assuming that the bubble is attached to one of them. The obtained equation is then used in numerical simulations in order to establish how the presence of the second wall affects the resonance properties and the scattered echo of the contrast microbubble. The effect of encapsulation on the dynamics of the microbubble is simulated by the Marmottant shell model which is commonly used for the modeling of the dynamics of lipid-shelled contrast agents. Two cases are examined. In the first, the mechanical properties of the walls are set to correspond to OptiCell chambers which are widely used in experiments on microbubble contrast agents. In the second, the properties of the walls correspond to walls of blood vessels. It is shown that the presence of the second wall increases the resonance frequency of the contrast microbubble and decreases the amplitudes of the radial oscillation and the scattered echo of the microbubble as compared to the case that the second wall is absent. It is also shown that the presence of the second wall can change noticeably the intensity of the second harmonic in the spectrum of the scattered pressure. It is demonstrated that, depending on the value of the driving frequency, the presence of the second wall can either increase or decrease the intensity of the second harmonic as compared to its intensity in the case that the second wall is absent. (paper)

  7. Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer

    International Nuclear Information System (INIS)

    Kim, Young H.; Song, Sung J.; Park, Joon S.; Kim, Jae H.; Eom, Heung S.

    2005-01-01

    Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer

  8. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-04-01

    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  9. Failed fuel rod detection method by ultrasonic wave

    International Nuclear Information System (INIS)

    Takamatsu, Masatoshi; Muraoka, Shoichi; Ono, Yukio; Yasojima, Yujiro.

    1990-01-01

    Ultrasonic wave signals sent from an ultrasonic receiving element are supplied to an evaluation circuit by way of a gate. A table for gate opening and closing timings at the detecting position in each of the fuel rods in a fuel assembly is stored in a memory. A fuel rod is placed between an ultrasonic transmitting element and the receiving element to determine the positions of the transmitting element and the receiving element by positional sensors. The opening and closing timings at the positions corresponding to the result of the detection are read out from the table, and the gates are opened and closed by the timing. This can introduce the ultrasonic wave signals transmitted through a control rod always to the evaluation circuit passing through the gate. Accordingly, the state of failure of the fuel rod can be detected accurately. (I.N.)

  10. Long-Range Piping Inspection by Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Joo, Young Sang; Lim, Sa Hoe; Eom, Heung Seop; Kim, Jae Hee

    2005-01-01

    The ultrasonic guided waves are very promising for the long-range inspection of large structures because they can propagate a long distance along the structures such as plates, shells and pipes. The guided wave inspection could be utilized for an on-line monitoring technique when the transmitting and receiving transducers are positioned at a remote point on the structure. The received signal has the information about the integrity of the monitoring area between the transmitting and receiving transducers. On-line monitoring of a pipe line using an ultrasonic guided wave can detect flaws such as corrosion, erosion and fatigue cracking at an early stage and collect useful information on the flaws. However the guided wave inspection is complicated by the dispersive characteristics for guided waves. The phase and group velocities are a function of the frequency-thickness product. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. In this study, we analyze the propagation characteristics of guided wave modes in a small diameter pipe of nuclear power plant and select the suitable mode for a long-range inspection. And experiments will be carried out for the practical application of a long-range inspection in a 26m long pipe by using a high-power ultrasonic inspection system

  11. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    Science.gov (United States)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  12. Longitudinal ultrasonic waves dispersion in bars

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The exhibition intends to review some aspects of the propagation of the longitudinal ultrasonic pulses shortly in bars of traverse section uniform.Aspects they are part of the denominated geometric dispersion of the pulses.This phenomenon It can present like an additional complication in the ultrasonic essay of low frequency of thin pieces in structures and machines but takes place former ex professed in some applications of the wave guides been accustomed to in the prosecution of signs

  13. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  14. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials.

    Science.gov (United States)

    Lee, Mina; Lee, Eun Yeol; Lee, Daeyeon; Park, Bum Jun

    2015-03-21

    Microbubbles with diameters ranging from a few micrometers to tens of micrometers have garnered significant attention in various applications including food processing, water treatment, enhanced oil recovery, surface cleaning, medical purposes, and material preparation fields with versatile functionalities. A variety of techniques have been developed to prepare microbubbles, such as ultrasonication, excimer laser ablation, high shear emulsification, membrane emulsification, an inkjet printing method, electrohydrodynamic atomization, template layer-by-layer deposition, and microfluidics. Generated bubbles should be immediately stabilized via the adsorption of stabilizing materials (e.g., surfactants, lipids, proteins, and solid particles) onto the gas-liquid interface to lower the interfacial tension. Such adsorption of stabilizers prevents coalescence between the microbubbles and also suppresses gas dissolution and resulting disproportionation caused by the presence of the Laplace overpressure across the gas-liquid interface. Herein, we comprehensively review three important topics of microbubbles: stabilization, fabrication, and applications.

  15. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  16. An Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process

    Directory of Open Access Journals (Sweden)

    Behnam Keshavarzi

    2014-01-01

    Full Text Available It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy delivered to the porous medium. In this study, free fall gravity drainage process is investigated in a glass bead porous medium. Kerosene and Dorud crude oil are used as the wetting phases and air is used as the non-wetting phase. A piston-like displacement model with considering constant capillary pressure and applying Corey type approximation for relative permeabilities of both wetting and nonwetting phases is applied. A pressure term is considered to describe the presence of ultrasonic waves and the attenuation factor of ultrasonic waves is calculated by evaluating the value of external pressure applied to enhance the flow using the history matching of the data in the presence and absence of ultrasonic waves. The results introduce the attenuation factor as an important parameter in the process of ultrasonic assisted gravity drainage. The results show that only a low percentage of the ultrasonic energy (5.8% for Dorud crude oil and 3.3% for kerosene is delivered to the flow of the fluid; however, a high increase in oil recovery enhancement (15% for Dorud crude oil and 12% for Kerosene is observed in the experiments. This proves that the ultrasonic waves, even when the contribution is not substantial, can be a significantly efficient method for flow enhancement.

  17. Design and Control of Functional Microbubbles for Medical Applications of Ultrasound

    Science.gov (United States)

    Takagi, Shu; Osaki, Taichi; Ariyoshi, Takuya; Azuma, Takashi; Ichiyanagi, Mitsuhisa; Kinefuchi, Ikuya

    2015-11-01

    Microbubbles are used as a contrast agent for ultrasound diagnosis. It is also expected to be use for the treatment. One of the possible applications is microbubble DDS. For that purpose, microbubbles need to be well-controlled for the generating process and manipulation. In this talk, for the design and control of the functional microbubbles, an experimental study on generation and surface modification of microbubbles are explained. Using a T-junction type microchannel, small bubbles about 5 μm size are successfully generated. For the surface modification, Biotin-coated microbubbles are tried to adhere the Avidin-coated wall. Furthermore, the manipulation of the microbubbles using ultrasound is also discussed. Plane-wave and focused ultrasound is used to manipulate a microbubble and bubble clusters. The experimental results are shown in the presentation. Supported by JSPS KAKENHI Grant Number 15K13865.

  18. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    International Nuclear Information System (INIS)

    Li Ming-Liang; Deng Ming-Xi; Gao Guang-Jian

    2016-01-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. (special topic)

  19. Application of Ultrasonic Waves on Maintaining Freshness of Tilapia Fillet

    Directory of Open Access Journals (Sweden)

    Ruddy Suwandi

    2015-06-01

    Full Text Available ish fillet is one of fisheries products that easily deteriorated; hence handling techniques are needed to maintain the freshness. Ultrasonic wave have been widely applied to some of food products for maintaining freshness through microbial inactivation, however the ultrasonic application to fisheries products has not been reported. The purpose of this study was to analyze the effect of ultrasonic wave on fish freshness. The stages of the study were sample preparation, sonication, freshness parameters examination and histology observation. Ultrasonic wave did not affectthe organoleptic value and the TVB, but affected the pH value and the TPC. The sample in which the TPC value was found significantly different, were further observed after 48 and 96 hours storage. The result showed that the TPC value of sonicated sample for 9 minutes was lower to that of without sonication. Histology analysis showed, however, sonication made the structure of muscle fiber less compact and deformation of myomer was found.

  20. Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array

    Science.gov (United States)

    Hashiba, Kunio; Masuzawa, Hiroshi

    2003-05-01

    The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.

  1. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  2. Structural damage detection using deep learning of ultrasonic guided waves

    Science.gov (United States)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  3. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    Science.gov (United States)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  4. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  5. Signal Processing Effects for Ultrasonic Guided Wave Scanning of Composites

    International Nuclear Information System (INIS)

    Roth, D.J.; Cosgriff, L.M.; Martin, R.E.; Burns, E.A.; Teemer, L.

    2005-01-01

    The goal of this ongoing work is to optimize experimental variables for a guided wave scanning method to obtain the most revealing and accurate images of defect conditions in composite materials. This study focuses on signal processing effects involved in forming guided wave scan images. Signal processing is involved at two basic levels for deriving ultrasonic guided wave scan images. At the primary level, NASA GRC has developed algorithms to extract over 30 parameters from the multimode signal and its power spectral density. At the secondary level, there are many variables for which values must be chosen that affect actual computation of these parameters. In this study, a ceramic matrix composite sample having a delamination is characterized using the ultrasonic guided wave scan method. Energy balance and decay rate parameters of the guided wave at each scan location are calculated to form images. These images are compared with ultrasonic c-scan and thermography images. The effect of the time portion of the waveform processed on image quality is assessed by comparing with images formed using the total waveform acquired

  6. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  7. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  8. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  9. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    International Nuclear Information System (INIS)

    Kostson, E; Fromme, P

    2009-01-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  10. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment

    International Nuclear Information System (INIS)

    Wrigley, D.M.; Llorca, N.G.

    1992-01-01

    Ultrasonic waves induce cavitation which is lethal for many bacteria. When Salmonella typhimurium was suspended in skim milk or brain heart infusion broth and placed in an ultrasonicating water bath, the number of bacteria decreased by 2 to 3 log CFU in a time dependent manner. The killing by ultrasonic waves was enhanced if the menstruum was simultaneously maintained at 50 degrees C. Ultrasonic reduction in S. typhimurium numbers in liquid whole egg ranged from 1-3 log CFU at 50 degrees C. The results indicate that indirect ultrasonic wave treatment is effective in killing Salmonella in some foods

  11. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    Science.gov (United States)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  12. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    Science.gov (United States)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  13. Relaxation behavior of a microbubble under ultrasonic field

    International Nuclear Information System (INIS)

    Kang, Sarng Woo; Kwak, Ho Young

    2000-01-01

    Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound

  14. Use of ultrasonic waves in sub-cooled boiling

    International Nuclear Information System (INIS)

    Bartoli, Carlo; Baffigi, Federica

    2012-01-01

    This work focuses on the use of ultrasounds in heat transfer fields. Under particular conditions, ultrasonic waves induce a convection coefficient increase. This initial research work, indicates that there are some practical applications in the cooling of the latest generation electronic components. In the first part of this paper, some background on this subject is reported. The ultrasound's influence on heat transfer rate has been observed since the 60's: different authors studied the cooling effect due to ultrasonic waves from different heat transfer regimes. The most investigated configuration was a thin platinum wire immersed in water. Later, a bibliographic research on possible practical applications of ultrasounds was carried out. This research focused in particular on the issue for 3D highly integrated electronic components. For these systems the thermal problem is a major challenge, because they cannot exceed critical temperatures, after which they could be damaged irreversibly. On the basis of our experimental results, ultrasounds could represent a valid means to overcome these thermal problems. Finally, the paper presents a series of experiments performed in the Thermal-Fluid- Dynamic Lab at the Energy and Engineering Systems Department of University of Pisa. The experiments provide systematic evidence of ultrasonic waves effects, on free convection heat transfer, from a heated circular cylinder to sub-cooled water, at atmospheric pressure. Many variables involved in the heat transfer rise were tested, for example: the ultrasonic generator's power, the position of the heater inside the ultrasonic tank, the variation of the water sub-cooling degree, as function of the heat flux needed dissipating. The aim of the experiment was to find out the set of optimal conditions, in order to successively apply all the results to real packaging systems, as mentioned before. The maximum increase in the heat transfer coefficient, due to ultrasonic waves, was 57

  15. A study on ultrasonic inspection of long steel pipes using lamb waves

    International Nuclear Information System (INIS)

    Park, Moon Ho

    1996-02-01

    An ultrasonic inspection technique with use of Lamb waves was evaluated to detect and determine the exact location of flaws present in long steel pipes. Since multiple modes of Lamb waves are generated in the inspected pipes due to their dispersive characteristics, selection of a specific Lamb wave mode is very important for inspection of flaws. Experimental studies of flaw detectability with use of each Lamb wave mode, namely, A 0 , S 0 , A 1 , and S 1 mode and their ultrasonic attenuation characteristics were conducted. Experimental results showed that A 0 mode is the most effective for detection and exact determination of the location of flaws. A lucite wedge containing water column that generates the A 0 Lamb wave mode was developed and used in the present inspection study. It was found that the ultrasonic beam divergence after its wrapping around once the inspected pipe interferes with exact determination of the location of flaws and that maximum reflection signals are obtained when the transducer is located axially offset from the straight line with the position of the flaw. The present study showed feasibility of ultrasonic inspection with use of Lamb waves for detection of flaws in several meters long insulated or inaccessible steel pipes

  16. audio-ultrasonic waves by argon gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.

    2010-01-01

    in the present work, wave emission formed by audio-ultrasonic plasma is investigated. the evidence of the magnetic and electric fields presence is performed by experimental technique. comparison between experimental field measurements and several plasma wave methods reveals the plasma audio-ultrasonic radiations mode. this plasma is a symmetrically driven capacitive discharge, consisting of three interactive regions: the electrodes, the sheaths, and the positive column regions . the discharge voltage is up to 900 volts, the discharge current flowing through the plasma attains a value of 360 mA .the frequency of the discharge voltage covers the audio and the ultrasonic range up to 100 khz. the effective plasma working distance has increased to attain the total length of the tube of 40 cm. a non-disturbing method using an external coil is used to measure the electric discharge field in a plane perpendicular to that of the plasma axe tube. this method proves the existence of a current flowing in a direction perpendicular to the plasma axe tube. a system of minute coils sensors proved the existence of two fields in two perpendicular directions . comparison between different observed fields reveals the existence of propagating electromagnetic waves due to the alternating current flowing through the skin plasma tube. the field intensity distribution along the tube draws the discharge current behavior between the two plasma electrodes that can be used to predict the range of the plasma discharge current.

  17. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  18. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  19. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    Science.gov (United States)

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    Science.gov (United States)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  1. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani

    2015-09-01

    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a

  2. [Molecular imaging of thrombus with microbubbles targeted to alphavbeta3-integrin using an agarose flow chamber model].

    Science.gov (United States)

    Hu, Guang-quan; Liu, Jian; Yang, Li; Yan, Yi; Wu, Jue-fei; Xie, Jia-jia; Cai, Jing-jing; Ji, Li-jing; Bin, Jian-ping

    2010-03-01

    To assess the binding ability of microbubbles targeted to alphavbeta3-integrin (MBp) for thrombus-targeted contrast-enhanced ultrasound. Targeted microbubbles were prepared by conjugating the monoclonal antibody against alphavbeta3-integrin to lipid shell of the microbubble via the avidin-biotin bridges. Equivalent isotype control microbubbles (MB) or targeted ultrasound microbubbles (MBp) were randomly added into the flow chamber. After a 30-min incubation with the thrombus fixed in an agarose flow chamber model, the thrombus was washed with a continuous flow of PBS solution (15 cm/s) for 2, 4, 6, 8 and 10 min, followed by thrombus imaging using contrast-enhanced ultrasound and measurement of the video intensity (VI) values of the images. The VI of the thrombus in MBp group was reduced by 28%-66%, while that in control MB group was decreased by 87%-94%, and the VI values of the thrombus group were significantly greater in former group at each of the time points (Pevaluation of the thrombus-binding capability of the targeted microbubble (MBp) by simulating the shear stress in vivo can be helpful for predicting the in vivo effects of ultrasonic molecular imaging using MBp.

  3. Effect of material acoustic anisotropy on the shape of ultrasonic wave beam

    International Nuclear Information System (INIS)

    Iotchev, B.; Pawlowski, Z.

    1976-01-01

    When ultrasonic waves propagate in some types of materials having a structural anisotropy, a distortion of the ultrasonic beam takes place. This phenomenon is the cause of errors in the determination of flaw location and size

  4. Medicago Scutellata Seed Dormancy Breaking by Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Nazari Meisam

    2014-12-01

    Full Text Available In this study dormancy breaking of a hard-coated plant seed, Medicago scutellata, was investigated. The ultrasonic waves effect on the seed germination percentage, germination rate, radicle length and stalk length growth was assessed. Six treatments of waves exposure periods including 0, 1, 3, 5, 7, and 9 minutes were tested under laboratorial conditions. Statistical analyses were done at probability level of 0.01. Results revealed that the ultrasonic waves have a significantly positive effect on the seed dormancy breaking, but there was no linear correlation between the increasing times of exposure with any of the growth features. The best treatment for germination percentage and germination rate was the 7-minute one and the 3-minute one was the best for radicle length growth. Treatments of 3, 5 and 7 minutes had the same effect on stalk length growth and were better than all other treatments. The 9-minute treatment had a negative effect, even lessening the growth of all of the assessed features in comparison with the control treatment.

  5. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  6. Guided waves and ultrasonic characterization of three-dimensional composites

    Science.gov (United States)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  7. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    Science.gov (United States)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  8. Crucial factors and emerging concepts in ultrasound-triggered drug delivery.

    Science.gov (United States)

    Geers, Bart; Dewitte, Heleen; De Smedt, Stefaan C; Lentacker, Ine

    2012-12-28

    Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.

  9. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos

    2010-01-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  10. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    Directory of Open Access Journals (Sweden)

    Amir Rabani

    2016-10-01

    Full Text Available The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  11. Nonlinear ultrasonic imaging with X wave

    Science.gov (United States)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  12. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  13. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  14. Robust microbubble tracking for super resolution imaging in ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer B.; Villagómez Hoyos, Carlos Armando; Brasen, Jens Christian

    2016-01-01

    Currently ultrasound resolution is limited by diffraction to approximately half the wavelength of the sound wave employed. In recent years, super resolution imaging techniques have overcome the diffraction limit through the localization and tracking of a sparse set of microbubbles through...... the vasculature. However, this has only been performed on fixated tissue, limiting its clinical application. This paper proposes a technique for making super resolution images on non-fixated tissue by first compensating for tissue movement and then tracking the individual microbubbles. The experiment is performed...... on the kidney of a anesthetized Sprage-Dawley rat by infusing SonoVue at 0.1× original concentration. The algorithm demonstrated in vivo that the motion compensation was capable of removing the movement caused by the mechanical ventilator. The results shows that microbubbles were localized with a higher...

  15. Evaluation of Ultrasonic Waves System in Repellency of Red Beetle of Flour (Tribolium castaneum Herbs

    Directory of Open Access Journals (Sweden)

    P. Ahmadi Moghaddam

    2016-06-01

    Full Text Available Introduction: Increase of world population, lack of food sources, and need for food security, protection of agricultural products against losses, drought, pests, and diseases, all seems to be necessary more than ever. During the years, grains have been the main food of humans, especially wheat, barley, rice, and corn. So production and storage of these products is important for societies. One of the main problems in this field is protecting the grains in stores until consuming or planting them again. Annually, over hundreds of millions tons of grains are lost by pests present in stores and not observing the scientific principles of storing. Control of insects and pests during storage as a destructive factor of stored products by harmless methods is necessary. There are restrictions in use of chemically control methods against pests in stores. Therefore in recent decades, physically control methods have attracted a lot of attentions. The purpose of using physically control methods is eliminating pests with minimum destructive effect on the environment. These methods directly affect on pests or change their living situations and create an unsafe environment for them. One of the tools that indirectly affect pests is ultrasonic waves. Ultrasonic waves are mechanical waves which can properly penetrate in air and porous areas. These waves are completely safe for the environment and cause no damage to the environment. Ultrasonic waves as new safe strategy in insect control can prepare unsafe areas for annoying insects and agricultural pests. The main characteristics of ultrasonic waves are safe for humans and environment. Materials and Methods: In this study, experiments were carried out to assess the repellent impact of ultrasonic waves on one important storage pest, red flour beetle (Tribolium castaneum Herbs. The system, which produces ultrasonic waves, includes distributor of ultrasonic waves, power supply, central processor, oscillator, display

  16. Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures

    Science.gov (United States)

    Marshall, T.; Challis, R. E.; Tebbutt, J. S.

    2002-05-01

    The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.

  17. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  18. Ultrasonic microbubble contrast agents and the transplant kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kay, D.H., E-mail: davidhkay@doctors.org.u [Department of Radiology, Western Infirmary, Glasgow (United Kingdom); Mazonakis, M.; Geddes, C. [Department of Renal Medicine, Western Infirmary, Glasgow (United Kingdom); Baxter, G. [Department of Radiology, Western Infirmary, Glasgow (United Kingdom)

    2009-11-15

    Aim: To evaluate the potential application of microbubble agents in the immediate post-transplant period, by studying contrast uptake and washout, and to correlate these values with clinical indices, and thus, assess the potential prognostic value of this technique. Materials and methods: The study group comprised 20 consecutive renal transplant patients within 7 days of transplantation. Sonovue was administered as an intravenous bolus with continuous imaging of the transplant kidney at low mechanical index (MI) for 1 min post-injection. These data were analysed off-line by two observers, and time intensity curves (TIC) for the upper, mid, and lower poles constructed. Within each pole, a region of interest (5 mm square) was placed over the cortex, medullary pyramid, and interlobar artery, resulting in a total of nine TIC for each patient. TIC parameters included the arrival time (AT), time to peak (TTP), peak intensity (Max), gradient of the slope (M), and the area under curve (AUC). Results: For both observers there was good agreement for all values measured from the cortex and medulla, but poor interobserver correlation for the vascular values. In addition, there was only agreement for these values in the upper and mid-pole of the transplant with poor agreement for the lower pole values. The mid-pole of the transplant kidney was chosen as the point of measurement for subsequent studies. Mid-pole values were correlated with clinical data and outcome over the 3-month post-transplant period. Renal microbubble perfusion correlated with the transplant estimated glomerular filtration rate (eGFR) at 3 months post-transplantation (p = 0.016). Discussion: In conclusion, this is the first study to confirm reproducibility of the Sonovue TIC data in transplant patients and to quantify regional variation and perfusion. The statistically significant estimates of transplant perfusion may be of future benefit to transplant recipients and potentially utilized as a prognostic tool

  19. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  20. Ultrasonic Guided Wave Method For Crack Detection In Buried Plastic Pipe

    Directory of Open Access Journals (Sweden)

    Wan Hamat Wan Sofian

    2016-01-01

    Full Text Available Plastic pipe are widely used in many fields for the fluid or gaseous product conveyance but basic components of a plastic material made it very sensitive to damage, which requires techniques for detecting damage reliable and efficient. Ultrasonic guided wave is a sensitive method based on propagation of low-frequency excitation in solid structures for damage detection. Ultrasonic guided wave method are performed to investigate the effect of crack to the frequency signal using Fast Fourier Transform (FFT analysis. This paper researched to determine performance of ultrasonic guided wave method in order to detect crack in buried pipeline. It was found that for an uncrack pipe, FFT analysis shows one peak which is the operating frequency by the piezoelectric actuator itself while the FFT analysis for single cracked pipe shows two peak which is the operating frequency by the piezoelectric actuator itself and the resultant frequency from the crack. For multi cracked pipe, the frequency signal shows more than two peak depend the number of crack. The results presented here may facilitate improvements in the accuracy and precision of pipeline crack detection.

  1. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  2. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    Science.gov (United States)

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  4. Perfecting ultrasonic detection of defects by the mastering and use of focused acoustic waves

    International Nuclear Information System (INIS)

    Flambard, C.; Lambert, A.

    1976-01-01

    It is possible to define and to focus an ultrasonic beam, taking into account the shape of test pieces and the kind of ultrasonic waves, when conforming to simple rules of physical and optical geometry [fr

  5. The effect of austenitizing conditions in the ductile iron hardening process on longitudinal ultrasonic wave velocity

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2014-04-01

    Full Text Available The paper presents results of a research on the effect of austenitizing temperature and time adopted in the hardening operation on the ultrasonic wave velocity in ductile iron. It has been found that with increasing austenitizing temperature and with the passage of the austenitizing time, a monotonic decrease of the ultrasonic longitudinal wave velocity value occurred. Implementation of ultrasonic testing of results obtained in the course of the cast iron hardening process both in production and as-cast conditions, requires development of a test methodology that must take into account the influence of base material structure (degree of nodularization, graphite precipitation count on the ultrasound wave velocity.

  6. Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

    International Nuclear Information System (INIS)

    Rose, Joseph L.

    2009-01-01

    Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

  7. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    Science.gov (United States)

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  8. Hydrogen attack evaluation of boiler tube using ultrasonic wave

    International Nuclear Information System (INIS)

    Won, Soon Ho; Hyun, Yang Ki; Lee, Jong O; Cho, Kyung Shik; Lee, Jae Do

    2001-01-01

    The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity, attenuation and backscatter techniques for detecting the presence of hydrogen damage in utility boiler tubes. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, recommendations are that both velocity and attenuation be used to detect hydrogen attack in steels.

  9. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  10. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  11. Direct-current nanogenerator driven by ultrasonic waves.

    Science.gov (United States)

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  12. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    Science.gov (United States)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  13. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  14. Ablation of benign prostatic hyperplasia using microbubble-mediated ultrasound cavitation.

    Science.gov (United States)

    Li, Tao; Liu, Zheng

    2010-04-01

    Benign prostatic hyperplasia (BPH) is a world-wide common disease in elderly male patients. A number of invasive physiotherapies have been used to replace prostatectomy. In this article we report our hypothesis of using microbubbles-mediated ultrasound cavitation effects to ablate prostatic tissues. Microbubble ultrasound contrast agent is widely used contrast media in ultrasonography, yet it is also found to act as cavitation nuclei or enhancer. Once excited by a high peak pressure ultrasound pulse, the mechanical effects, like shock wave and microstream, released from cavitation could produce a series of bioeffects, contributing to sonoporation, microvascular rupture and hematoma. BPH is known to have hyperplastic neovasculature and this make it possible to be disrupted by the physical effects of cavitation under existing microbubbles in circulation. Mechanical ablation of prostatic capillary or small vessels could result in pathological alterations such as thrombosis, micro-circulation blockage, prostatic necrosis and atrophia. Thereupon it could effectively treat BPH by nontraumatic ways. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  16. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  17. Effects of Driving Frequency on Propagation Characteristics of Methane - Air Premixed Flame Influenced by Ultrasonic Standing Wave

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Seo, Hang Seok [Hanwha Corporation, DaeJeon (Korea, Republic of)

    2015-02-15

    An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

  18. Ultrasonic Guided Waves in Piezoelectric Layered Composite with Different Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2011-01-01

    Full Text Available Combining the propagation model of guided waves in a multilayered piezoelectric composite with the interfacial model of rigid, slip, and weak interfaces, the generalized dispersion characteristic equations of guided waves propagating in a piezoelectric layered composite with different interfacial properties are derived. The effects of the slip, weak, and delamination interfaces in different depths on the dispersion properties of the lowest-order mode ultrasonic guided wave are analyzed. The theory would be used to characterize the interfacial properties of piezoelectric layered composite nondestructively.

  19. Ultrasonic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Jun; Kuk, Jeong Han

    2002-02-15

    This book introduces ultrasonic testing, which tells of outline of ultrasonic testing, principle of ultrasonic testing, prosperities of ultrasonic waves, radiographic test and ultrasonic test, basic theory on ultrasonic testing, mode conversion, transmission and diffraction, ultrasonic flaw detection and probe, standard test piece and reference test piece, like KS(JIS) ASME and ASTM, classification and properties of ultrasonic testing, straight beam method, angle beam method, ASME SEC.V.Art.5 ASTMA 388 and KS B 0817 Korean industrial standard.

  20. Change of the spectral sensitivity range of thin-film AlGaAs/GaAs -photoreceivers under influence of ultrasonic waves

    International Nuclear Information System (INIS)

    Zaveryukhina, N. N.; Zaveryukhin, B. N.; Zaveryukhina, E. B.

    2007-01-01

    Full text: The task of controlled variation of the physical properties of semiconductor materials under the action of external factors is an important problem in the physics of semiconductors. As is well known, one such factor is ultrasonic radiation: propagating in a semiconductor crystal, acoustic (ultrasonic) waves change its properties, in particular, the optical characteristics. In the context of solving the above task, it is expedient to continue investigations of the effect of ultrasonic waves on the characteristics of semiconductor devices. This report presents the results of experimental investigations of the influence of ultrasonic waves on the spectral characteristics of photoreceivers based on AlGaAs/GaAs- heterostructures. The study showed that an exposure to ultrasonic radiation leads to a change, depending on the ultrasonic treatment (UST) parameters, in the spectral characteristics of gallium arsenide crystals, the base materials of modern semiconductor photoelectronics. Some results showed evidence of the positive character of changes in the characteristics of A 3 B 5 -based photoreceivers under the action of ultrasonic waves. The effect of ultrasonic waves on the spectral sensitivity of photoreceivers based on AlGaAs/GaAs- heterostructures has been studied. Ultrasonic treatment of a zinc-doped graded-gap Al x Ga 1-x As- film leads to the formation of a surface layer sensitive to electromagnetic radiation in the wavelength range < 0,55m. It is established that this layer is formed as a result of the acoustostimulated inward diffusion of zinc from the surface to the bulk of the graded-gap layer. The observed expansion of the short-wavelength sensitivity range and an increase in the efficiency of nonequilibrium charge carrier collection in AlGaAs/GaAs- photoreceivers are due to improvement of the crystal defect structure and the dopant redistribution under the action of ultrasound. (authors)

  1. Fracture detection in crystalline rock using ultrasonic shear waves

    International Nuclear Information System (INIS)

    Waters, K.H.; Palmer, S.P.; Farrell, W.E.

    1978-12-01

    An ultrasonic shear wave reflection profiling system for use in the detection of water-filled cracks occurring within a crystalline rock mass is being tested in a laboratory environment. Experiments were performed on an irregular tensile crack induced approximately 0.5 m below one circular face of a 1.0-m-dia, 1.8-m-long granite cylinder. Good reflection data were obtained from this irregular crack with the crack either air filled or water filled. Data were collected that suggest a frequency-dependent S/sub H/ wave reflection coefficient for a granite-water interface. Waves that propagate along the free surface of a rock mass (surface waves) can severely hinder the detection of reflected events. Two methods of reducing this surface wave noise were investigated. The first technique uses physical obstructions (such as a slit trench) to scatter the surface waves. The second technique uses a linear array of receivers located on the free surface to cancel waves that are propagating parallel to the array (e.g., surface waves), thus enhancing waves with propagation vectors orthogonal to the linear array (e.g., reflected events). Deconvolution processing was found to be another method useful in surface wave cancellation

  2. Detection of Fatigue Damage by Using Frequency Attenuation of a Laser Ultrasonic Longitudinal Wave

    International Nuclear Information System (INIS)

    Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June

    2006-01-01

    The measurement of fatigue damage in nuclear power plant components is very important to prevent a catastrophic accident and the subsequent severe losses. Specifically, it is preferred to detect at an early stage of the fatigue damage. If the fatigue damage that is in danger of growing into a fracture is accurately detected, an appropriate treatment could be carried out to improve the condition. Although most engineers and designers take precautions against fatigue, some breakdowns of nuclear power plant components still occur due to fatigue damage. It is considered that ultrasound testing technique is the most promising method to detect the fatigue damage in many nondestructive testing methods. Ultrasound testing method has a variety of elastic waves, such as a longitudinal wave, a shear wave, a surface wave and a lamb wave. Also we can use various analysis methods, such as a velocity variation and a signal attenuation. Laser ultrasonic testing has attracted attention as a non-contact testing technique. This system consists of a pulse laser to remotely generate ultrasound and a laser interferometer to remotely measure the surface displacement due to the generated ultrasound. This noncontact testing technique has the following advantages over the conventional piezoelectric transducers. Firstly, the inspection system can be remotely operated for a structure in hostile environments, such as in high radioactivity, high temperatures and narrow spaces. Secondly, we can obtain lots of information from the received ultrasonic waveforms because the laser ultrasonic technique does not require fluid couplant which disturbs the ultrasonic waveforms. Thirdly, laser ultrasound has a wideband spectrum and a high spatial resolution. Therefore, the laser ultrasound provides more accurate information for a testing material and has potential for the detection of fatigue damage in various metals composing a nuclear power plant

  3. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  4. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    Science.gov (United States)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete

  5. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  6. Detection of leak-defective fuel rods using the circumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses

    International Nuclear Information System (INIS)

    Choi, M.S.; Yang, M.S.; Kim, H.C.

    1992-01-01

    A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)

  7. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed

  8. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    Science.gov (United States)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  9. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.

    Science.gov (United States)

    Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  10. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  11. A study on an object transport system using ultrasonic wave excitation

    International Nuclear Information System (INIS)

    Jeong, Sang Hwa; Kim, Gwang Ho; Choi, Suk Bong; Park, Jun Ho; Cha, Kyoung Rae

    2007-01-01

    The development of information and telecommunication industries leads to the development of semiconductor and optical industries. In recent years, the demand of optical components is growing due to the demand of faster network. On the other hand, conventional transport systems are not adequate for transporting precision optical components and semiconductors. Because the conveyor belt can damage precision optical components with contact force and a magnetic system would destroy the inner structure of semiconductor with magnetic field, a new system for transporting optical components and semiconductors is required. One of the alternatives to the existing systems is a transport system using ultrasonic wave excitation since it can transport precision components such as semiconductors and optical components without damage. In this paper, a transport system using 2-mode ultrasonic wave excitation was developed for transporting optical components and semiconductor, and its performance was evaluated. The relationship between transporting characteristics and flexural beam shapes were evaluated

  12. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  13. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  14. Experiments of Long-range Inspection Method in Straight Pipes using Ultrasonic Guided Waves

    International Nuclear Information System (INIS)

    Eom, H. S.; Lim, S. H.; Kim, J. H.; Joo, Y.S.

    2006-02-01

    This report describes experimental results of a long-range inspection method of pipes using ultrasonic guided waves. In chapter 2, theory of guided wave was reviewed. In chapter 3, equipment and procedures which were used in the experiments were described. Detailed specifications of the specimens described in chapter 4. In chapter 5, we analyzed characteristics of guided wave signals according to shapes and sizes of defects and presents results of various signal processing methods

  15. Parametric Study of Defect Detection in Pipes with Bend Using Guided Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Jack Tan Jin

    2016-01-01

    Full Text Available The propagation behaviour of guided ultrasonic waves in a steel pipe with welded bend is studied by finite element simulation. The effectiveness of the longitudinal L(0,2 and torsional T(0,1 guided waves in detecting circumferential cut near the weld is investigated. In order to identify the presence of the defect, the reflection strength due to the cut is studied. The geometry of the weld is constructed based on common V-bevel butt joints and the anisotropy of the 316L stainless steel weld is included to correctly predict the scattering of ultrasonic waves. The finite element model is built to allow high accuracy. Detection of small circumferential cut (up to 60° circumferential extent can be achieved with longitudinal L(0,2 mode. Detection of moderate to large circumferential cut can be achieved by torsional T(0,1 or longitudinal L(0,2 modes, with T(0,1 mode preferred due to its less mode conversion to higher order modes.

  16. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  17. Flow velocity anemometer using ultrasonic waves in underground airways. Choonpa wo mochiita chika fudo fusokukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Imai, T.; Miyakoshi, H. (Akita Univ., Akita (Japan). Mining College); Onozuka, T.; Yasunaga, K. (Hanaoka Mining Co. Ltd., Akita (Japan))

    1993-10-25

    In a facility utilizing the subterranean space at the great depth of about 50m or less from the surface in particular, the airflow velocity monitor utilizing ultrasonic waves is considered as an airflow anemometer suitable for the environment of an underground airway network. In this paper, the results of the application test and the long term demonstration test both conducted at Matsumine Mine and Fukazawa Mine of Hanaoka Mining Industry are mentioned which concern the newly developed airflow velocity monitor utilizing ultrasonic waves. The features and performance of this ultrasonic wave monitor are roughly as follows; since a small ultrasonic wave transceiver can be installed on the surface of the airway wall, the transceiver does not become an obstacle for traffic in the airway and the average airflow velocity in the airflow path can be estimated with accuracy better than that of the anemometer for point measurement. The airflow direction at the underground airway can be detected. The responsiveness to airflow velocity fluctuations is relatively good. The abrupt ups and downs of output due to passing transportation machines can be detected. The measuring circuit has been simplified by the analogue treatment of time measurement. The average airflow velocity at the airflow velocity profile can be estimated through multiplication by 0.93 of the airflow velocity value measured with the monitor. 11 refs., 16 figs., 1 tab.

  18. The influence of ultrasonic waves on molecular structure of high impact polystyrene solutions in different solvents

    International Nuclear Information System (INIS)

    Al-Asaly, S.I.

    1991-01-01

    The aim of the this research is to study some physical properties of polymer solutions of high-impact polystyrene (HIPS) solutions in two different solvents (carbon tetrachloride, xylene) by using ultrasonic technique. Absorption coefficient and velocity of ultrasonic waves through different concentrations of these solutions were measured using ultrasonic pulsed generator at constant frequency (800) KHz. The result implies that there is no chemical interaction between (HIPS) molecules and the solvents. 5 tabs.; 18 figs.; 59 refs

  19. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  20. Preliminary study of flow velocity measurement by means of ultrasonic waves; Estudo preliminar de medicao de vazao atraves de ondas ultra-sonicas

    Energy Technology Data Exchange (ETDEWEB)

    Pio, Ronald Ribeiro; Faccini, Jose Luiz Horacio; Lamy, Carlos Alfredo; Bittencourt, Marcelo S.Q.

    1995-10-01

    Different flow velocities of a water loop were associated with different ultrasonic wave velocities that traveled in the water. It was also observed that water temperature influenced the ultrasonic wave velocity but in an inverse manner to that of the water flow velocity. This experiment showed the possibility of using the ultrasonic system to measure a liquid flow velocity with precision. (author). 6 refs., 8 figs.

  1. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  2. Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves

    International Nuclear Information System (INIS)

    Xiang Yan-Xun; Xuan Fu-Zhen; Deng Ming-Xi; Chen Hu; Chen Ding-Yue

    2012-01-01

    The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the 'increase-decrease' tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals

  3. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  4. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  5. Longitudinal wave ultrasonic inspection of austenitic weldments

    International Nuclear Information System (INIS)

    Gray, B.S.; Hudgell, R.J.; Seed, H.

    1980-01-01

    Successful volumetric inspection of LMFBR primary circuits, and also much of the secondary circuit, is dependent on the availability of satisfactory examination procedures for austenitic welds. Application of conventional ultrasonic techniques is hampered by the anisotropic, textured structure of the weld metal and this paper describes development work on the use of longitudinal wave techniques. In addition to confirming the dominant effects of the weld structure on ultrasound propagation some results are given of studies utilising deliberately induced defects in Manual Metal Arc Welds in 50 mm plate together with preliminary work on the inspection of narrow austenitic welds fabricated by automatic processes. (author)

  6. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    Science.gov (United States)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  7. A New Detecting Technology for External Anticorrosive Coating Defects of Pipelines Based on Ultrasonic Guided Wave

    Science.gov (United States)

    Liu, Shujun; Zuo, Yonggang; Zhang, Zhen

    2018-01-01

    The external anticorrosive coating is the shelter for preventing steel pipelines from Corrosive damage. A number of pipelines face severe corrosive problems for the performance decrease of the coating, especially during long-term services, which usually led to safety accidents. To solve the detection problem about the defect of anticorrosive layer for pipeline, a new detection method for anticorrosive layer of pipelines based on Ultrasonic Guided Wave was proposed in the paper. The results from the investigation show a possibility of using the Ultrasonic Guided Wave method for detecting the damage of pipeline’s External Anticorrosive Coating.

  8. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  9. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  10. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  11. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  12. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  13. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    International Nuclear Information System (INIS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-01-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types

  14. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT

    Directory of Open Access Journals (Sweden)

    Subir Patra

    2018-01-01

    Full Text Available Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM of plate-like structures and nondestructive evaluation (NDE of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  15. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT.

    Science.gov (United States)

    Patra, Subir; Ahmed, Hossain; Banerjee, Sourav

    2018-01-18

    Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  16. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Yücel, Mehmet K.; Legg, Mathew; Kappatos, Vasileios

    2017-01-01

    as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  17. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  18. Utilization of ultrasonic waves (Acheta domesticus) as a biocontrol of mosquito in Malang Agricultural Institute

    Science.gov (United States)

    Tito, Sama'Iradat

    2017-11-01

    Malang Agricultural Institute is a college located in the residential area Griyasanta Malang. The environment around the Institute of Agriculture Malang has moist soil conditions so that mosquito species insects easily reproduce. It is feared that this problem can potentially cause many diseases caused by mosquitoes such as dengue fever, malaria, chikungunya, elephant legs and much more. Nowadays there has been considerable research on ultrasound waves against mosquitoes. Many studies have been done to determine the effect of ultrasonic waves on mosquitoes. Crickets have frequencies between 0.2 kHz-50 kHz so it has the potential to control mosquito pests. Existing studies indicate that mosquito pests can be expelled with the frequency of 18-48 kHz. But this still cannot eliminate mosquito larvae that require a wave of 85 kHz. The effects of ultrasound waves on mosquitoes are (1) erection of the antenna which shows the stress on the nervous system to physical injury and fatigue so as to increase the percentage of fall and the death of mosquitoes. (2) ultrasonic waves can make the antenna function in the mosquito as the receiver of excitatory disturbed. The ultrasonic wave can be defined as a threat so that the mosquito will be expelled. Based on this, a simple study was conducted at the campus of the Institute of Agriculture of Malang by taking 10 different locations with randomly assigned respondents with a maximum of 5 people per location. The results show that the effectiveness of the use of crickets in the morning reached 60% and in the afternoon reached 80% starting on the first day since the installation of crickets. So the use of these crickets in the campus environment of the Institute of Agriculture Malang is quite effective.

  19. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  20. Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.

    2006-07-01

    In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up

  1. A New Scheme for Experimental-Based Modeling of a Traveling Wave Ultrasonic Motor

    DEFF Research Database (Denmark)

    Mojallali, Hamed; Amini, R.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    In this paper, a new method for equivalent circuit modeling of a traveling wave ultrasonic motor is presented. The free stator of the motor is modeled by an equivalent circuit containing complex circuit elements. A systematic approach for identifying the elements of the equivalent circuit...

  2. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    International Nuclear Information System (INIS)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young

    2010-01-01

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  3. Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves

    Science.gov (United States)

    Yamamoto; Kokubo; Sakai; Takagi

    2000-03-01

    We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.

  4. OPTIMATION OF 48 KHZ ULTRASONIC WAVE DOSE FOR THE INACTIVATION OF SALMONELLA TYPHI

    Directory of Open Access Journals (Sweden)

    Dwi May Lestari

    2015-01-01

    Full Text Available This study was aimed to determine the effect of ultrasonic dose exposure which could decrease the viability of Salmonella typhi by using the variation of exposure time (15, 20, 25, and 30 minutes and volume of bacterial suspension (2, 4, 6, and 8 ml at constant power. The sample used was Salmonella typhi. Ultrasonic wave transmitter was a piezoelectric tweeter with 0,191 watts of power and 48 kHz frequency generated by the signal generator. Piezoelectric tweeter was a kind of transducer which converted electrical energy into ultrasonic energy. This research was an experimental laboratory with a completely randomized design. The decrease of bacterial percentage was calculated by using TPC (Total Plate Count. Data were analyzed by using One Way Anova. The results showed that the variation of exposure time and volume of bacterial suspension gave significant effect on the percentage of Salmonella typhi kill. The most optimal of ultrasonic dose exposure to kill Salmonella typhi was 281.87 J/ml with 100% bacterial kill.

  5. Inertial cavitation threshold of nested microbubbles.

    Science.gov (United States)

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ultrasonic wave propagation in powders

    Science.gov (United States)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  7. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.

    Science.gov (United States)

    Lin, Hangyu; Chen, Junfang; Chen, Chuanpin

    2016-09-01

    Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

  8. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    Science.gov (United States)

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  10. Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.

  11. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    Science.gov (United States)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  12. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    Science.gov (United States)

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  14. Specimen ferromagnetism and the behaviour of electromagnetic ultrasonic shear-wave transducers below and above the Curie point

    International Nuclear Information System (INIS)

    Robinson, T.S.

    1981-04-01

    Interest in the potentialities of electromagnetic ultrasonic transducers for non-destructive testing was re-awakened about 1968 and since then a goodly number of articles have appeared concerning transducers design, performance and use. The aim of this report is to fill a gap by describing the relations between theoretical and actual performance of shear-wave transducers, used on magnetic and on non-magnetic specimens: in particular to trace the phenomena occuring as the temperature of a magnetic specimen (mild steel) is raised through the Curie point. At the transmitting transducer generation of ultrasonic wave is almost exclusively by Lorentz forces applied to the skin of the specimen; at the receiver transduction is via Faraday induction. Wave attenuation in mild steel above the curie point hampers the use of shear waves, but does not render unusable there. An anomaly in performance with mild steel specimens just above the Curie temperature is discussed, which necessitates a brief consideration of electromagnetic longitudinal wave transducers, where the need to invoke magnetostriction as a dominant phenomenon is expressed. (Auhtor)

  15. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    Science.gov (United States)

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  16. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    Science.gov (United States)

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  17. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  18. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  19. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.

  20. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Detailed simulation of ultrasonic inspections

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Douglas, S.R.; Dunford, D.

    1997-01-01

    Simulation of ultrasonic inspection of engineering components have been performed at the Chalk River Laboratories of AECL for over 10 years. The computer model, called EWE for Elastic Wave Equations, solves the Elastic Wave Equations using a novel finite difference scheme. It simulates the propagation of an ultrasonic wave from the transducer to a flaw, the scatter of waves from the flaw, and measurement of signals at a receive transducer. Regions of different materials, water and steel for example, can be simulated. In addition, regions with slightly different material properties from the parent material can be investigated. The two major types of output are displays of the ultrasonic waves inside the component and the corresponding A-scans. EPRI and other organizations have used ultrasonic models for: defining acceptable ultrasonic inspection procedures, designing and evaluating inspection techniques, and for quantifying inspection reliability. The EWE model has been applied to the inspection of large pipes in a nuclear plant, gas pipeline welds and steam generator tubes. Most recent work has dealt with the ultrasonic inspection of pressure tubes in CANDU reactors. Pressure tube inspections can reliably detect and size defects; however, there are improvements that can be made. For example, knowing the sharpness of a flaw-tip is crucial for fitness for service assessments. Computer modelling of the ultrasonic inspection of flaws with different root radius has suggested inspection techniques that provide flaw tip radius information. A preliminary investigation of these methods has been made in the laboratory. The basis for the model will be reviewed at the presentation. Then the results of computer simulations will be displayed on a PC using an interactive program that analyzes simulated A-scans. This software tool gives inspection staff direct access to the results of computer simulations. (author)

  2. Study on a particle separator using ultrasonic wave

    International Nuclear Information System (INIS)

    Lee, Young Seop; Kwon, Jae Hwa; Seo, Dae Chul; Yun, Dong Jin

    2005-01-01

    This paper presents the theory, design and evaluation of a smart device for the enhanced separation of particles mixed in fluid. The smart device takes advantage of the ultrasonic standing wave, which was generated by the operation of a piezoceramic PZT patch installed in the smart device. The details of the device design including the electro-acoustical modelling for separation and PZT transducer are described at the first. Based on this design, the separation device was fabricated and evaluated. In the experiments, an optical camera with a zoom lense was used to monitor the position of interested particles within the separation channel layer in the device. The electric impedance of the PZT patch bonded on the separation device was measured. The device shows a strong levitation and separation force against 50m diameter particles mixed with water at the separation channel in the device. Experimental results also showed that the device can work at both heavy and light sand particles mixed with water due to the generated standing wave field in the separation channel.

  3. PIV measurement of a contraction flow using micro-bubble tracer

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Irabu, Kunio; Teruya, Isao; Nitta, Munehiro

    2009-01-01

    Recently, a technique using the micro-bubbles is focused. It was applied to many fields such as purification of rivers and lakes, washing the industrial parts, growth of plants and marine products. The characteristics of micro-bubbles are small size, wide surface area, low terminal velocity, and so on. If this micro-bubble is available as tracer of PIV (Particle Image Velocimetry), environment load would become lower because it doesn't need to discard particle. In this paper, we make a micro-bubble generator with Venturi type mechanism. The generated micro-bubbles are applied to a vertical channel flow with contraction. We validate about traceability of the micro-bubble tracer in comparison with the particle tracer.

  4. Ultrasonically-assisted Thermal Stir Welding System

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  5. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    Science.gov (United States)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  6. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  7. Particle migration and sorting in microbubble streaming flows

    Science.gov (United States)

    Thameem, Raqeeb; Hilgenfeldt, Sascha

    2016-01-01

    Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103

  8. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    Science.gov (United States)

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  9. Preparation and characterization of CNTs/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation.

    Science.gov (United States)

    Yin, Xiaochun; Li, Sai; He, Guangjian; Feng, Yanhong; Wen, Jingsong

    2018-05-01

    In this work, design and development of a new melt mixing method and corresponding mixer for polymer materials were reported. Effects of ultrasonic power and sonication time on the carbon nanotubes (CNTs) filled ultra high molecular weight polyethylene (UHMWPE) nanocomposites were experimentally studied. Transmission Electron Microscopy images showed that homogeneous dispersion of CNTs in intractable UHMWPE matrix is successfully realized due to the synergetic effect of ultrasonic wave and extensional deformation without any aid of other additives or solvents. Differential scanning calorimetry results revealed an increase in crystallinity and crystallization rate due to the finer dispersion of the CNTs in the matrix which act as nucleating point. Composites' complex viscosity and storage modulus decreased sharply at first and then leveled off with the increase of sonication time or the ultrasonic power. The thermal stability and the tensile strength of the CNTs/UHMWPE nanocomposites improved by using this novel mixing method. This is the first method that combined the ultrasonic wave and the extensional deformation in which the elongation rate, sonication time and ultrasonic power can be adjusted simultaneously during mixing. The novel mixer offers several advantages such as environment-friendly, high mixing efficiency, self-cleaning and wide adaptability to materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  11. Microbubble Distillation for Ethanol-Water Separation

    Directory of Open Access Journals (Sweden)

    Atheer Al-yaqoobi

    2016-01-01

    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  12. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  13. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    Science.gov (United States)

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices

    Science.gov (United States)

    Rogers, Priscilla; Xu, Lin; Neild, Adrian

    2012-05-01

    In this study, acoustic waves were used to excite a microbubble for selective particle trapping and sorting. Excitation of the bubble at its volume resonance, as necessary to drive strong fluid microstreaming, resulted in the particles being either selectively attracted to the bubble or continuing to follow the local microstreamlines. The operating principle exploited two acoustic phenomena acting on the particle suspension: the drag force arising from the acoustic microstreaming and the secondary Bjerknes force, i.e. the attractive radiation force produced between an oscillating bubble and a non-buoyant particle. It was also found that standing wave fields within the fluid chamber could be used to globally align bubbles and particles for local particle sorting by the bubble.

  15. Acoustic Studies on Nanodroplets, Microbubbles and Liposomes

    Science.gov (United States)

    Kumar, Krishna Nandan

    Microbubbles and droplets are nanometer to micron size biocompatible particles which are primarily used for drug delivery and contrast imaging. Our aim is to broaden the use of microbubbles from contrast imaging to other applications such as measuring blood pressure. The other goal is to develop in situ contrast agents (phase shift droplets) which can be used for applications such as cancer tumor imaging. Therefore, the focus is on developing and validating the concept using experimental and theoretical methods. Below is an overview of each of the projects performed on droplets and microbubbles. Phase shift droplets vaporizable by acoustic stimulation offer many advantages over microbubbles as contrast agents due to their higher stability and possibility of smaller sizes. In this study, the acoustic droplet vaporization (ADV) threshold of a suspension of PFP droplets (400-3000nm) was acoustically measured as a function of the excitation frequency by examining the scattered signals, fundamental, sub- and second-harmonic. This work presents the experimental methodology to determine ADV threshold. The threshold increases with frequency: 1.25 MPa at 2.25 MHz, 2.0 MPa at 5 MHz and 2.5 MPa at 10 MHz. The scattered response from droplets was also found to match well with that of independently prepared lipid-coated microbubble suspension in magnitude as well as trends above the threshold value. Additionally, we have employed classical nucleation theory (CNT) to investigate the ADV, specifically the threshold value of the peak negative pressure required for vaporization. The theoretical analysis predicts that the ADV threshold increases with increasing surface tension of the droplet core and frequency of excitation, while it decreases with increasing temperature and droplet size. The predictions are in qualitative agreement with experimental observations. A technique to measure the ambient pressure using microbubbles was developed. Here we are presenting the results of an

  16. Computer simulation of ultrasonic testing for aerospace vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, H [National Institute for Materials Science, 1-2-1, Sengen, 305-0047 Tsukuba (Japan); Moriya, S; Masuoka, T [Japan Aerospace Exploration Agency, 1 Koganesawa, Kimigawa, 981-1525 Kakuda (Japan); Takatsubo, J, E-mail: yamawaki.hisashi@nims.go.jp [Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, 305-8568 Tsukuba (Japan)

    2011-01-01

    Non-destructive testing techniques are developed to secure reliability of aerospace vehicles used repetitively. In the case of cracks caused by thermal stress on walls in combustion chambers of liquid-fuel rockets, it is examined by ultrasonic waves visualization technique developed in AIST. The technique is composed with non-contact ultrasonic generation by pulsed-laser scanning, piezoelectric transducer for the ultrasonic detection, and image reconstruction processing. It enables detection of defects by visualization of ultrasonic waves scattered by the defects. In NIMS, the condition of the detection by the visualization is investigated using computer simulation for ultrasonic propagation that has capability of fast 3-D calculation. The simulation technique is based on finite-difference method and two-step elastic wave equations. It is reported about the investigation by the calculation, and shows availability of the simulation for the ultrasonic testing technique of the wall cracks.

  17. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  18. Ultrasonic neuromodulation

    Science.gov (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  19. Warped frequency transform analysis of ultrasonic guided waves in long bones

    Science.gov (United States)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  20. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.

    Science.gov (United States)

    Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2018-05-01

    A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the

  1. Effect of the application of ultrasonic waves on the leaching of nickel ore

    International Nuclear Information System (INIS)

    Reyes Padilla, Osniel; Castellanos Suarez, Jose; Hernandez Martinez, A. Naida; Cortes Miranda, Maritza; Abraham Islas, Osvel; Cardenas Merella, Rodnie; Trujillo, Maria Elena; Nicot, Yarisleydis; Calzada, Lidia; Sanabria de la Torre, Antonio; Echaide Hernandez, Marcos Julio

    2016-01-01

    The use of the ultrasonic waves (OU) he/she has been successful in some fields like: the medicine, in catalysts, treatments of foods and in the chemical procedures of laboratory. The applications of OU in the mining are not very well-known and it is not reported in detail in the literature. In the CIPIMM they have been carried out some test in the laboratory with positive results, for what the studies of this technique are continued. The objective of this work was to evaluate in a preliminary phase the application of ultrasonic waves in the process of lixiviation of nickel minerals. The prepared pulps with the mineral were treated in an ultrasonic bathroom at laboratory level. In the process of atmospheric lixiviation with H 2 SO 4 , the application of OU produced an increment in the nickel breakup between a 2 and 5%. The kinetics of breakup of Co was quicker than that of the nickel. The use of OU doesn't increase in a significant way the breakup of the iron, making that the process is selective. It was observed that the treatment with OU of 60 minutes during the lixiviation of the pulp of mineral lateritic (Serpentine of Nicaro) it was enough. The reported maximum recovery of Neither and Co was: 69% neither and 33% Co. The acid consumption (which represents 70% of the costs of industrial process) was between 11 to 20 t of acid per ton of nickel leached, being lower than the average reported consumption (26 ton acid / ton nickel) in the industrial plant acid pressure leaching in Moa. (Author)

  2. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    Science.gov (United States)

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    Science.gov (United States)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  4. Modeling photothermal and acoustical induced microbubble generation and growth.

    Science.gov (United States)

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.

  5. Ultrasonic guided wave interpretation for structural health inspections

    Science.gov (United States)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  6. Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery.

    Science.gov (United States)

    Feshitan, Jameel A; Vlachos, Fotis; Sirsi, Shashank R; Konofagou, Elisa E; Borden, Mark A

    2012-01-01

    We have synthesized a biomaterial consisting of Gd(III) ions chelated to lipid-coated, size-selected microbubbles for utility in both magnetic resonance and ultrasound imaging. The macrocyclic ligand DOTA-NHS was bound to PE headgroups on the lipid shell of pre-synthesized microbubbles. Gd(III) was then chelated to DOTA on the microbubble shell. The reaction temperature was optimized to increase the rate of Gd(III) chelation while maintaining microbubble stability. ICP-OES analysis of the microbubbles determined a surface density of 7.5 × 10(5) ± 3.0 × 10(5) Gd(III)/μm(2) after chelation at 50 °C. The Gd(III)-bound microbubbles were found to be echogenic in vivo during high-frequency ultrasound imaging of the mouse kidney. The Gd(III)-bound microbubbles also were characterized by magnetic resonance imaging (MRI) at 9.4 T by a spin-echo technique and, surprisingly, both the longitudinal and transverse proton relaxation rates were found to be roughly equal to that of no-Gd(III) control microbubbles and saline. However, the relaxation rates increased significantly, and in a dose-dependent manner, after sonication was used to fragment the Gd(III)-bound microbubbles into non-gas-containing lipid bilayer remnants. The longitudinal (r(1)) and transverse (r(2)) molar relaxivities were 4.0 ± 0.4 and 120 ± 18 mM(-1)s(-1), respectively, based on Gd(III) content. The Gd(III)-bound microbubbles may find application in the measurement of cavitation events during MRI-guided focused ultrasound therapy and to track the biodistribution of shell remnants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    OpenAIRE

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta?, Abbott Nutrition) as a microbubble shell material in order to improve dr...

  8. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  9. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  10. Study of the ultrasonic waves action on the preparation of calcium aluminates cements

    International Nuclear Information System (INIS)

    Lourenco, R.R.; Exposito, C.C.D.; Rodrigues, J.A.

    2009-01-01

    Calcium aluminates cements were prepared through a route that uses the sonochemical process. In this process, calcia and alumina in an aqueous suspension are put under an ultrasonic bath during some time. After that, the water is evaporated and the material is heat treated. In this work, the action of ultrasonic waves were studied on initials molar compositions calcia:alumina of 1:1. It was also verified the influence of the water on the reactivity of initial solids. SEM and X-ray diffraction were used to characterize the obtained materials. In addition, mechanical strength of the products was evaluated through splitting tensile tests. The X-ray diffractograms showed that the presence of the water was enough to form hydrated compounds. However the material subjected to the sonochemical process presented the highest mechanical strength, indicating the potential of this route of synthesis. (author)

  11. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    Science.gov (United States)

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  12. Rail inspection using noncontact laser ultrasonics

    International Nuclear Information System (INIS)

    Kim, Nak Hyeon; Sohn, Hoon; Han, Soon Woo

    2012-01-01

    In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real time rail inspection from a high speed train are discussed

  13. Biosurfactants for Microbubble Preparation and Application

    OpenAIRE

    Takeo Shiina; Zengshe Liu; Mitsutoshi Nakajima; Qingyi Xu

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular im...

  14. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    Science.gov (United States)

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation.

    Science.gov (United States)

    de Saint Victor, M; Carugo, D; Barnsley, L C; Owen, J; Coussios, C-C; Stride, E

    2017-09-05

    Ultrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1-100 mm s -1 (corresponding to Reynolds numbers 0.25-25); (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6-5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m -1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet

  16. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Kim, Dong Ryun

    2012-01-01

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  17. Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hoon [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2012-08-15

    Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

  18. Degradation of acephate using combined ultrasonic and ozonation method

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-07-01

    Full Text Available The degradation of acephate in aqueous solutions was investigated with the ultrasonic and ozonation methods, as well as a combination of both. An experimental facility was designed and operation parameters such as the ultrasonic power, temperature, and gas flow rate were strictly controlled at constant levels. The frequency of the ultrasonic wave was 160 kHz. The ultraviolet-visible (UV-Vis spectroscopic and Raman spectroscopic techniques were used in the experiment. The UV-Vis spectroscopic results show that ultrasonication and ozonation have a synergistic effect in the combined system. The degradation efficiency of acephate increases from 60.6% to 87.6% after the solution is irradiated by a 160 kHz ultrasonic wave for 60 min in the ozonation process, and it is higher with the combined method than the sum of the separated ultrasonic and ozonation methods. Raman spectra studies show that degradation via the combined ultrasonic/ozonation method is more thorough than photocatalysis. The oxidability of nitrogen atoms is promoted under ultrasonic waves. Changes of the inorganic ions and degradation pathway during the degradation process were investigated in this study. Most final products are innocuous to the environment.

  19. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    Science.gov (United States)

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  20. Method of noncontacting ultrasonic process monitoring

    Science.gov (United States)

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  1. Enhanced Removal of Hydrophobic Gas by Aerial Ultrasonic Waves and Two Kinds of Water Mists of Different Particle Sizes

    Science.gov (United States)

    Matsumoto, Keisuke; Miura, Hikaru

    2012-07-01

    Air pollutants can cause health problems, such as bronchitis and cancer, and are now recognized as a social problem. Hence, a method is proposed for the collection and removal of gaseous air pollutants by aerial ultrasonic waves and water mist. Typically, gas removal effects are studied using lemon oil vapor (“lemon gas”), which is a hydrophobic gas. Previous experiments using lemon gas have shown that a removal rate of up to 40% can be achieved in an intense standing wave at 20 kHz, for an amount of water mist of 1.39 cm3/s and an electrical input power of 50 W. Increasing the surface area of the water mist leads to greater removal of hydrophobic gas. In this study, the effects of gas removal are examined by conducting experiments using intense aerial ultrasonic waves to disperse two kinds of water mists, each composed of particles of different sizes: small particles (diameter: ≈3 µm) and conventional large particles (diameter: ≈60 µm).

  2. Effect of impurity inhomogeneity of CdS and CdSe monocrystalline semiconductors on electron absorption of piezoactive ultrasonic waves

    International Nuclear Information System (INIS)

    Ketis, B.P.; Krivka, I.

    1986-01-01

    Relation of observed anomalies (deviations from predictions of theory for homogeneous piezosemiconductor) of electronic absorption coefficient (EAC) of volume, piezoactive acoustic waves (with 15 MHz frequency) in CdS and CdSe hexagonal crystals with electrical heterogeneity is shown experimentally. Results of electron microanalysis of CdS and CdSe piezosemiconductors confirmed their impurity heterogeneity are presented as well as data of investigations into high-frequency conduction and electronic absorption of ultrasonic waves pointing out to volume nature of impurity and electric heterogeneities of monocrystals investigated. Correlation between EAC anomalies and surface density of impurity aggregates (IA) is noted as well as coincidence of impurity and electrical heterogeneities in CdS and CdSe crystals. In CdS crystals the observed anisotropy of high-frequency conduction and volume radioactive ultrasonic waves EAC is attributed to high density and anisotropy of IA space distribution and shape. To explain EAC anomalies, a crystal is simulated with heterogeneous grid of resistances and condensators

  3. A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave

    International Nuclear Information System (INIS)

    Han, Eung Kyo; Lee, Jae Joon; Kim, Jae Yeol

    1988-01-01

    Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible

  4. Microbubble stability and applications in food

    OpenAIRE

    Rovers, T.A.M.

    2015-01-01

    Aeration of food is considered to be a good method to create a texture and mouthfeel of food products that is liked by the consumer. However, traditional foams are not stable for a prolonged time. Microbubbles are air bubbles covered with a shell that slows down disproportionation significantly and arrests coalescence. Protein stabilized microbubbles are seen as a promising new food ingredient for encapsulation, to replace fat, to create new textures, and to improve sensorial properties of fo...

  5. 3D simulation of an audible ultrasonic electrolarynx using difference waves.

    Science.gov (United States)

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper.

  6. Facilitating Intracellular Drug Delivery by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, BHA

    2017-01-01

    The goal of this thesis was to investigate the combination of ultrasound and microbubbles (USMB) for intracellular delivery of (model) drugs in vitro. We have focused on clinically approved drugs, i.e. cisplatin, and microbubbles, i.e. SonoVue™, to facilitate clinical translation. In addition, model

  7. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    Science.gov (United States)

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  8. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  9. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    International Nuclear Information System (INIS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-01-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver

  10. Microbubble Cavitation Imaging

    Science.gov (United States)

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  11. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  12. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  13. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  14. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  15. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  16. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  17. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    Directory of Open Access Journals (Sweden)

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  18. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  19. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kopechek

    Full Text Available RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14. Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9 or control RNA (n = 8 during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3 confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively. Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  20. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  1. Ultrasonic nondestructive materials characterization

    Science.gov (United States)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  2. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Theragnostic ultrasound using microbubbles in the treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hak Jong; Yoon, Young Il; Bae, Yun Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-08-15

    The use of gas-filled microbubbles in perfusion monitoring as intravascular ultrasound contrast agents has recently become more common. Additionally, microbubbles are employed as carriers of pharmaceutical substances or genes. Microbubbles have great potential to improve the delivery of therapeutic materials into cells and to modify vascular permeability, causing increased extravasation of drugs and drug carriers. Prostate cancer is the most common neoplasm in Europe and America, with an incidence twice to three times that of lung and colorectal cancer. Its incidence is still rising in Asian countries, including Japan and Korea. In this review, we present current strategies regarding the synthesis of microbubbles with targeted ligands on their surfaces, with a focus on prostate cancer.

  4. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  5. A new traveling wave ultrasonic motor using thick ring stator with nested PZT excitation.

    Science.gov (United States)

    Chen, Weishan; Shi, Shengjun; Liu, Yingxiang; Li, Pei

    2010-05-01

    To avoid the disadvantages of conventional traveling wave ultrasonic motors--lower efficiency PZT working mode of d(31), fragility of the PZT element under strong excitation, fatigue of the adhesive layer under harsh environmental conditions, and low volume of the PZT material in the stator--a new type of traveling wave ultrasonic motor is presented in this paper. Here we implement the stator by nesting 64 PZT stacks in 64 slots specifically cut in a thick metal ring and 64 block springs nested within another 64 slots to produce preloading on the PZT stacks. In this new design, the d33 mode of the PZT is used to excite the flexural vibrations of the stator, and fragility of the PZT ceramics and fatigue of the adhesive layer are no longer an issue. The working principle, FEM simulation, fabrication, and performance measurements of a prototype motor were demonstrated to validate the proposed ideas. Typical output of the prototype motor is no-load speed of 15 rpm and maximum torque of 7.96 N x m. Further improvement will potentially enhance its features by increasing the accuracy in fabrication and adopting appropriate frictional material into the interface between the stator and the rotor.

  6. Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles

    International Nuclear Information System (INIS)

    Qiu Yuan-Yuan; Zhang Dong; Zheng Hai-Rong

    2011-01-01

    Sub-harmonic contrast imaging promises to improve ultrasound imaging quality by taking advantage of increased contrast to tissue signal. The aim of this study is to examine the hysteretic nonlinearity of sub-harmonic component emitted from microbubbles. Two kinds of microbubble solutions, i.e. Sonovue® and a self-developed contrast agent, are utilized in the study. The hysteretic curves for increasing and decreasing acoustic pressure are theoretically predicted by the Marmottant model and confirmed by measurements. The results reveal that for both microbubble solutions, the development of the rising ramp undergoes three stages, i.e. occurrence, growth and saturation; while hysteresis effect appears in the descending ramp. Sonovue® microbubbles exhibit better sub-harmonic performance over the self-developed UCAs microbubbles due to the difference of elastic properties of the shell. (fundamental areas of phenomenology(including applications))

  7. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  8. Introduction to the ultrasound targeted microbubble destruction technique.

    Science.gov (United States)

    Walton, Chad B; Anderson, Cynthia D; Boulay, Rachel; Shohet, Ralph V

    2011-06-12

    In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.

  9. Internal properties assessment in agar wood trees using ultrasonic velocity measurement

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Mohamad Pauzi Ismail; Mat Rasol Awang; Mohd Fajri Osman; Fakhruzi, M.; Hashim, M.M.

    2010-01-01

    This paper presents the application of ultrasonic velocity in agar wood trees (Aquilaria crassna) with the purpose of evaluating the relationship of the ultrasonic velocity to the variations of internal properties of trees. In this study, three circular cross-sectional discs from the freshly cut tree were selected as samples. First sample with a big hole (decay) in the middle, second sample with internal resinous and the last one is the sample with no defects. The through transmission ultrasonic testing method was carried out using Tico ultrasonic pulse velocity tester which is from Switzerland. Two-dimensional image of internal properties evaluation by an ultrasonic investigation was obtained using Matlab. The results showed that the ultrasonic wave cannot pass through the internal decay or resinous so that the wave went round it and thus ultrasonic wave velocity significantly decreased by increasing the hole or resinous. The difference in color of the image generated by Matlab software based on variation of ultrasonic velocity between the internal decay area and its surrounding area was obvious. Therefore, the properties of internal properties of the three could be detected by ultrasonic line imaging technique. (author)

  10. Phase contrast imaging of preclinical portal vein embolization with CO2 microbubbles.

    Science.gov (United States)

    Tang, Rongbiao; Yan, Fuhua; Yang, Guo Yuan; Chen, Ke Min

    2017-11-01

    Preoperative portal vein embolization (PVE) is employed clinically to avoid postoperative liver insufficiency. Animal models are usually used to study PVE in terms of mechanisms and pathophysiological changes. PVE is formerly monitored by conventional absorption contrast imaging (ACI) with iodine contrast agent. However, the side effects induced by iodine can give rise to animal damage and death. In this study, the feasibility of using phase contrast imaging (PCI) to show PVE using homemade CO 2 microbubbles in living rats has been investigated. CO 2 gas was first formed from the reaction between citric acid and sodium bicarbonate. The CO 2 gas was then encapsulated by egg white to fabricate CO 2 microbubbles. ACI and PCI of CO 2 microbubbles were performed and compared in vitro. An additional increase in contrast was detected in PCI. PCI showed that CO 2 microbubbles gradually dissolved over time, and the remaining CO 2 microbubbles became larger. By PCI, the CO 2 microbubbles were found to have certain stability, suggesting their potential use as embolic agents. CO 2 microbubbles were injected into the main portal trunk to perform PVE in living rats. PCI exploited the differences in the refractive index and facilitated clear visualization of the PVE after the injection of CO 2 microbubbles. Findings from this study suggest that homemade CO 2 microbubbles-based PCI is a novel modality for preclinical PVE research.

  11. Prevalence and clinical significance of pleural microbubbles in computed tomography of thoracic empyema

    International Nuclear Information System (INIS)

    Smolikov, A.; Smolyakov, R.; Riesenberg, K.; Schlaeffer, F.; Borer, A.; Cherniavsky, E.; Gavriel, A.; Gilad, J.

    2006-01-01

    AIM: To determine the prevalence and clinical significance of pleural microbubbles in thoracic empyema. MATERIALS AND METHODS: The charts of 71 consecutive patients with empyema were retrospectively reviewed for relevant demographic, laboratory, microbiological, therapeutic and outcome data. Computed tomography (CT) images were reviewed for various signs of empyema as well as pleural microbubbles. Two patient groups, with and without microbubbles were compared. RESULTS: Mean patient age was 49 years and 72% were males. Microbubbles were detected in 58% of patients. There were no significant differences between patients with and without microbubbles in regard to pleural fluid chemistry. A causative organism was identified in about 75% of cases in both. There was no difference in the rates of pleural thickening and enhancement, increased extra-pleural fat attenuation, air-fluid levels or loculations. Microbubbles were diagnosed after a mean of 7.8 days from admission. Thoracentesis before CT was performed in 90 and 57% of patients with and without microbubbles (p=0.0015), respectively. Patients with microbubbles were more likely to require repeated drainage (65.9 versus 36.7%, p=0.015) and surgical decortication (31.7 versus 6.7%, p=0.011). Mortalities were 9.8 and 6.6% respectively (p=0.53). CONCLUSION: Pleural microbubbles are commonly encountered in CT imaging of empyema but have not been systematically studied to date. Microbubbles may be associated with adverse outcome such as repeated drainage or surgical decortication. The sensitivity and specificity of this finding and its prognostic implications need further assessment

  12. Ultrasonic inspection technology development and search units design examples of practical applications

    CERN Document Server

    Brook, Mark V

    2012-01-01

    "Ultrasonic testing is a relatively new branch of science and industry. The development of ultrasonic testing started in the late 1920s. At the beginning, the fundamentals of this method were borrowed from basic physics, geometrical and wave optics, acoustics and seismology. Later it became clear that some of these theories and calculation methods could not always explain the phenomena observed in many specific cases of ultrasonic testing. Without knowing the nuances of the ultrasonic wave propagation in the test object it is impossible to design effective inspection technique and search units for it realization. This book clarifies the theoretical differences of ultrasonics from the other wave propagation theories presenting both basics of physics in the wave propagation, elementary mathematic and advanced practical applications. Almost every specific technique presented in this book is proofed by actual experimental data and examples of calculations"--

  13. Ultrasonic Generation and Optimization for EMAT

    International Nuclear Information System (INIS)

    Jian, X.; Dixon, Steve; Edwards, Rachel S.

    2005-01-01

    A model for transient ultrasonic wave generation by EMATs in non-magnetic metals is presented. It combines analytical solutions currently available and FEM to calculate ultrasonic bulk and Rayleigh waves generated by the EMAT. Analytical solutions are used as they can be calculated quickly on a standard mathematical computer package. Calculations agree well with the experimental measurement. The model can be used to optimize EMAT design, and has explained some of the results from our previous published measurements

  14. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum; Estudo de uma nova tecnica de medida do tempo de percurso da onda ultra-sonica usando o espectro de frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allan Xavier dos

    2010-07-01

    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  15. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  16. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization

    International Nuclear Information System (INIS)

    Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor

    2015-01-01

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s −1 ) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1–1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s −1 targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2–5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity. (paper)

  17. Size distributions of micro-bubbles generated by a pressurized dissolution method

    Science.gov (United States)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  18. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  19. Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles

    Energy Technology Data Exchange (ETDEWEB)

    Faez, Telli; Renaud, Guillaume; De Jong, Nico [Biomedical Engineering Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam (Netherlands); Defontaine, Marielle; Calle, Samuel, E-mail: t.faez@erasmusmc.nl [INSERM U930-CNRS ERL3106, Universite Francois Rabelais, UFR Medecine, 10 bd Tonnelle, 37000 Tours (France)

    2011-10-07

    In this paper, the influence of a dynamic variation in the ambient pressure on the subharmonic response of phospholipid-coated microbubbles was investigated. The ambient pressure in water was modulated by a 2.5 kHz acoustic wave with a peak amplitude of 15 kPa. We investigated the fundamental and subharmonic emissions at two driving frequencies: 5 and 10 MHz. The modulation of the bubble radius induced by the dynamic variation in the liquid ambient pressure subsequently causes modulations of the scattered acoustic pressure at the fundamental and subharmonic frequencies (half the fundamental frequency). As a first result, we measured that the variation in the ambient pressure of 15 kPa can modulate the subharmonic amplitude up to 10 dB as compared to the static atmospheric pressure condition. As a second result, we noticed that the relative subharmonic amplitude modulation as a function of the LF acoustic pressure was symmetrical for the 5 MHz driving frequency but asymmetric for 10 MHz. In the latter case, the subharmonic amplitude was more enhanced for an ambient overpressure than reduced for an ambient depression of the same amplitude likely due to the buckling of the lipid shell. However, the fundamental amplitude was symmetrically modulated during bubble compression and expansion. Moreover, subharmonic and fundamental amplitude modulations were found to be either in phase or out of phase with the low-frequency acoustic pressure. Numerical simulations showed that this behavior can be obtained depending on the bubbles' diameter. The highest subharmonic amplitude was measured when microbubbles were insonified at 10 MHz. This fact together with the asymmetry observed in the subharmonic modulation suggests that smaller bubbles with a buckling shell are excited at 10 MHz compared to 5 MHz. These results present new potentials for in vitro characterization of contrast agent microbubbles and possibly a new imaging modality.

  20. A novel microbubble construct for intracardiac or intravascular MR manometry: a theoretical study

    International Nuclear Information System (INIS)

    Dharmakumar, Rohan; Plewes, Donald B; Wright, Graham A

    2005-01-01

    It has been demonstrated that gas-filled microbubble contrast agents, based on their volume changes, can serve as pressure probes in an MR field. It was recently reported that such an MR-based pressure measurement with microbubbles at 1.5 T must make use of microbubbles that have a volumetric magnetic susceptibility difference with the blood of at least 34 ppm in SI units. In this work, we show through analytical approximations and numerical simulations that such a microbubble formulation can be achieved by coating typical lipid-shelled microbubbles with particles of high dipole moment. Through finite-element simulations we demonstrate that the effective volumetric magnetic susceptibility of a coated microbubble is dependent on the radius, the shell volume fraction and the magnetic susceptibility of the particulates on the shell. Our calculations suggest that a suitable microbubble formulation which will be MR-sensitive to small pressure changes at 1.5 T must be 2-3 μm in radius and be uniformly coated with single-domain magnetic nanoparticles, such as magnetite, at shell volume fractions below 5%

  1. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Howard M. [Univ. of California, San Diego, CA (United States)

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  2. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  3. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Roge, B.; Fahr, A.; Giguere, J.S.R.; McRae, K.I.

    2002-01-01

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  4. Microbubbles for medical applications

    NARCIS (Netherlands)

    Segers, T.J.; de Jong, N.; Lohse, Detlef; Versluis, Michel; van den Berg, A.; Segerink, L.

    2015-01-01

    Ultrasound contrast agent (UCA) suspensions contain encapsulated microbubbles with radii ranging from 1 to 10 micrometers. The bubbles oscillate to the driving ultrasound pulse generating harmonics of the driving ultrasound frequency. This feature allows for the discrimination of non-linear bubble

  5. Differences and similarity in the dynamic and acoustic properties of gas microbubbles in liquid mercury and water

    International Nuclear Information System (INIS)

    Ida, Masato; Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Futakawa, Masatoshi

    2010-01-01

    Differences and similarities in the dynamics of microbubbles in liquid mercury and water are clarified and summarized in order to evaluate the validity and usefulness of experiments with water as an alternative to experiments with mercury. Pressure-wave induced cavitation in liquid mercury is of particular concern in the high-power pulsed neutron sources working in Japan and the U.S. Toward suppressing the pressure waves and cavitation, injection of gas microbubbles into liquid mercury has been attempted. However, many difficulties arise in mercury experiments mainly because liquid mercury is an opaque liquid. Hence we and collaborators have performed water experiments as an alternative, in conjunction with mercury experiments. In this paper, we discussed how we should use the result with water and how we can make the water experiments meaningful. The non-dimensional numbers of bubbly liquids and bubbles' rise velocity, coalescence frequency, and response to heat input were investigated theoretically for both mercury and water. A suggestion was made to 'see through' bubble distribution in flowing mercury from the result of water study, and a notable similarity was found in the effect of bubbles to absorb thermal expansion of the liquids. (author)

  6. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  7. Investigation of ultrasonic wave influence on magnetic alignment in layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Proglyado, V.V.; Khajdukov, Yu.N.; Gavrilov, V.N.; Raitman, E.; Bottyan, L.; Nagy, D.L.

    2007-01-01

    The layered structure 20x[Fe(20 Angstroem)/Cr(12 Angstroem)]/MgO, excited by ultrasonic wave, was investigated using polarized neutron reflectometry. Magnetic domains vibrations and reduction of their effective size in magnetic field of small strength were observed. In the magnetic field close to saturation the magnetic lattice is formed in the layered structure. Interplane distance of the lattice changes with increase of the magnetic field strength as well as with ultrasonic excitation of the structure

  8. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  9. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  10. Ultrasonic defect detection method for socket welding joint

    International Nuclear Information System (INIS)

    Tominaga, Masaaki; Matsuo, Toshiyuki; Ueno, Akihiro; Watanabe, Kunimichi; Kawamata, Kunio.

    1995-01-01

    The present invention provides a method of detecting defects over a wide range of a socket weld portion of various kinds of pipelines used, for example, in a nuclear power plant. Namely, an inclined probe is disposed to a jig for detecting defects by ultrasonic waves. This is rotated at least by one turn along the peripheral surface of the material to be detected such as weld tube joints. Defects of weld portion of the material can be detected automatically by using ultrasonic waves during the rotation. The inclined probe for detecting defects by ultrasonic waves comprises a transmission portion having a planar transmittance oscillator disposed to a wedge on the transmission side and a receiving portion comprising a planar receiving oscillator disposed to a wedge on the receiving side. With such a constitution, ultrasonic waves are emitted from the transmission portion to the defect detection portion in the welded portion. If a defect is present, defective echo is reflected to the receiving portion disposed ahead of the probe. Since the defective echo changes depending on the height of the detective portion, the estimation of the height of the defect can be facilitated. (I.S.)

  11. Design and characterization of an ultrasonic lamb-wave power delivery system.

    Science.gov (United States)

    Kural, Aleksander; Pullin, Rhys; Holford, Karen; Lees, Jonathan; Naylon, Jack; Paget, Christophe; Featherston, Carol

    2013-06-01

    In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

  12. Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data

    Science.gov (United States)

    Mora, P.; Spies, M.

    2018-05-01

    We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.

  13. Monoclinic BiVO4 micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    International Nuclear Information System (INIS)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong; Chen, Rong

    2013-01-01

    Graphical abstract: Monoclinic BiVO 4 with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: ► BiVO 4 nanostructures were prepared by microwave and ultrasonic wave combined method. ► BiVO 4 nanostructures could be modulated by varying the solvent and pH value. ► Different BiVO 4 nanostructures exhibited different photocatalytic activities. ► The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO 4 ) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO 4 products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO 4 were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO 4 nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO 4 nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  14. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  15. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-04-02

    Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  16. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  17. Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.

    Science.gov (United States)

    Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P

    2012-11-27

    Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    Science.gov (United States)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  19. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments.

    Science.gov (United States)

    Feshitan, Jameel A; Boss, Michael A; Borden, Mark A

    2012-10-30

    Gas-filled microbubbles are potentially useful theranostic agents for magnetic resonance imaging-guided focused ultrasound surgery (MRIgFUS). Previously, MRI at 9.4 T was used to measure the contrast properties of lipid-coated microbubbles with gadolinium (Gd(III)) bound to lipid headgroups, which revealed that the longitudinal molar relaxivity (r(1)) increased after microbubble fragmentation. This behavior was attributed to an increase in water proton exchange with the Gd(III)-bound lipid fragments caused by an increase in the lipid headgroup area that accompanied the lipid shell monolayer-to-bilayer transition. In this article, we explore this mechanism by comparing the changes in r(1) and its transverse counterpart, r(2)*, after the fragmentation of microbubbles consisting of Gd(III) bound to two different locations on the lipid monolayer shell: the phosphatidylethanolamine (PE) lipid headgroup region or the distal region of the poly(ethylene glycol) (PEG) brush. Nuclear magnetic resonance (NMR) at 1.5 T was used to measure the contrast properties of the various microbubble constructs because this is the most common field strength used in clinical MRI. Results for the lipid-headgroup-labeled Gd(III) microbubbles revealed that r(1) increased after microbubble fragmentation, whereas r(2)* was unchanged. An analysis of PEG-labeled Gd(III) microbubbles revealed that both r(1) and r(2)* decreased after microbubble fragmentation. Further analysis revealed that the microbubble gas core enhanced the transverse MR signal (T(2)*) in a concentration-dependent manner but minimally affected the longitudinal (T(1)) signal. These results illustrate a new method for the use of NMR to measure the biomembrane packing structure and suggest that two mechanisms, proton-exchange enhancement by lipid membrane relaxation and magnetic field inhomogeneity imposed by the gas/liquid interface, may be used to detect and differentiate Gd(III)-labeled microbubbles and their cavitation

  20. Ultrasonic viewing device

    International Nuclear Information System (INIS)

    Ito, Juro.

    1979-01-01

    Purpose: To improve the safety of reactor operation by enabling to detect the states and positions of fuel assemblies over a wide range with a set of ultrasonic viewing device comprising a rotatable ultrasonic transmitter-receiver and a reflector mounted with an adjustable angle. Constitution: A driving portion for a ultrasonic viewing device is provided to a rotary plug closing the opening of a reactor vessel and a guide pipe suspending below the coolant level is provided to the driving portion. An ultrasonic transmitter-receiver is provided at the end of the holder tube in the guide pipe. A reflector is provided at the upper position of the reactor core so as to correspond to the ultrasonic transmitter-receiver. The ultrasonic transmitter-receiver, positioned by the driving portion, performs horizontal movement for scanning the entire surface of the top of the reactor core, as well as vertical movement covering the gap between the upper mechanism on the reactor and the reactor core, whereby the confirmation for the separation of the control rod and the detection for the states of the reactor core can be conducted by the reflection waves from the reflector. (Moriyama, K.)

  1. Lamb wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Fromme, P.; Pizzolato, M.; Robyr, J-L; Masserey, B.

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness a...

  2. Development of an ultrasonic process for soil remediation

    International Nuclear Information System (INIS)

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-01-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl 4 - ) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl 4 concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl 4 concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl 4 concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed

  3. Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro

    International Nuclear Information System (INIS)

    Zhang Chun-Bing; Liu Zheng; Guo Xia-Sheng; Zhang Dong

    2011-01-01

    Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei. The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles. To achieve this goal, human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound. The hemolysis level was measured by a flow cytometry, and the cavitation dose was detected by a passive cavitation detecting system. The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure, which might give rise to the enhancement of hemolysis. Besides the experimental observations, the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated. The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation. (classical areas of phenomenology)

  4. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium

    International Nuclear Information System (INIS)

    Kohara, Richard Yuzo Ramida

    2015-01-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  5. Micro-bubble generated by laser irradiation on an individual carbon nanocoil

    International Nuclear Information System (INIS)

    Sun, Yanming; Pan, Lujun; Liu, Yuli; Sun, Tao

    2015-01-01

    Highlights: • We have investigated laser irradiated microbubbles which can be generated at fixed point on surface of an individual carbon nanocoil (CNC) immerged in deionized water. • The microbubble can be operated easily and flexibly. • Based on classical heat and mass transfer theories, the bubble growth data is in good agreement with the simplified model. - Abstract: We have investigated the micro-bubbles generated by laser induction on an individual carbon nanocoil (CNC) immerged in deionized water. The photon energy of the incident focused laser beam is absorbed by CNC and converted to thermal energy, which efficiently vaporizes the surrounding water, and subsequently a micro-bubble is generated at the laser location. The dynamics behavior of bubble generation, including its nucleation, expansion and steady-state, has been studied experimentally and theoretically. We have derived equations to analyze the expansion process of a bubble based on classical heat and mass transfer theories. The conclusion is in good agreement with the experiment. CNC, which acts as a realistic micro-bubble generator, can be operated easily and flexibly

  6. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    Science.gov (United States)

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  7. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    Science.gov (United States)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  8. Ambient pressure sensitivity of microbubbles investigated through a parameter study

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Measurements on microbubbles clearly indicate a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behavior of two microbubbles corresponding to two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20...... found, although the reduction is not completely linear as a function of the ambient pressure....

  9. Directivity measurements in aluminum using a laser ultrasonics system

    International Nuclear Information System (INIS)

    Sakamoto, J M S; Pacheco, G M; Tittmann, B R; Baba, A

    2011-01-01

    A laser ultrasonics system was setup to measure the directivity (angular dependence pattern) of the amplitude of ultrasonic waves generated in aluminum samples. A pulsed Nd:YAG laser operating at 1064 nm optical wavelength, with typical pulse width (FWHM) of 8 ns, and energy per pulse of 450 mJ, was used to generate the ultrasound waves in the samples. The laser detection system was a Mach-Zehnder interferometer with typical noise-limited resolution of 0.25 nm (rms), frequency range from 50 kHz to 20 MHz, and measurement range from -75 nm/V to +75 nm/V. Two different optical spot sizes of the Nd:YAG laser were used to generate waves in the ablation regime: one was focused and the other was unfocused. Using the obtained data, the directivity graphics were drawn and compared with the theoretical curves, showing a good agreement. The experiments showed the directivity as a function of the optical spot size. For a point ultrasonic source (or focused optical spot), the directivity shows that the longitudinal waves present considerable amplitude in all directions. For a larger ultrasonic source (or an unfocused optical spot) the directivity shows that the longitudinal waves are generated with the higher amplitudes inside angles around ±10 0 .

  10. On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production.

    Science.gov (United States)

    Lindsey, Brooks D; Rojas, Juan D; Dayton, Paul A

    2015-06-01

    Acoustic angiography imaging of microbubble contrast agents uses the superharmonic energy produced from excited microbubbles and enables high-contrast, high-resolution imaging. However, the exact mechanism by which broadband harmonic energy is produced is not fully understood. To elucidate the role of microbubble shell fragmentation in superharmonic signal production, simultaneous optical and acoustic measurements were performed on individual microbubbles at transmit frequencies from 1.75 to 3.75 MHz and pressures near the shell fragmentation threshold for microbubbles of varying diameter. High-amplitude, broadband superharmonic signals were produced with shell fragmentation, whereas weaker signals (approximately 25% of peak amplitude) were observed in the presence of shrinking bubbles. Furthermore, when populations of stationary microbubbles were imaged with a dual-frequency ultrasound imaging system, a sharper decline in image intensity with respect to frame number was observed for 1-μm bubbles than for 4-μm bubbles. Finally, in a study of two rodents, increasing frame rate from 4 to 7 Hz resulted in decreases in mean steady-state image intensity of 27% at 1000 kPa and 29% at 1300 kPa. Although the existence of superharmonic signals when bubbles shrink has the potential to prolong the imaging efficacy of microbubbles, parameters such as frame rate and peak pressure must be balanced with expected re-perfusion rate to maintain adequate contrast during in vivo imaging. Copyright © 2015. Published by Elsevier Inc.

  11. Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat

    Directory of Open Access Journals (Sweden)

    Barrefelt A

    2013-08-01

    Full Text Available Åsa Barrefelt,1,2,* Maryam Saghafian,2,* Raoul Kuiper,3 Fei Ye,4 Gabriella Egri,5 Moritz Klickermann,5 Torkel B Brismar,1 Peter Aspelin,1 Mamoun Muhammed,4 Lars Dähne,5 Moustapha Hassan2,6 1Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, and Department of Radiology, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 2Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; 3Karolinska Institute Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 4Division of Functional Materials, Department of Materials and Nano Physics, Royal Institute of Technology, Stockholm, Sweden; 5Surflay Nanotec GmbH, Berlin, Germany; 6Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden *These authors contributed equally to this work Background: In the present investigation, we studied the kinetics and biodistribution of a contrast agent consisting of poly(vinyl alcohol (PVA microbubbles containing superparamagnetic iron oxide (SPION trapped between the PVA layers (SPION microbubbles. Methods: The biological fate of SPION microbubbles was determined in Sprague-Dawley rats after intravenous administration. Biodistribution and elimination of the microbubbles were studied in rats using magnetic resonance imaging for a period of 6 weeks. The rats were sacrificed and perfusion-fixated at different time points. The magnetic resonance imaging results obtained were compared with histopathologic findings in different organs. Results: SPION microbubbles could be detected in the liver using magnetic resonance imaging as early as 10 minutes post injection. The maximum signal was detected between 24 hours and one week post injection. Histopathology showed the presence of clustered SPION microbubbles predominantly in the lungs from

  12. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong seon; Kim, Wi soo [NESS, Daejeon (Korea, Republic of); Han, Byoung sub. [Enesys Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH.

  13. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    International Nuclear Information System (INIS)

    Jeon, Jong seon; Kim, Wi soo; Han, Byoung sub.

    2016-01-01

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH

  14. Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats.

    Science.gov (United States)

    Wible, James H; Galen, Karen P; Wojdyla, Jolette K; Hughes, Michael S; Klibanov, Alexander L; Brandenburger, Gary H

    2002-01-01

    The generation of ultrasound (US) bioeffects using a clinical imaging system is controversial. We tested the hypothesis that the presence of microbubbles in the US field of a medical imager induces biologic effects. Both kidneys of anesthetized rats were insonified for 5 min using a medical imaging system after the administration of microbubbles. One kidney was insonified using a continuous mode (30 Hz) and the opposite kidney was insonified using an intermittent (1 Hz) technique. The microbubbles were exposed to three different transducer frequencies and four transducer output powers. After insonification, the animals were euthanized, the kidneys were removed and their gross appearance scored under "blinded" conditions using a defined scale. After the administration of microbubbles, US imaging of the kidney caused hemorrhage in the renal tissue. The severity and area of hemorrhage increased with an increase in the transducer power and a decrease in the transducer frequency. Intermittent insonification in the presence of microbubbles produced a greater degree of renal hemorrhage than continuous imaging techniques.

  15. Contact-free ultrasonic testing: applications to metrology and NDT

    International Nuclear Information System (INIS)

    Le Brun, A.

    1988-01-01

    In some cases classical ultrasonic testing is impossible because of adverse environment (high temperature, ionizing radiations, etc). Ultrasonic waves are created by laser impact and detected by electromagneto-acoustic transducers or laser interferometry. Association of ultrasonics generation by photoacoustic effect and reception by heterodyne interferometer is promising for the future [fr

  16. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  17. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  18. Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, N.; Picó, R. [Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1, 46730 Grao de Gandia, València (Spain); Romero-García, V. [LUNAM Université, Université du Maine, LAUM UMR CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France); Garcia-Raffi, L. M. [Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain); Staliunas, K. [ICREA, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom, 11, E-08222 Terrassa, Barcelona (Spain)

    2015-11-16

    We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10{sup −4}). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.

  19. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  20. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain

    2016-01-01

    estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized

  1. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents

    International Nuclear Information System (INIS)

    Yang Fang; Li Yixin; Chen Zhongping; Gu Ning; Li Ling; Wu Junru

    2008-01-01

    We have developed a new type of ultrasound (US) contrast agent, consisting of a gas core, a layer of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (SPIO) and an oil in water outermost layer. The newly developed US contrast agent microbubbles have a mean diameter of 760 nm with a polydisperity index (PI) of 0.699. Our in vitro and in vivo experiments have shown that they have the following advantages compared to gas-encapsulated microbbubbles without SPIO inclusion: (1) they provide better contrast for US images; (2) the SPIO-inclusion microbubbles generate a higher backscattering signal; the mean grey scale is 97.9, which is 38.6 higher than that of microbubbles without SPIO; and (3) since SPIO can also serve as a contrast agent of magnetic resonance images (MRI) in vitro, they can be potentially used as contrast agents for double-modality (MRI and US) clinical studies.

  2. Drag reduction mechanism by microbubble injection within a channel boundary layer

    International Nuclear Information System (INIS)

    Ling Zhen; Hassan, Y.

    2005-01-01

    In this study, the drag reduction due to microbubble injection in the boundary layer of a fully developed turbulent channel flow was investigated. Particle Image Velocimetry (PIV) techniques were taken. The effects of the presence of microbubbles in the boundary layer were assessed. A drag reduction of 38.4% was obtained with void fraction of 4.9%. The algorithms of wavelet auto-correlation maps were applied to the PIV velocity field measurement. Modifications in the wavelet auto-correlation maps due to the presence of microbubbles were studied and compared in three-dimensions. By using 3-D plotting routines and the wavelet auto-correlation maps, it can be deduced from this study that the microbubble injection within the boundary layer increases the turbulent energy of the streamwise velocity components of the large scale (large eddy size, low frequency) range and decreases the energy of the small scale (small eddy size, high frequency) range. The wavelet auto-correlation maps of the normal velocities indicate that the microbubble presence decrease the turbulent energy of normal velocity components for both the large scale (large eddy size, low frequency) and the small scale (small eddy size, high frequency) ranges. (authors)

  3. On the possible ultrasonic inspection of micro-bubbles generated by the optical fiber tip

    Directory of Open Access Journals (Sweden)

    V. V. Kazakov

    2016-09-01

    Full Text Available We demonstrate the possibility of detection and monitoring of bubbles emerging near the tip of an optical fiber by means of ultrasonic method. The excitation of bubbles at their resonant frequencies is performed using short ultrasonic pulses having a wide frequency range simultaneously with their modulation by means of a long pulse of a monochromatic frequency. This method allows detection of bubbles of various sizes. Used signal processing method, which allows increased bubble detection accuracy, is proposed for research in environments of biological-like medium which show continuous variations in structure and properties when exposed to optical emission. The method has been demonstrated on model objects: in a liquid and in a biological tissue phantom using various methods of bubble generation (hydrolysis and optical emission. We studied bubble formation by the tip of a fiber of the surgical laser LSP-007/10 “IRE Polus” with a wavelength of 0.97μm coated with a highly absorbing graphite layer.

  4. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  5. Combined application of ultrasonic waves, magnetic fields and optical flow in the rehabilitation of patients and disabled people

    OpenAIRE

    Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W.; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.

    2016-01-01

    SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES» Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L. COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF PATIENTS AND DISABLED PEOPLE Edited by Chukh...

  6. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device.

    Science.gov (United States)

    Dixon, Adam J; Dhanaliwala, Ali H; Chen, Johnny L; Hossack, John A

    2013-07-01

    Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 μm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Lee, Sang Soon [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2003-12-15

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  8. Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

    International Nuclear Information System (INIS)

    Kim, No Hyu; Lee, Sang Soon

    2003-01-01

    This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process

  9. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    Science.gov (United States)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  10. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis.

    Science.gov (United States)

    Kim, Jinwook; Lindsey, Brooks D; Chang, Wei-Yi; Dai, Xuming; Stavas, Joseph M; Dayton, Paul A; Jiang, Xiaoning

    2017-06-14

    Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.

  11. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  12. Ultrasonic tests. Pt. 2

    International Nuclear Information System (INIS)

    Goebbels, K.

    1980-01-01

    After a basic treatment of ultrasonic wave propagation, of the state-of-the-art methods and the technical background in the preceeding part, advanced ultrasonic NDT techniques are presented here. The discussion of new development includes - manipulation systems, - automation of ultrasonic testing methods, documentation and evaluation. In the middle of this part the main problem areas will be discussed: - detection of defects (e.g. in coarse grained structures and welds), - classification of defects (e.g. discrimination between crack-like and volumetric faults), - sizing of defects. Research in the field of acoustical holography, development of probes and phased arrays, electromagnetic acoustic transducers and signal enhancement are the main contributing parts to the report. (orig./RW)

  13. 2-D FEM Simulation of Propagation and Radiation of Leaky Lamb Wave in a Plate-Type Ultrasonic Waveguide Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Jin; Kim, Hoe-Woong; Joo, Young-Sang; Kim, Sung-Kyun; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted for the radiation beam profile analysis. The FEM simulations are performed with three different excitation frequencies and the radiation beam profiles obtained from FEM simulations are compared with those obtained from corresponding experiments. This paper deals with the 2-D FEM simulation of the propagation and radiation of the leaky Lamb wave in and from a plate-type ultrasonic waveguide sensor conducted to analyze the radiation beam profiles. The radiation beam profile results obtained from the FEM simulation show good agreement with the ones obtained from the experiment. This result will be utilized to improve the performance of the developed waveguide sensor. The quality of the visualized image is mainly affected by beam profile characteristics of the leaky wave radiated from the waveguide sensor. However, the relationships between the radiation beam profile and many parameters of the waveguide sensor are not fully revealed yet. Therefore, further parametric studies are necessary to improve the performance of the sensor and the finite element method (FEM) is one of the most effective tools for the parametric study.

  14. Fabrication and application of a magnetic-targeting and controlled-release system using ST68-based microbubbles

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Wang Jinrui; Zhao Bo; Qu Enze; Yue Xiuli; Dai Zhifei

    2013-01-01

    Objective: To manufacture magnetic microbubbles with dual-response to ultrasound and magnetic fields. Methods: Microbubbles of ultrasound contrast agent (ST68) based on a surfactant were prepared by the acoustic cavitation method. Fe 3 O 4 magnetic nanoparticles with negative charge were synthesized using the polyol procedure. Magnetic microbubbles were generated by depositing polyethylenimine and Fe 3 O 4 magnetic nanoparticles alternately onto the microbubbles using the layer-by-layer self-assembly. In vitro ultrasonography was performed on a silicone tube with/without magnetic microbubbles (3 × 10 8 /ml) by a self-made device to observe the movement of magnetic microbubbles under the effects of magnetic field. In vivo imaging was performed on the kidney of New Zealand rabbits before and after the injection of magnetic microbubbles. Results: The Fe 3 O 4 nanoparticles carried a stable negative charge of (-24.6 ± 6.7) mV and more than 98% of the particles were less than 8 μm in diameter, meeting the size requirement of an ultrasound contrast agent for intravenous administration. There was no echoic signal in the silicone tube before injection of magnetic microbubbles, but there were strong echoic signals after injection. After applying a magnetic field, the magnetic microbubbles moved along the direction of the magnetic flux. In vivo ultrasound imaging could not visualize the kidney before injection of magnetic microbubbles, but could remarkably visualize the kidney after injection. Conclusions: The magnetic microbubbles exhibit favorable magnetic targeting and ultrasound contrast enhancement characteristics. Such properties may serve as the foundation to study their potential for simultaneous diagnosis and treatment in the future. (authors)

  15. Microbubble Cavitation Imaging

    OpenAIRE

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2013-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information.

  16. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  17. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Fundamentals of Medical Ultrasonics

    CERN Document Server

    Postema, Michiel

    2011-01-01

    This book sets out the physical and engineering principles of acoustics and ultrasound as used for medical applications. It covers the basics of linear acoustics, wave propagation, non-linear acoustics, acoustic properties of tissue, transducer components, and ultrasonic imaging modes, as well as the most common diagnostic and therapeutic applications. It offers students and professionals in medical physics and engineering a detailed overview of the technical aspects of medical ultrasonic imaging, whilst serving as a reference for clinical and research staff.

  19. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    Science.gov (United States)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  20. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  1. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  2. Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid encapsulated microbubbles

    Science.gov (United States)

    Helfield, Brandon; Black, John J.; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (~4 cP). In this study, ultra-high speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25 – 2 MPa). The propensity for individual microbubble (n=220) fragmentation was shown to significantly decrease in 4 cP fluid as compared to 1 cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4 cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g. ultraharmonic) with increasing pressure as compared to 1 cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676

  3. Monoclinic BiVO{sub 4} micro-/nanostructures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafang; Li, Guangfang; Yang, Xiaohui; Yang, Hao; Lu, Zhong [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073 (China); Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Lumo Road, Wuhan 430074 (China)

    2013-02-25

    Graphical abstract: Monoclinic BiVO{sub 4} with different sizes and morphologies were synthesized by a facile microwave and ultrasonic wave combined technique for the first time and exhibited different optical properties and visible-light-driven photocatalytic efficiency. Highlights: Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures were prepared by microwave and ultrasonic wave combined method. Black-Right-Pointing-Pointer BiVO{sub 4} nanostructures could be modulated by varying the solvent and pH value. Black-Right-Pointing-Pointer Different BiVO{sub 4} nanostructures exhibited different photocatalytic activities. Black-Right-Pointing-Pointer The photocatalytic performance was influenced by the band gap, phase and size. - Abstract: Monoclinic bismuth vanadate (m-BiVO{sub 4}) micro-/nanostructures with different sizes and morphologies were successfully prepared via a facile and rapid microwave and ultrasonic wave combined technique. The obtained BiVO{sub 4} products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and UV-vis diffuse reflection spectroscopy (DRS). It was found that the solvent and pH value had a significant influence on morphology, size and crystalline structure of the product. Nut-like, potato-like and broccoli-like monoclinic BiVO{sub 4} were fabricated in different solvents. The crystal phase could be modulated by varying the pH value of reaction system. The photocatalytic activities of the products were also evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The result revealed that the photocatalytic activities of BiVO{sub 4} nanostructures were closely related to the crystalline phase, band gap and particle size. Monoclinic BiVO{sub 4} nanoparticles with small crystal size and large band gap exhibited remarkable photocatalytic performance.

  4. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  5. Ultrasound Contrast Agent Microbubble Dynamics

    NARCIS (Netherlands)

    Overvelde, M.L.J.; Vos, Henk; de Jong, N.; Versluis, Michel; Paradossi, Gaio; Pellegretti, Paolo; Trucco, Andrea

    2010-01-01

    Ultrasound contrast agents are traditionally used in ultrasound-assisted organ perfusion imaging. Recently the use of coated microbubbles has been proposed for molecular imaging applications where the bubbles are covered with a layer of targeting ligands to bind specifically to their target cells.

  6. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    Lucas, Carla S.; Baroni, Douglas B.; Costa, Antonio M.L.M.; Bittencourt, Marcelo S.Q.

    2009-01-01

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  7. Development and Application of an Ultrasonic Gas Flowmeter

    International Nuclear Information System (INIS)

    Hwang, Won Ho; Jeong, Hee Don; Park, Sang Gug; Jhang, Kyung Young

    2002-01-01

    This paper describes the development and the field application of the ultrasonic gas flowmeter for accurate measurement of the volumetric flow rate of gases in a harsh environmental conditions in iron and steel making company. This ultrasonic flowmeter is especially suited for measuring LDG, COG, BFG gases produced in iron and steel making process. This is a transit time type ultrasonic flowmeter. We have developed the transmitting and receiving algorithm of ultrasonic wave and the ultrasonic signal processing algorithm to develope a transit time type ultrasonic flowmeter. We have evaluated the performance of ultrasonic flowmeter by the calibration system with Venturi type standard flowmeter. We has confirmed its reliability by extensive field tests for a year in POSCO, iron and steel making company. Now we have developed the commercial model of ultrasonic flowmeter and applied to the POSCO gas line

  8. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2011-03-01

    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  9. Microbubble acoustic signatures: bubble deflation

    NARCIS (Netherlands)

    ten Brinke, G.A.; Slump, Cornelis H.

    2006-01-01

    Ultrasound Contrast Agents (UCAs) are used in medical imaging to enhance the visibility of structures, especially blood vessels and the liver. An example application of UCAs is the detection and classification of tumors. The most common UCA consist of microbubbles, which have pronounced non-linear

  10. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    Science.gov (United States)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  11. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  12. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis.

    Science.gov (United States)

    Huang, Cuiyuan; Zhang, Hong; Bai, Ruidan

    2017-07-01

    Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble-mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  13. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  14. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  15. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  16. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  17. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    Science.gov (United States)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  18. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  19. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

    Science.gov (United States)

    Helfield, Brandon; Black, John J; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S

    2016-03-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Fabrication and imaging study of ultrasound/fluorescence bi-modal contrast agent based on polymeric microbubbles

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Wang Jinrui; Zhao Bo; Qu Enze; Yue Xiuli; Dai Zhifei

    2013-01-01

    Objective: To fabricate an ultrasound/fluorescence bi-modal contrast agent by encapsulating fluorescent quantum dots into polymeric ultrasound contrast agent microbubbles. Methods: Polylactic acid (PLA, 500 mg), (1R)-(+)-camphor (50 mg) and CdSe/ZnS quantum dots (0.5 ml, 2.3 μmol/L)were dissolved or dispersed in dichloromethane (10 ml) to form in an organic phase. Ammonium carbonate solution and poly (vinyl alcohol) solution were employed as the internal and external water phase, respectively. The fluorescent microbubbles were generated using double emulsion solvent evaporation and lyophilization methods. The morphology and illumination were characterized by scanning electron microscopy (SEM) and fluorescence spectrophotometry. Synchronized contrast-enhanced ultrasound and fluorescence imaging was acquired by injecting fluorescent microbubbles into the silicone tube coupled to a self-made ultrasound/fluorescence imaging device. Ultrasound/fluorescence bi-modal in vivo imaging was acquired on the kidney of New Zealand rabbits and suckling mice. Results: The fluorescent microbubbles were hollow spheres with an averaged diameter of (1.62 ± 1.47) μm. More than 99% of these microbubbles were less than 8 μm in diameter, which met the size criteria for ultrasound contrast agents. The fluorescence emission peak of the microbubbles appeared at 632 nm, indicating that good luminescence properties of quantum dots were maintained. In vitro ultrasound/fluorescence imaging showed no echoic signal when the silicone tube was filled with saline, but there was a strong echo when filled with fluorescent microbubbles. The liquid column with fluorescent microbubbles emitted red luminescence under ultraviolet irradiation. The kidney of the rabbit was remarkably enhanced after the administration of fluorescent microbubbles. Bright fluorescence could be observed at the injection site of the suckling mice via subcutaneous injection. Conclusions: A bi-modal but single contrast agent

  1. Quality control of disinfection in ultrasonic baths

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, H. [Technical University Dresden (Germany). Faculty of Mechanical Engineering; Jatzwauk, L. [University Hospital of the Technical University Dresden (Germany). Abt. Krankenhaushygiene

    2002-07-01

    Numerous investigations under laboratory conditions confirmed the microbicidal efficacy of ultrasonication. Morphological destruction was shown on bacteria and fungi as well as on different virus species. Ultrasonic treatment seems to increase the effect of different antibiotics and disinfectants. Reasons for this synergism are largely unknown and uninvestigated, but the active principle seems to bee the dispersing effect of ultrasonication in combination with the destruction of cell wall or cell membrane. Unfortunately no validation of test conditions exists for most of these investigations, regarding intensity and frequency of ultrasonic waves, temperature of liquid medium and measurement of cavitation which is an essential part of physical and chemical effects in ultrasonic baths. In contrast to most laboratory experiments sound density of ultrasound for treatment of medical instruments is below 1 W/cm{sup 2} because instruments will be destroyed under stronger ultrasonic conditions. The frequency is below 50 KHz. This paper describes bactericidal and fungicidal effects of low- intensity-ultrasonication and its synergistical support to chemical disinfection. (orig.)

  2. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  3. Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of αvβ3-Expressing Cells

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2004-04-01

    Full Text Available The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise.

  4. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    Choi, Yong Ju; Kim, Young-Jin; Nam, Kyoungphile

    2009-01-01

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  5. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  6. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  7. Development of a finite element model for ultrasonic NDT phenomena

    International Nuclear Information System (INIS)

    Lord, W.

    1988-01-01

    Ultrasonic NDT techniques are used extensively in the nuclear industry for the detection and characterization of defects in critical structural components such as pressure vessels and piping. The feasibility of applying finite element analysis methods to the problem of modeling ultrasound/defect interactions has been shown. Considerable work remains to be done before a full three-dimensional model is available for the prediction of realistic ultrasonic transducer signals from sound wave interaction with arbitrarily shaped defects in highly attenuative and anisotropic materials. However, a two-dimensional code has been developed that is capable of predicting finite aperture ultrasonic transducer signals associated with wave propagations in isotropic materials and that shows good qualitative agreement with corresponding experimental observations. This 2-D code has now been extended to include anisotropic materials such as centrifugally cast stainless steel (CCSS), a necessary step in the development of the full 3-D code. Results are given showing the capability of the 2-D code to predict the anomalous wave behavior normally associated with ultrasonic wave propagation in anisotropic materials. In addition, a new signal processing technique is discussed, based on the Wigner transformation, that shows promise for application to centrifugally cast stainless steel NDT problems

  8. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations....... The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... is not completely linear as a function of the ambient pressure....

  9. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.

    Science.gov (United States)

    Bolborici, V; Dawson, F P; Pugh, M C

    2014-03-01

    Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis.

    Science.gov (United States)

    McGinnis, Daniel F; Kirillin, Georgiy; Tang, Kam W; Flury, Sabine; Bodmer, Pascal; Engelhardt, Christof; Casper, Peter; Grossart, Hans-Peter

    2015-01-20

    Exchange of the greenhouse gases carbon dioxide (CO2) and methane (CH4) across inland water surfaces is an important component of the terrestrial carbon (C) balance. We investigated the fluxes of these two gases across the surface of oligotrophic Lake Stechlin using a floating chamber approach. The normalized gas transfer rate for CH4 (k600,CH4) was on average 2.5 times higher than that for CO2 (k600,CO2) and consequently higher than Fickian transport. Because of its low solubility relative to CO2, the enhanced CH4 flux is possibly explained by the presence of microbubbles in the lake’s surface layer. These microbubbles may originate from atmospheric bubble entrainment or gas supersaturation (i.e., O2) or both. Irrespective of the source, we determined that an average of 145 L m(–2) d(–1) of gas is required to exit the surface layer via microbubbles to produce the observed elevated k600,CH4. As k600 values are used to estimate CH4 pathways in aquatic systems, the presence of microbubbles could alter the resulting CH4 and perhaps C balances. These microbubbles will also affect the surface fluxes of other sparingly soluble gases in inland waters, including O2 and N2.

  11. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.

    Science.gov (United States)

    Li, Zhe; Jia, Pinggang; Fang, Guocheng; Liang, Hao; Liang, Ting; Liu, Wenyi; Xiong, Jijun

    2018-03-10

    Using arc discharge technology, we fabricated a fiber-optic Fabry-Perot (FP) pressure sensor with a very low temperature coefficient based on a microbubble that can be applied in a high-temperature environment. The thin-walled microbubble can be fabricated by heating the gas-pressurized hollow silica tube (HST) using a commercial fusion splicer. Then, the well-cut single-mode fiber (SMF) was inserted into the microbubble, and they were fused together. Thus, the FP cavity can be formed between the end of the SMF and the inner surface of the microbubble. The diameter of the microbubble can be up to 360 μm with the thickness of the wall being approximately 0.5 μm. Experimental results show that such a sensor has a linear sensitivity of approximately -6.382  nm/MPa, -5.912  nm/MPa at 20°C, and 600°C within the pressure range of 1 MPa. Due to the thermal expansion coefficient of the SMF being slightly larger than that of silica, we can fuse the SMF and the HST with different lengths; thus, the sensor has a very low temperature coefficient of approximately 0.17 pm/°C.

  12. Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging

    Science.gov (United States)

    Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit

    2018-02-01

    Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.

  13. Ewe: a computer model for ultrasonic inspection

    International Nuclear Information System (INIS)

    Douglas, S.R.; Chaplin, K.R.

    1991-11-01

    The computer program EWE simulates the propagation of elastic waves in solids and liquids. It has been applied to ultrasonic testing to study the echoes generated by cracks and other types of defects. A discussion of the elastic wave equations is given, including the first-order formulation, shear and compression waves, surface waves and boundaries, numerical method of solution, models for cracks and slot defects, input wave generation, returning echo construction, and general computer issues

  14. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    Science.gov (United States)

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  16. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong; Zhang, Tao; Wang, Qunhui; Tian, Yanli; Shi, Zhining; Smale, Nicholas; Xu, Banghua

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  17. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting

    International Nuclear Information System (INIS)

    Tan, Haihui; Xu, Guanghua; Tao, Tangfei; Zhang, Sicong; Luo, Ailing

    2016-01-01

    Highlights: • Optimal defrosting mode for finned-tube evaporator is S0 mode. • Stress excited by ultrasonic vibration is larger than ice adhesion stress 0.4 MPa. • Frequency matching can enhance the defrosting efficiency effectively. • Ultrasonic vibration can effectively suppressing the frost deposition. • Thermal comfort and heat transfer efficiency enhanced with ultrasonic vibration. - Abstract: Frosting deposited on the outdoor coil of air-source heat pump (ASHP) units deteriorates the operational performance and energy efficiency. Therefore, periodic defrosting is necessary. First, the dispersion curves for the propagation mechanism of an ultrasonic guided wave in the evaporator are determined through numerical calculation. In addition, the shear stress and vibration characteristics under ultrasonic excitation are analysed using finite element method (FEM). Finally, the vibration amplitude and defrosting performance of ultrasonic vibration is analysed. The numerical calculation results indicate that three guided wave modes exist in the evaporator, including both A0 and S0 modes of the Lamb wave and SH0 mode of the SH wave, with the optimal defrosting mode being S0 of the Lamb wave. The FEM results show that the vibrational shapes of S0 mode and longitudinal mode clearly exists in the fin and tube, the torsional and flexural modes also exist in the tube, and the FEM results are consistent with the numerical calculation results. The impedance analysis and laser vibrometer results indicate that the resonance frequency shifting, electro-acoustic converting efficiency and vibration energy decrease is due to increasing external load. The ultrasonic defrosting experimental results indicate that ultrasonic vibration can suppress frost deposit on the fin surface.

  18. Development of microbubble contrast agents for high frequency ultrasound microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Se Jung; Kim, Eun A; Park, Sung Hoon; Lee, Hye Jin; Jun, Hong Young; Byun, Seung Jae; Yoon, Kwon Ha [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2007-05-15

    To develop optimal microbubble contrast agents (MBCAs) for performing ultrasound microscopy when examining small animals. We prepared three types of MBCAs. First, a mixture of three parts of 40% dextran and one part of 5% human serum albumin were sonicated with perfluorocarbon (PFC) (MB{sub 1}-D40A5P). Second, three parts of 40% dextran and one part of 1% human serum albumin were sonicated with PFC (MB{sub 2}-D40A1P). Third, all parts of 1% bovine serum albumin were sonicated with PFC (MB{sub 3}-A1P). We measured the microbubbles' sizes and concentrations with using image analysis software. The acoustic properties of the microbubbles were assessed both in vitro and in vivo. The majority of the MB{sub 1}-D40A5Ps had a diameter of 2-5 {mu} m, the mean diameter of the MB{sub 2}-D40A1Ps was 2.5 {mu} m, and the mean diameter of the MB{sub 3}-A1Ps was less than 2.0 {mu} m. Among the microbubbles, the MB{sub 1}-D40A5Ps and MB{sub 2}-D40A1Ps showed increased echogenicity in the abdominal vessels, but the duration of their contrast effect was less than 30 sec. On the contrary, the MB3-A1Ps exhibited strong enhancement in the vessels and their duration was greater than 120 sec. A microbubble contrast agent consisting of all parts of 1% serum albumin sonicated with PFC is an effective contrast agent for ultrasound microscopy.

  19. Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC

    NARCIS (Netherlands)

    van Rooij, T.; Luan, Y.; Renaud, G.; van der Steen, A.F.W.; Versluis, Michel; de Jong, N.; Kooiman, K.

    2015-01-01

    For successful in vivo contrast-enhanced ultrasound imaging (CEUS) and ultrasound molecular imaging, detailed knowledge of stability and acoustical properties of the microbubbles is essential. Here, we compare these aspects of lipid-coated microbubbles that have either

  20. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  1. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    Science.gov (United States)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  2. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  3. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  4. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  5. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  6. Microbubble responses to a similar mechanical index with different real-time perfusion imaging techniques.

    Science.gov (United States)

    Porter, Thomas R; Oberdorfer, Joseph; Rafter, Patrick; Lof, John; Xie, Feng

    2003-08-01

    The purpose of this study was to determine differences in contrast enhancement and microbubble destruction rates with current commercially available low-mechanical index (MI) real-time perfusion imaging modalities. A tissue-mimicking phantom was developed that had vessels at 3 cm (near field) and 9 cm (far field) from a real-time transducer. Perfluorocarbon-exposed sonicated dextrose albumin microbubbles (PESDA) were injected proximal to a mixing chamber, and then passed through these vessels while the region was insonified with either pulses of alternating polarity with pulse inversion Doppler (PID) or pulses of alternating amplitude by power modulation (PM) at MIs of 0.1, 0.2 and 0.3. Effluent microbubble concentration, contrast intensity and the slope of digital contrast intensity vs. time were measured. Our results demonstrated that microbubble destruction already occurs with PID at an MI of 0.1. Contrast intensity seen with PID was less than with PM. Therefore, differences in contrast enhancement and microbubble destruction rates occur at a similar MI setting when using different real-time pulse sequence schemes.

  7. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  8. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  9. Magnetic stents retain nanoparticle-bound antirestenotic drugs transported by lipid microbubbles.

    Science.gov (United States)

    Räthel, T; Mannell, H; Pircher, J; Gleich, B; Pohl, U; Krötz, F

    2012-05-01

    Coating coronary stents with antirestenotic drugs revolutionized interventional cardiology. We developed a system for post-hoc drug delivery to uncoated stents. We coupled rapamycin or a chemically similar fluorescent dye to superparamagnetic nanoparticles. The antiproliferative activity of rapamycin coupled to nanoparticles was confirmed in vitro in primary porcine vascular cells. The particles were then incorporated into lipid based microbubbles. Commercially available stents were made magnetizable by nickel plating and used to induce strong field gradients in order to capture magnetic microbubbles from flowing liquids when placed in an external magnetic field. Nanoparticle bound Rapamycin dose dependently inhibited cell proliferation in vitro. Magnetic microcbubbles carrying coated nanoparticles were caught by magnets placed external to a flow-through tube. Plating commercial stents with nickel resulted in increased deposition at stent struts and allowed for widely increased distance of external magnets. Deposition depended on circulation time and velocity and distance of magnets. Deposited microbubbles were destroyed by ultrasound and delivered their cargo to targeted sites. Drugs can be incorporated into nanoparticle loaded microbubbles and thus be delivered to magnetizable stents from circulating fluids by applying external magnetic fields. This technology could allow for post-hoc drug coating of already implanted vascular stents.

  10. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  11. Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis

    Science.gov (United States)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2018-02-01

    Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.

  12. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    Science.gov (United States)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  13. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T; Thoraval, M.-J.; Takehara, K.; Etoh, T.G.

    2012-01-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  14. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-10-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  15. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    Science.gov (United States)

    2012-06-01

    of thiolated poly(acrylic acid) with fluorescein attached. (b) Bright field image of large bubbles stabilized by polymer and phospholipid...Page 1 of 6 AD_________________ Award Number: W81XWH-11-1-0215 TITLE:   Multifunctional Polymer Microbubbles for Advanced... Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b. GRANT NUMBER W81XWH-11-1-0215   5c. PROGRAM ELEMENT NUMBER 6

  16. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    Science.gov (United States)

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015

  17. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  18. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    Science.gov (United States)

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  19. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  20. Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection

    International Nuclear Information System (INIS)

    Ling Zhen; Yassin Hassan

    2006-01-01

    In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)

  1. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation.

    Science.gov (United States)

    Chen, Shuwen; Xu, Jingcheng; Liu, Jia; Wei, Qiaoling; Li, Guangming; Huang, Xiangfeng

    2014-01-01

    Eutrophication of raw water results in outbreaks of algae, which hinders conventional water treatment. In this study, high density microbubble layers combined with micro-flocculation was adopted to remove algae from urban landscape water, and the effects of pressure, hydraulic loading, microbubble layer height and flocculation dosage on the removal efficiency for algae were studied. The greatest removal efficiency for algae, chemical oxygen demand, nitrogen and phosphorus was obtained at 0.42 MPa with hydraulic loading at 5 m/h and a flocculation dosage of 4 mg/L using a microbubble layer with a height of 130 cm. Moreover, the size, clearance distance and concentration of microbubbles were found to be affected by pressure and the height of the microbubble layer. Based on the study, this method was an alternative for algae separation from urban landscape water and water purification.

  2. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  3. C-Scan Performance Test of Under-Sodium ultrasonic Waveguide Sensor in Sodium

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2011-01-01

    Reactor core and in-vessel structures of a sodium-cooled fast (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, the ultrasonic waveguide sensor module was designed and manufactured, and the feasibility study of the ultrasonic waveguide sensor was performed. To improve the performance of the ultrasonic waveguide sensor in the under-sodium application, a new concept of ultrasonic waveguide sensors with a Be coated SS304 plate is suggested for the effective generation of a leaky wave in liquid sodium and the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor. In this study, the C-scan performance of the under-sodium ultrasonic waveguide sensor in sodium has been investigated by the experimental test in sodium. The under-sodium ultrasonic waveguide sensor and the sodium test facility with a glove box system and a sodium tank are designed and manufactured to carry out the performance test of under-sodium ultrasonic waveguide sensor in sodium environment condition

  4. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo.

    Science.gov (United States)

    Browning, Richard J; Mulvana, Helen; Tang, Meng-Xing; Hajnal, Jo V; Wells, Dominic J; Eckersley, Robert J

    2012-06-01

    Ultrasound and microbubble mediated gene transfection has great potential for site-selective, safe gene delivery. Albumin-based microbubbles have shown the greatest transfection efficiency but have not been optimised specifically for this purpose. Additionally, few studies have highlighted desirable properties for transfection specific microbubbles. In this article, microbubbles were made with 2% or 5% (w/v) albumin and 20% or 40% (w/v) dextrose solutions, yielding four distinct bubble types. These were acoustically characterised and their efficiency in transfecting a luciferase plasmid (pGL4.13) into female, CD1 mice myocardia was measured. For either albumin concentration, increasing the dextrose concentration increased scattering, attenuation and resistance to ultrasound, resulting in significantly increased transfection. A significant interaction was noted between albumin and dextrose; 2% albumin bubbles made with 20% dextrose showed the least transfection but the most transfection with 40% dextrose. This trend was seen for both nonlinear scattering and attenuation behaviour but not for resistance to ultrasound or total scatter. We have determined that the attenuation behaviour is an important microbubble characteristic for effective gene transfection using ultrasound. Microbubble behaviour can also be simply controlled by altering the initial ingredients used during manufacture. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  6. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  7. Parametric study of guided ultrasonic wave propagation in carbon-fiber composite plates

    Science.gov (United States)

    Ibrahim, N. A.; Kamarudin, M. A.; Jurimi, M. H. F. M.; Murat, B. I. S.

    2018-03-01

    The aim of this work is to study the guided ultrasonic wave (GUW) behaviour in composite plates using 3D Finite Element Analysis (FEA). Two types of composite models are chosen: plates with and without damage. The damage is modelled as a circular-shaped delamination inside the plate, representing one kind of low-velocity impact damage. Parameters such as excitation frequency, monitoring directivity, plate thickness, delamination size and shape were used to investigate the influence of these parameters on the GUW propagation and scattering behaviour. The models were constructed and coded in Matlab platform, while the simulations were performed in ABAQUS Explicit. From the results, the received signals have shown a strong dependency on the parameters. Significant scattering from the models with delamination were also observed, which indicates the possibility of using GUW for rapid non-destructive monitoring of composite panels and structures.

  8. Detection of layup errors in prepreg laminates using shear ultrasonic waves

    Science.gov (United States)

    Hsu, David K.; Fischer, Brent A.

    1996-11-01

    The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.

  9. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  10. Microbubble smallness limited by conjunctions

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Roč. 231, September (2013), s. 526-536 ISSN 1385-8947 R&D Projects: GA ČR GA13-23046S Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : bubbles * microbubbles * bubble coalescence Subject RIV: BK - Fluid Dynamics Impact factor: 4.058, year: 2013 http://dx.doi.org/10.1016/j.cej.2013.06.051

  11. Ultrasonic wave propagation in real-life austenitic V-butt welds: Numerical modeling and validation

    International Nuclear Information System (INIS)

    Hannemann, R.; Marklein, R.; Langenberg, K. J.; Schurig, C.; Koehler, B.; Walte, F.

    2000-01-01

    In nondestructive testing the evaluation of austenitic steel welds with ultrasound is a commonly used method. But, since the wave propagation, scattering, and diffraction effects in such complicated media are hardly understood, computer simulations are very helpful to increase the knowledge of the physical phenomena in such samples. A particularly powerful numerical time domain modeling tool is the well established Elastodynamic Finite Integration Technique (EFIT). Recently, EFIT has been extended to simulate elastic waves in inhomogeneous anisotropic media. In this paper, the step-by-step evaluation of ultrasonic wave propagation in inhomogeneous anisotropic media will be described and the results will be validated against measurements. As a simplified model, a V-butt weld with perpendicular grain structure is investigated. The coincidence between the B Scans of the simulation and the measurement of an idealized V-butt weld is remarkable and even effects predicted by theory and simulation - the appearance of two coupled quasi-SV waves - can be observed. As a next step, an improved and more realistic model of the grain orientation inside the V-butt weld is introduced. This model has been implemented in the EFIT code and has been validated against measurements. For this verification, measured and simulated B-Scans for a real-life V-butt weld have been compared and a significant coincidence has been observed. Furthermore, the main pulses in the B-Scans are interpreted by analyzing the snapshot-movies of the wavefronts

  12. Pulsed focused ultrasound combined with micro-bubble contrast agent can open the blood-brain barrier of gliblastoma patients and improve the efficacy of Temozolomide treatment

    Directory of Open Access Journals (Sweden)

    Qian DONG

    2017-06-01

    Full Text Available Objective This research examined the effect of microbubble contrast agent plus ultrasound on the permeability of blood-brain barrier, and explored whether it affects the efficacy of chemotherapeutic drugs on cerebral glioblastoma. Methods Wistar rats were divided into three groups to find the optimal concentration of ultrasonic contrast agent. To identify the best ultrasound mode that affected the permeability of blood brain barrier, we employed transmission electron microscopy for study of brain ultrastructure. Western blotting was used to detect the tight junction protein claudin-5. Evans blue staining of brain tissues was utilized to identify the best ultrasonic contrast agent concentration and mode. Rat glioma cells (line 9L were injected into Wistar rats. After temozolomide chemotherapy, the tumor size was measured and the tumor marker GFAP in serum was detected by ELISA. Results The best contrast agent concentration which increases permeability of BBB in rats was found to be 1ml/kg and the best ultrasound mode was intermittently- triggered pulses lasting for 10min (with interval was set at 400ms. More Evans blue passed the blood-brain barrier in ultrasonic cavitation effect group than in control group (P<0.05. After temozolomide chemotherapy, more tumor marker GFAP was detected in ultrasonic cavitation effect group than in control group (P<0.05. Conclusion The permeability of BBB was increased and more temozolomide went through BBB when the rats were subjected to intermittently triggered ultrasonic pulses and were injected at contrast agent at 1ml/kg, which could help to achieve better therapeutic efficacy for glioblastoma. DOI: 10.11855/j.issn.0577-7402.2017.05.06

  13. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  14. Ultrasonic level, temperature, and density sensor

    International Nuclear Information System (INIS)

    Rogers, S.C.; Miller, G.N.

    1982-01-01

    A sensor has been developed to measure simultaneously the level, temperature, and density of the fluid in which it is immersed. The sensor is a thin, rectangular stainless steel ribbon which acts as a waveguide and is housed in a perforated tube. The waveguide is coupled to a section of magnetostrictive magnetic-coil transducers. These tranducers are excited in an alternating sequence to interrogate the sensor with both torsional ultrasonic waves, utilizing the Wiedemann effect, and extensional ultrasonic waves, using the Joule effect. The measured torsional wave transit time is a function of the density, level, and temperature of the fluid surrounding the waveguide. The measured extensional wave transit time is a function of the temperature of the waveguide only. The sensor is divided into zones by the introduction of reflecting surfaces at measured intervals along its length. Consequently, the transit times from each reflecting surface can be analyzed to yield a temperature profile and a density profile along the length of the sensor. Improvements in acoustic wave dampener and pressure seal designs enhance the compatibility of the probe with high-temperature, high-radiation, water-steam environments and increase the likelihood of survival in such environments. Utilization of a microcomputer to automate data sampling and processing has resulted in improved resolution of the sensor

  15. Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging

    Science.gov (United States)

    Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar

    2018-04-01

    Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.

  16. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  17. Ultrasonic surface measurements at the Porta Nigra, Trier, and the Neptungrotte, Park Sanssouci Potsdam

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Fehr, Moritz; Köhn, Daniel

    2015-04-01

    Ultrasonic measurements along profiles at the surface of an object are well suited to characterize non-destructively weathering of natural stone near the surface. Ultrasonic waveforms of surface measurements in the frequency range between 10 kHz and 300 kHz are often dominated by the Rayleigh wave - a surface wave that is mainly sensitive to the velocity and attenuation of S-waves in the upper 0.3 cm to 3 cm. The frequency dependence of the Rayleigh wave velocity may be used to analyze variations of the material properties with depth. Applications of ultrasonic surface measurements are shown for two buildings: the Roman Porta Nigra in Trier from the 3rd century AD and the Neptungrotte at Park Sanssouci in Potsdam designed by von Knobelsdorff in the 18th century. Both buildings belong to the world cultural heritage and restorations are planned for the near future. It is interesting to compare measurements at these two buildings because they show the applicability of ultrasonic surface measurements to different natural stones. The Porta Nigra is made of local sandstones whereas the facades of the Neptungrotte are made of Carrara and Kauffunger marble. 71 and 46 surface measurements have been carried out, respectively. At both buildings, Rayleigh-wave group velocities show huge variations. At the Porta Nigra they vary between ca. 0.4 km/s and 1.8 km/s and at the Neptungrotte between ca. 0.7 km/s and 3.0 km/s pointing to alterations in the Rayleigh- and S-wave velocities of more than 50 % due to weathering. Note that velocities of elastic waves may increase e.g. because of the formation of black crusts like at the Porta Nigra or they may be strongly reduced due to weathering. The accuracy of the ultrasonic surface measurements, its reproducibility, and the influence of varying water saturation are discussed. Options for the analysis of ultrasonic waveforms are presented ranging from dispersion analysis to full waveform inversions for one-dimensional and two

  18. Microbubble stability and applications in food

    NARCIS (Netherlands)

    Rovers, T.A.M.

    2015-01-01

    Aeration of food is considered to be a good method to create a texture and mouthfeel of food products that is liked by the consumer. However, traditional foams are not stable for a prolonged time. Microbubbles are air bubbles covered with a shell that slows down disproportionation significantly

  19. Characterization of Aging Behavior in M250 Grade Maraging Steel Using Ultrasonic Measurements

    Science.gov (United States)

    Rajkumar, K. V.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-02-01

    Ultrasonic measurements have been carried out in M250 grade maraging steel specimens subjected to solution annealing at 1093 K for 1 hour followed by aging at 755 K for various durations in the range of 0.25 to 100 hours. The influence of aging on microstructure, room temperature hardness, and ultrasonic parameters (longitudinal and shear wave velocities and Poisson’s ratio) has been studied in order to derive correlations among these parameters in aged M250 maraging steel. Both hardness and ultrasonic velocities exhibit almost similar behaviors with aging time. They increase with the precipitation of intermetallic phases, Ni3Ti and Fe2Mo, and decrease with the reversion of martensite to austenite. Ultrasonic shear wave velocity is found to be more influenced by the precipitation of intermetallic phases, whereas longitudinal wave velocity is influenced more by the reversion of martensite to austenite. Unlike hardness and ultrasonic velocities, the Poisson’s ratio exhibits a monotonous decrease with aging time and, hence, can be used for unambiguous monitoring of the aging process in M250 maraging steel. Further, none of the parameters, i.e., hardness, ultrasonic velocity, or Poisson’s ratio, alone could identify the initiation of the reversion of austenite at early stage; however, the same could be identified from the correlation between ultrasonic velocity and Poisson’s ratio, indicating the advantage of using the multiparametric approach for comprehensive characterization of complex aging behavior in M250 grade maraging steel.

  20. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    Science.gov (United States)

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic

  1. Comparison of microbubble presence in the right heart during mechanochemical and radiofrequency ablation for varicose veins.

    Science.gov (United States)

    Moon, K H; Dharmarajah, B; Bootun, R; Lim, C S; Lane, Tra; Moore, H M; Sritharan, K; Davies, A H

    2017-07-01

    Objective Mechanochemical ablation is a novel technique for ablation of varicose veins utilising a rotating catheter and liquid sclerosant. Mechanochemical ablation and radiofrequency ablation have no reported neurological side-effect but the rotating mechanism of mechanochemical ablation may produce microbubbles. Air emboli have been implicated as a cause of cerebrovascular events during ultrasound-guided foam sclerotherapy and microbubbles in the heart during ultrasound-guided foam sclerotherapy have been demonstrated. This study investigated the presence of microbubbles in the right heart during varicose vein ablation by mechanochemical abaltion and radiofrequency abaltion. Methods Patients undergoing great saphenous vein ablation by mechanochemical abaltion or radiofrequency ablation were recruited. During the ablative procedure, the presence of microbubbles was assessed using transthoracic echocardiogram. Offline blinded image quantification was performed using International Consensus Criteria grading guidelines. Results From 32 recruited patients, 28 data sets were analysed. Eleven underwent mechanochemical abaltion and 17 underwent radiofrequency abaltion. There were no neurological complications. In total, 39% (11/28) of patients had grade 1 or 2 microbubbles detected. Thirty-six percent (4/11) of mechanochemical abaltion patients and 29% (5/17) of radiofrequency ablation patients had microbubbles with no significant difference between the groups ( p=0.8065). Conclusion A comparable prevalence of microbubbles between mechanochemical abaltion and radiofrequency ablation both of which are lower than that previously reported for ultrasound-guided foam sclerotherapy suggests that mechanochemical abaltion may not confer the same risk of neurological events as ultrasound-guided foam sclerotherapy for treatment of varicose veins.

  2. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  3. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  4. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  5. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  6. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Science.gov (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. The potential of high resolution ultrasonic in-situ methods

    International Nuclear Information System (INIS)

    Schuster, K.

    2010-01-01

    source and receivers and on the applied frequencies. With the help of identified phases in the ultrasonic wave field, their travel times and appropriate amplitudes kinematic and dynamic parameters are derived routinely. The most important are: P-wave velocity (longitudinal or compressional wave velocity (vp)), Sv-wave velocity (vertical polarised transversal or shear wave velocity (vsv), absolute amplitudes of first arrival (P-wave) and Sv-wave onset phases, normalised amplitudes of first arrival (P-wave) and Sv-wave onset phases, apparent frequency of first arrival phases (P-wave) and Sv-wave onset phases, in-situ dynamic elastic Poisson's ratio, in-situ dynamic elastic Young's modulus and in-situ dynamic elastic modulus of rigidity. The main qualities which were detected and/or characterised with the help of these parameters in the past years are: - Degree and extent of EDZ/EdZ. - Long and short term development of EDZ/EdZ (application of repetition measurements). - Borehole disturbed Zones (BdZ). - Small scale rock heterogeneities. - Seismic anisotropy. - Stress orientation via rotational interval velocity measurements. - Determination of dynamic elastic in-situ parameters. Results from repetition measurements showed the high reliability of the methods. Furthermore, in several experiments the ultrasonic methods were combined with other geotechnical or geophysical methods, for example permeability and geo-electrical methods. Results from a seismic anisotropy study at the Mont Terri Rock Laboratory are shown. Two sub-horizontal 2 m long boreholes with a distance of 1 m were used. Nearly 600 different ray paths were analysed. Depending on the angles of the ray paths (60 deg. -300 deg. and 120 deg. -240 deg. ) the P-wave velocities vary between 2600 and 3100 m/s. Lower velocities are supposed to be influenced by the EDZ. (authors)

  8. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  9. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

    Science.gov (United States)

    Thomas, Alec N; Borden, Mark A

    2017-11-28

    The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.

  10. Automated ultrasonic shop inspection of reactor pressure vessel forgings

    International Nuclear Information System (INIS)

    Farley, J.M.; Dikstra, B.J.; Hanstock, D.J.; Pople, C.H.

    1986-01-01

    Automated ultrasonic shop inspection utilizing a computer-controlled system is being applied to each of the forgings for the reactor pressure vessel of the proposed Sizewell B PWR power station. Procedures which utilize a combination of high sensitivity shear wave pulse echo, 0 degrees and 70 degrees angled longitudinal waves, tandem and through-thickness arrays have been developed to provide comprehensive coverage and an overall reliability of inspection comparable to the best achieved in UKAEA defect detection trials and in PISC II. This paper describes the ultrasonic techniques, the automated system (its design, commissioning and testing), validation and the progress of the inspections

  11. Cross correlation coefficients of turbulent boundary layer with micro-bubble injection

    Energy Technology Data Exchange (ETDEWEB)

    Claudia del Carmen Gutierrez-Torres [LABINTHAP-SEPI-ESIME, Instituto Politecnico Nacional, U.P. Adolfo Lopez Mateos Edif. 5 3er. Piso, Col Lindavista, C.P. 07738, Mexico, D. F. (Mexico); Yassin A Hassan; Jose Alfredo Jimenez-Bernal [Texas A and M University, College Station, Tx. 77843-3133 (United States)

    2005-07-01

    Full text of publication follows: Injection of micro-bubbles within the turbulent boundary layer has been investigated for a several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not fully understood yet. Experiments in a channel flow for single phase (water) and two phase (water and micro-bubbles) flows under different void fraction conditions are reported for a Reynolds number of 5128. Particle Image Velocimetry technique is used to measure instantaneous velocity fields. Consequently the cross-correlation coefficient Ruv can be calculated along the stream-wise direction for various different y{sup +} positions and along the normal direction for the fluctuating components of the velocity obtained from the instantaneous velocity fields. The experiments were carried out in a rectangular acrylic channel, whose dimensions are 4.8 m length, 20.6 cm wide and 5.6 cm height. Water was driven trough the channel by gravity from a tank, which was located 3 m above the channel. Then, water was conducted to a lower tank; from which water was pumped to the upper thank forming a closed loop. Upper tank's water level was kept constant through the tests to ensure constant flow rate trough the channel. The velocity field in the x-y plane was obtained by particle image velocimetry (PIV) at 3.15 m downstream from the channel inlet. A Nd:YAG laser with a wavelength of 532 nm (green light) and power of 350 mJ per pulse is utilized. The particles used for seeding have a diameter that goes from 6-9 {mu}m with a specific gravity almost identical to water s specific gravity. The laser light scattered from the seeding particles was recorded using a CCD Kodak Megaplus camera, Model ES 1.0, 1008 x 1018 pixels. The viewing area was 1.28 cm{sup 2} and was located close to the channel wall. The system recorded 30 velocity fields per second. Each velocity field was obtained from a pair of consecutive images capturing the second image of

  12. Cross correlation coefficients of turbulent boundary layer with micro-bubble injection

    International Nuclear Information System (INIS)

    Claudia del Carmen Gutierrez-Torres; Yassin A Hassan; Jose Alfredo Jimenez-Bernal

    2005-01-01

    Full text of publication follows: Injection of micro-bubbles within the turbulent boundary layer has been investigated for a several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not fully understood yet. Experiments in a channel flow for single phase (water) and two phase (water and micro-bubbles) flows under different void fraction conditions are reported for a Reynolds number of 5128. Particle Image Velocimetry technique is used to measure instantaneous velocity fields. Consequently the cross-correlation coefficient Ruv can be calculated along the stream-wise direction for various different y + positions and along the normal direction for the fluctuating components of the velocity obtained from the instantaneous velocity fields. The experiments were carried out in a rectangular acrylic channel, whose dimensions are 4.8 m length, 20.6 cm wide and 5.6 cm height. Water was driven trough the channel by gravity from a tank, which was located 3 m above the channel. Then, water was conducted to a lower tank; from which water was pumped to the upper thank forming a closed loop. Upper tank's water level was kept constant through the tests to ensure constant flow rate trough the channel. The velocity field in the x-y plane was obtained by particle image velocimetry (PIV) at 3.15 m downstream from the channel inlet. A Nd:YAG laser with a wavelength of 532 nm (green light) and power of 350 mJ per pulse is utilized. The particles used for seeding have a diameter that goes from 6-9 μm with a specific gravity almost identical to water s specific gravity. The laser light scattered from the seeding particles was recorded using a CCD Kodak Megaplus camera, Model ES 1.0, 1008 x 1018 pixels. The viewing area was 1.28 cm 2 and was located close to the channel wall. The system recorded 30 velocity fields per second. Each velocity field was obtained from a pair of consecutive images capturing the second image of the pair 1 ms after

  13. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  14. Overview of the ultrasonic instrumentation research in the MYRRHA project

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, M.; Leysen, W.; Van Dyck, D. [Belgian Nuclear Research Center SCK.CEN (Belgium)

    2015-07-01

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the required ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  15. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure

    NARCIS (Netherlands)

    Demcenko, A.; Visser, Roy; Akkerman, Remko

    2016-01-01

    Ultrasonic wave propagation in deteriorated concrete structures was studied numerically and experimentally. Ultrasonic single-side access immersion pulse-echo and diffuse field measurements were performed in deteriorated concrete structures at 0.5 MHz center frequency. Numerically and experimentally

  17. Repartition of ultrasonic energies at the interfaces

    International Nuclear Information System (INIS)

    Deleuze, M.; Bourdarios, M.; Lepoutre, M.

    1983-06-01

    Energy repartition of ultrasonic waves at the interfaces is studied as a function of incidence angle of the acoustic beam in immersion testing. For each interface type mathematical relations give the ratio of incident energy and energy of the wave reemitted by the interface. As an example curves for the interfaces water-uranium are given [fr

  18. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-01-01

    zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic

  19. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    International Nuclear Information System (INIS)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel

    2014-01-01

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case

  20. Influencing factors on microbubble ozonation treatment of acid red 3R wastewater

    Directory of Open Access Journals (Sweden)

    Yurong YA

    2017-08-01

    Full Text Available The microbubble ozonation was used to treat acid red 3R wastewater in order to investigate the influencing factors on its performance. The effects of ozone dose, initial acid red 3R concentration and activated carbon on the performance of microbubble ozonation treatment of acid red 3R wastewater are investigated. The decolorization rate, TOC removal rate, pH variation and ozone utilization efficiency in the microbubble ozonation treatment are compared under different treatment conditions. The results indicate that when increasing ozone dose or decreasing initial acid red 3R concentration, both decolorization rate and TOC removal rate of acid red 3R wastewater increase, but ozone utilization efficiency decreases. The coal-based activated carbon shows strong catalytic activity for microbubble ozonation, which could enhance the decolorization rate and TOC removal rate of acid red 3R wastewater. The better performance of microbubble ozonation treatment is achieved when the ozone dose is 48.3 mg/min and the initial acid red 3R mass concentration is 100 mg/L. Under these conditions, the decolorization efficiency reaches to 100% after treatment for 30 min, the TOC removal efficiency reaches to 78.0% after treatment for 120 min, the reaction rate constant of TOC removal is 0.015 min-1 and the ozone utilization efficiency is higher than 99%. With addition of the coal-based activated carbon of 5 g/L, the decolorization efficiency reaches to 100% after treatment for 15 min, the TOC removal efficiency reaches to 91.2% after treatment for 120 min and the reaction rate constant of TOC removal increases to 0037 min-1.The accumulation and following degradation of intermediate products of small molecule organic acid happens during treatment process, and as a result, the solution pH decreases initially and then increases. Therefore, the optimization of influencing factors for microbubble ozonation could increase both contaminant removal

  1. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  2. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    Science.gov (United States)

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  3. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  4. Frictional response of simulated faults to normal stresses perturbations probed with ultrasonic waves

    Science.gov (United States)

    Shreedharan, S.; Riviere, J.; Marone, C.

    2017-12-01

    We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress ( 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on

  5. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  6. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells

    International Nuclear Information System (INIS)

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-01-01

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG 2 cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG 2 cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases

  7. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis

    Directory of Open Access Journals (Sweden)

    Cuiyuan Huang

    2017-07-01

    Full Text Available Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  8. Bullet Ultrasonic Obstruction Detection & Distance Measurement Using AVR Microcontroller

    Directory of Open Access Journals (Sweden)

    Satish Pandey

    2008-08-01

    Full Text Available This paper describes the practical implementation of a short range ultrasonic obstruction detection and distance measurement device. By employing an ultrasonic transducer pair for producing ultrasonic sounds and sensing the reflected sound waves, the obstructions are detected. The hardware interface uses an Atmel ATmega8 AVR microcontroller to facilitate the generation of 40 kHz signal burst which is used in the transmitter circuit, and also to process the received signal for measuring the time of flight of reflected waves and exact distance of the obstruction. The program for this device is developed in WinAVR, and the code generated is dumped into microcontroller using AVR Studio. Educational aspects of this project include the mastery of a programming language and corresponding tools, the design of a functional and intuitive embedded application, and the development of appropriate hardware to build the device.

  9. Cavitation microstreaming and stress fields created by microbubbles.

    Science.gov (United States)

    Collis, James; Manasseh, Richard; Liovic, Petar; Tho, Paul; Ooi, Andrew; Petkovic-Duran, Karolina; Zhu, Yonggang

    2010-02-01

    Cavitation microstreaming plays a role in the therapeutic action of microbubbles driven by ultrasound, such as the sonoporative and sonothrombolytic phenomena. Microscopic particle-image velocimetry experiments are presented. Results show that many different microstreaming patterns are possible around a microbubble when it is on a surface, albeit for microbubbles much larger than used in clinical practice. Each pattern is associated with a particular oscillation mode of the bubble, and changing between patterns is achieved by changing the sound frequency. Each microstreaming pattern also generates different shear stress and stretch/compression distributions in the vicinity of a bubble on a wall. Analysis of the micro-PIV results also shows that ultrasound-driven microstreaming flows around bubbles are feasible mechanisms for mixing therapeutic agents into the surrounding blood, as well as assisting sonoporative delivery of molecules across cell membranes. Patterns show significant variations around the bubble, suggesting sonoporation may be either enhanced or inhibited in different zones across a cellular surface. Thus, alternating the patterns may result in improved sonoporation and sonothrombolysis. The clear and reproducible delineation of microstreaming patterns based on driving frequency makes frequency-based pattern alternation a feasible alternative to the clinically less desirable practice of increasing sound pressure for equivalent sonoporative or sonothrombolytic effect. Surface divergence is proposed as a measure relevant to sonoporation.

  10. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    Science.gov (United States)

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  11. Classification of Low Velocity Impactors Using Spiral Sensing of Acousto-Ultrasonic Waves

    Science.gov (United States)

    Agbasi, Chijioke Raphael

    The non-linear elastodynamics of a flat plate subjected to low velocity foreign body impacts is studied, resembling the space debris impacts on the space structure. The work is based on a central hypothesis that in addition to identifying the impact locations, the material properties of the foreign objects can also be classified using acousto-ultrasonic signals (AUS). Simultaneous localization of impact point and classification of impact object is quite challenging using existing state-of-the-art structural health monitoring (SHM) approaches. Available techniques seek to report the exact location of impact on the structure, however, the reported information is likely to have errors from nonlinearity and variability in the AUS signals due to materials, geometry, boundary conditions, wave dispersion, environmental conditions, sensor and hardware calibration etc. It is found that the frequency and speed of the guided wave generated in the plate can be quantized based on the impactor's relationship with the plate (i.e. the wave speed and the impactor's mechanical properties are coupled). In this work, in order to characterize the impact location and mechanical properties of imapctors, nonlinear transient phenomenon is empirically studied to decouple the understanding using the dominant frequency band (DFB) and Lag Index (LI) of the acousto-ultrasonic signals. Next the understanding was correlated with the elastic modulus of the impactor to predict transmitted force histories. The proposed method presented in this thesis is especially applicable for SHM where sensors cannot be widely or randomly distributed. Thus a strategic organization and localization of the sensors is achieved by implementing the geometric configuration of Theodorous Spiral Sensor Cluster (TSSC). The performance of TSSC in characterizing the impactor types are compared with other conventional sensor clusters (e.g. square, circular, random etc.) and it is shown that the TSSC is advantageous over

  12. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    Science.gov (United States)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  13. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan; Fortunato, Luca; Leiknes, TorOve

    2017-01-01

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a

  14. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  15. PSO-based PID Speed Control of Traveling Wave Ultrasonic Motor under Temperature Disturbance

    Science.gov (United States)

    Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Azmi, Nur Iffah Mohamed; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Traveling wave ultrasonic motors (TWUSMs) have a time varying dynamics characteristics. Temperature rise in TWUSMs remains a problem particularly in sustaining optimum speed performance. In this study, a PID controller is used to control the speed of TWUSM under temperature disturbance. Prior to developing the controller, a linear approximation model which relates the speed to the temperature is developed based on the experimental data. Two tuning methods are used to determine PID parameters: conventional Ziegler-Nichols(ZN) and particle swarm optimization (PSO). The comparison of speed control performance between PSO-PID and ZN-PID is presented. Modelling, simulation and experimental work is carried out utilizing Fukoku-Shinsei USR60 as the chosen TWUSM. The results of the analyses and experimental work reveal that PID tuning using PSO-based optimization has the advantage over the conventional Ziegler-Nichols method.

  16. Nonspherical oscilllations of ultrasound contrast agent microbubbles

    NARCIS (Netherlands)

    Dollet, B.; van der Meer, S.M.; Garbin, V.; Garbin, Valeria; de Jong, N.; Lohse, Detlef; Versluis, Michel

    2008-01-01

    The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra–high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far

  17. Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid

    International Nuclear Information System (INIS)

    Liaw, Jiunn-Woei; Tsai, Shiao-Wen; Lin, Hung-Hsun; Yen, Tzu-Chen; Chen, Bae-Renn

    2012-01-01

    The cavitation microbubbles in dilute gold colloids of different concentrations (2–10 ppm) induced by a focused nanosecond-pulsed laser beam were measured and characterized at different wavelengths by using the passive and active ultrasound measurements. Three colloids with gold nanoparticles (GNPs) of different sizes (10, 45, and 75 nm) were used for experiment. The results show that the lifespan of the microbubble is reduced as the concentration of GNP increases, particularly at the wavelength of 532 nm, the surface plasmon resonance (SPR) of GNP. In contrast, at the off-resonant wavelength (e.g. 700 nm), the lifespan reduction is relatively small. This wavelength-dependent cavitation is attributed to the Faraday–Tyndall effect, a strong light scattering by GNPs. A slight defocusing of the Gaussian beam in gold colloid was proposed. Hence, the waist of the focused beam increases to reduce the optical breakdown in gold colloid. For simplicity, a linear relation between the incremental waist radius of Gaussian beam and the concentration of GNP was assumed. According to this formulation, the theoretical results are consistent with the experimental ones. In addition, the dynamics of the microbubble in gold colloid measured by the active ultrasound method agree with the Rayleigh–Plesset model. -- Highlights: ► The Faraday–Tyndall effect of gold colloid on laser induced microbubble is studied. ► Faraday–Tyndall effect of gold colloid causes the defocusing of laser beam. ► Lifespan of the microbubble is reduced as the concentration of GNP increases. ► Light scattering of laser beam at the surface plasmon resonance of GNP is the maximum.

  18. The Detection of Burn-Through Weld Defects Using Noncontact Ultrasonics

    Directory of Open Access Journals (Sweden)

    Zeynab Abbasi

    2018-01-01

    Full Text Available Nearly all manufactured products in the metal industry involve welding. The detection and correction of defects during welding improve the product reliability and quality, and prevent unexpected failures. Nonintrusive process control is critical for avoiding these defects. This paper investigates the detection of burn-through damage using noncontact, air-coupled ultrasonics, which can be adapted to the immediate and in-situ inspection of welded samples. The burn-through leads to a larger volume of degraded weld zone, providing a resistance path for the wave to travel which results in lower velocity, energy ratio, and amplitude. Wave energy dispersion occurs due to the increase of weld burn-through resulting in higher wave attenuation. Weld sample micrographs are used to validate the ultrasonic results.

  19. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  1. Computer simulation of ultrasonic waves propagation; experimental checking

    International Nuclear Information System (INIS)

    Albert, J.C.; Beaujard, L.; Bouchard, A.; Etienne, J.L.

    1976-01-01

    It is shown that the angular spectrum formalism can be applied to transducers used for non destructive testing of metals. This formalism enables for example, the ultrasonic field of any transducer to be determined. Examples are given of measurements in water [fr

  2. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  3. Lamb wave propagation in monocrystalline silicon wafers.

    Science.gov (United States)

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  4. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Science.gov (United States)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  5. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  6. Basic study of water-cement ratio evaluation for fresh mortar using an ultrasonic measurement technique

    International Nuclear Information System (INIS)

    Hamza Haffies Ismail; Murata, Yorinobu

    2009-01-01

    The objective of this research is for the basic study of ultrasonic evaluation method for the determination of the water-cement-ratio (W/C) in fresh concrete at the early age of hardening. Water-cement ratio is a important parameter to evaluate the strength of concrete for concrete construction. Using an ultrasonic pulse measurement technique, wave velocity and frequency variations depend on the age of concrete during hardening process could be evaluated. As a sample test, fresh mortar of water-cement ratio of 40 %, 50% and 60 % was poured into cylindrical plastic mould form (φ100 mm x 50 mm). For an ultrasonic pulse wave transmission technique, two wide band ultrasonic transducers were set on the top and bottom surface of mortar, and start measuring from 10 minutes after pouring water until 60 minutes of 5 minutes of intervals. As a result, it was confirmed that wave velocity and center frequency were changed with the age of mortar depends on the water-cement ratio. (author)

  7. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  8. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    Science.gov (United States)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  9. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid

    International Nuclear Information System (INIS)

    Vashishth, Anil K; Gupta, Vishakha

    2012-01-01

    The interest in porous piezoelectric materials is due to the demand for low-frequency hydrophone/actuator devices for use in underwater acoustic systems and other oceanographic applications. Porosity decreases the acoustic impedance, thus improving the transfer of acoustic energy to water or biological tissues. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by inclusion of porosity in dense piezoceramics. The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications, such as non-destructive evaluation and acoustic design, and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The present paper elaborates a theoretical model, based on the transfer matrix method, for describing reflection and transmission of plane elastic waves through a porous piezoelectric laminated plate, immersed in a fluid. The analytical expressions for the reflection coefficient, transmission coefficient and acoustic impedance are derived. The effects of frequency, angle of incidence, number of layers, layer thickness and porosity are observed numerically for different configurations. The results obtained are deduced for the piezoelectric laminated structure, piezoelectric layer and poro-elastic layer immersed in a fluid, which are in agreement with earlier established results and experimental studies. (paper)

  10. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  11. Effect of ultrasonic intensity and frequency on oil/heavy-oil recovery from different wettability rocks

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, K.; Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study identified the mechanisms that are responsible for additional oil recovery that is often observed following an earthquake. It focused on the theory that harmonics of low frequency waves create high frequency waves as they penetrate into rock formations. A series of experiments were conducted on oil-wet rocks with high oil viscosities. The objective was to better understand how ultrasonic energy affects oil recovery at core and pore scale. Cylindrical sandstone cores were placed in imbibition cells to examine how the presence of initial water saturation can affect recovery, and how the recovery changes for different oil viscosities. An increase in oil recovery was observed with ultrasonic energy in all cases. The additional recovery with ultrasonic energy lessened as the oil viscosity increased. Ultrasonic intensity and frequency were shown to be critical to the performance, which is important since ultrasonic waves have limited penetration into porous medium. This is a key disadvantage for commercializing this promising process for well stimulation. Therefore, the authors designed a set-up to measure the ultrasonic energy penetration capacity in different media, notably air, water and slurry. The set-up could identify which types of reservoirs are most suitable for ultrasonic application. Imbibition experiments revealed that ultrasonic radiation increases recovery, and is much more significant in oil wet cases, where initial water saturation facilitate oil recovery. Higher frequency showed a higher rate of recovery compared to lower frequency, but the ultimate recovery was not changed substantially. 46 refs., 1 tab., 16 figs.

  12. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-10-01

    Full Text Available Xiang Wang,1 Ping Liu,1 Weixiao Yang,1 Lu Li,1 Peijing Li,2 Zheng Liu,1 Zhongxiong Zhuo,1 Yunhua Gao1 1Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing, 2Department of Ultrasound, General Hospital of the Jinan Military Area, Jinan, People’s Republic of China Abstract: Methotrexate (MTX is the single most effective agent for the treatment of primary central nervous system lymphoma. Currently, the delivery of MTX to the brain is achieved by high systemic doses, which cause severe long-term neurotoxicity, or intrathecal administration, which is highly invasive and may lead to infections or hemorrhagic complications. Acoustically active microbubbles have been developed as drug carriers for the noninvasive and brain-targeted delivery of therapeutics. However, their application is limited by their low drug-loading capacity. To overcome this limitation, we prepared microbubbles coupled to MTX-loaded liposomes using ZHIFUXIAN, a novel type of microbubbles with a superior safety profile and long circulation time. MTX-liposome-coupled microbubbles had a high drug-loading capacity of 8.91%±0.86%, and their size (2.64±0.93 µm in diameter was suitable for intravenous injection. When used with ultrasound, they showed more potent in vitro cytotoxicity against Walker-256 cancer cells than MTX alone or MTX-loaded liposomes. When Sprague-Dawley rats were exposed to sonication, administration of these MTX-liposome-coupled microbubbles via the tail vein led to targeted disruption of the blood–brain barrier without noticeable tissue or capillary damage. High-performance liquid chromatography analysis of the brain MTX concentration showed that MTX delivery to the brain followed the order of MTX-liposome-coupled microbubbles + ultrasound (25.3±2.4 µg/g > unmodified ZHIFUXIAN + MTX + ultrasound (18.6±2.2 µg/g > MTX alone (6.97±0.75 µg/g > MTX-liposome-coupled microbubbles (2.92±0.39 µg/g. Therefore

  14. Laser ultrasonic receivers based on photorefractive materials in non-destructive testing

    International Nuclear Information System (INIS)

    Zamiri Hosseinzadeh, S.

    2014-01-01

    The field of laser ultrasonics is one of the most interesting topics in which laser light is used for the generation and the detection of ultrasound waves in materials. This contactless method is extremely useful for materials inspection being nondestructive and contactless, especially for hazardous environments. In this method a pulsed laser with a short pulse length of e.g. nano- or even picoseconds is focused on the surface of a specimen and then ultrasonic waves, nanometer vibrations, such as surface and bulk waves are generated and propagate in all directions on to the material. For contactless detection of ultrasonic waves several interferometers such as confocal Fabry-Perot, Michelson, and long path difference interferometers have been applied. Each of them has its individual advantages and disadvantages concerning, e.g., frequency responses and sensitivity. However, most of these interferometers work best on mirror-like surfaces and exhibit reduced sensitivity on rough surfaces. Also these kinds of interferometer are sensible to external noise as air fluctuations, sample vibrations or thermal deformations, thus requiring relatively complex stabilization techniques. This hinders their applicability in industrial applications with harsh environmental conditions. As an alternative to the before mentioned techniques interferometers based on photorefractive materials (PR) have been established. A typical two wave mixing interferometer (TWMI) configuration enables broadband ultrasonic measurements on rough surfaces. These types of interferometers have a good sensitivity up to 3e-7 nm(W/Hz) 1/2 spatially for samples with a high rough surface unlike the Michelson interferometer. By using ferroelectric photorefractive crystals such as LiNbO:Fe+2, sensitivity even is enhanced to 4e-8 nm(W/Hz) 1/2 but response time in these crystals is slower. In this work, contactless interferometer set ups based on photorefractive materials such as BSO (Bismuth Silicon Oxide: Bi 12

  15. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    Science.gov (United States)

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  16. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  17. Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since Michael Faraday

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2014-01-01

    Full Text Available This review outlines, in great detail, the history of the phenomenon of ultrasonic nebulization of liquids since the discovery of such an effect by Michael Faraday and the explanation of the phenomenon by capillary wave mechanism and “cavitation...

  18. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  19. Ultrasonic wave transmission through healthy and diseased tissues

    International Nuclear Information System (INIS)

    Edee, M.K.A.

    1985-12-01

    We calculated the distribution of the spectral density of the ultrasonic energy transmitted by the reference specimen which was water. Let σsub(i0) 2 be this parameter for the frequency fsub(i). In the same manner, we evaluated σsub(i) 2 for the ultrasonic energy transmitted by the biological tissue. We superposed on the curve Log σsub(i0) 2 =F(fsub(i)), each of the curves Log σsub(i) 2 =F(fsub(i)), corresponding to the different kinds of tissues studied. By doing so, we brought into light a ''zone'' between those curves. The judicious exploitation of that ''zone'' by calculating the spectral density coefficients β, made it possible to differentiate one tissue from another. We compared the results so obtained using a probe vibrating at 1.5 MHz with those we obtained by another probe and another method. Both sets of results are in agreement within an approximation of 10%. (author)

  20. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  1. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide.

    Science.gov (United States)

    Juffermans, L J M; Dijkmans, P A; Musters, R J P; Visser, C A; Kamp, O

    2006-10-01

    In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P ultrasound exposure was completely blocked at MI 0.1 (P ultrasound-exposed microbubbles.

  2. Ultrasonic level indicator for liquids and its application

    International Nuclear Information System (INIS)

    Kanngiesser, P.

    1976-01-01

    Ultrasonic level indicator for liquids where a piezo-element is used to reverse the piezoelectric effect may be applied in a more versatile way if the indicator is provided with a reflector. It becomes less susceptible to faults and may be used for all liquids, including liquid metals. The piezo-element may then be used at the same time as receiver for ultrasonic waves emitted previously and, in that case, echoed back by the refelctor. (UWI) [de

  3. Real-Time Two-Dimensional Imaging of Microbubble Cavitation

    NARCIS (Netherlands)

    Vignon, F.; Shi, W.T.; Powers, J.E.; Liu, J.; Drvol, L.; Lof, J.; Everbach, C.; Gao, S.; Xie, F.; Porter, T.

    2011-01-01

    Ultrasound cavitation of microbubble contrast agents has a potentialfor therapeutic applications, including sonothrombolysis in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (e.g. stable versus inertial forms of

  4. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    Directory of Open Access Journals (Sweden)

    Yoichi Ochiai

    Full Text Available The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  5. Ultrasonic splitting of oil-in-water emulsions

    DEFF Research Database (Denmark)

    Hald, Jens; König, Ralf; Benes, Ewald

    1999-01-01

    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions, the avai......Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions......, the available piezoelectric composite transducer technology was improved and a dedicated resonator with crossed plane wave sonication geometry has been developed. The resonator chamber is entirely made of aluminium or tempax glass and the PZT piezoceramic transducer delivers an acoustic energy flow density...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil...

  6. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening

    Science.gov (United States)

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel

    2016-01-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929

  7. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2016-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  8. Applicability of coda wave interferometry technique for measurement of acoustoelastic effect of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)

    2014-12-15

    In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

  9. Acoustic microstreaming due to an ultrasound contrast microbubble near a wall

    Science.gov (United States)

    Mobadersany, Nima; Sarkar, Kausik

    2017-11-01

    In an ultrasound field, in addition to the sinusoidal motion of fluid particles, particles experience a steady streaming velocity due to nonlinear second order effects. Here, we have simulated the microstreaming flow near a plane rigid wall caused by the pulsations of contrast microbubbles. Although these microbubbles were initially developed as a contrast enhancing agents for ultrasound imaging, they generate additional therapeutic effects that can be harnessed for targeted drug delivery or blood brain barrier (BBB) opening. The microbubbles have a gas core coated with a stabilizing layer of lipids or proteins. We use analytical models as well as boundary element (BEM) simulation to simulate the flow around these bubbles implementing interfacial rheology models for the coating. The microstreaming flow is characterized by two wall bounded vortices. The size of the vortices decreases with the decrease of the separation from the wall. The vortex-induced shear stress is simulated and analyzed as a function of excitation parameters and geometry. These microstreaming shear stress plays a critical role in increasing the membrane permeability facilitating drug delivery or rupturing biological tissues.

  10. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters.

    Science.gov (United States)

    Pearson, D T; Watson, B G; Waterhouse, P S

    1978-01-01

    The ability of 12 commercially available cardiotomy reservoirs to remove bubbles from aspirated blood was investigated by means of a simulated cardiopulmonary bypass circuit and an ultrasonic microbubble detector. Performance varied considerably. The number of gaseous microemboli remaining after passage of blood through the reservoir was reduced by (a) holding the blood in the reservoir, (b) reducing the volume of air mixed with the aspirated blood, and (c) using a reservoir that did not induce turbulence and that contained integral micropore filtration material. Further micropore filtration of the blood after passage through the cardiotomy reservoir was beneficial, and significantly more bubbles were extracted when the microfilter was sited below the reservoir than when it was placed in the arterial line. PMID:684672

  12. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  13. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  14. Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Yuana Yuana

    2017-07-01

    Full Text Available Microbubbles-assisted ultrasound (USMB has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs. USMB was performed on a monolayer of head-and-neck cancer cells (FaDu with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30–1200 nm. Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells.

  15. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  16. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    Science.gov (United States)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  17. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  18. Effect of hip and knee position on tensor fasciae latae elongation during stretching: An ultrasonic shear wave elastography study.

    Science.gov (United States)

    Umehara, Jun; Ikezoe, Tome; Nishishita, Satoru; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Fujita, Kosuke; Ichihashi, Noriaki

    2015-12-01

    Decreased flexibility of the tensor fasciae latae is one factor that causes iliotibial band syndrome. Stretching has been used to improve flexibility or tightness of the muscle. However, no studies have investigated the effective stretching position for the tensor fasciae latae using an index to quantify muscle elongation in vivo. The aim of this study was to investigate the effects of hip rotation and knee angle on tensor fasciae latae elongation during stretching in vivo using ultrasonic shear wave elastography. Twenty healthy men participated in this study. The shear elastic modulus of the tensor fasciae latae was calculated using ultrasonic shear wave elastography. Stretching was performed at maximal hip adduction and maximal hip extension in 12 different positions with three hip rotation conditions (neutral, internal, and external rotations) and four knee angles (0°, 45°, 90°, and 135°). Two-way analysis of variance showed a significant main effect for knee angle, but not for hip rotation. The post-hoc test for knee angle indicated that the shear elastic modulus at 90° and 135° were significantly greater than those at 0° and 45°. Our results suggest that adding hip rotation to the stretching position with hip adduction and extension may have less effect on tensor fasciae latae elongation, and that stretching at >90° of knee flexion may effectively elongate the tensor fasciae latae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of the Gaussian beam summation method to the study of the ultrasonic wave propagation in a turbulent medium

    International Nuclear Information System (INIS)

    Fiorina, D.

    1998-01-01

    Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of

  20. Evaluation of phased array UT conditions using ultrasonic visualization technique

    International Nuclear Information System (INIS)

    Furukawa, Takashi; Komura, Ichirou

    2008-01-01

    Phased array provides many advantages over conventional ultrasonic testing method, but phased array has also limitations. This paper describes typical results of the experimental sound field analysis generated from the array probe. A photo-elastic ultrasonic visualization technique was applied in this study. The sound fields of shear wave generated from the array probe was equivalent to that from the fixed angle probe. (author)

  1. A data-driven correction of ultrasonic source and receiver spectral amplitude variations

    NARCIS (Netherlands)

    Capel, P.J.S. van; Vossen, R. van; Volker, A.W.F.

    2011-01-01

    The application of phased arrays in NDT applications is growing. State of the art ultrasonic arrays consist of many small piezo-electric elements that can be excited separately to synthesize a desired wave front. This may vary from simple plane waves to complex-shaped focusing wave fields. An

  2. A Data-Driven Correction of Ultrasonic Source and Receiver Spectral Amplitude Variations

    NARCIS (Netherlands)

    Volker, A.W.F.; Capel, P. van; Vossen, R. van

    2012-01-01

    The application of phase arrays is growing for NDT applications. State of the art ultrasonic arrays consist of many small piezo-electric elements that can be excited separately to synthesize a desired wave front. This may vary from simple plane waves to complex-shaped focusing wave fields. An

  3. Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice

    International Nuclear Information System (INIS)

    Tang, Rongbiao; Chai, Wei-Min; Yan, Fuhua; Chen, Ke-Min; Yang, Guo-Yuan

    2016-01-01

    X-ray phase contrast imaging (PCI) provides excellent image contrast by utilizing the phase shift. The introduction of microbubbles into tissues can cause a phase shift to make microbubbles visibly identified on PCI. In this study, we assessed the feasibility of targeted microbubble-based PCI for the detection of thrombosis. The absorption and phase contrast images of P-selectin-targeted microbubbles (MB P ) were obtained and compared in vitro. MB P , control IgG-targeted microbubbles (MB C ), and unbound microbubbles (MB U ) were tested for binding specificity on thrombi expressing P-selectin. MB P were used as molecular PCI probes to evaluate P-selectin expression in a mouse model of arteriovenous shunt thrombosis that was created using PE tubes in the bypass outside of the mouse body. PCI clearly showed the microbubbles not viewable via absorption contrast imaging (ACI). In vitro attachment of MB P (91.60 ± 11.63) to thrombi was significantly higher than attachment of MB C (17.80 ± 4.02, P < 0.001) or MB U (9.80 ± 2.59, P < 0.001). In the mouse model of arteriovenous shunt thrombosis, the binding affinity of MB P (15.50 ± 6.25) was significantly greater than that of MB C (0.50 ± 0.84, P < 0.001) or MB U (0.33 ± 0.52, P < 0.001). Our results indicate that molecular PCI may be considered as a novel and promising imaging modality for the investigation of thrombosis. (orig.)

  4. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  5. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. NONLINEAR ULTRASONIC WAVE MODULATION TOMOGRAPHY FOR DAMAGED ZONE LOCATION

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    -, - (2008), s. 14-17 ISSN 1213-3825. [WCNDT /17./. Šanghaj, 24.10.2008-28.10.2008] Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear ultrasonic spectroscopy * defects localization * aircraft structure Subject RIV: BI - Acoustics

  7. Resolution enhancement of slam using transverse wave

    International Nuclear Information System (INIS)

    Ko, Dae Sik; Moon, Gun; Kim, Young H.

    1997-01-01

    We studied the resolution enhancement of a novel scanning laser acoustic microscope (SLAM) using transverse waves. Mode conversion of the ultrasonic wave takes place at the liquid-solid interface and some energy of the insonifying longitudinal waves in the water will convert to transverse wave energy within the solid specimen. The resolution of SLAM depends on the size of detecting laser spot and the wavelength of the insonifying ultrasonic waves. Since the wavelength of the transverse wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution by using transverse waves. In order to operate SLAM in the transverse wave mode, we made wedge for changing the incident angle. Our experimental results with model 2140 SLAM and an aluminum specimen showed higher contrast of the SLAM Image In the transverse wave mode than that in the longitudinal wave mode.

  8. Sonoplasma generated by a combination of ultrasonic waves and microwave irradiation

    International Nuclear Information System (INIS)

    Nomura, Shinfuku; Toyota, Hiromichi

    2003-01-01

    Plasma chemical vapor deposition (plasma CVD) is a generic term for methods in which a precursor containing a material to be deposited is dissociated in a plasma where it is subject to chemical reactions, and is then deposited as a film on the surface of a heated substrate. A drawback of plasma CVD is that this process cannot be used to synthesize large amounts of adsorbate, or to deposit onto substrates that are vulnerable to high temperatures. As liquids are much denser than gases, synthesis rates are thought to be much higher in the former. The authors have observed the ignition and maintenance of a stable plasma in a liquid hydrocarbon exposed to a combination of ultrasonic waves and microwave radiation. Microwave energy is effectively injected into the interior of acoustic cavitation bubbles, which act as nuclei for the ignition and maintenance of the plasma. Because the plasma is formed in a liquid environment, it is possible to obtain much higher film deposition rates at much lower plasma temperatures than ever before. In addition, this process can be carried out at normal temperatures and pressures

  9. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  10. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  11. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  12. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  13. Experimental development of an ultrasonic linear motor

    CSIR Research Space (South Africa)

    M'Boungui, G

    2010-01-01

    Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...

  14. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  15. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  16. On-line measurement of residual monomer during polymerisation of acrylamide using ultrasonics

    International Nuclear Information System (INIS)

    Ponraju, D.; Sebastian, Letha; Viswanathan, S.; Natarajan, A.; Palanichamy, P.; Jayakumar, T.; Baldev Raj

    1996-01-01

    An ultrasonic technique for the estimation of residual acrylamide monomer during the polymerization of aqueous acrylamide solution has been investigated. Polyacrylamide gel medium serves as a sensitive medium for detection and dosimetry of fast and thermal neutrons. This technique is based on the fact that the velocity of ultrasonic wave increases with the increase in elasticity due to polymerization. The percentage of residual acrylamide monomer is estimated using ultraviolet spectrophotometric analysis. The ultrasonic velocity is correlated with the residual monomer concentration

  17. Numerical modelling of so-called secondary ultrasonic echoes

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Fellinger, P.; Hofmann, C.

    1994-01-01

    The formation of secondary ultrasonic echoes is discussed for a particularly simple testing situation. This discussion is based upon the intuitive visualization of elastic wave propagation as obtained with the numerical EFIT-Code (Elastodynamic Finite Integration Technique). The resulting travel times for the econdary echoes contain well-defined limits as they originate from the simple model of grazing incidence plane longitudinal wave mode conversion. (orig.) [de

  18. Control of hydrodynamic cavitation using ultrasonic

    Science.gov (United States)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    2003-11-01

    Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.

  19. Effect of ultrasonic treatment on reduction of Esherichia coli ATCC 25922 and egg quality parameters in experimentally contaminated hens' shell eggs.

    Science.gov (United States)

    Sert, Durmus; Aygun, Ali; Torlak, Emrah; Mercan, Emin

    2013-09-01

    In this study, hen eggs which were experimentally contaminated with Esherichia coli ATCC 25922 were used. Contaminated eggs were washed statically (S5 to S30; 0 kHz) and by ultrasonic waves (U5 to U30; 35 kHz) for given applications of time (5, 15 and 30 min), then the eggs were stored at 22°C for 14 days. Depending on the time of ultrasonic application, a significant increase in egg shell strength (P eggs which were washed by ultrasonic waves. Yolk width values of ultrasonic washed eggs diminished. E. coli was completely removed by 30 min of ultrasonic application. During storage E. coli growth was not detected on the eggs which were washed by ultrasonic waves except the eggs in U5 group (2.04 log CFU eggshell⁻¹) on the first day of storage. Depending on the time of ultrasonic application a significant increase in egg quality parameters (shell strength, albumen height, Haugh units, and yolk height) were observed. The application of ultrasound led to a significant reduction in E. coli numbers on egg shells. © 2013 Society of Chemical Industry.

  20. Synthesis and ultrasonic characterisation of vitreous holmium phosphates

    International Nuclear Information System (INIS)

    Senin Hassan; Sidek Hj, Abdul Aziz; Abdul Halim Shaari

    1996-01-01

    The ultrasonic properties of holmium metaphosphate glasses (Ho sub 2 O sub 3) sub x (P sub 2 O sub 5) sub 1-x, with the mole fraction of x of holmium oxide equal to 0.208, 0.22 and 0.231 respectively, have been determined from measurements of the effects of temperature and hydrostatic pressure on ultrasonic wave velocities. At temperature below about 100K, the ultrasonic wave velocity of this type of rare earth phosphate glasses become anomalously dependent upon temperature; a behaviour associated with the interaction between acoustic phonons and two level systems. The hydrostatic pressure derivatives (∂ C sup S sub IJ / ∂ P) sub p=0 of the elastic stiffnesses C sub IJ and also (∂ C sup S sub IJ / ∂ P) sub p=0 of the bulk modulus B sup S of these glasses are anomalously negative. Both longitudinal γ sub L and shear γ sub S acoustic mode Gruneisen parameters are small and negative : the application of pressure softens the long-wavelength acoustic phonon mode frequencies. The results confirmed that the holmium phosphate glasses show an extraordinary elastic behaviour under high pressures

  1. Transit of micro-bubbles through the pulmonary circulation of Thoroughbred horses during exercise.

    Science.gov (United States)

    La Gerche, A; Daffy, J R; Mooney, D J; Forbes, G; Davie, A J

    2013-10-01

    It has been observed that microbubbles may pass through the pulmonary circulation of dogs and humans during exercise. In humans, this phenomenon has been associated with lower pulmonary artery pressures, enhanced right ventricular function and greater exercise capacity. In the exercising Thoroughbred horse, extraordinarily high cardiac outputs exert significant pulmonary vascular stresses. The aim of this study was to determine, using contrast echocardiography, whether Thoroughbred horses performing strenuous exercise developed pulmonary transit of agitated contrast microbubbles (PTAC). At rest, agitated contrast was observed in the right ventricle, but not in the left ventricle. However, post-exercise microbubbles were observed in the left ventricle, confirming the occurrence of PTAC with exercise but not at rest. Further investigation is warranted to investigate whether this phenomenon may be associated with superior physiology and performance measures as has been implicated in other species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  3. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    International Nuclear Information System (INIS)

    Guo, Gepu; Lu, Lu; Tu, Juan; Guo, Xiasheng; Zhang, Dong; Yin, Leilei; Wu, Junru; Xu, Di

    2014-01-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml −1 . The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. (paper)

  4. Testing of wooden construction elements with ultrasonic echo technique and x-ray

    International Nuclear Information System (INIS)

    Hasenstab, A.; Krause, M.; Osterloh, K.

    2008-01-01

    Damages inside of wooden construction components (e.g. interior rot) or at inaccessible surfaces represent a special problem, since they are difficult to recognize from the outside, they can even cause a sudden failure of the component. As a result the research, it could be proved that ultrasonic echo technique can be used on wood both with longitudinal and transverse waves. Further more the different influences of the wood fibres on the sound velocity of the longitudinal and transverse waves is pointed out on the basis results of measurements. The efficiency of the ultrasonic echo technique is shown on wooden specimens. The combination of ultrasonic echo technique and radiography resulted in a very substantial reduction of possible misinterpretations of damage. There it is possible to detect the damage from the undamaged side of the specimen by ultrasound echo. The spread of the damage can be obtained with mobile x-ray measurements. Finally the results show, that ultrasonic methods are more sensitive starting decay and cracks parallel to the surface.

  5. Ultrasonic Characterization of Microstructural Changes in Ti-10V-4.5Fe-1.5Al β-Titanium Alloy

    Science.gov (United States)

    Viswanath, A.; Kumar, Anish; Jayakumar, T.; Purnachandra Rao, B.

    2015-08-01

    Ultrasonic measurements have been carried out in Ti-10V-4.5Fe-1.5Al β-titanium alloy specimens subjected to β annealing at 1173 K (900 °C) for 1 hour followed by heat treatment in the temperature range of 823 K to 1173 K (550 °C to 900 °C) at an interval of 50 K (50 °C) for 1 hour, followed by water quenching. Ultrasonic parameters such as ultrasonic longitudinal wave velocity, ultrasonic shear wave velocity, shear anisotropy parameter, ultrasonic attenuation, and normalized nonlinear ultrasonic parameter have been correlated with various microstructural changes to understand the interaction of the propagating ultrasonic wave with microstructural features in the alloy. Simulation studies using JMatPro® software and X-ray diffraction measurements have been carried out to estimate the α-phase volume fraction in the specimens heat treated below the β-transus temperature (BTT). It is found that the α-phase (HCP) volume fraction increases from 0 to 52 pct, with decrease in the temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic longitudinal and shear wave velocities are found to increase with decrease in the heat treatment temperature below the BTT, and they exhibited linear relationships with the α-phase volume fraction. Thickness-independent ultrasonic parameters, Poisson's ratio, and the shear anisotropy parameter exhibited the opposite behavior, i.e., decrease with increase in the α-phase consequent to decrease in the heat treatment temperature from 1073 K to 823 K (800 °C to 550 °C). Ultrasonic attenuation is found to decrease from 0.7 dB/mm for the β-annealed specimen to 0.23 dB/mm in the specimen heat treated at 823 K (550 °C) due to the combined effect of the decrease in the β-phase (BCC) with higher damping characteristics and the reduction in scattering due to randomization of β grains with the precipitation of α-phase. Normalized nonlinear ultrasonic parameter is found to increase with increase in the α-phase volume fraction

  6. Remote Inspection Techniques for Reactor Internals of Liquid Metal Reactor by using Ultrasonic Waveguide Sensor

    International Nuclear Information System (INIS)

    Joo, Young Sang; Kim, Seok Hun; Lee, Jae Han

    2006-02-01

    The primary components such as a reactor core, heat exchangers, pumps and internal structures of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection and continuous monitoring as major in-service inspection (ISI) methods of reactor internal structures. Reactor core and internal structures of LMR can not be visually examined due to an opaque liquid sodium. The under-sodium viewing and remote inspection techniques by using an ultrasonic wave should be applied for the in-service inspection of reactor internals. The remote inspection techniques using ultrasonic wave have been developed and applied for the visualization and ISI of reactor internals. The under sodium viewing technique has a limitation for the application of LMR due to the high temperature and irradiation environment. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing and remote inspection. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric A 0 plate wave was selected as the application mode of the sensor. The A 0 plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly. The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the A 0 mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified. The various remote inspection

  7. Focused ultrasonic wave testing, in immersion of spent fuel cans

    International Nuclear Information System (INIS)

    Poinboeuf, P.; Furlan, J.

    1984-10-01

    To detect weak and very weak damage of the fuel can, ultrasonic testing has been used. For that, a simple mechanical device, allowing to maintain an optimal ultrasonic focussing on irradiated cans, is presented. Its aim is to correct the variation of the incidence angle due to the possible ovalization of pins. After a description of the device, the results obtained with tests carried out on non-irradiated cans, including artificial ovalized regions, standard defects, are presented. After the description of the adaptation of this mechanism on a test bench which allows an helicoidal exploration of pins, some results obtained in hot cell during examinations experimental pins and previously tested by Foucault current [fr

  8. Increased epidermal laser fluence through simultaneous ultrasonic microporation

    Science.gov (United States)

    Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.

    2016-03-01

    Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.

  9. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  10. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  11. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  12. Catalase-positive microbial detection by using different ultrasonic parameters

    International Nuclear Information System (INIS)

    Shukla, S K; Durán, C; Elvira, L

    2012-01-01

    A method for rapid detection of catalase enzyme activity using ultrasonic parameters is presented in this work. It is based on the detection of the hydrolysis of hydrogen peroxide molecule into water and oxygen induced by the enzyme catalase. A special medium was made to amplify changes produced by catalase enzyme during the hydrolysis process. Enzymatic process can be monitored by means of ultrasonic parameters such as wave amplitude, time of flight (TOF), and backscattering measurements which are sensitive to oxygen bubble production. It is shown that catalase activity of the order of 10 −3 unit/ml can be detected using different ultrasonic parameters. The sensitivity provided by them is discussed.

  13. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  14. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium; Avaliacao de tecnica ultrassonica para medida de concentracao de acido borico em meio liquido

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Richard Yuzo Ramida

    2015-06-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  15. Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network

    International Nuclear Information System (INIS)

    Zhou, Chao; Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li

    2013-01-01

    There has been increasing interest in using the nonlinear features of acousto-ultrasonic (AU) waves to detect damage onset (e.g., micro-fatigue cracks) due to their high sensitivity to damage with small dimensions. However, most existing approaches are able to infer the existence of fatigue damage qualitatively, but fail to further ascertain its location and severity. A damage characterization approach, in conjunction with the use of an active piezoelectric sensor network, was established, capable of evaluating fatigue cracks in a quantitative manner (including the co-presence of multiple fatigue cracks, and their individual locations and severities). Fundamental investigations, using both experiment and enhanced finite element analysis dedicated to the simulation of nonlinear AU waves, were carried out to link the accumulation of nonlinearities extracted from high-order AU waves to the characteristic parameters of a fatigue crack. A probability-based diagnostic imaging algorithm was developed, facilitating an intuitive presentation of identification results in images. The approach was verified experimentally by evaluating multi-fatigue cracks near rivet holes of a fatigued aluminum plate, showing satisfactory precision in characterizing real, barely visible fatigue cracks. Compared with existing methods, this approach innovatively (i) uses permanently integrated active sensor networks, conducive to automatic and online health monitoring; (ii) characterizes fatigue cracks at a quantitative level; (iii) allows detection of multiple fatigue cracks; and (iv) visualizes identification results in intuitive images. (paper)

  16. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  17. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition

    Directory of Open Access Journals (Sweden)

    Yehai Li

    2018-05-01

    Full Text Available Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures.

  18. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.

    Science.gov (United States)

    Mohsin, Mohammed; Meribout, Mahmoud

    2015-03-01

    This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  20. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices